Calculation of the reaction field due to off-center point multipoles
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Two general methods for calculating the reaction field generated by a set of off-center point
multipoles in a spherical cavity are presented. The methods are a generalization of Kirkwood'’s
original theory for an arbitrary charge distribution. A polytensor formulation, similar to that
previously developed for direct multipole interactions, serves to organize the computation and
allows straightforward extension to higher derivatives of reaction field energy and gradients of the
potential. The computation is reduced to calculation of the Cartesian derivatives of biaxial
harmonics. Recursive and explicit formulas are given for the calculation. As an example, the
incorporation of reaction field effects in computation of induced dipole moments is discussed. The
second procedure, the central multipole method, scales linearly in calculation time with the size of
the system. Methods to obtain derivatives analytically based on this method are also described. Our
developments allow use of reaction field energy terms with atomic multipole-based empirical
potential energy functions. Both methods show particular promise for use in simulation of
heterogeneous systems, such as biopolymers, where the remainder of the cavity can be filled
explicitly with solvent. © 1997 American Institute of Physid$0021-9607)51426-7

I. INTRODUCTION has attempted to incorporate multicenter multipole electro-
statics into a force field program for flexible molecutés.
Treatment of solvation effects is of major importance in  Long-range electrostatics can be treated either with ex-
the modeling of molecular structure and energetics. Electroplicit models or continuum methods. Explicit models treat
static interactions, including long-range electrostatics, are agolvent molecules in a discrete fashion with no distinction
important component of solvatidn® In the context of clas- between solute and solvent. Lattice sums are usually used to
sical molecular simulation, the solvation effects due to longdimit the system to a reasonable siZ&°In continuum meth-
range electrostatic interactions can be viewed as a perturbads, the solute is embedded in a cavity surrounded by struc-
tion to the explicit Coulombic interactions within the system. tureless continuum solvent. The electric charges of the solute
In this paper we develop two fast analytical methods forpolarize the continuum which in turn affects the electric field
including the reaction fieldRF) as a correction to explicit inside the cavity. This contribution from the continuum is
simulation results. Both formulations are general and lead tasually called the reaction field. Some current models in-
straightforward and systematic implementations for use irtlude certain explicit solvent molecules within continuum
computer simulations. In addition to the RF potential, bothmodels. As discussed below, such hybrid models can simu-
methods give analytical derivatives of the RF energy. Bedate the system more realistically. Particular attention was
sides, various degrees of gradients of the RF potential can lagven to these hybrid models when the formulations in this
calculated in a unified way by the polytensor method, whichpaper were developed.
simplifies application to polarizable systems. Examples are  The continuum models can be treated by several meth-
given showing the effect of the RF on the relative orientationods. For simple cavity geometries, analytical solutions exist.
of a pair of dipoles in their minimum energy configuration, Kirkwood derived a general solution for the RF potential
and the calculation of dipole moments induced by a set ofor a spherical cavity containing an arbitrary charge
atomic multipoles. distribution?! The ion polarization energyBorn charging
Multicenter multipole expansions are increasingly usedenergy and the dipole polarization energ@nsager reaction
in molecular modeling.Our work extends the classical re- field) can be derived as special cases of the general result.
action field method of Kirkwood to include multicenter mul- Beveridge and Schnueffegive a concise review of Kirk-
tipoles within a fixed simulation boundary. Multipole repre- wood’s work and extended his result to calculation of the RF
sentations of electrostatics have four major usék.  potential and free energy of an arbitrary charge distribution
increased accuracy in detailed representation of a moleculdn a spherical central cavity surrounded by two concentric
electrostatic potentiaf!? (2) fast multipole methods to dielectric continua. Felder and Appleqgdistconsidered
avoid theO(N?) bottleneck in standard pairwise interaction charged and polarizable atoms in a cavity placed in a dielec-
summations? (3) description of averaged electrostatic ef- tric continuum. They obtained explicit relationships for the
fects over a region of space for use in simplified molecularcase of a spherical cavity. In order to compute the RF they
modelst® and (4) improving convergence relative to single- differentiated the RF potential with respect to the spherical
site models* Multipole parameters have been determinedcoordinate unit vectors, and then transformed back to Carte-
for use in macromolecular simulatibh!’and a recent paper sian components. The resulting formula was applied to a
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study of the Gibbs energy of proton transfer between carused at present in tandem with molecular orbital calculations.
boxylic acids. Feldéf generalized this method for a charge- Usually the surface is partitioned into a large number of el-
dipole system with a cavity in the shape of a prolate or oblat@ments via a tessellation scheme. In order to determine the
ellipsoid. Other groups have also extended the RF derivatiomduced surface charges on these elements, a large system of
to simple nonspherical cavitié3-?’ For complex molecular equations has to be solved. These equations can be solved
surfaces, no analytical solutions exist and numerical methodgither by iteration or matrix inversion. An approximate clo-
have to be used. In the spirit of the classical simple RFsure solution was also propostRecently, analytical energy
model, Rivail and co-workers have developed methods talerivatives for this method have been descriffet. For
handle cavities of general shaffeTheir formulation is better large molecules, it may be difficult to achieve reasonable
able to account for the true molecular surface, but the calcuaccuracy since fine discretization of the molecular surface
lation is performed over a large number of discrete surfacdéeads to a large system of equations. Zauhar and Vétnek
points. A correspondingly large system of linear equationgecently implemented a modified algorithm in which only
must be solved to determine the ‘“reaction field factors”those surface elements close in space are exactly solved,
used in the energy evaluation. The surface points must behile treating the long-range interactions by a grid-based
recomputed whenever the molecular geometry changes. FirBiultipole expansion.
and second derivatives of this method are availdblehe Of the many other continuum solvation methods re-
same method has been applied by these authors to mulgported in the literature, two have received particular atten-
center multipole models of the solute with the expected intion. The Langevin dipole method is an alternative approach
crease in the number and difficulty of the RF factors to bethat uses point dipole sites on a fixed grid outside the mo-
computed. While very general, the method appears to be to€cular surface. The dipoles are allowed to rotate, thus ac-
slow for use with macromolecules. commodating the RF effects due to the contindfirBeveral

The widely used image charge metfidi a simple ap-  recent methods based on the generalized BGB) equation
proximation to the full RF term and involves computation of have shown promise in computation of hydration free
the positions and magnitudes of a set of image charges ougnergies’? **These GB methods take account of solvent ex-
side the cavity. The direct interaction of the solute and imagdosure of the solute through parameters related to the burial
charges then gives the RF energy. For homogeneous sy8f charged atoms.
tems, a moving boundary RF method can be {#8&8In this In this paper two general methods are given to calculate
method each site in turn is placed at the center of its owrihe RF due to off-center multipoles. In the following section,
Spherica| Cavity and the Corresponding RF term is Computewe first present a brief outline of the original Kirkwood RF
using the classical Kirkwood result. For inhomogeneous sysmethod, then give a general matrix formulation of the RF
tems it is difficult to apply this method since the dielectric Potential and derivatives for off-center multipoles. Induced
constants inside and outside the Ca\/ity are no |onger Wemipole polarization is also discussed. A recursive method to
defined. calculate the matrix elements then is given. Explicit formulas

