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Challenges and advances in computational
docking: 2009 in review
Elizabeth Yurieva*, Mark Agostinoa and Paul A. Ramslandb,c,d*

Docking is a computational technique that places a small molecule (ligand) in the binding site of its macromolecular
target (receptor) and estimates its binding affinity. This review addresses methodological developments that have
occurred in the docking field in 2009, with a particular focus on the more difficult, and sometimes controversial,
aspects of this promising computational discipline. These developments aim to address the main challenges of
docking: receptor representation (such aspects as structural waters, side chain protonation, and, most of all, flexibility
(from side chain rotation to domain movement)), ligand representation (protonation, tautomerism and stereo-
isomerism, and the effect of input conformation), as well as accounting for solvation and entropy of binding. This
review is strongly focused on docking advances in the context of drug design, specifically in virtual screening and
fragment-based drug design. Copyright � 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Generally speaking, docking is a computational technique that
places a small molecule (ligand) in the binding site of its
macromolecular target (receptor) and estimates its binding
affinity. The purpose of the current review is not to cover the
principles of the docking methodology and its applications, but
to address the state-of-the-art advances in this field. We
particularly aimed to focus on the more challenging, and
sometimes controversial, aspects of this promising compu-
tational discipline. This review is not limited to, but is strongly
focused on docking advances in the context of drug design,
specifically in the areas of virtual screening (VS) (1) and
fragment-based drug design (FBDD). The area of protein–protein
docking will not be covered in this review (but references are
provided here for readers’ convenience) (2–11). Miscellaneous
case studies, except where important methodological develop-
ments are described, are also beyond the scope of this review.
Generating a receptor-ligand structure in silico involves two

main components (sometimes inaccurately referred to as ‘‘steps’’):
docking and scoring. Docking per se entails conformational and
orientational sampling of the ligand within the constraints of the
receptor binding site. Scoring function selects the best pose (i.e.,
ligand conformation, orientation, and translation) for a given
molecule and rank orders ligands, if a ligand database is docked/
screened. To be successful, docking must accurately predict two
things relative to experimentally available information: ligand structure
(pose prediction) and its binding propensity (affinity prediction).
In this review we will cover methodological developments that

have occurred in the docking field in 2009. These developments
aim to address the main challenges of docking: receptor
representation (such as structural waters, side chain protonation,
and, most of all, flexibility (from side chain rotation to domain
movement)), ligand representation (protonation, tautomerism
and stereoisomerism, and the effect of input conformation), as
well as accounting for solvation and entropy of binding. These
challenges of docking are very well reviewed by Corbeil et al. (12)

RECEPTOR REPRESENTATION IN DOCKING

Receptor source

The common source of receptor structures for docking is X-ray
crystallography and NMR. However, the growing gap between the
sequence and structure availability points the practitioners of
docking towards receptor structures that are modeled (by
homology modeling, threading, and de novo methods). In that
respect, the quality of such models for the purposes of docking
generally and virtual screening specifically has to be evaluated. Fan
et al. (13) have carried out such an evaluation using 38 targets and
the Database of Useful Decoys (DUD) (14). In general, they found
that comparative models significantly outperformed random
selection, but on average were no more enriching than the
corresponding templates. Typically, the holo crystal structure
templates gave the best enrichments, but the modeled structures
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were often competitive. Importantly, they found that none of
the tested sequence or structural attributes (e.g., the overall target-
template sequence identity) could reliably predict the accuracy of
ligand docking. However, they have shown that the docking
screens can be improved by employing multiple models instead of
a single model. Their results have suggested that to best exploit
comparative models in molecular docking screens one should use
consensus enrichment calculations that include multiple models as
well as templates. Others have also addressed issues of docking
into homology models (13,15–17); for docking into homology
models of G-Protein Coupled Receptors (GPCRs), see below.

Receptor flexibility

In many popular dockingmethods the ligand is treated as flexible
but the protein conformation is kept rigid. This relies on the
Lock-and-Key hypothesis for protein ligand binding. However, it is
now widely accepted that ligand binding is not a static event
but a dynamic process, in which both the ligand and protein
may undergo conformational changes. In docking, incorporating
protein flexibility exponentially expands the potential search
space and quickly becomes impractical. Therefore, properly
accounting for receptor flexibility is much more computationally
expensive than doing that for ligands (18). Docking programs
have only recently started to offer receptor flexibility during
docking. Several software advances published in 2009 have
specifically addressed the issue of receptor flexibility.

