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Two general methods for calculating the reaction field generated by a set of off-center point
multipoles in a spherical cavity are presented. The methods are a generalization of Kirkwood’s
original theory for an arbitrary charge distribution. A polytensor formulation, similar to that
previously developed for direct multipole interactions, serves to organize the computation and
allows straightforward extension to higher derivatives of reaction field energy and gradients of the
potential. The computation is reduced to calculation of the Cartesian derivatives of biaxial
harmonics. Recursive and explicit formulas are given for the calculation. As an example, the
incorporation of reaction field effects in computation of induced dipole moments is discussed. The
second procedure, the central multipole method, scales linearly in calculation time with the size of
the system. Methods to obtain derivatives analytically based on this method are also described. Our
developments allow use of reaction field energy terms with atomic multipole-based empirical
potential energy functions. Both methods show particular promise for use in simulation of
heterogeneous systems, such as biopolymers, where the remainder of the cavity can be filled
explicitly with solvent. © 1997 American Institute of Physics.@S0021-9606~97!51426-7#
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I. INTRODUCTION

Treatment of solvation effects is of major importance
the modeling of molecular structure and energetics. Elec
static interactions, including long-range electrostatics, are
important component of solvation.1–8 In the context of clas-
sical molecular simulation, the solvation effects due to lon
range electrostatic interactions can be viewed as a pertu
tion to the explicit Coulombic interactions within the syste
In this paper we develop two fast analytical methods
including the reaction field~RF! as a correction to explici
simulation results. Both formulations are general and lea
straightforward and systematic implementations for use
computer simulations. In addition to the RF potential, bo
methods give analytical derivatives of the RF energy. B
sides, various degrees of gradients of the RF potential ca
calculated in a unified way by the polytensor method, wh
simplifies application to polarizable systems. Examples
given showing the effect of the RF on the relative orientat
of a pair of dipoles in their minimum energy configuratio
and the calculation of dipole moments induced by a se
atomic multipoles.

Multicenter multipole expansions are increasingly us
in molecular modeling.9 Our work extends the classical re
action field method of Kirkwood to include multicenter mu
tipoles within a fixed simulation boundary. Multipole repr
sentations of electrostatics have four major uses:~1!
increased accuracy in detailed representation of a molec
electrostatic potential,10,11 ~2! fast multipole methods to
avoid theO(N2) bottleneck in standard pairwise interactio
summations,12 ~3! description of averaged electrostatic e
fects over a region of space for use in simplified molecu
models,13 and ~4! improving convergence relative to single
site models.14 Multipole parameters have been determin
for use in macromolecular simulation15–17and a recent pape
J. Chem. Phys. 107 (2), 8 July 1997 0021-9606/97/107(2)/481
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has attempted to incorporate multicenter multipole elec
statics into a force field program for flexible molecules.18

Long-range electrostatics can be treated either with
plicit models or continuum methods. Explicit models tre
solvent molecules in a discrete fashion with no distincti
between solute and solvent. Lattice sums are usually use
limit the system to a reasonable size.19,20In continuum meth-
ods, the solute is embedded in a cavity surrounded by st
tureless continuum solvent. The electric charges of the so
polarize the continuum which in turn affects the electric fie
inside the cavity. This contribution from the continuum
usually called the reaction field. Some current models
clude certain explicit solvent molecules within continuu
models. As discussed below, such hybrid models can si
late the system more realistically. Particular attention w
given to these hybrid models when the formulations in t
paper were developed.

The continuum models can be treated by several m
ods. For simple cavity geometries, analytical solutions ex
Kirkwood derived a general solution for the RF potent
for a spherical cavity containing an arbitrary char
distribution.21 The ion polarization energy~Born charging
energy! and the dipole polarization energy~Onsager reaction
field! can be derived as special cases of the general re
Beveridge and Schnuelle22 give a concise review of Kirk-
wood’s work and extended his result to calculation of the
potential and free energy of an arbitrary charge distribut
in a spherical central cavity surrounded by two concen
dielectric continua. Felder and Applequist23 considered
charged and polarizable atoms in a cavity placed in a die
tric continuum. They obtained explicit relationships for th
case of a spherical cavity. In order to compute the RF th
differentiated the RF potential with respect to the spheri
coordinate unit vectors, and then transformed back to Ca
sian components. The resulting formula was applied to
481/12/$10.00 © 1997 American Institute of Physics
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482 Y. Kong and J. W. Ponder: Reaction field due to multipoles
study of the Gibbs energy of proton transfer between c
boxylic acids. Felder24 generalized this method for a charg
dipole system with a cavity in the shape of a prolate or ob
ellipsoid. Other groups have also extended the RF deriva
to simple nonspherical cavities.25–27For complex molecular
surfaces, no analytical solutions exist and numerical meth
have to be used. In the spirit of the classical simple
model, Rivail and co-workers have developed methods
handle cavities of general shape.28 Their formulation is better
able to account for the true molecular surface, but the ca
lation is performed over a large number of discrete surf
points. A correspondingly large system of linear equatio
must be solved to determine the ‘‘reaction field factor
used in the energy evaluation. The surface points mus
recomputed whenever the molecular geometry changes.
and second derivatives of this method are available.29 The
same method has been applied by these authors to m
center multipole models of the solute with the expected
crease in the number and difficulty of the RF factors to
computed. While very general, the method appears to be
slow for use with macromolecules.

The widely used image charge method30 is a simple ap-
proximation to the full RF term and involves computation
the positions and magnitudes of a set of image charges
side the cavity. The direct interaction of the solute and ima
charges then gives the RF energy. For homogeneous
tems, a moving boundary RF method can be used.31,32In this
method each site in turn is placed at the center of its o
spherical cavity and the corresponding RF term is compu
using the classical Kirkwood result. For inhomogeneous s
tems it is difficult to apply this method since the dielect
constants inside and outside the cavity are no longer w
defined.

The ‘‘reaction field’’ methods discussed above are
based on solving the Poisson equation~or Poisson–
Boltzmann equation when mobile ions are present! using
proper boundary conditions. Another widely used proced
for solving the Poisson–Boltzmann equation numerically
the finite difference method. Finite difference Poisso
Boltzmann~FDPB! calculations have long been applied
static conformations of large macromolecules such
proteins.33 If a fine numerical grid is used, the molecul
shape can be accurately represented, but computation
increases with the number of grid points. Several gro
have attempted to couple FDPB methods with dynam
simulations.34 With use of a very coarse 10 Å grid, th
method becomes fast enough for use in classical empi
dynamics simulations.35

In addition to solving the Poisson or Poisson–Boltzma
equation directly, the continuum model can be hand
equivalently by boundary element methods.1,36–41 These
methods treat the continuum electrostatic problem eve
where in space by determining a set of apparent sur
charges for each element on the molecular surface. S
only the molecular surface and not the full volume occup
by the molecule is involved, the method is in principle mo
applicable to macromolecules than the space-oriented m
ods such as FDPB. However, the method is most wid
J. Chem. Phys., Vol. 10
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used at present in tandem with molecular orbital calculatio
Usually the surface is partitioned into a large number of
ements via a tessellation scheme. In order to determine
induced surface charges on these elements, a large syste
equations has to be solved. These equations can be so
either by iteration or matrix inversion. An approximate cl
sure solution was also proposed.1 Recently, analytical energy
derivatives for this method have been described.42,43 For
large molecules, it may be difficult to achieve reasona
accuracy since fine discretization of the molecular surf
leads to a large system of equations. Zauhar and Varn44

recently implemented a modified algorithm in which on
those surface elements close in space are exactly so
while treating the long-range interactions by a grid-bas
multipole expansion.