The “reaction field” methods discussed above are allare provided in Appendix A. Section IIl describes another
based on solving the Poisson equatigar Poisson— method, which we will call the central multipole method.
Boltzmann equation when mobile ions are presarging This method scales linearly in calculation time with the size
proper boundary conditions. Another widely used procedur®f the system, making it useful for large systems. General
for solving the Poisson—Boltzmann equation numerically ismethods to calculate derivatives are also given for the central
the finite difference method. Finite difference Poisson-multipole method. Explicit vector formulas for the RF ener-
Boltzmann (FDPB) calculations have long been applied to gies through quadrupole—quadrupole interactions are pro-
static conformations of large macromolecules such a¥ided as Appendix B.
proteins®® If a fine numerical grid is used, the molecular
shape can be accurately represented, but computation time
increases with the number of grid points. Several groups
have attempted to couple FDPB methods with dynamic$;. MATRIX FORMULAS FOR REACTION FIELD
simulations®* With use of a very coarse 10 A grid, the POTENTIAL AND ENERGY
method becomes fast enough for use in classical empiric
dynamics simulation®

In addition to solving the Poisson or Poisson—Boltzmann  Kirkwood’s derivatiori* of the RF energy for the general
equation directly, the continuum model can be handleccase of an arbitrary charge distribution is based on solving
equivalently by boundary element methdd$-*' These Laplace’s equationy?d =0, which is valid for all the sites
methods treat the continuum electrostatic problem everyfree of point charges. If we assume the system, which is
where in space by determining a set of apparent surfaceepresented aM discrete point chargeg,, k=1---M, is
charges for each element on the molecular surface. Sindeuried in a spherical cavity with a radiassurrounded by a
only the molecular surface and not the full volume occupieddielectric continuum, the relative permittivities inside and
by the molecule is involved, the method is in principle moreoutside the cavity being assignedgsande,, respectively,
applicable to macromolecules than the space-oriented metlihen the solution of the RF potential at the position
ods such as FDPB. However, the method is most widely={r, 8, ¢} inside the cavity is

6}5{. Reaction field energy
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in which P,(cos#) is a simple Legendre polynomiajy, is ~ Where y, is the angle between, andr, . If we take a
the angle between, andr, ande=e€,/€;. The RF energy is Taylor expansion ofbg(r) in Eg. (4) at sitek, we get

iven b -
g Y (n+1)(1—-¢) 1

(n)
E EM: ® Pr(r)= 4776061 Zo (n+1)e+n a®"" 1 & E MiRiq
2~ AkPr(ry) \
i (n+1)(1 E) Qn ) (2) 47T€0€1 2 Mk/?jkr (6)
2n+1
877606 izo (n+1letn la If we make Taylor expansions twice &% in Eq. (5) [or,
where expand®g(r) of Eq. (6) at sitel], we obtain
M M 1 “ (n+1)(1-
W= MLR(VM
= > qqrer'Pa(cos yi)- ©) 8mepe; Z‘o (n+1)e+n azn+l 2 2 K
k=11=1
N N
Forn=0 andn=1, Q, is equal to the square of the charge :8776061 2 2 ML ZaM, . (7)

and dipole moment, respectively, of the whole system in the
cavity. F_or highem, |_t is shown Iate_r tha@, is the complete |, Egs.(6) and (7) we define the multipole polytenséPf
contraction of two different Cartesian tensors. ;
X ) - . sitek andl as
We are interested in generalizing Kirkwood’s result to
point multipoles not located at the origin. One method to do ~ M=[M%°,M;® MR, Mt M M0, ¢,
this is to displace pm.nt charges shghtl_y away from each M _[MOOO Mloo M010 Mom M2°° Muo it
other and take the limit as their separation approaches zero I -
while keeping the strength of the multipole constant. Appenyy \hich the unabridged Carte3|an multlpoles at $itare
dix B gives the resulting vector formulas for the RF energyyefined asMOOO S0k, M =30 X M =g,
for the first three degrees of multipolésharge, dipole, and 001_ 200 2 110
ko= 2ilk My =1/21Z; qk(d ) M
quadrupolg together with sample derivations. The equations X y ) o
become complex for the higher degree multipoles, making™ 1/2'21‘31kd d .»--+ - These are the same multipole defini-
generalization difficult. The other disadvantage of this aptions used in an efficient implementation of the direct multi-
proach is that it is difficult to get derivatives of the RF en- pole interactions™*! The symbolt stands for vector or ma-
ergy from these formulas, as well as the gradients of the RErix transposition. The matrix®{ (or similarly R{") is
potential. defined as
To get a general analytical formula which is convenient
to implement in a computer program, we use a polytensor R =
method similar to that used by our group and others for
direct multipole interactions:**%* Assume that there ard
multipole sites located at,, k=1---N, with chargesqki

located around each site in a nonoverlapping fashion at po-
sitionsr,. Each charge is displaced from its own site by awhere the biaxial harmoniB,(r,r) between two vectors

g d a 72 t
’&Xk’8yk'&zk'ﬁ_xg’o7xké'yk"”

g 4 9 3
X1, —, —, —, —

, s .+ |Bn(ry,ry),
ax’ dy,’ 9z’ oaxt' axdy (M)

vectordy,, i.e., r=ry+dg, with its three componenustﬁi, re andr, is defined asB,(ry,r)=rgr'P,(cosy), and the
dyi, anddﬁi. matrix .7, as

Similar to Egs.(1) and (2) we write the RF potential at “ o (n+l)(l-e) 1
the positionr={r, 0, ¢} inside the cavity as Toa= 2, 7 R,

=) (n+l)et+tn a®"*

D (n+1)(1-¢) 1 The matrixR{} can be written symbolically as
reoa 2 (ndjern @ vOvO wovi vov?
N kI VYl ViV
10 1yl S vZ
x 2 2 qkirEirnPn(COS')’kir)r 4 R = ViV ViV ViV B (re.rp), 8
o VEVP VRVE VRVE -

Dp(r)=

Whereykir is the angle between(i andr, and the RF energy
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where
gititk 60 v .
VP= , =i+j+k, andh=k or I.
" axt aylazk P J sol

From the definition oR{} we have
(RE' =R 9

From this relation we can write Eq7) as

-y
(=3

(n+1)(1—e) 1

Angle between Dipole Vectors (deg.)
w0
o

20}
877606 Zo (n+1)e+n a®"*! (2= i)
10}
xE M{R(M,
00 20 40 60 80 160 1é0 1:10 160 180
8 (2— 5k|)2 l\/l ﬁklMly (10) Circular Arc Spanned by Dipoles (deg.)
TTEQYE (a)

where §,,=1 if k=1, otherwise it is zero.
Since
( 92 az 9?

