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Abstract
An approach to ab initio protein tertiary structure prediction based on building 

and scoring libraries of folds was tested at the CASP3 experiment.  We present blind 
predictions for five helical targets varying in length from 31 to 114 residues.  Our 
method was able to predict most of each structure correctly to about 6 Å Cα 
root-mean-square deviation (RMSD), with the exception of the largest target.  Because 
distance geometry is used to constrain every pair of predicted helices to a generic 
distance range, inadequate sampling of tertiary folds occurs for larger targets or targets 
with poorly assigned helical residues.  However, for targets with 5 helices or fewer, the 
native inter-helical distances are more compatible with the generic bounds, and 
sampling improves to the extent that near-native fold selection is possible.

Introduction
Methods for ab initio protein structure prediction are needed to model sequences 

for which there is no similar structure or sub-structure available in the database.  One 
type of ab initio method calls for the construction of a library of candidate folds, from 
which a single structure is specified as most likely to be native-like (Cohen et al., 1979; 
Covell & Jernigan, 1990; Hinds & Levitt, 1992; Hinds & Levitt, 1994; Huang et al., 1998; 
Huang et al., 1999; Park & Levitt, 1996; Park et al., 1997; Shortle et al., 1998).  By 
decoupling the search from the scoring, this approach shifts the burden towards 
reasonable heuristics for fold construction and away from the reliance on a particular 
scoring function to guide a folding simulation.

Our method, the details of which are published elsewhere (Huang et al., 1999), 
can be applied to small (< 100 residues) targets that are known or predicted to be 
helical.  Encouraged by our results from controlled testing, we tested the method at the 
third Critical Assessment of techniques for protein Structure Prediction (CASP3: 
http://predictioncenter.llnl.gov/).  For this international community-wide 
experiment, participants submitted models of proteins for which 
experimentally-determined three-dimensional structures were imminent.  Here we 
present our results for five small helical targets.  Three of the targets were assessed in 
the ‘‘ab initio’’ category, and two in the ‘‘fold recognition’’ category, as 
structurally-similar folds were found in the Brookhaven protein databank (PDB) 
(Bernstein et al., 1977).  For all but the largest target (114 residues) the method was able 
to predict most of the structure correctly to about 6 Å Cα root-mean-square deviation 
(RMSD).

Methods
A library of structures for each target is generated using metric matrix distance 

geometry and a list of predicted and generic restraints.  First, we used the PHD server 
(http://www.embl−heidelberg.de/predictprotein/predictprotein.html) to guide our 
prediction of helical boundaries, which we kept as fixed units throughout the 
procedure (Rost & Sander, 1993; Rost et al., 1994).  Idealized intra-helical distances were 
derived from these predicted helical segments.  Next, we used the predicted solvent 
accessibility profiles, also taken from PHD, to choose a contact residue near the center 
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of each predicted helix.  We assigned a generic inter-Cα distance range between every 
pair of these designated residues. A range of 5 − 11 Å was chosen for smaller targets; for 
larger targets the upper bound was raised to 15 Å.  After metrization and embedding, 
each structure was subjected to refinement against the input distances and torsion 
restraints that enforce the correct handedness of the helices.

After the addition of side-chains (Levitt, 1992) and 200 steps of steepest-descent 
energy minimization against the ENCAD force field (Levitt et al., 1995), each structure 
was then scored with a normalized linear combination of three scoring functions: an 
all-atom distance-dependent probability function (Samudrala & Moult, 1998), a simple 
inter-residue contact function (Park et al., 1997), and a hydrophobic compactness 
function (Samudrala et al., 1999).   The top-scoring folds in each library were then 
collected for a consensus distance geometry procedure, which yielded up to 18 different 
structures (Huang et al., 1998).  These various consensus models were a product of two 
parameters: the number of top-scoring structures in the input set {50, 100, 500} and the 
weighting scheme {unweighted, Boltzmann-weighted, linearly weighted}.  Taking into 
account both mirror images resulted in total of 3 x 3 x 2 = 18 structures.  Consensus 
structures tended to be characterized by malformed helices caused by mutually 
incompatible restraints.  Using the Cα trace of the consensus structure as a template, we 
fit the predicted secondary structure using a off-lattice build-up algorithm with a 
4-state Ramachandran representation (Park & Levitt, 1995).