Of the many other continuum solvation methods
ported in the literature, two have received particular att
tion. The Langevin dipole method is an alternative approa
that uses point dipole sites on a fixed grid outside the m
lecular surface. The dipoles are allowed to rotate, thus
commodating the RF effects due to the continuum.45 Several
recent methods based on the generalized Born~GB! equation
have shown promise in computation of hydration fr
energies.46–49These GB methods take account of solvent e
posure of the solute through parameters related to the b
of charged atoms.

In this paper two general methods are given to calcu
the RF due to off-center multipoles. In the following sectio
we first present a brief outline of the original Kirkwood R
method, then give a general matrix formulation of the R
potential and derivatives for off-center multipoles. Induc
dipole polarization is also discussed. A recursive method
calculate the matrix elements then is given. Explicit formu
are provided in Appendix A. Section III describes anoth
method, which we will call the central multipole metho
This method scales linearly in calculation time with the s
of the system, making it useful for large systems. Gene
methods to calculate derivatives are also given for the cen
multipole method. Explicit vector formulas for the RF ene
gies through quadrupole–quadrupole interactions are
vided as Appendix B.

II. MATRIX FORMULAS FOR REACTION FIELD
POTENTIAL AND ENERGY

A. Reaction field energy

Kirkwood’s derivation21 of the RF energy for the genera
case of an arbitrary charge distribution is based on solv
Laplace’s equation,¹2F50, which is valid for all the sites
free of point charges. If we assume the system, which
represented asM discrete point chargesqk , k51•••M , is
buried in a spherical cavity with a radiusa surrounded by a
dielectric continuum, the relative permittivities inside an
outside the cavity being assigned ase1 ande2 , respectively,
then the solution of the RF potential at the positionr
5$r ,u,f% inside the cavity is
7, No. 2, 8 July 1997
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483Y. Kong and J. W. Ponder: Reaction field due to multipoles
FR~r !5
1

4pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11

3 (
k51

M

r k
nr nPn~cosgkr!, ~1!

in which Pn(cosu) is a simple Legendre polynomial,gkr is
the angle betweenr k andr , ande5e2 /e1 . The RF energy is
given by

W5
1

2 (
k51

M

qkFR~r k!

5
1

8pe0e1
(
n50

`
~n11!~12e!

~n11!e1n S Qn

a2n11D ~2!

where

Qn5 (
k51

M

(
l51

M

qkqlr k
nr l

nPn~cosg lk!. ~3!

For n50 andn51, Qn is equal to the square of the charg
and dipole moment, respectively, of the whole system in
cavity. For highern, it is shown later thatQn is the complete
contraction of two different Cartesian tensors.

We are interested in generalizing Kirkwood’s result
point multipoles not located at the origin. One method to
this is to displace point charges slightly away from ea
other and take the limit as their separation approaches
while keeping the strength of the multipole constant. App
dix B gives the resulting vector formulas for the RF ener
for the first three degrees of multipoles~charge, dipole, and
quadrupole! together with sample derivations. The equatio
become complex for the higher degree multipoles, mak
generalization difficult. The other disadvantage of this a
proach is that it is difficult to get derivatives of the RF e
ergy from these formulas, as well as the gradients of the
potential.

To get a general analytical formula which is convenie
to implement in a computer program, we use a polyten
method similar to that used by our group and others
direct multipole interactions.11,50,51Assume that there areN
multipole sites located atr k , k51•••N, with chargesqki
located around each site in a nonoverlapping fashion at
sitions r ki. Each charge is displaced from its own site by

vectordki, i.e., r ki5r k1dki, with its three componentsdki
x ,

dki
y , anddki

z .

Similar to Eqs.~1! and ~2! we write the RF potential a
the positionr5$r ,u,f% inside the cavity as

FR~r !5
1

4pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11

3 (
k51

N

(
i
qkir ki

n r nPn~cosgki r
!, ~4!

wheregki r
is the angle betweenr ki andr , and the RF energy
J. Chem. Phys., Vol. 10
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W5
1

8pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11

3 (
k51

M

(
l51

M

(
i

(
j
qkiql j r ki

n r l j
nPn~cosgki l j

!, ~5!

wheregki l j
is the angle betweenr ki and r l j . If we take a

Taylor expansion ofFR(r ) in Eq. ~4! at sitek, we get

FR~r !5
1

4pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11 (
k51

N

M k
tRkr

~n!

5
1

4pe0e1
(
k51

N

Mk
t
Rkr . ~6!

If we make Taylor expansions twice ofW in Eq. ~5! @or,
expandFR(r ) of Eq. ~6! at sitel #, we obtain

W5
1

8pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11 (
k51

N

(
l51

N

M k
tRkl

~n!M l

5
1

8pe0e1
(
k51

N

(
l51

N

M k
t
RklM l . ~7!

In Eqs.~6! and ~7! we define the multipole polytensors50 of
site k and l as

M k5@Mk
000,Mk

100,Mk
010,Mk

001,Mk
200,Mk

110,...# t,

M l5@Ml
000,Ml

100,Ml
010,Ml

001,Ml
200,Ml

110,...# t

in which the unabridged Cartesian multipoles at sitek are
defined asMk

0005( iqki, Mk
1005( iqkidki

x , Mk
0105( iqkidki

y ,

Mk
0015( iqkidki

z , Mk
20051/2!( iqki(dki

x )2, Mk
110

51/2!( iqkidki
x dki

y ,... . These are the same multipole defin

tions used in an efficient implementation of the direct mu
pole interactions.11,51 The symbolt stands for vector or ma
trix transposition. The matrixRkl

(n) ~or similarly Rkr
(n)! is

defined as

Rkl
~n!5F1, ]

]xk
,

]

]yk
,

]

]zk
,

]2

]xk
2 ,

]2

]xk]yk
,...G t

3F1, ]

]xl
,

]

]yl
,

]

]zl
,

]2

]xl
2 ,

]2

]xl]yl
,...GBn~r k ,r l !,

where the biaxial harmonicBn(r k ,r l) between two vectors
r k and r l is defined asBn(r k ,r l)5r k

nr l
nPn(cosgkl), and the

matrixRkl as

Rkl5 (
n50

`
~n11!~12e!

~n11!e1n

1

a2n11 Rkl
~n! .