B,= h=k or I,

e

e o o
N o ©

the potentia[Eqg. (6)] or the energyEq. (7)] are the same for
the unabridged multipoles and for the traceless multipoles, a
is the case for direct interacticA.

Figure 1 gives a simple example of the use of this
method to determine the energetic and structural effects aris
ing from inclusion of the reaction field. Minimum energy
configurations were computed for a pair of point dipoles con-
strained to lie at various positions within a spherical cavity
of low dielectric. The figure shows how the RF perturbs the - . . . . . .
optimal interaction of the two dipoles. In the absence of the 0 20 40 60 80 100 120 140 160 180
reaction field, the minimum energy configuration of the di- Circular Arc Spanned by Dipoles (deg.)
poles is to remain exactly in line. Depending on the positions
of the dipoles relative to the dielectric boundary, inclusion of o , _ _
the RF term can result in minimum configurations with theFIG 1. Effect of the reaction field term on the interaction between two point

dipoles. The dipoles are of equal magnitude and are placed inside a spherical
dipoles nearly perpendicular. Similarly, as one or both of theavity of radiusa. The ratio of the dielectric constant outside the cavity to
dipoles approach the boundary, the RF term makes a larggat inside the cavity is taken as 80. The circular arc spanned by the two

> o

Reaction Field Energy / Total Energy
©o © o © o ©°
[\ w 4, ]

o
.

(=]

(b)

contribution to the total interaction energy. dipqles is given by an angl¢ One dipole is fixed at a distaneé2 from the
cavity center. The plotted curves, in order from bottom to top, represent
B. Derivatives of reaction field energy different positions of the second dipole, at distances cf,00.2a,...,0.%

from the cavity center. For each combination of circular arc spanned and
From Eq.(7) and using the symmetrical relation EE), second dipole distance, the minimum energy orientation of the dipoles was
we can easily write down the equations for the derivatives of'€termined. In parta), they axis shows the angle between the two dipoles

their minimum energy orientation. In paih), they axis shows the frac-
the RF energy with respect to the Cartesian coordinates q?on of the total interaction energy at the minimum energy orientation due to

each atom, the reaction field term.
AW i (n+1)(1—e) 1
é’_Xk 811'606 =y (n+l)etn a>"*?! and
N o]
) 1)(1—-¢)
>< _ t p(n)1x ax (n+ nlx
! kz AR M, 11)  The elements oR{J: are taken fronR{} . From the struc-
“8meoe ture of R{JLX, we can seeR(E)&lxo J) R(V(3i—1,),
1 1
where the matriceR{; and.2{,, are defined as R{ (1,1) =R (31,1), R (i J) (P(3i+1j). Similar
methods can be used to construct the nine matrices
R(n)lx:i RV for the second derivativesR{N2(i,j)=RW(9i —4,),
(ki (98

RV, =RM9I-3,), R i.i)=RP9i—2,),
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.o . . .o .. P P ind
Rga;ﬁyx(,'J)_:RfkT)(gl _.1,1), REE))Elyy(' 'J):R(kfr)(ghj?’__ ] The induced dipole momenjs, "~ are
For the derivatives with respect tp, the corresponding col- = gy EC'= ay - (ES+Ey), (14)

umns of R{Y will be used to build up the matrices of
REB),},X, etc. The matrices for higher derivatives can be conwhereay is the polarizability tensor of site andE}" is the

structed in a similar way. total field on sitek, which includesE{, the field generated
directly by all other sites at sitk and the RFE,, generated
C. Reaction field and reaction field gradients by all sites. By analogy to Eq(12), the field as well as

various degrees of the gradient of the field, generated directly

In addition to the RF potential, we can obtain from in- by all other sites can be written as

spection of Eq(6) [or Eq.(7)] the field, the gradient of the

field, etc., at sit&k, generated by all sites, [VODU(r,),ViDY(r,),V2DIU(ry),...]!
[Vo@(r), Vi (). V2 (ro),...J =[®%(ry),~Ef(r, —ES(r), —ES(ro),...J
=[D(ry), —Ex(ri), — Ey(ry), — Ex(r), ®2X(ry), . N
d2Y(r,),...]" :477506_121 TuMy,
[ N . .
_ 1 E (n+1)(1-¢) 1 E RIM vyjere thg primed sum excludes the termk. The matrix
Amege, o (N+1)e+n a? iy kI T is defined as
N rve  vtoove o vd o
_ 1 z oM (12) 1 2 3 4
_4776061|:1-'/kl I - -V -V —-Vy° —-V* ... 1
Tu=| V2 y3 v4 Ve o=
These quantities can be used in the treatment of polarizabil- 7k 3 4 5 5 (rm)’ (19
ity and hyperpolarizabilities, as illustrated in the following A A A
section. Unlike the case of direct multipole interactions, the L : : : .

RF interaction includes self-interactions. As a simple ex-

ample we calculate the field in the center of the cavity due tgvherery=r,—ri and
a dipole. If we write the matri¥ tViB,(r,,r,) explicitly and Gtk
substituter; =0, all matrices vanish except far=1, which is Vp:m, p=i+j+k.
an identity matrix. So 19¥1921
1w 2(e-1) Eﬁ arises from two sources, the permanent multipMesnd
R(0) = the induced dipolegd™,

:4776061a 2¢+1

N

This example.|s givenin Ref. 52 for eccentric dlpplg directed E‘E= -2 E ' (!ﬁlMlJﬁﬁmind , (16)

along the radius direction. Here it is shown that it is true for TEQEL (=1

eccentric dipole of any orientations. As another example, we A . e
) . o ' " 'Where.7, is a submatrix of7”

calculate the various gradients othargedistribution at the Tk Vi

center of the cavity. It is easy to verify that

1 (n+1)(1-¢) 1 e
4mege; (n+1)e+n a’*t?! w7

1
.7§|=[—V1,—Vz,—V3,—V4,...](r—),
kI

P(0)=
= (0) and.7i! is a 3x 3 submatrix of 74,

1
N - 1
1 1 rkl)
Y V=(-1)" = reniyn — 13
Z0=(1" 5 2 ai r (13 which is often calleche dipole field tensor

is the traceless multipole of the charge distribution defined at I'_Ek ‘TISO ar:jseﬁ fr_orcr; thedsgl_mel two sources, the permanent
the center of the cavi§? This definition will be used later Multipoles and the induced dipoles,

where
Ti=-V?

for the description of another method, the central multipole 1 N .