Receptor flexibility by Monte Carlo (MC) simulations and rotamer
libraries

RosettaLigand offers one of themost extensive receptor flexibility
treatments developed to date (19,20). In this stochastic MC
approach, binding site side chain rotamers are optimized using a
simulated annealing procedure and the backbone is minimized
subject to restraints.
AutoDock 4 fully models the flexibility of selected portions of

the protein (21). User-selected side chains are separated from the
protein and treated explicitly during the simulation, allowing
rotation around torsional degrees of freedom. In the MADAMM
procedure, the protein is ‘‘flexibilized’’ by the side chain rotamer
libraries of the InsightII (22). Schrodinger’s Induced Fit Docking
(IFD) Workflow (23,24) involves rigid receptor docking with Glide
(25,26), combined with protein-ligand complex minimization
with the homology modeling module Prime (24). IFD has been
successfully used for studies of kinases (27,28), HIV-1 Integrase
(29), heat shock protein 90 (30), monoacylglycerol lipase (31).

Receptor ensembles by molecular dynamics (MD)

Most methods that employ ensembles of protein structures
generate them by MD. Huang and Wong (32) have developed a
new MD-based ‘‘two-reference’’ modeling approach where a
protein can adopt conformations between two experimentally
observed extremes, such as a fully opened apo form and themost
closed ligand-bound structures of protein kinase A. They have
docked four diverse ligands, which previously evaded successful
pose prediction, and found that the ligands docked successfully
with proper conformations of the protein induced.
Armen et al. (33) have carried out extensive evaluation of

different degrees of introducing explicit all-atom receptor
flexibility into docking using both MD and torsion angle MD.
They have measured the effects of different degrees of receptor

flexibility on docking accuracy by cross-docking. The compared
models involved flexible side chains, flexible loops, multiple flexible
backbone segments, and entirely flexible targets. Interestingly, they
found that, at least for the studied target p38a mitogen-activated
kinase, the introduction of flexible side chains and backbone
fragments leads to superior results in docking accuracy, while the
incorporation of fully flexible protein reduces accuracy due to
the increased ‘‘noise’’ affecting the scoring function.

Other methods to account for receptor flexibility

Abagyan and Totrov (34) have developed the 4D-docking
protocol for Internal Coordinate Mechanics (ICM), where the
receptor conformation is the fourth dimension (35,36). In this
protocol, multiple grids represent multiple receptor confor-
mations and each is represented as a variable in the global
optimization. This approach demonstrated increased accuracy
with no loss in effectiveness compared to single grid methods.
Developers of many programs aim to achieve ‘‘on-the-fly’’

receptor generation. Within Surflex (37,38), each pose is re-scored
using all of the provided receptor conformations (39), while the
evolution implementation of Flexibility Induced Through Targeted
Evolutionary Description (FITTED) allows for cross-over and
mutations of multiple side chain and backbone conformations (40).
Fuhrmann et al. (41) have suggested applying gradient-based

optimization algorithms by the use of exponential mapping to
define the molecular orientation, which then helps to calculate
the orientational gradient. In their work, the local minimization
algorithm is adopted to efficiently change the orientational
parameters while preserving the molecular orientation.

Issues of efficiency in receptor flexibility

Whichever method is used to generate receptor ensembles,
docking ligand databases or even individual ligands against
large ensembles is computationally expensive. Anderson and
co-workers have looked at this problem from two points of view.
In the absence of general agreement about how to weight scores
generated by individual ensemble members, they have carried
out an extensive evaluation of different weighting schemes using
structures of Candida albicans dihydrofolate reductase (CaDHFR)
and influenza A neuranimidase from MD simulations (42). The
schemes they have tested and their respective ligand ranking
accuracies included simple averaging (36%), Boltzmann weight-
ing without (60%) and with (72%) structural minimization, and
taking initial structures from independent MD runs (61%). Their
results suggest that ligands are more accurately assessed when
docked to the minimized ensemble from a single MD simulation,
an improvement due to more than just error minimization. They
have also developed an efficient method to evaluate and select
the most ‘‘contributive’’ ensemble members prior to docking for
targets with conserved binding site cores (43).
An alternative to MD is to generate receptor ensembles by

normal mode analysis. Abagyan and co-workers have demon-
strated that the elastic network model (ENM) is a method that
may initiate not only local conformational changes, such as those
of side chains, but the movement of the protein backbone. They
have also demonstrated that the ENM can be significantly more
efficient than MD (44).
Gohlke and co-workers (45) have developed an accurate

grid-based representation of intermolecular interactions, which
evaluates interaction energies via lookup tables even for a
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moving protein. The efficiency is achieved by adapting a 3D grid
with pre-calculated potential field values, derived from the initial
receptor conformation, to another conformation by moving the
points in space, but keeping the values.