The matrixRkl
(n) can be written symbolically as

Rkl
~n!5F¹k

0¹ l
0 ¹k

0¹ l
1 ¹k

0¹ l
2 •••

¹k
1¹ l

0 ¹k
1¹ l

1 ¹k
1¹ l

2 •••

¹k
2¹ l

0 ¹k
2¹ l

1 ¹k
2¹ l

2 •••

A A A A
GBn~r k ,r l !, ~8!
7, No. 2, 8 July 1997
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484 Y. Kong and J. W. Ponder: Reaction field due to multipoles
where

¹h
p5

] i1 j1k

]xh
i ]yh

j ]zh
k , p5 i1 j1k, and h5k or l .

From the definition ofRkl
(n) we have

~Rkl
~n!! t5Rlk

~n! . ~9!

From this relation we can write Eq.~7! as

W5
1

8pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11 ~22dkl!

3(
l>k

M k
tRkl

~n!M l

5
1

8pe0e1
~22dkl!(

l>k
M k

t
RklM l , ~10!

wheredkl51 if k5 l , otherwise it is zero.
Since

S ]2

]xh
2 1

]2

]yh
2 1

]2

]zh
2DBn50, h5k or l ,

the potential@Eq. ~6!# or the energy@Eq. ~7!# are the same for
the unabridged multipoles and for the traceless multipoles
is the case for direct interaction.52

Figure 1 gives a simple example of the use of t
method to determine the energetic and structural effects
ing from inclusion of the reaction field. Minimum energ
configurations were computed for a pair of point dipoles c
strained to lie at various positions within a spherical cav
of low dielectric. The figure shows how the RF perturbs t
optimal interaction of the two dipoles. In the absence of
reaction field, the minimum energy configuration of the
poles is to remain exactly in line. Depending on the positio
of the dipoles relative to the dielectric boundary, inclusion
the RF term can result in minimum configurations with t
dipoles nearly perpendicular. Similarly, as one or both of
dipoles approach the boundary, the RF term makes a l
contribution to the total interaction energy.

B. Derivatives of reaction field energy

From Eq.~7! and using the symmetrical relation Eq.~9!,
we can easily write down the equations for the derivatives
the RF energy with respect to the Cartesian coordinate
each atom,

]W

]xk
5

1

8pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11

3(
l51

N

~22dkl!M k
tR~k!kl

~n!1xM l

5
1

8pe0e1
M k

t (
l51

N

R~k!kl
1x M l , ~11!

where the matricesR(k)kl
(n)1x andR(k)kl

1x are defined as

R~k!kl
~n!1x5

]

]xk
Rkl

~n!
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R~k!kl
1x 5 (

n50

`
~n11!~12e!

~n11!e1n

1

a2n11 ~22dkl!R~k!kl
~n!1x .

The elements ofR(k)kl
(n)1x are taken fromRkl

(n) . From the struc-
ture of R(k)kl

(n)1x , we can seeR(k)kl
(n)1x( i , j )5Rkl

(n)(3i21,j ),
R(k)kl
(n)1y( i , j )5Rkl

(n)(3i , j ), R(k)kl
(n)1z( i , j )5Rkl

(n)(3i11,j ). Similar
methods can be used to construct the nine matr
for the second derivatives:R(k)kl

(n)2xx( i , j )5Rkl
(n)(9i24,j ),

R(k)kl
(n)2xy( i , j )5Rkl

(n)(9i23,j ), R(k)kl
(n)2xz( i , j )5Rkl

(n)(9i22,j ),

FIG. 1. Effect of the reaction field term on the interaction between two po
dipoles. The dipoles are of equal magnitude and are placed inside a sph
cavity of radiusa. The ratio of the dielectric constant outside the cavity
that inside the cavity is taken as 80. The circular arc spanned by the
dipoles is given by an angleu. One dipole is fixed at a distancea/2 from the
cavity center. The plotted curves, in order from bottom to top, repres
different positions of the second dipole, at distances of 0.1a, 0.2a,...,0.9a
from the cavity center. For each combination of circular arc spanned
second dipole distance, the minimum energy orientation of the dipoles
determined. In part~a!, they axis shows the angle between the two dipol
in their minimum energy orientation. In part~b!, they axis shows the frac-
tion of the total interaction energy at the minimum energy orientation du
the reaction field term.
7, No. 2, 8 July 1997
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485Y. Kong and J. W. Ponder: Reaction field due to multipoles
R(k)kl
(n)2yx( i , j )5Rkl

(n)(9i21,j ), R(k)kl
(n)2yy( i , j )5Rkl

(n)(9i , j ),... .
For the derivatives with respect tor l , the corresponding col
umns of Rkl

(n) will be used to build up the matrices o
R( l )kl
(n)1x , etc. The matrices for higher derivatives can be c

structed in a similar way.

C. Reaction field and reaction field gradients

In addition to the RF potential, we can obtain from i
spection of Eq.~6! @or Eq. ~7!# the field, the gradient of the
field, etc., at sitek, generated by all sites,

@¹0F~r k!,¹
1F~r k!,¹

2F~r k!,...#
t

5@F~r k!,2Ex~r k!,2Ey~r k!,2Ez~r k!,F
2xx~r k!,

F2xy~r k!,...]
t

5
1

4pe0e1
(
n50

`
~n11!~12e!

~n11!e1n

1

a2n11 (
l51

N

Rkl
~n!M l

5
1

4pe0e1
(
l51

N

RklM l . ~12!

These quantities can be used in the treatment of polariza
ity and hyperpolarizabilities, as illustrated in the followin
section. Unlike the case of direct multipole interactions,
RF interaction includes self-interactions. As a simple e
ample we calculate the field in the center of the cavity due
a dipole. If we write the matrix¹k

1¹ l
1Bn(r k ,r l) explicitly and

substituter l50, all matrices vanish except forn51, which is
an identity matrix. So

R~0!5
1

4pe0e1

m

a3
2~e21!

2e11
.

This example is given in Ref. 52 for eccentric dipole direct
along the radius direction. Here it is shown that it is true
eccentric dipole of any orientations. As another example,
calculate the various gradients of achargedistribution at the
center of the cavity. It is easy to verify that

FR
~n!~0!5

1

4pe0e1

~n11!~12e!

~n11!e1n

1

a2n11 n!Y
~n!,

where

Y ~n!5~21!n
1

n! (
i51

N

qir i
2n11¹n

1

r i
~13!

is the traceless multipole of the charge distribution define
the center of the cavity.52 This definition will be used later
for the description of another method, the central multip
method, to calculate the RF.