method, to calculate the RF. Ev=— > (M + 7 ), (17)
4mege, (=1

D. Induced dipole moments where. 72}, is a submatrix of7,,

Theoretically we can use the results from Sec. Il C to

study the hyperpolarizability carried out to any desired de- j’&lz E (ntH(A~-e) 1

(n+1)e+n a®"*?!

gree since we can calculate the gradients of the potential to n=0

any degree. In this section the formula for calculating in- XIVIVO ViV ViV2 1B (ru .1
duced dipole moments will be presented. The generalization [ViVE VIV VIV - DBa(Tn),
to higher polarizabilities is straightforward. and. 7 is a 3x 3 submatrix of 72,
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Zo(n+)(l-e) 1 and
=> ViVIB(r,M)
“ e (n+1)6+n a2n+1 kY1Pnllk,t)-
%G: rﬁrfiﬁ:g-f—ZrFZ kixki@kli—'—erEi |iX|iQ‘J|;1i

Substituting Eqs(16) and (17) into Eqg. (14), and collecting
the terms containing the induced dipole moments, we get

(A+ ) =2, (18)

where._7 is the interaction matrix for direct interaction with
diagonal blocks ak_l and off-diagonal blocks 1/ege;
71k|1; 7 is composed of 1/#4€oe; ¢, which comes from
RF;
multlpoles directly and through the RF, whos& B blocks
are

N N
(E T+ l}‘,%ﬁ, M
= =1

Usually it is assumed that the polarizability is isotropic, then
the diagonal blocks ofZ will be ak’l. Equation(18) is a

4776061

generalization of the corresponding equation of Felder and

Applequist?® and leads directly to a set of linear equations
whose solution yields the induced dipole moments

=(A+7) .

In practice these equations can be solved iteratively for larg
systems.

E. Calculation of matrix elements

In this section we give a recursive algorithm to calculate
the matrix elements oR(”) This algorithm is much faster
than the explicit formula given in Appendix A in a normal

. . 11050
simulation. Let the operatay,'" 2" ¥ denote
172073
gKatkatktiptlotlg
gt =
’/K_

gvlals -

Tky kg kg

PN P Y P P
ax2ay29z.39x,tay 297,

Suppose thatr,=(Xc,Y«,z) and r,=(x,,y;,z), then
cosy,=d/r,r;, whered is the inner product of the two vec-
torsry andr;, d=xXx +Vyy,+z:z . Furthermore, we make

the following definitions: K ,;={k;—mé&y;i ,ko—méy; kg
—mé&z}, Lymi={li—médyi,lo—mdyi,l3—md&si}, where m
=0, 1, or 2. For exampleK1,={k;,k,—1ks}. For m=0,

we simply denote Kg=K={kq,k,,ks} and Lg=L
={l4,l,,13}. Let also denotex,;=Xn, Xp2=Y¥n,» Xn3=2Zh
whereh=k or|. From the recursive relation of the Legendre
polynomial$®

(n+1)P,11(2)—(2n+1)zP,(2) +nP,_41(2) =0,

we have

1 2.2
== ((2n=1)dB,_1—(n—1)ryriBy_»).

If we defineF=dB,_; andG=r2r?B,_,, we have

3 3
@kF: dffk‘i‘é}l kixlig/)klidl_i:zl |iin_@:_<ll
3
+2 kili@‘,;f_)sn_l (19
i=1 |
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+42 kil xk,x|J/L1'+r,22 ki(ki—1) %k,

+rk2 i(li— 1)—@+L<2i+22 ki(ki—1)|jxki>@tlj.
1) 2i

# is the sum of the field generated by the permanent

+23) 1i(li—
1)

1)ij|i9:221j.+2 ki(ki—1)
] |'J

x1(1, —1)JL2' B, ,. (20)
With ZkF and 7kG, we obtain
L 1 L
ZkBa(r) == ((2n=1)ZkF-(n-1)%G). (2D

From the definition ofB,, we see thaBy=1, so the only
nonzero element Oy’Llly,lfz'l,isBO is Z90Bo=Bo=1. When

p=1, B,=d, so we have

Zo0Br=d,

AoB1=X, ZoiB1=Yi, ZooB1=12,
@éj8j331= Xk © /0,31831: Y, Yo 8%‘31 =2,
710B1=1, ZorBi=1, “oeBi=1,

and all others elements vanish. From EK9), (20), and
(21) and usingZxB, and 7B, as initial values, we can get
kB, from ZxB,_; and ZkB,_,. It can be seen from Egs.
(19 and (20) that asn goes up, the nonzero terms in these
equations depend only df andL.

lll. CENTRAL MULTIPOLE METHOD

The matrix method just discussed fits nicely into the
polytensor formalism for direct multipole interactions. As
mentioned briefly in the section describing induced dipoles, a
main difference between direct interactions and the RF lies
in the kernel functions operated on by the Cartesian deriva-
tive matrix; 1f for direct interactions v8,, for RF. In addi-
tion, calculation of the RF requires inclusion of self-
interaction terms and involves summation of an infinite
series. Hence our existing program for direct multipole
interactions! can be modified with little effort to incorporate
the RF calculation. Since large systems usually require as
many as 20 terms for the series to convetyend computa-
tion of each term is a®(N?) operation, wheré\ is number
of multipole sites, the inclusion of RF effects can make the
computation very slow. In this section we present a method
to calculate the RF which needs onB(N) time. We call
this new linear method the central multipole method, for rea-
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sons which will become clear in the following discussion.so we can in fact only calculate the{ 1)(n+2)/2 unique
Since the treatment of multipoles is developed directly fromterms of.#(™, and then use these terms to construct the
the corresponding method for a charge distribution, we firsPn+1 unique terms of/*/'/(”) through these linear relations.

present the method for charge distributions. Details of the calculation will be given elsewhere. Once
7™ is calculated,A" can be easily obtained.

A. Central multipole method for charge distribution B. Central multipole method for multipole distribution

~The bi;axial harmoni®(ry,rj) =rgri'Py(cosyq) can be The central multipole method for charge distributions
written as can be generalized to an arbitrary multipole distribution. To

syl gttty q do so the #™ and 2™ should be expanded for these mul-
n.n 2n+1 XYz 9 ipol hi bﬂ il hi d o™
FrPPL(COSy) =121y > > ——— tipoles. This can be easily achieved .o#f
S t u Sltlul (9Xkyka rk
(22 N
. . . y — t

the summation oves, t, andu being taken for all integral ~//5(s?3—241 Em: q|mx|‘°'my,mz,“m

values that satisfis+t+u=n. Using Egs.(3), (13), and

(22), and exchanging the order of summatiorQ@p, we can N
see that =2 2 a, (xtd )y +d )@+ d)Y (29
Q=" .M. (23

X y z
The components ofZ™ are defined as whered|m, d|m, anddIm are thex, y, andz components of