LIGAND REPRESENTATION IN DOCKING

Effect of input ligand conformation

Cross and co-workers have investigated the effect of input
conformation (crystal vs. CORINA-generated structures, advo-
cated by Kirchmair et al., (46)) on the accuracy of pose prediction
(47). Their unsurprising, at first glance, finding was that crystal
structures used as an input typically produced better overall
results, however not always. Corbeil and Moitessier (40) have
compared the docking accuracy of several programs using 100
crystal structures of 18 diverse proteins. Similar to the above
study, they found that docking accuracy of FlexX (48), GOLD
(49,50), Glide, and Surflex was 10–15% worse for OMEGA-
generated ligand input structures, compared to crystal ligand
input structures. For FITTED, the docking accuracy was
comparable for both types of input structures, possibly due to
the introduction of conformational treatment of rings (40).
Therefore, leaving aside the issue of program-dependence and
the effect of other factors such as solvation, protein flexibility, and
the quality of the benchmark (see Crystal Structure As a
Validation Benchmark Section), these studies have suggested
that sampling algorithms are, at least potentially, biased towards
the input ligand conformation.
Conversely, Feher and Williams’ (51) results present a rather

opposing picture. They have also used a representative set of
commercially available docking programs (GOLD, MOE (52),
Glide, FlexX, and Surflex), 14 protein-ligand test systems, and
assessed several methods for generating input ligand confor-
mation: the X-ray structures, the minimized CORINA structures, as
well as structures from conformational searches and from MD.
They found that even small changes in the ligand input
conformation can lead to drastic differences in the geometries
and scores of docked poses. No one method and no ligand
starting geometry were found to produce the most accurate
docking pose. The authors’ prudent (although, computationally
costly) recommendation was to always use multiple input.

Methods for conformational treatment of ligands

Precomputed conformations

In the TrixX Conformer Generator (TCG), introduced by Griewel
et al., (53) conformational ensembles are built incrementally in a
best-first-search process, which employs an internal root mean
square deviation (RMSD) clustering and conformational energy as
a scoring function. To address the accuracy versus ensemble size
issue, TCG allows the user to set a trade-off. Using TCG, Griewel
et al. have demonstrated that an average of 20 conformers per
ensemble is sufficient to achieve an average accuracy of 1.13 Å.

Systematic sampling

Generally speaking, the only method to comprehensively sample
conformational space is to carry out a systematic search in
torsional space. However, this method quickly becomes
computationally prohibitive. In the MOLSDOCK algorithm (54),

the exhaustive search is carried out using mutually orthogonal
Latin squares. However it is computationally efficient due to
subsequent sampling by a procedure similar to the mean-field
technique, which allows identifying the optimal structure.
MOLSDOCK has been tested against 45 protein-ligand complexes
and was shown to perform as well as AutoDock 4 (21).

Incremental construction

Incremental construction involves building the ligand ‘‘on-the-fly’’
within the constraints of the binding site, while simultaneously
addressing ligand flexibility.
In the E-Novo protocol (Enumerated de Novo Design) (55), a

scaffold core is generated within the binding site, using a
ligand-bound protein structure. Ligands of interest are then
generated from a scaffold using an R-group fragmentation/
enumeration. Inhibitors of six targets have been used to test the
protocol. The applicability of this method is limited to the cases
where experimental ligand-bound structures are available, or the
ligands to be docked are not too diverse.
In the TrixX BMI (56), the ligands are split into fragments, which

are enumerated in a relational database using triangular
descriptors. During screening, the target-based query descriptors
are used to extract the initial matches and then to reconstruct
them incrementally. TrixX BMI has been tested against 85
protein-ligand complexes of the Astex Diverse Set (57) and
predicted the bound mode (to less than 2 Å) in 80% of the cases.
Kuntz and co-workers (58) have developed a new ranking-

based sampling algorithm within the anchor-and-grow ligand
sampling method of DOCK 6. By softening the vdW interaction
energy, improving the performance of the bump filter (to remove
clashes with the receptor) and by only ranking (without
clustering) the layers of ligand growth, they managed to guide
the sampling algorithm towards the correct pose.

Genetic algorithms (GA)

GAs are based on Darwin’s theory of evolution and natural
selection. In a docking program, a population (of poses) evolves
with favorable genes passed on to the next generation and
unfavorable eliminated.
Kang et al. (59) have developed an improved adaptive GA,

which incorporates such advances as a multi-population genetic
strategy, entropy-based searching with self-adaptation, and the
quasi-exact penalty. They have tested their algorithm against the
data set of 134 complexes and obtained good pose prediction
(<2 Å) in approximately 70% of cases.
FITTED incorporates a Lamarckian genetic algorithm, which

uses conjugate-gradient energy minimization as the local search
method. The evolution process, implemented in FITTED, limits the
fraction of the offspring progressing through the optimization. To
reduce computational cost, FITTED uses a funnel approach to
create a ‘‘high’’ quality initial population. The recent development
in FITTED has addressed the somewhat underserved issue of ring
flexibility through the application of a corner flap algorithm (40).
However, no restrictions have been imposed on the adjacent
atoms in the ring, a usual drawback of the corner flap approach.