For each target, 5 models were submitted, though for some targets we used a 
threading-style approach in addition to this distance geometry method.  We discuss 
only the ab initio distance geometry results here.  Human intervention played a role in 
the selection of the final models.  For instance, consistency with putative biochemical 
function and structural motifs (e.g. helix-turn-helix), was sought whenever applicable.  
Often, high-scoring models that were very similar to other high-scoring models were 
disregarded.  Typically the submitted set comprised a diverse mix of top-scoring 
models in the library and consensus structures.  The targets selected were T0065 (31 
residues, SinI protein), T0056 (114 residues, DnaB helicase), T0061 (76 residues, protein 
HDEA), T0079 (96 residues, MarA protein), and the first 75 residues of T0083 (cyanase).  
These sequences did not have any detectable sequence similarity with proteins of 
known structure.   The number of residues predicted for each target was based strictly 
on the sequence provided by the CASP3 organizers (with the exception of T0083).  For 
T0065, T0061, and T0079, the sequences of the respective experimental structures were 
shorter in length than the sequence given.  These RMSD values thus reflect truncation 
of the models for consistency with the structures determined by experiment.  
Computation of side-chain relative solvent accessibility was performed with the 
NACCESS software (Hubbard & Thornton, 1993).  Software for distance geometry 
calculations is available at http://dasher.wustl.edu/tinker/.

Results and Discussion
Quality of fold libraries

In Table I, we list for each target the identifier, length of sequence, length of 
experimental structure in common with the model, the library size, the RMSD range in 
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the library, and the secondary structure prediction accuracy.  With the exception of the 
small helical target T0065, near-native folds were only sparsely generated.  The RMSD 
ranges reflect the raw distance geometry structures, i.e. before side-chain construction 
and energy minimization.

T0056 (DNAB): Despite knowing the secondary structure assignment (provided by the 
CASP3 organizers), sampling of near-native folds proved difficult.  Good sampling was 
hampered by the generic specification of restraints between all pairs of helices.  
Although the side-chains of all the predicted contact residues are buried in the NMR 
structure (PDB: 1jwe), they were not all in the generic 5 to 15 Å range.  For a protein 
with six helices, there are 15 unique inter-helical distances, 5 of which were greater than 
15 Å in DNAB (the greatest of which was 25 Å).  One structure was only 6.7 Å RMSD 
from the native; however, this was the only structure within 8 Å out of 2616 folds.  The 
structure of DNAB is depicted in Figure 1.

T0061 (HDEA): We collected two different libraries for HDEA, totaling 2428 folds 
between them (Table I).  Both assumed that the correct structure had 5 helices, but the 
placement of helices 4 and 5 was slightly different between the two libraries.   The 
reported three-state accuracy (Q3) in Table I reflects the average of the two values (66% 
and 71%).  The library that used the better secondary structure prediction exhibited 
lower average RMSD and minimum RMSD (data not shown).  The quality of the 
sampling was compromised by the presence of the first predicted helix (residues 3 to 8 
in the entire 89 residue sequence).  The first 9 residues are missing in the crystal 
structure (PDB: 1bg8; Figure 2).  If these missing residues do not actually form a helix 
that abuts the rest of the native structure, it is likely that considering the N-terminal 
helix would disrupt the building of a native-like model.  To test this hypothesis, we 
removed the first 9 residues from our model and regenerated the library, keeping the 
positions of the helices and contact residues as before.  After 1200 trials, the average 
RMSD of the library with better secondary structure prediction dropped from 11.3 Å to 
10.7Å, and the best fold in the library improved from 6.2 Å to 5.3 Å.