N
A= 2 AV (24

the displacement ahth partial chargey, of sitel. Expand-
ing Eq. (25) gives
N s

which are Cartesian multipoles of the charge distribution /gg‘gzz 2 i)
with respect to thecenter of the cavityand A" are the =107k
traceless Cartesian multipoles defined in Eg). Note that ik ] ) )
in this definition of.#™ there is no factor of # in con-  WhereM™ is the Cartesian multipoles of site
trast to the previous definition used in the matrix method.
The_ symbol- stands for c_ompletg contraction. The quantity M:ijE Qn( ) (Y )i(d? ¥,
Q, is usually referred to in the literature as “the square of m m m m
nth moments of the charge distribution.” It is shown here _ _ _ o
that expressed in Cartesian multipol€g, is the complete Again the factor of 1! does not appear in this definition,
contraction of two multipole tensors, one with trace and oneinlike the definition used in the matrix method. For complete
traceless. Fom=0, %%)():/gg%)ozziqi is the total net convergence the summation ovierj, andk in Eg. (26) is
charge of the system. Fon=1, %%)%):'/%g%)%):EiQixiv determined by &i<s, O<j=<t, and Osk=u. In actual
Yord1)=7=3iay;, and A= 7=32iqiz;, so cglculations another .conditiom,+j+k§ p, wherep i; the
Q, is the square of magnitude of the dipole moment of thehighest o'rder Qf muIUpoIe; for each site, has to be imposed.
system relative to the center of the cavity. For1 the AS explained in the previous section, onc&™ has been
components ofZA™ are no longer equal to those of/(". calculated, A can be obtained through the same linear

Equation (23) provides an alternative and fast way to fransformation.
calculate the RF energy for an arbitrary charge distribution.
Since the calculation of/A™ and. 7" is linear withN, the
size of the system, the calculation of RF is red_uceq to are. perivatives using central multipole method
O(N) operation. Results show that the calculation time is o ) ) )
reduced by many orders for large systems. The new method The derivatives can be easily obtained via the central
is called the central multipole method since the two differentMultipole method. From Eq23), we get
Cartesian tensors involved/A" and .z, are both ex-

t
J

u ) ) .,
M, 26

panded relative to the center of the cavity. 7 Q.= i Z/n)) O+ Y. (i ,/Z“‘)). (27)
2 M has 7+1 unique terms, whileZ™ has fi+1) X X ’ X

X(n+2)/2 unique terms. The degeneracy of/() is

nt/(s!t!u!). In addition, although the components g™  For @ charge distribution, from the definition o™ [Eq.
and. ™ are not equal to each other wher-1, they are  (24)] we see that
related linearly, such as

d
_ () _ -1
Y= W2 L W1 72, axau=sax iz (28)
and
@ @ 1B 1 For a multipole distribution, from the definition of#(" [Eq.
Vo= 27001~ 37 501~ 3003 (26)] we see that
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488 Y. Kong and J. W. Ponder: Reaction field due to multipoles
I s\(t)/u i iU ke ik boundary. Such sites generate large apparent surface charges
X, '//zstu:,zk (i j) k) (s=i) ™yl Ty of opposite sign, and are attracted to the interface by a force
v that becomes infinite at the boundary. In addition, explicit

ysiytrigu—k[ L ik molecules must be restricted to the region inside the cavity
X4 ax ! itself. Several groups have handled these numerical problems
by using constraints to keep atoms from getting too close to
+ 3 xStk 7 Mk (29 the boundary®-%! Recently, Wang and HermdRshave ap-
XW yW ZW a w " . .
wel, X| plied the image charge method to pure water droplets and

The last two terms of Eq29) come from the local coordi- droplets containing a single cation. They discuss the various
nate systems used to define the multipoles at eacfi'sSiee ~ Problems caused by boundary effects, and suggest an empiri-
setL, includes all other sites the definition of whose multi- cal solution that gives the correct cation hydration energy
poles depends on site Once we have Obtainaﬂaxl//g(n) independent of the position of the cation within the cavity.
from either Eq.(28) or Eq. (29), we can getd/ox, A"  Further studies will be needed to devise general and theoreti-
through the linear transform used above to obtgi? from  cally justified treatments of effects due to fixed cavity bound-
7M. Then from Eq.27) we get the derivatives of the RF aries.

energy with respect to the coordinates of each site. Methods that treat RF effects based on the actual mo-
lecular shape do well with regularly shaped small molecules.
IV. DISCUSSION However these methods may fail near the small cavities,

Methods that directly use the exact molecular surfacé'acks and grevices 3!2 large mole_cule_s like proteir_13 as Qis—
have clear advantages over the use of a sphere or ellipsoid %Jssed by G"SO’E“ .al. One pqtenhal d|saF1vantage is that it
describe the molecular shape. However, analytical methodd@y be very difficult to calibrate an isolated molecule
based on simple cavity shapes are more efficient and aIOlorgjethod to correctly describe local interactions very close to
priate when an extended system containing solute and efte solute.
plicit solvent fills an idealized cavity. Molecular simulations It is well known that tightly bound water molecules play
using empirical force fields provide many potential uses foran important structural and dynamic role in many biological
this extended system approach. In these cases, the electfdacromolecule§>®* Tightly bound solvent should be ac-
static solvation effect can be viewed as a long-range correccounted for in molecular surface methods through inclusion
tion to the explicit simulation of electrostatics within the of explicit solvent molecules. Supermolecule approaches that
extended system itself. Inclusion of such long-range effectsise molecular-shaped cavity surrounding the solute and a
is of critical importance to accurate modeling of some prop-imited number of explicit solvent molecules have recently
erties, such as the dielectric constant of water and solvatioheen used to model solvation of small systems using both
of ions. In more recent work inclusion of long-range electro-empirical force fiel§>®®and quantum mechanical methdds.
statics has been proposed to be an important factor in achiein addition the explicit presence of local solvent provides the
ing protein simulations that remain close to experimentallyspace-filling needed to reproduce solute dynamics. These hy-
determined structures. Multisite multipole potentials can prid discrete/continuum approaches correctly account for a
provide accurate models for the local electrostatic interactimited set of specific local interactions. In our approach, we
tions in peptides and proteindThe current paper describes expand the number of explicit solvent molecules to fill out a
a method for incorporating the long-range forces arisingspherical system containing at least the first solvation shell,

from these same multipole-based potentials. ~and allowing use of the much simpler analytic formulation
The Cartesian polytensor formulation of Applequist is angysilaple for the spherical cavity.