D. Induced dipole moments

Theoretically we can use the results from Sec. II C
study the hyperpolarizability carried out to any desired
gree since we can calculate the gradients of the potentia
any degree. In this section the formula for calculating
duced dipole moments will be presented. The generaliza
to higher polarizabilities is straightforward.
J. Chem. Phys., Vol. 10
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-
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-
to
-
n

The induced dipole momentsmk
ind are

mk
ind5ak•Ek

tot5ak•~Ek
d1Ek!, ~14!

whereak is the polarizability tensor of sitek andEk
tot is the

total field on sitek, which includesEk
d , the field generated

directly by all other sites at sitek and the RFEk , generated
by all sites. By analogy to Eq.~12!, the field as well as
various degrees of the gradient of the field, generated dire
by all other sites can be written as

@¹0Fd~r k!,¹
1Fd~r k!,¹

2Fd~r k!,...#
t

5@Fd~r k!,2Ex
d~r k!,2Ey

d~r k!,2Ez
d~r k!,...#

t

5
1

4pe0e1
(
l51

N

8 T klM l ,

where the primed sum excludes the terml5k. The matrix
T kl is defined as

T kl5F ¹0 ¹1 ¹2 ¹3 •••

2¹1 2¹2 2¹3 2¹4 •••

¹2 ¹3 ¹4 ¹5 •••

2¹3 2¹4 2¹5 2¹6 •••

A A A A A

G S 1r klD , ~15!

wherer kl5r l2r k and

¹p5
] i1 j1k

]xl
i]yl

j]zl
k , p5 i1 j1k.

Ek
d arises from two sources, the permanent multipolesM l and

the induced dipolesml
ind ,

Ek
d52

1

4pe0e1
(
l51

N

8 ~T kl
1M l1T kl

11ml
ind!, ~16!

whereT kl
1 is a submatrix ofT kl

T kl
1 5@2¹1,2¹2,2¹3,2¹4,...#S 1r klD ,

andT kl
11 is a 333 submatrix ofT kl

1 ,

T kl
1152¹2S 1r klD ,

which is often calledthe dipole field tensor.
Ek also arises from the same two sources, the perma

multipoles and the induced dipoles,

Ek52
1

4pe0e1
(
l51

N

~Rkl
1M l1Rkl

11ml
ind!, ~17!

whereRkl
1 is a submatrix ofRkl

Rkl
1 5 (

n50

`
~n11!~12e!

~n11!e1n

1

a2n11

3@¹k
1¹ l

0,¹k
1¹ l

1,¹k
1¹ l

2,...#Bn~r k ,r l !,

andRkl
11 is a 333 submatrix ofRkl

1
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Rkl
115 (

n50

`
~n11!~12e!

~n11!e1n

1

a2n11 ¹k
1¹ l

1Bn~r k ,r l !.

Substituting Eqs.~16! and ~17! into Eq. ~14!, and collecting
the terms containing the induced dipole moments, we ge

~A1F !m5E , ~18!

whereA is the interaction matrix for direct interaction wit
diagonal blocksak

21 and off-diagonal blocks 1/4pe0e1
T kl

11; F is composed of 1/4pe0e1 Rkl
11, which comes from

RF; E is the sum of the field generated by the perman
multipoles directly and through the RF, whose 331 blocks
are

2
1

4pe0e1
S (
l51

N

8 T kl
1 1(

l51

N

Rkl
1 DM l .

Usually it is assumed that the polarizability is isotropic, th
the diagonal blocks ofA will be ak

21. Equation~18! is a
generalization of the corresponding equation of Felder
Applequist,23 and leads directly to a set of linear equatio
whose solution yields the induced dipole moments

m5~A1F !21E .

In practice these equations can be solved iteratively for la
systems.

E. Calculation of matrix elements

In this section we give a recursive algorithm to calcula
the matrix elements ofRkl

(n) . This algorithm is much faste
than the explicit formula given in Appendix A in a norm
simulation. Let the operatorDk1 ,k2 ,k3

l1 ,l2 ,l3 denote

Dk1 ,k2 ,k3

l1 ,l2 ,l3 5DK
L5

]k11k21k31 l11 l21 l3

]xk
k1]yk

k2]zk
k3]xl

l1]yl
l2]zl

l3
.

Suppose that r k5(xk ,yk ,zk) and r l5(xl ,yl ,zl), then
cosgkl5d/rkrl , whered is the inner product of the two vec
tors r k and r l , d5xkxl1ykyl1zkzl . Furthermore, we make
the following definitions: Kmi5$k12md1i ,k22md2i ,k3
2md3i%, Lmi5$ l 12md1i ,l 22md2i ,l 32md3i%, where m
50, 1, or 2. For example,K125$k1 ,k221,k3%. For m50,
we simply denote K0i5K5$k1 ,k2 ,k3% and L0i5L
5$ l 1 ,l 2 ,l 3%. Let also denotexh15xh , xh25yh , xh35zh
whereh5k or l . From the recursive relation of the Legend
polynomials53

~n11!Pn11~z!2~2n11!zPn~z!1nPn21~z!50,

we have

Bn5
1

n
~~2n21!dBn212~n21!r k

2r l
2Bn22!.

If we defineF5dBn21 andG5r k
2r l

2Bn22 , we have

DK
LF5S dDK

L1(
i51

3

kixliDK1i
L 1(

i51

3

l ixkiDK
L1i

1(
i51

3

ki l iDK1i

L1i DBn21 ~19!
J. Chem. Phys., Vol. 10
t

d

e

and

DK
LG5S r k2r l2DK

L12r l
2(

i
kixkiDK1i

L 12r k
2(

i
l ixliDK

L1i

14(
i , j

ki l jxkixl jDK1i

L1i 1r l
2(

i
ki~ki21!DK2i

L

1r k
2(

i
l i~ l i21!DK

L2i12(
i , j

ki~ki21!l jxkiDK2i

L1 j

12(
i , j

l i~ l i21!kjxliDK1i

L2 j1(
i , j

ki~ki21!

3 l j~ l j21!DK2i

L2 j DBn22 . ~20!

With DK
LF andDK

LG, we obtain

DK
LBn~r k ,r l !5

1

n
~~2n21!DK

LF2~n21!DK
LG!. ~21!

From the definition ofBn we see thatB051, so the only
nonzero element ofDk1 ,k2 ,k3

l1 ,l2 ,l3 B0 is D0,0,0
0,0,0B05B051. When

n51, B15d, so we have

D0,0,0
0,0,0B15d,

D1,0,0
0,0,0B15xl , D0,1,0

0,0,0B15yl , D0,0,1
0,0,0B15zl ,

D0,0,0
1,0,0B15xk , D0,0,0

0,1,0B15yk , D0,0,0
0,0,1B15zk ,

D1,0,0
1,0,0B151, D0,1,0

0,1,0B151, D0,0,1
0,0,1B151,

and all others elements vanish. From Eqs.~19!, ~20!, and
~21! and usingDK

LB0 andDK
LB1 as initial values, we can ge

DK
LBn fromDK

LBn21 andDK
LBn22 . It can be seen from Eqs

~19! and ~20! that asn goes up, the nonzero terms in the
equations depend only onK andL.