T0065 (SINI): Only 31 out of the original 57 residues were visible in the crystal structure 
of SINI (PDB: 1b0n:B).  This is a helix-hairpin that docks with its binding partner (SINR) 
to form a repressor/anti-repressor complex (Lewis et al., 1998). The mode of 
oligomerization is very distinctive, as two helices from each molecule interdigitate to 
bury an unusually extensive core (Lewis et al., 1998).  The effect of this interaction is to 
splay the two helices of SINI apart (Figure 3), resulting in a distance of 14.8 Å between 
predicted contact residues.  Nevertheless, since the location of the helical boundaries 
was reasonably predicted by PHD, many structures in the library resembled the SINI 
molecule in isolation; roughly 10% (183 / 1880) of the folds were within 4 Å RMSD.

T0079 (MARA): As in the case of DNAB, above, model construction of MARA was 
frustrated by the designation of more inter-helical contacts that might be reasonably 
expected.  The crystal structure of MARA (PDB: 1bl0; Figure 4) is composed of two 



5

subdomains, each of which contains a DNA-binding helix-turn-helix motif (Rhee et al., 
1998).  Thus, 10 out of the 15 predicted inter-helical distances were greater than the 
upper-bound of 15 Å.  The increased distance error is a result of the nature of the 
bipartite fold and the misprediction of Val33 as a buried residue (side-chain relative 
solvent accessibility: 39%).  Four of the five inter-helical distances that involve this 
residue are greater than 15 Å.  No fold in the library was within 8 Å RMSD of the native 
structure.  This target was assessed in the fold recognition category.

T0083 (CYNS): The structure of CYNS is divided into two domains.  We submitted 
models for the 5-helical N-terminal domain (Figure 5), which was evaluated as a fold 
recognition target. The domain prediction was based on visual inspection of the 
secondary structure prediction, which was quite accurate (Q3 = 83%).  Even though 2 
out of the 5 designated contact residues were partially exposed to solvent, only 2 out of 
the 10 inter-helical distances exceeded the upper bound set at 15 Å.  Distance geometry 
generated 48 folds out of 1472 within 8 Å RMSD of the native, the best of which was 6.2 
Å RMSD.

Quality of predicted models
For each target, up to 5 models were selected for submission. Table I lists the 

accuracy of the best submitted model (in its entirety).  Also shown is the contiguous 
fragment with lowest RMSD and its corresponding length in residues.  In a recent study 
(Huang et al., 1999), we found that modeling a structure with the consensus inter-Cα 
distances from a Boltzmann-weighted subset of 50 folds (the ‘‘bw50’’ model) was more 
effective overall than simply saving the best-scoring fold, though there were exceptions.  
For purposes of comparison, we also list the best-scoring fold in the library and the 
consensus model built from the aforementioned parameters (Table II).  In some cases, 
these models may have actually been members of the submitted set.

T0056 (DNAB): None of the submitted models were native-like, as the best complete 
model was over 12 Å RMSD.  Neither the best-scoring nor the bw50 model could have 
improved upon this model.  The best possible consensus model, which coincidentally is 
the best-scoring of the 18 consensus models, was 9.05 Å RMSD from the native.  One of 
the 3 submitted models had a 70 residue fragment, spanning the last four helices, 
correctly predicted within 7.65 Å RMSD.  Despite knowing the exact placement of the 
six helices, the poor sampling of tertiary arrangements precluded the possibility of a 
good prediction.

T0061 (HDEA): We consider this target to be a partial success.  The best submitted 
model, which was 89 residues in length, matched the corresponding 76 residues of the 
four-helical native structure to 9.8 Å RMSD.  A contiguous 60 residue segment matched 
the native to an accuracy of 6.7 Å (PDB residues 16 to 75); this corresponded to the first 
three helices of 1bg8 (Figure 2).  Given the difficulty posed by marginal secondary 
structure prediction and the problematic effect of the non-existent N-terminal helix (see 
above), we were satisfied with how the method fared with this target.  The CASP3 
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assessors mentioned our model of HDEA in their analysis of the targets of ‘‘medium’’ 
difficulty (Orengo et al., in preparation).
 