efficient method for organizing multipole calculatiotfs® It The methods discussed in this work can incorporate
has been used b}’ Dyksﬁ‘a‘pr C"’TICUI,at'_On_Of d|rect and in- ionic strength with little computational effort, as in Kirk-
ducgq eIlec]itrosta]}.lclge_ﬁct|ons in fais |(rj1!t|o denhve(_j N:MCI wood’s original treatment. If we denote the radii of the origi-
empiricat force Tield. € corresponding spherical pofar cavity and of the ion-free zone asanda’, respectively,

multlpolg tr(geatments result in a more compagt mathematlc%en by solving in different regions Laplace’s equation or the
formulation; but the redundancy in Cartesian multipole linearized Poisson—Boltzmann equatiaifd(r) = x2d (r)

treatments can be easily removed when using the polytensor . . . o
. ; : : . ~{where « is the inverse Debye screening length which is
method. In addition, it provides a compact matrix notation lated to the ionic strengthw ¢
which is readily incorporated into computer programs, and ©'&ted o hejonic stre €ge
can be easily adapted to higher derivatives of energy and
gradients of the potential. In this paper we show that the
Cartesian polytensor formulation can be extended to compu- 1 * 1 NN .
tation of the RF effects by changing the function operated on W= 2 h(n) =g 2 2 MIRIPM,, (30)
) S . L 8mege; n=0 a k=11i=1

by the Cartesian derivative matrix fromr1¢for explicit in-
teraction$ to the biaxial harmonic$for reaction field.

Reaction field methods have numerically unstable
asymptotic behavior for charges approaching the dielectrigvhere
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(N+1)(1=)Kpy1(X) = (N+1)+ne) (K 1(X) —Kn(x)) (@' /2)*" "1

h(n)= - 31
(M T D e MKor100 (L (K 1)~ Koo (@ 12)2 2 (3D
|
Here the polynomial&,(x) are defined as in order to achieve convergence. However, as the number of
n o | series termsn, rises, the number of components we have to
K. ()= 2°n!(2n—s)! « calculate for. ™ and A" increases. Thus, the efficiency
5 o st(2n)i(n—s)! of the linear central multipole method is degraded when

higher orders are used. Even so, the linear nature of the cen-
tral multipole method makes it vastly superior to the pairwise
matrix method for large systems.
(n+1)(1—e¢) At present, the most widely used RF protocol in simula-
h(n)= (n+1)e+tn tions is the image charge meth#image charges are attrac-
tive because of the resulting simple pairwise procedure for
sinceK,(0)=1. All the equations developed for zero ionic calculation of the RF energy. However, the generation of
strength hold under Poisson—Boltzmann generalization if thgnage charge sites entails an additioh&! calculations be-
properh(n) is used. tween N solute charges andl image charges. A second
The total electrostatic force experienced by a system ifyigely used RF method involves use of only the dipole term
solution consists of three terf&the first of which is the (n=1) for a system containing neutral molecuf&§® Like
usual interaction of charges with the electrical field, whichine jmage charge procedure, this second method is also pair-
includes the Coulomb’s law fields and the reaction field. Inyjise and an approximation to the full RF series summation.
this paper when we talk about the derivatives of the energyoyr central multipole method can use any number of series
we are discussing this kind of force. However, in addition toterms to achieved a desired level of convergence and is com-

this term, there are two other terms that arise from discontipytationally more efficient than either of these currently used
nuities in the dielectric constant and ionic strength. Thesenethods.

two terms act on the corresponding boundaries. In the case of

a spherical cavity containing a solute and filled out with

explicit solvent and ions, the boundary pressure due to these

discontinuities is only experienced directly by those species

close to the boundary. If the solute of interest is near theaCKNOWLEDGMENTS

center of the cavity, the behavior of species near the bound-

ary is not of as much importance as those close to the solute. This work was supported by Grant P01-GM-24483 from

If the buffer region is thick enough, the boundary pressurghe NIH and by a grant from the DOE Environmental Man-

for a fixed spherical cavity can be approximated by distrib-agement Science Program. Computer routines which imple-

uting it over the whole system and should be nearly isotroment the methods, as well as its incorporation into our

pic. Thus, the boundary pressure plays a less important rolgINKER modeling package, are available via ftp or WWW

in determining the dynamics of the overall system. On the&rom dasher.wustl.edu.

other hand, if a molecular surface is used, it is more likely

the anisotropic forces resulting from these last two terms

would effect the behavior of the exposed individual atoms.

These effects should be taken into account explicitly, adding

further computation burden to molecular surface methodsaAPPENDIX A: EXPLICIT FORMULA FOR THE MATRIX

Whether the boundary term can be completely neglected iELEMENTS

fixed spherical boundary simulations will require a further

set of test simulations. In this section an explicit formula for the matrix ele-
In this work two general methods are proposed for comiments is given.

putation of RF effects. The matrix formulation fits nicely

with the existing method for calculating direct multipole in- glals Bn(rg,r)

wherex= ka’. It can be seen that whea=0, corresponding
to zero ionic strength, Eq31) reduces to

“Kq K,k
teractions. In addition, it can provide various gradients of RF v
potentials_ at (_a_ach site, which will be useful in_dealing wit_h =fﬂ(kl,kz,ks;rk)fﬁ(l1.I2,I3;r|)
the polarizability of the system. However, this method is
inherently pairwise, and scales in execution time with the Y (n—m)! . .
square of the size of the systdi®(N?)]. The central mul- +2m:1 (nrmt [fn(ke, Ko, ka;r)fa(la,l2,1351)
tipole method provides an algorithm whose execution time
scales linearly with the size of the systdi@®(N)]. This +00'(Ky Ko kg r)an(,5,1551)],

method will be most useful for large systems. As discussed
above, larger systems require more terms in the infinite serieshere
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fo(i,j,kr)= —(Q,Ii+—k|g r"P(cos #)cosme X 2a_2’3.+2y+1
ax' oyl oz n j
(n+m)litj! (—1)" [m+2a X XM+ 2B=2y= 1y 2a=28+2y+1-]
T 2M(n—k! 4 2% ( @ from these formulas, we get=i+j +k as the condition for

the matrix element to be nonzero.

n—k
X m+2«a

Zn7m7k72az 2 (_l)'y( a)
B v B

( m ) ( m-+ 2B—2y>(2a—2,8+ 2)/)
X . .
2y i J
Xxm+2ﬁ—2'y—iy2a—25+27—j

APPENDIX B: VECTOR FORMULAS FOR POINT
MULTIPOLES

In this appendix the formulas for the RF energy ex-
pressed in vector notation are given. We Mg, to repre-

sent the RF energy betweanth andn,th degree multipoles

and at two different sitest, is the vector position ofth degree
giitk multipole from the origin of the sphere, and if the energy
ami,j.k;r)= ——— r"P™(cos 6)sin m¢ term involves two multipoles of the same degreds omit-
Ix'dy’dz ted. In such cases, i=1 or 2 are the position vectors for