III. CENTRAL MULTIPOLE METHOD

The matrix method just discussed fits nicely into t
polytensor formalism for direct multipole interactions. A
mentioned briefly in the section describing induced dipole
main difference between direct interactions and the RF
in the kernel functions operated on by the Cartesian der
tive matrix; 1/r for direct interactions vsBn for RF. In addi-
tion, calculation of the RF requires inclusion of se
interaction terms and involves summation of an infin
series. Hence our existing program for direct multipo
interactions51 can be modified with little effort to incorporat
the RF calculation. Since large systems usually require
many as 20 terms for the series to converge,54 and computa-
tion of each term is anO(N2) operation, whereN is number
of multipole sites, the inclusion of RF effects can make t
computation very slow. In this section we present a meth
to calculate the RF which needs onlyO(N) time. We call
this new linear method the central multipole method, for re
7, No. 2, 8 July 1997
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sons which will become clear in the following discussio
Since the treatment of multipoles is developed directly fr
the corresponding method for a charge distribution, we fi
present the method for charge distributions.

A. Central multipole method for charge distribution

The biaxial harmonicBn(r k ,r l)5r k
nr l

nPn(cosgkl) can be
written as53

r k
nr l

nPn~cosgkl!5r k
2n11(

s
(
t

(
u

xl
syl

tzl
u

s! t!u!

]s1t1u

]xk
syk

t zk
u

1

r k
,

~22!

the summation overs, t, andu being taken for all integra
values that satisfys1t1u5n. Using Eqs.~3!, ~13!, and
~22!, and exchanging the order of summation inQn , we can
see that

Qn5Y ~n!
•M~n!. ~23!

The components ofM(n) are defined as

Mstu
~n!5(

i51

N

qixi
syi

tzi
u , ~24!

which are Cartesian multipoles of the charge distribut
with respect to thecenter of the cavity, andY (n) are the
traceless Cartesian multipoles defined in Eq.~13!. Note that
in this definition ofM(n) there is no factor of 1/n! in con-
trast to the previous definition used in the matrix meth
The symbol• stands for complete contraction. The quant
Qn is usually referred to in the literature as ‘‘the square
nth moments of the charge distribution.’’ It is shown he
that expressed in Cartesian multipoles,Qn is the complete
contraction of two multipole tensors, one with trace and o
traceless. Forn50, Y000

(0)5M000
(0)5( iqi is the total net

charge of the system. Forn51, Y100
(1)5M100

(1)5( iqixi ,
Y010(1)5M010

(1)5( iqiyi , and Y001
(1)5M001

(1)5( iqizi , so
Q1 is the square of magnitude of the dipole moment of
system relative to the center of the cavity. Forn.1 the
components ofY (n) are no longer equal to those ofM(n).

Equation ~23! provides an alternative and fast way
calculate the RF energy for an arbitrary charge distributi
Since the calculation ofY (n) andM (n) is linear withN, the
size of the system, the calculation of RF is reduced to
O(N) operation. Results show that the calculation time
reduced by many orders for large systems. The new me
is called the central multipole method since the two differ
Cartesian tensors involved,Y (n) andM (n), are both ex-
panded relative to the center of the cavity.

Y (n) has 2n11 unique terms, whileM(n) has (n11)
3(n12)/2 unique terms. The degeneracy ofMstu

(n) is
n!/(s! t!u!). In addition, although the components ofY (n)

andM(n) are not equal to each other whenn.1, they are
related linearly, such as

Y002
~2!5M002

~2!2 1
2M200

~2!2 1
2M020

~2! ,

and

Y021
~3!52M021

~3!2 1
2M201

~3! 2 1
2M003

~3! ,
J. Chem. Phys., Vol. 10
.

t

n

.

f

e

e

.

n
s
od
t

so we can in fact only calculate the (n11)(n12)/2 unique
terms ofM (n), and then use these terms to construct
2n11 unique terms ofY (n) through these linear relations
Details of the calculation will be given elsewhere. On
M (n) is calculated,Y (n) can be easily obtained.

B. Central multipole method for multipole distribution

The central multipole method for charge distributio
can be generalized to an arbitrary multipole distribution.
do so theM (n) andY (n) should be expanded for these mu
tipoles. This can be easily achieved onM(n)

Mstu
~n!5(

l51

N

(
m

qlmxlm
s ylm

t zlm
u

5(
l51

N

(
m

qlm~xl1dlm
x !s~yl1dlm

y ! t~zl1dlm
z !u, ~25!

wheredlm
x , dlm

y , anddlm
z are thex, y, andz components of

the displacement ofmth partial chargeqlm of site l . Expand-
ing Eq. ~25! gives

Mstu
~n!5(

l51

N

(
i , j ,k

S si D S tj D S ukD xls2 i yl
t2 j zl

u2kM l
i jk , ~26!

whereMl
i jk is the Cartesian multipoles of sitel

M l
i jk5(

m
qlm~dlm

x ! i~dlm
y ! j~dlm

z !k.

Again the factor of 1/n! does not appear in this definition
unlike the definition used in the matrix method. For comple
convergence the summation overi , j , andk in Eq. ~26! is
determined by 0< i<s, 0< j<t, and 0<k<u. In actual
calculations another condition,i1 j1k<p, wherep is the
highest order of multipoles for each site, has to be impos
As explained in the previous section, onceM (n) has been
calculated,Y (n) can be obtained through the same line
transformation.

C. Derivatives using central multipole method

The derivatives can be easily obtained via the cen
multipole method. From Eq.~23!, we get

]

]xl
Qn5S ]

]xl
Y ~n!D •M~n!1Y ~n!

•S ]

]xl
M~n!D . ~27!

For a charge distribution, from the definition ofM(n) @Eq.
~24!# we see that

]

]xl
Mstu

~n!5sqlxl
s21yl

tzl
u ~28!

For a multipole distribution, from the definition ofM(n) @Eq.
~26!# we see that
7, No. 2, 8 July 1997
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488 Y. Kong and J. W. Ponder: Reaction field due to multipoles
]

]xl
Mstu

~n!5(
i , j ,k

S si D S tj D S ukD F ~s2 i !xl
s2 i21yl

t2 j zl
u2kM l

i jk

1xl
s2 i yl

t2 j zl
u2kS ]

]xl
M l

i jk D
1 (

wPLl
xw
s2 i yw

t2 j zw
u2kS ]

]xl
Mw

i jk D G . ~29!

The last two terms of Eq.~29! come from the local coordi-
nate systems used to define the multipoles at each site.51 The
setLl includes all other sites the definition of whose mul
poles depends on sitel . Once we have obtained]/]xlM

(n)

from either Eq. ~28! or Eq. ~29!, we can get]/]xlY
(n)

through the linear transform used above to obtainY (n) from
M(n). Then from Eq.~27! we get the derivatives of the R
energy with respect to the coordinates of each site.

IV. DISCUSSION

Methods that directly use the exact molecular surfa
have clear advantages over the use of a sphere or ellipso
describe the molecular shape. However, analytical meth
based on simple cavity shapes are more efficient and ap
priate when an extended system containing solute and
plicit solvent fills an idealized cavity. Molecular simulation
using empirical force fields provide many potential uses
this extended system approach. In these cases, the ele
static solvation effect can be viewed as a long-range cor
tion to the explicit simulation of electrostatics within th
extended system itself. Inclusion of such long-range effe
is of critical importance to accurate modeling of some pro
erties, such as the dielectric constant of water and solva
of ions. In more recent work inclusion of long-range elect
statics has been proposed to be an important factor in ach
ing protein simulations that remain close to experimenta
determined structures.55 Multisite multipole potentials can
provide accurate models for the local electrostatic inter
tions in peptides and proteins.15 The current paper describe
a method for incorporating the long-range forces aris
from these same multipole-based potentials.