T0065 (SINI): This small motif was considered by the CASP3 assessor to be an ‘‘easy’’ 
target (Orengo et al., in preparation).  Assuming one used a reasonable secondary 
structure prediction, most models for this 31-residue inhibitor would not stray too far 
from the correct fold.  The difficulty of this target lay in predicting the rather unusual 
mode of binding with its molecular partner (Lewis et al., 1998) which in turn reveals the 
relative disposition of the two helices.  Our best submitted model was 3.8 Å RMSD, and 
using the best-scoring fold in the library would have been a slight improvement at 3.4 Å 
(Figure 3).

T0079 (MARA): Although the final models were rather unimpressive for this target 
(best submitted model: 11.4 Å RMSD), we note that the central core of four helices (70 
residues) is correctly predicted to 5.7 Å in one of our 4 models.  The bipartite shape of 
1bl0 separates the first and sixth helices by 24 Å at our designed residues; clearly this is 
a source of error.  Indeed, Figure 4 shows that these terminal helices have been tethered 
closely together in our best model, which otherwise matches the native structure quite 
well. 

T0083 (CYNS): One of our 5 models for the first domain of CYNS was correct to 8.7 Å.  
Most of the coordinate error can be attributed to the unstructured tail at the N-terminus 
(Figure 5) and the incorrect placement of the fifth predicted helix.  Neglecting these 
segments, our best model (4 helices, 60 residues) was accurate to 5.4 Å RMSD.  Had we 
submitted the bw50 model for this target, our entire 75-residue prediction would have 
been within 7 Å RMSD from the native (Table II).  

Conclusions
Based on our experiences at CASP3 and with our test cases (Huang et al., 1999), 

it appears that our method is most effective with targets of 5 helices and fewer.  The 
recurring theme throughout this study is that successful prediction begins with a good 
library, and a good library depends critically on the choice of input restraints.  For 
larger structures, our scheme of enforcing generic inter-helical distances is inadequate.  
We see this shortcoming in the cases of T0056 and T0079, wherein low near-native 
concentration in the libraries doomed the prediction of the entire structure to failure.  
For smaller targets like T0083, if the number and location of the helices are accurately 
predicted, the fraction of near-native structures present in the library rises to more 
acceptable levels. When secondary structure prediction is less accurate, or when a 
predicted helix is absent in the native structure, the quality of the library will also 
suffer, leading to partially correct structures (e.g. the case of T0061). 

The scoring function has performed up to expectation in blind prediction testing.  
After disregarding T0065 as a stringent test case, the function was unable to select the 
best structures in the respective libraries for three of the four remaining targets (T0056, 
T0061, and T0079).  However, as discussed earlier, this failure is primarily a 
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consequence of the poor quality and scarcity of the best folds.  In the single case (T0083) 
for which a substantial population of native-like folds was present, the scoring function 
performed quite well, selecting a native-like fold as the best scoring in the library.  The 
bw50 fold (not submitted) would have been even a better choice, indicating that there 
were other native-like folds present in the low-energy subset.

The method as it currently stands is easily improved due to its extreme 
simplicity.  One way to circumvent the problems of over-specifying distance restraints 
between helices is to be more selective in predicting distances.  In this regard, one 
promising technique is contact prediction by correlated mutation analysis (Gobel et al., 
1994; Ortiz et al., 1998).  We have begun to assess the suitability of this approach for our 
prediction protocol.  
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Figure Legends

Fig. 1 Backbone α-carbon trace of the native structure of target T0056, DNAB.

Fig. 2 Backbone α-carbon trace of the predicted model (left) and correct, native
structure (right; PDB: 1BG8) of target T0061, HDEA. A contiguous 60-residue
fragment (light shading) containing the first three helices superimposes to 6.7 Å.

Fig. 3 Backbone α-carbon trace of the predicted model (left) and correct, native
structure (right; PDB: 1BON:B) of target T0065, SINI.

Fig. 4 Backbone α-carbon trace of the predicted model (left) and correct, native
structure (right; PDB: 1BL0) of target T0079, MARA. The central core of four
helicies (light shading) superimpose to 5.7 Å.

Fig. 5 Backbone α-carbon trace of the predicted model (left) and correct, native
structure (right) of target T0083, CYNS.
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