(n+m)litj! (—1) (m+2a the two multipoles involvedu is the dipole vector ang,;
= =K1 7 ( o ands, are two vectors that define the quadrupole. In the case
o of quadrupole—quadrupole interacticrrﬂ_, stands for theth
« n—k k2SS (L q)y a vegtor(J=l or 2 of theith site(i=1 or 2. r stands for the
m+2a 5 < B unit vector ofr. P,, denotes thenth degree Legendre poly-
nomial P,(cosy;,), wherey,, is the angle between two
y m m+2-2y—-1 vectors. In this Appendix, the ubiquitous factor 4ike, is
2y+1 i omitted from all equations
w179t < (D) (rirp)”
oo a &, (n+1)e+tn | a? ] ™
(l1-eau < (+L) rgrdt
01T T 2 ngl (n+1)etn a®1 [Pa(ro-m) —Ph_q(r1-m) ],
(1-epips «  (N+D) [rg\™r Y e m s o m e
11~ a3 n§=:1 (N+1)etn a2 {PR(ry-pmo) (o prg) = Pr_q[ (Yo~ pa) (T o) + (e 1) (V2o o) ]
+ PR _o(Ty 1) (T o) + PRy o) — 2P (F1- py) (T2 1)},
(1-6)9Q «  (n+1) rgey™® e L,
Woo= a3 n§=:2 (n+1)etn a2 2 {Pa(ro-s1) (o) = Pr_1[(To-S1)(r2+$) +(Fo ) (r2-81) 1+ Py o(T2-5)
X(T2:%) =P (S-S},
(1-0pQ & (n+1) w52 L e
Wio= a4 Z:Z (N+1)etn a®3 (PR (- ) (ry-s)(r1 ) = Prq[ (T ) (F1-S1)(T2$) + (- ) (11-S)

X (T28) + (P m)(T1-8) (F1-$) 1+ PR (T ) (F1-8) (T2 &) + (F1- i) (T1-8) (Fo+81) + (T i) (F2-51) (F2-S)]
—Pia(F1- i) (F2+81) (F2+%) + PRL(T1-80) (-S) + (F1-8) (1-5) 1= Py [ (F2-8) (M-5) + (T2 ) (-5 + (51-°8)
X (Far ) +2((F1- ) (T1-80) (Fo-S) + (T ) (T1-8) (F2-8) 1+ P o[ (T ) (5-8) +4(T1- ) (T2-81) (12-S,) ]
—2P; (T ) (5°9)},
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o0

(1-6)Q1Q; D (n+1)

22755 “ (n+1l)e+n

rarp\"
a

2
{P(F18)(F1-8,)(F2+81 ) (T2-81,) — PR [ (F1-81 ) (F1-8 ) (15,

X (Fo81) + (F1-8) (Fr- &) (F1-8)) (Fo-81) + (P18 ) (Fo-81) (Fa-81) (P &) + (F1-8,)) (P81 ) (Fo-81) (Fo-5))]
+ P18 ) (18 (F1-8 ) (F1-8) + (728 ) (728 (T2-8 ) (F2-8)) + Al =P x B+ PLY (718 )(F1-5;)
X (P28 ) (F2-8,) +PRL(F1-8 ) (31,8 (Fa-81 )+ (F1-8) (31,8 ) (Fo-81) + (F1-8 ) (31,5 ) (Fo-81)
+(F1-8,) (81,8 ) (F2-8,)] = Pi_a[(F1-8 ) (F1-8)) (31,8, +(71-81) (T1-8,) (51,8,
+(F18)(F18)(51,-8) + (F1-8)(F1:8)) (818 )) + (T28 ) (F2-8 ) (81,8 ) + (7281 ) (T2-8) (51,8 )
+(F2-81,)(T2-8)) (81,5 + (F2-81 ) (T2 8 ) (81,8 )+ (F1-5 ) (F1-5)) (81,-81) + (T2-81 ) (T281,) (8, -,) + 2A]
+ Py o(C+4B) = Pi_j[D+8(1+8 )(71-81,) (T2 ) (T2-8,) 1+ Prl(31,-8 ) (31,8, +(51,8,) (51,°%,)]
— 2P XCHPh_[(8,+8)(5,°8,) +4D+8(7 18, ) (18 (P28 ) (72-8,) 1= 2P)_1(3181))(5,-8)},
A=(F1-8)(F1-8 ) (Fo-81,) (P2 &) + (F1-8) (F1-8) (Fo-81) (P2 &) + (18 (F1-8 ) (281 ) (F2-S)
+(F1-81,) (P18, (F-81) (Fo ),
B=(F1-8)(F1-8,) (F1- &) (F2-8) + (Fr-81) (F1-8,) (F1- &) (Fo- &) + (P18 (F2-81) (F2- &) (o8 ) + (F1-81,)
X (P28 (F2- &) (P28,
C=(F1-8,)(8,-5) (F2-8 )+ (F1-81) (3,8 ) (P25 + (F1-81)(3,-5) (Fo-81) + (F1-80) (31,8 ) (P + (F1-81)
X(81,% ) (T8, +(7181) (5,8 (T8 ) + (P18 ) (518 (P28 +(F1-8))(8,81)) (F2 ),
D=(f1-8,)(F1-8) (3,8 + (F2- &) (F2-8,) (31, -8).

The multipole of a given site can interact with itself, or with multipoles of different degrees at the same site. We denote
by Wi’j the RF energy betweamth andn,th degree multipoles at the same sit\ﬁé{r can be considered as a special case of
W;; . From the generating function of Legendre polynomials,

1

_ n
A 2xtr )72~ &, Pt

i
it can be easily derived that

1 (n+m)!

(m) -~ 7
Pr(D)=7m (n—m)!'m! "

Wi’j is then obtained using the expression Rﬂ")(l) and the previously derived/;; . When the degree of the multipoles is
the same, a constant factor of 2 is removed. Since only one site is involved, the subsecriigt @mitted.
(1-6q> «  (n+1) 2n

2a =0 (ntl)e+n

r

r_
WOO_ ’

a

(1-€e)qu i n(n+1)

a®> &1 (n+tl)e+tn

2n—1

r .
(r-p,

W, = -
01 a

o

, (1-€)0Q (n—1)n(n+1)
Wor=—553 ;::2 (n+1)e+n

2n—-2

60808 - (3-8,

a

©

. (l—epu? n(n+1)
W=7 ,,Z‘l (n+1)e+n

2(n—1)

L D+ (=12,

a
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’ (1- f)MQ (n=1)n(n+1) 2n—3
e ngz (n+1l)e+n \a
—n(r-w)(5,-,)},
, (1-6)Q°> & (n—1)n(n+1) 2(n-2)
Waz™ 16a° ngz (n+1)e+n \a
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{(N=2)(7-8)(T-&)(F- )+ (N+ D[(T-5) (- S) + (7 -) (1-§1)]

{(n+1)(n+2)+3(n+1)(N—2)[(F-5)%+(T-$,)?]+3(n—2)(n—3)

X(F-§)3(1+5)%+2n(N—1)(5,-5)2—4(n—1)(n—2)(T-5)(T-5)(5-5)}

1J. Tomasi and M. Persico, Chem. Ré&4, 2027 (1994.