The Cartesian polytensor formulation of Applequist is
efficient method for organizing multipole calculations.50,56 It
has been used by Dykstra11 for calculation of direct and in-
duced electrostatic interactions in hisab initio derived MMC
empirical force field.57 The corresponding spherical pola
multipole treatments result in a more compact mathemat
formulation,9 but the redundancy in Cartesian multipo
treatments can be easily removed when using the polyte
method. In addition, it provides a compact matrix notati
which is readily incorporated into computer programs, a
can be easily adapted to higher derivatives of energy
gradients of the potential. In this paper we show that
Cartesian polytensor formulation can be extended to com
tation of the RF effects by changing the function operated
by the Cartesian derivative matrix from 1/r ~for explicit in-
teractions! to the biaxial harmonics~for reaction field!.

Reaction field methods have numerically unsta
asymptotic behavior for charges approaching the dielec
J. Chem. Phys., Vol. 10
e
to
ds
ro-
x-

r
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ts
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n
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-

g
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or

d
d
e
u-
n

e
ic

boundary. Such sites generate large apparent surface ch
of opposite sign, and are attracted to the interface by a fo
that becomes infinite at the boundary. In addition, expl
molecules must be restricted to the region inside the ca
itself. Several groups have handled these numerical probl
by using constraints to keep atoms from getting too close
the boundary.58–61Recently, Wang and Hermans62 have ap-
plied the image charge method to pure water droplets
droplets containing a single cation. They discuss the vari
problems caused by boundary effects, and suggest an em
cal solution that gives the correct cation hydration ene
independent of the position of the cation within the cavi
Further studies will be needed to devise general and theo
cally justified treatments of effects due to fixed cavity boun
aries.

Methods that treat RF effects based on the actual m
lecular shape do well with regularly shaped small molecu
However these methods may fail near the small cavit
cracks and crevices in large molecules like proteins as
cussed by Gilsonet al.35 One potential disadvantage is that
may be very difficult to calibrate an isolated molecu
method to correctly describe local interactions very close
the solute.

It is well known that tightly bound water molecules pla
an important structural and dynamic role in many biologic
macromolecules.63,64 Tightly bound solvent should be ac
counted for in molecular surface methods through inclus
of explicit solvent molecules. Supermolecule approaches
use molecular-shaped cavity surrounding the solute an
limited number of explicit solvent molecules have recen
been used to model solvation of small systems using b
empirical force field65,66and quantum mechanical methods43

In addition the explicit presence of local solvent provides
space-filling needed to reproduce solute dynamics. These
brid discrete/continuum approaches correctly account fo
limited set of specific local interactions. In our approach,
expand the number of explicit solvent molecules to fill ou
spherical system containing at least the first solvation sh
and allowing use of the much simpler analytic formulati
available for the spherical cavity.

The methods discussed in this work can incorpor
ionic strength with little computational effort, as in Kirk
wood’s original treatment. If we denote the radii of the orig
nal cavity and of the ion-free zone asa anda8, respectively,
then by solving in different regions Laplace’s equation or t
linearized Poisson–Boltzmann equation¹2F(r )5k2F(r )
~where k is the inverse Debye screening length which
related to the ionic strength!, we get

W5
1

8pe0e1
(
n50

`

h~n!
1

a2n11 (
k51

N

(
l51

N

M k
tRkl

~n!M l , ~30!

where
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h~n!5
~n11!~12e!Kn11~x!2~~n11!1ne!~Kn11~x!2Kn~x!!~a8/a!2n11

~~n11!e1n!Kn11~x!2n~12e!~Kn11~x!2Kn~x!!~a8/a!2n11 . ~31!
ic
th

ch
In
rg
to
nt
es
e
ith
e
ie
th
n
lu
ur
ib
tro
ro
th
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m
s
in
d
d
e

m
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n-
R
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to
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m
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Here the polynomialsKn(x) are defined as

Kn~x!5(
s50

n
2sn! ~2n2s!!

s! ~2n!! ~n2s!!
xs,

wherex5ka8. It can be seen that whenk50, corresponding
to zero ionic strength, Eq.~31! reduces to

h~n!5
~n11!~12e!

~n11!e1n

sinceKn(0)51. All the equations developed for zero ion
strength hold under Poisson–Boltzmann generalization if
properh(n) is used.

The total electrostatic force experienced by a system
solution consists of three terms,67 the first of which is the
usual interaction of charges with the electrical field, whi
includes the Coulomb’s law fields and the reaction field.
this paper when we talk about the derivatives of the ene
we are discussing this kind of force. However, in addition
this term, there are two other terms that arise from disco
nuities in the dielectric constant and ionic strength. Th
two terms act on the corresponding boundaries. In the cas
a spherical cavity containing a solute and filled out w
explicit solvent and ions, the boundary pressure due to th
discontinuities is only experienced directly by those spec
close to the boundary. If the solute of interest is near
center of the cavity, the behavior of species near the bou
ary is not of as much importance as those close to the so
If the buffer region is thick enough, the boundary press
for a fixed spherical cavity can be approximated by distr
uting it over the whole system and should be nearly iso
pic. Thus, the boundary pressure plays a less important
in determining the dynamics of the overall system. On
other hand, if a molecular surface is used, it is more lik
the anisotropic forces resulting from these last two ter
would effect the behavior of the exposed individual atom
These effects should be taken into account explicitly, add
further computation burden to molecular surface metho
Whether the boundary term can be completely neglecte
fixed spherical boundary simulations will require a furth
set of test simulations.

In this work two general methods are proposed for co
putation of RF effects. The matrix formulation fits nice
with the existing method for calculating direct multipole i
teractions. In addition, it can provide various gradients of
potentials at each site, which will be useful in dealing w
the polarizability of the system. However, this method
inherently pairwise, and scales in execution time with
square of the size of the system@O(N2)#. The central mul-
tipole method provides an algorithm whose execution ti
scales linearly with the size of the system@O(N)#. This
method will be most useful for large systems. As discus
above, larger systems require more terms in the infinite se
J. Chem. Phys., Vol. 10
e

in
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i-
e
of

se
s
e
d-
te.
e
-
-
le
e
y
s
.
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-

F

e

e

d
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in order to achieve convergence. However, as the numbe
series terms,n, rises, the number of components we have
calculate forM(n) andY (n) increases. Thus, the efficienc
of the linear central multipole method is degraded wh
higher orders are used. Even so, the linear nature of the
tral multipole method makes it vastly superior to the pairw
matrix method for large systems.