2C. J. Cramer and D. G. Truhlar, Reviews in Computational Chemistry
edited by K. B. Lipkowitz and D. B. BoydvVCH, New York, 1995, Vol.
6, p. 1.

3p. E. Smith and W. F. van Gunsteren,Gomputer Simulation of Biomo-

lecular Systemsedited by W. F. van Gunsteren, P. K. Weiner, and A. J.

Wilkinson (ESCOM, Leiden, 1993 Vol. 2, p. 182.

4A. Rashin, Prog. Biophys. Mol. BioB0, 73 (1993.

SA. Warshel and J. Aqvist, Annu. Rev. Biophys. Che?, 267 (1997).

6M. E. Davis and J. A. McCammon, Chem. R&@, 509 (1990.

K. A. Sharp and B. Honig, Annu. Rev. Biophys. Cheth®, 301(1990.

8S. C. Harvey, Proteins, 78 (1989.

9A. J. Stone,The Theory of Intermolecular Forcg€larendon, Oxford,
1996.

10p, E. williams, in Reviews in Computational Chemistsdited by K. B.
Lipkowitz and D. B. Boyd(VCH, New York, 1993, Vol. 2, p. 219.

11C. E. Dykstra, Chem. Re\®3, 2339(1993.

12] . Greengard, Scienc265, 909 (1994.

18R. V. Papppu, W. J. Schneller, and D. L. Weaver, J. Comput. CA&m.
1033(1996.

4p_W. Fowler and A. D. Buckingham, Chem. Phys. L&f6, 11 (1991).

15M. J. Dudek and J. W. Ponder, J. Comput. Chd®).791 (1995.

165, L. Price, C. H. Faerman, and C. W. Murray, J. Comput. CH&n1187
(1991).

7Ww. A. Sokalski, D. A. Keller, R. L. Ornstein, and R. Rein, J. Comput.

Chem.14, 970(1993.
18y, Koch and E. Egert, J. Comput. Chefir6, 937 (1995.

333, Warwicker and H. C. Watson, J. Mol. Bidl57, 671 (1982.

34K. A. Sharp, J. Comput. Cheni2, 454(1997).

35M. K. Gilson, J. A. McCammon, and J. D. Madura, J. Comput. Chisn.
1081(1995.

363, Miertus, E. Scrocco, and J. Tomasi, Chem. PB$s117 (1981).

37S. Miertus and J. Tomasi, Chem. Phgs, 239 (1982.

38E. L. Coitino, J. Tomasi, and R. Cammi, J. Comput. Ch&6)20 (1995.

39R. Cammi, J. Tomasi, and R. Cammi, J. Comput. Ch&#n1449(1995.

40R. J. Zauhar and D. Morgan, J. Molec. BidB6, 815(1985.

4IM. Cossi, B. Mennucci, and R. Cammi, J. Comput. Ché&ih.57 (1995.

42R. Cammi and J. Tomasi, J. Chem. Phy81, 3888(1994.

43E. L. Coitino and J. Tomasi, Chem. Phy204, 391 (1996.

4R. J. Zauhar and A. Varnek, J. Comput. Cheifi. 864 (1996.

“SA. Warshel and S. T. Russell, Quart. Rev. Biophi/g. 283 (1984.

4. C. still, A. Tempczyk, R. C. Hawley, and T. Henrickson, J. Am.
Chem. Soc112 6127(1990.

4TM. Davis, J. Chem. Phy<.00, 5149(1994.

48A. A. Bliznyuk and J. E. Greedy, J. Phys. Che®9, 14506(1995.

49M. Schaefer and M. Karplus, J. Phys. Chetfi0, 1578(1996.

503, Applequist, J. Chem. Phy83, 809 (1985.

51y. Kong and J. W. Pondeimanuscript in preparation

52C. J. F. Batcher, O. C. van Belle, P. Bordewijk, and A. Ripheory of
Electric Polarization 2nd ed.(Elsevier, Amsterdam, 1973

53E. W. Hobson;The Theory of Spherical and Ellipsoidal Harmoni&am-
bridge University Press, Cambridge, 1931

195, W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London Se?’D. States and M. Karplus, J. Mol. Biol97, 122(1987.

A 373 27(1980.
20T Darden, D. York, and L. Pedersen, J. Chem. PB@s10089(1993.
213, G. Kirkwood, J. Chem. Phyg, 351 (1934.
22D, L. Beveridge and G. W. Schnuelle, J. Phys. Ch@8).2562(1975.
2C. E. Felder and J. Applequist, J. Chem. PHg5;.2390(1981).
24C. E. Felder, J. Chem. Phy#5, 4679(1981).
253, W. Harrison, H.-J. Nolte, and D. L. Beveridge, J. Phys. CI&n2580
(1976.
28], L. Rivial and D. Rinaldi, Chem. Phy48, 233(19786.
273, L. Rivial and B. Terryn, J. Chim. Phyg9, 1 (1982.

28y Dillet, D. Rinaldi, J. G. Angyan, and J. L. Rivial, Chem. Phys. Lett.

202, 18 (1993.

2y, Dillet, D. Rinaldi, J. Bertran, and J. L. Rivail, J. Chem. Phi84, 9437
(1996.

30H, L. Friedman, Mol. Phys29, 1533(1975.

313, W. Essex and W. L. Jorgensen, J. Phys. Ct89n17956(1995.

55D. M. York, A. Wlodawer, L. G. Pedersen, and T. A. Darden, Proc. Natl.
Acad. Sci. USA91, 8715(1994.

%6J. Applequist, J. Phys. A: Math. Ge#2, 4303(1989.

57C. E. Dykstra, J. Am. Chem. Sot:11, 6168(1989.

%8G. King and A. Warshel, J. Chem. Phygl, 3647(1989.

59H. Alper and R. M. Levy, J. Chem. Phy89, 9847(1993.

80A. H. Juffer and H. J. C. Berendsen, Mol. Phy$, 623 (1993.

1A, Wallquist, Mol. Simul.10, 13 (1993.

62|, Wang and J. Hermans, J. Phys. Ch&®, 12001(1995.

83M. Levitt and B. H. Park, Structuré, 223(1993.

64J. E. Ladbury, Chem. BioB3, 973(1996.

85A. Varnek, G. Wipff, A. S. Glebov, and D. Feil, J. Comput. Chei8, 1
(1995.

6S, W. Rick and B. J. Berne, J. Am. Chem. Sad6 3949(1994.

7M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, J. Phys.

32|, G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren,; J. Chem. Chem.97, 3591 (1993.

Phys.102, 5451(1995.

%M. Neumann, J. Chem. Phy82, 5663(1985.

J. Chem. Phys., Vol. 107, No. 2, 8 July 1997