At present, the most widely used RF protocol in simu
tions is the image charge method.30 Image charges are attrac
tive because of the resulting simple pairwise procedure
calculation of the RF energy. However, the generation
image charge sites entails an additionalN2 calculations be-
tween N solute charges andN image charges. A secon
widely used RF method involves use of only the dipole te
(n51) for a system containing neutral molecules.31,68 Like
the image charge procedure, this second method is also
wise and an approximation to the full RF series summati
Our central multipole method can use any number of se
terms to achieved a desired level of convergence and is c
putationally more efficient than either of these currently us
methods.
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APPENDIX A: EXPLICIT FORMULA FOR THE MATRIX
ELEMENTS

In this section an explicit formula for the matrix ele
ments is given.

Dk1 ,k2 ,k3

l1 ,l2 ,l3 Bn~r k ,r l !

5 f n
0~k1 ,k2 ,k3 ;r k! f n

0~ l 1 ,l 2 ,l 3 ;r l !

12(
m51

w
~n2m!!

~n1m!!
@ f n

m~k1 ,k2 ,k3 ;r k! f n
m~ l 1 ,l 2 ,l 3 ;r l !

1gn
m~k1 ,k2 ,k3 ;r k!gn

m~ l 1 ,l 2 ,l 3 ;r l !#,

where
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f n
m~ i , j ,k;r !5

] i1 j1k

]xi]yj]zk
r nPn

m~cosu!cosmf

5
~n1m!! i ! j !

2m~n2k!! (
a

~21!a

22a Sm12a
a D

3S n2k
m12a D zn2m2k22a(

b
(
g

~21!gS a
b D

3S m2g D Sm12b22g
i D S 2a22b12g

j D
3xm12b22g2 i y2a22b12g2 j

and

gn
m~ i , j ,k;r !5

] i1 j1k

]xi]yj]zk
r nPn

m~cosu!sinmf

5
~n1m!! i ! j !

2m~n2k!! (
a

~21!a

22a Sm12a
a D

3S n2k
m12a D zn2m2k22a(

b
(
g

~21!gS a
b D

3S m
2g11D Sm12b22g21

i D
J. Chem. Phys., Vol. 10
3S 2a22b12g11
j D

3xm12b22g212 i y2a22b12g112 j ,

from these formulas, we getn> i1 j1k as the condition for
the matrix element to be nonzero.

APPENDIX B: VECTOR FORMULAS FOR POINT
MULTIPOLES

In this appendix the formulas for the RF energy e
pressed in vector notation are given. We useWn1n2

to repre-
sent the RF energy betweenn1th andn2th degree multipoles
at two different sites.rn is the vector position ofnth degree
multipole from the origin of the sphere, and if the ener
term involves two multipoles of the same degree,n is omit-
ted. In such casesr i , i51 or 2 are the position vectors fo
the two multipoles involved.m is the dipole vector ands1
ands2 are two vectors that define the quadrupole. In the c
of quadrupole–quadrupole interaction,si j stands for thej th
vector~j51 or 2! of the i th site~i51 or 2!. r̂ stands for the
unit vector ofr . Pn denotes thenth degree Legendre poly
nomial Pn(cosg12), whereg12 is the angle between twor
vectors. In this Appendix, the ubiquitous factor 1/4pe0e1 is
omitted from all equations
W005
~12e!q1q2

a (
n50

`
~n11!

~n11!e1n S r 1r 2a2 D nPn ,

W015
~12e!qm

a2 (
n51

`
~n11!

~n11!e1n

r 0
nr 1

n21

a2n21 @Pn8~ r̂0–m̂!2Pn218 ~ r̂1–m̂!#,

W115
~12e!m1m2

a3 (
n51

`
~n11!

~n11!e1n S r 1r 2a2 D n21

$Pn9~ r̂1–m̂2!~ r̂2–m̂1!2Pn219 @~ r̂1–m̂1!~ r̂1–m̂2!1~ r̂2–m̂1!~ r̂2–m̂2!#

1Pn229 ~ r̂1–m̂1!~ r̂2–m̂2!1Pn8~m̂1–m̂2!22Pn218 ~ r̂1–m̂1!~ r̂2–m̂2!%,

W025
~12e!qQ

a3 (
n52

`
~n11!

~n11!e1n

r 0
nr 2

n22

a2n22 $Pn9~ r̂0–ŝ1!~ r̂0–ŝ2!2Pn219 @~ r̂0–ŝ1!~ r̂2–ŝ2!1~ r̂0–ŝ2!~ r̂2–ŝ1!#1Pn229 ~ r̂2–ŝ1!

3~ r̂2–ŝ2!2Pn218 ~ ŝ1–ŝ2!%,

W125
~12e!mQ

a4 (
n52

`
~n11!

~n11!e1n

r 1
n21r 2

n22

a2n23 $Pn-~ r̂2•m̂!~ r̂1• ŝ1!~ r̂1• ŝ2!2Pn21- @~ r̂2–m̂!~ r̂1–ŝ1!~ r̂2–ŝ2!1~ r̂2–m̂!~ r̂1–ŝ2!

3~ r̂2–ŝ1!1~ r̂1–m̂!~ r̂1–ŝ1!~ r̂1–ŝ2!#1Pn22- @~ r̂1–m̂!~ r̂1–ŝ1!~ r̂2–ŝ2!1~ r̂1–m̂!~ r̂1–ŝ2!~ r̂2–ŝ1!1~ r̂2–m̂!~ r̂2–ŝ1!~ r̂2–ŝ2!#

2Pn23- ~ r̂1–m̂!~ r̂2–ŝ1!~ r̂2–ŝ2!1Pn9@~ r̂1–ŝ1!~m̂–ŝ2!1~ r̂1–ŝ2!~m̂–ŝ1!#2Pn219 @~ r̂2–ŝ1!~m̂–ŝ2!1~ r̂2–ŝ2!~m̂–ŝ1!1~ ŝ1–ŝ2!

3~ r̂2–m̂!12~~ r̂1–m̂!~ r̂1–ŝ1!~ r̂2–ŝ2!1~ r̂1–m̂!~ r̂1–ŝ2!~ r̂2–ŝ1!#1Pn229 @~ r̂1–m̂!~ ŝ1–ŝ2!14~ r̂1–m̂!~ r̂2–ŝ1!~ r̂2–ŝ2!#

22Pn218 ~ r̂1–m̂!~ ŝ1–ŝ2!%,
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W225
~12e!Q1Q2

a5 (
n52

`
~n11!

~n11!e1n S r 1r 2a2 D n22

$Pn
~4!~ r̂1–ŝ21!~ r̂1–ŝ22!~ r̂2–ŝ11!~ r̂2–ŝ12!2Pn21

~4! @~ r̂1–ŝ11!~ r̂1–ŝ21!~ r̂1–ŝ22!

3~ r̂2–ŝ12!1~ r̂1–ŝ12!~ r̂1–ŝ21!~ r̂1–ŝ22!~ r̂2–ŝ11!1~ r̂1–ŝ21!~ r̂2–ŝ11!~ r̂2–ŝ12!~ r̂2–ŝ22!1~ r̂1–ŝ22!~ r̂2–ŝ11!~ r̂2–ŝ12!~ r̂2–s21!]

1Pn22
~4! @~ r̂1–ŝ11!~ r̂1–ŝ12!~ r̂1–ŝ21!~ r̂1–ŝ22!1~ r̂2–ŝ11!~ r̂2–ŝ12!~ r̂2–ŝ21!~ r̂2–ŝ22!1A#2Pn23

~4! 3B1Pn24
~4! ~ r̂1–ŝ11!~ r̂1–ŝ12!

3~ r̂2–ŝ21!~ r̂2–ŝ22!1Pn-@~ r̂1–ŝ21!~ ŝ12–ŝ22!~ r̂2–ŝ11!1~ r̂1–ŝ22!~ ŝ12–ŝ21!~ r̂2–ŝ11!1~ r̂1–ŝ21!~ ŝ11–ŝ22!~ r̂2–ŝ12!

1~ r̂1–ŝ22!~ ŝ11–ŝ21!~ r̂2–ŝ12!]2Pn21- @~ r̂1–ŝ11!~ r̂1–ŝ21!~ ŝ12–ŝ22!1~ r̂1–ŝ11!~ r̂1–ŝ22!~ ŝ12–ŝ21!

1~ r̂1–ŝ12!~ r̂1–ŝ21!~ ŝ11–ŝ22!1~ r̂1–ŝ12!~ r̂1–ŝ22!~ ŝ11–ŝ21!1~ r̂2–ŝ11!~ r̂2–ŝ21!~ ŝ12–ŝ22!1~ r̂2–ŝ11!~ r̂2–ŝ22!~ ŝ12–ŝ21!

1~ r̂2–ŝ12!~ r̂2–ŝ21!~ ŝ11–ŝ22!1~ r̂2–ŝ12!~ r̂2–ŝ22!~ ŝ11–ŝ21!1~ r̂1–ŝ21!~ r̂1–ŝ22!~ ŝ11–ŝ12!1~ r̂2–ŝ11!~ r̂2–ŝ12!~ ŝ21–ŝ22!12A]

1Pn22- ~C14B!2Pn23- @D18~ r̂1–ŝ11!~ r̂1–ŝ12!~ r̂2–ŝ21!~ r̂2–ŝ22!#1Pn9@~ ŝ11–ŝ21!~ ŝ12–ŝ22!1~ ŝ11–ŝ22!~ ŝ12–ŝ21!#

22Pn219 3C1Pn229 @~ ŝ11–ŝ12!~ ŝ21–ŝ22!14D18~ r̂1–ŝ11!~ r̂1–ŝ12!~ r̂2–ŝ21!~ r̂2–ŝ22!#22Pn218 ~ ŝ11–ŝ12!~ ŝ21–ŝ22!%,

A5~ r̂1–ŝ11!~ r̂1–ŝ21!~ r̂2–ŝ12!~ r̂2–ŝ22!1~ r̂1–ŝ11!~ r̂1–ŝ22!~ r̂2–ŝ12!~ r̂2–ŝ21!1~ r̂1–ŝ12!~ r̂1–ŝ21!~ r̂2–ŝ11!~ r̂2–ŝ22!

1~ r̂1–ŝ12!~ r̂1–ŝ22!~ r̂2–ŝ11!~ r̂2• ŝ21!,

B5~ r̂1–ŝ11!~ r̂1–ŝ12!~ r̂1–ŝ21!~ r̂2–ŝ22!1~ r̂1–ŝ11!~ r̂1–ŝ12!~ r̂1–ŝ22!~ r̂2–ŝ21!1~ r̂1–ŝ11!~ r̂2–ŝ12!~ r̂2–ŝ21!~ r̂2–ŝ22!1~ r̂1–ŝ12!

3~ r̂2–ŝ11!~ r̂2–ŝ21!~ r̂2–ŝ22!,

C5~ r̂1–ŝ11!~ ŝ12–ŝ22!~ r̂2–ŝ21!1~ r̂1–ŝ11!~ ŝ12–ŝ21!~ r̂2–ŝ22!1~ r̂1–ŝ11!~ ŝ21–ŝ22!~ r̂2–ŝ12!1~ r̂1–ŝ12!~ ŝ11–ŝ22!~ r̂2–ŝ21!1~ r̂1–ŝ12!

3~ ŝ11–ŝ21!~ r̂2–ŝ22!1~ r̂1–ŝ12!~ ŝ21–ŝ22!~ r̂2–ŝ11!1~ r̂1–ŝ21!~ ŝ11–ŝ12!~ r̂2–ŝ22!1~ r̂1–ŝ22!~ ŝ11–ŝ12!~ r̂2–ŝ21!,

D5~ r̂1–ŝ11!~ r̂1–ŝ12!~ ŝ21–ŝ22!1~ r̂2–ŝ21!~ r̂2–ŝ22!~ ŝ11–ŝ12!.

The multipole of a given site can interact with itself, or with multipoles of different degrees at the same site. We d
byWij8 the RF energy betweenn1th andn2th degree multipoles at the same sites.Wij8 can be considered as a special case
Wij . From the generating function of Legendre polynomials,

1

~122xt1t2!1/2
5 (

n50
Pn~x!tn,

it can be easily derived that

Pn
~m!~1!5

1

2m
~n1m!!

~n2m!!m!
.

Wij8 is then obtained using the expression forPn
(m)(1) and the previously derivedWij . When the degree of the multipoles is

the same, a constant factor of 2 is removed. Since only one site is involved, the subscript onr is omitted.

W008 5
~12e!q2

2a (
n50

`
~n11!

~n11!e1n S raD
2n

,

W018 5
~12e!qm

a2 (
n51

`
n~n11!

~n11!e1n S raD
2n21

~ r̂–m̂!,

W028 5
~12e!qQ

2a3 (
n52

`
~n21!n~n11!

~n11!e1n S raD
2n22

@3~ r̂–ŝ1!~ r̂–ŝ2!2~ ŝ1–ŝ2!#,

W118 5
~12e!m2

4a3 (
n51

`
n~n11!

~n11!e1n S raD
2~n21!

@~n11!1~n21!~ r̂–m̂!2#,
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W128 5
~12e!mQ

2a4 (
n52

`
~n21!n~n11!

~n11!e1n S raD
2n23

$~n22!~ r̂–ŝ1!~ r̂–ŝ2!~ r̂–m̂!1~n11!@~ r̂–ŝ1!~m̂–ŝ2!1~ r̂–ŝ2!~m̂–ŝ1!#

2n~ r̂–m̂!~ ŝ1–ŝ2!%,

W228 5
~12e!Q2

16a5 (
n52

`
~n21!n~n11!

~n11!e1n S raD
2~n22!

$~n11!~n12!13~n11!~n22!@~ r̂–ŝ1!
21~ r̂–ŝ2!

2#13~n22!~n23!

3~ r̂–ŝ1!
2~ r̂–ŝ2!

212n~n21!~ ŝ1–ŝ2!
224~n21!~n22!~ r̂–ŝ1!~ r̂–ŝ2!~ ŝ1–ŝ2!%.
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