Monte Carlo

MC methods use random modifications to generate alternative
ligand poses. RosettaLigand uses stochastic Monte Carlo to
generate ligand conformations, which are pre-enumerated but
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also subjected to torsion space minimization during the docking
simulation (19,20). A highly effective search algorithm has
been implemented in AutoDock-Vina, which combines MC-like
perturbations with local search methods (60).

Effect of ligand protonation, tautomerism, and
stereoisomerism

Baker and co-workers (19) have commented on the problem of
sampling tautomeric and protonation states, given the possible
difference of free and bound ligand states in these respects. They
suggested enumeration of tautomeric and protonation states
as a possible solution but have warned about the potentially
prohibitive computational cost. Another suggested alternative
included segmentation and incremental construction of the
docked ligand, whereby the protonation and tautomerism
‘‘decisions’’ are independent and hence decrease the problem
size.
ten Brink and Exner (61) have investigated the influence of

ligand protonation, tautomerism, and stereoisomerism on
docking results. They have carried out cognate docking of
crystal structures (redocking) and virtual screening experiments
for three targets and the Astex dataset. They demonstrated that
two docking programs, GOLD and Protein-Ligand ANT System
(PLANTS), had problems in identifying the correct protomer/
tautomer and, to a lesser extent, the correct stereoisomer.
ten Brink and Exner have recommended that, until scoring
functions can overcome the problem of incorrect identification
of protomer/tautomer, a preselection of plausible protomers/
tautomers should be routinely performed. They have developed
Structure PrOtonation and REcognition System (SPORES) – a tool
for preprocessing of protein and protein-ligand complexes
and for the setup of 3D ligand databases. SPORES performs
rule-based assignment of atom types and generates protonation
and tautomer as well as stereoisomer states, based on these
assignments.
Kalliokoski et al. (62) have addressed the same problem

by using AutoDock 4 (21) and studying the effect of ligand
protonation and tautomerization on 19 targets and the publicly
available DUD decoy set. Specifically, they have compared two
approaches: enumeration of all protonation and tautomeration
ligand forms versus using a single reasonable ligand form. Their
results have indicated that the two approaches can result in
comparative enrichment in structure-based virtual screening.
However, as expected, the latter approach significantly increased
computational efficiency.

SCORING FUNCTIONS

Entropy

Entropic contributions form an important component of binding
energy and are notoriously difficult to account for in docking
applications.
Kongsted and Ryde (63) have attempted to improve the

calculation of entropies within the MM/PBSA (molecular
mechanics with Poisson-Boltzmann surface area) framework by
introducing a buffer region of approximately 4 Å outside the
protein, included into the calculation. This buffer region, which
contains water molecules, is kept fixed during the calculation,
reducing extensive changes in the molecular geometry and
ensuring that the entropy term does not limit the precision of the

MM/PBSA predictions. This method was tested on 17 complexes
and produced improved predictions of binding affinities.
Conversely, Coutinho and co-workers (64) have endeavored to

directly calculate the entropy loss, corresponding to the loss of
torsional, vibrational, rotational and translational free energies of
the ligand upon binding with the receptor. They have estimated
this entropy loss, resulting from reduced conformational
flexibility upon receptor binding, using the Searle–Williams
method by assigning an amount of 0.7 kcal/mol to every freely
rotatable (i.e., single) bond, excluding the terminal methyl groups.
Wang and co-workers (65) have improved the prediction of

binding affinities of XIAP-Smac mimetics complexes (X-linked
inhibitor of apoptosis; second mitochondria-derived activator of
caspase) by using the modified MM/GBSA function (molecular
mechanics with generalized Born surface area). The modification
involved the inclusion of the free energy change between the
free and bound states of the ligand, or ‘‘ligand reorganization
energy.’’ This study has demonstrated that ligand reorganization,
and not only the induced fit of receptors, is important for correct
prediction of binding affinities and should be evaluated for other
protein-ligand systems and included into newly developed
scoring functions.

Solvation

Receptors bind to their ligands in solution and the solvation
aspects are commonly treated implicitly, that is, by the use of
implicit solvents, knowledge-based scoring functions or by
modification or calibration of other scoring functions.
Fong et al. (66) have investigated the inclusion of a desolvation

penalty into their QM/MM scoring, using a Generalized Born
solvent model, and found that it resulted in improved pose
prediction. Cincilla et al. (67) have modified the solvation
treatment in the scoring function of AutoDock 3 (68) to improve
the predictions of weak complexes containing ligands with polar
atoms lacking a matching partner in the binding site. Specifically,
they have removed the constant hydrogen bonding energy term
for the polar ligand atoms and introduced the Stouten free
energy desolvation term. The modified function has also
differentiated between the ‘‘polar’’ and ‘‘non-polar’’ heteroatoms
on the basis of hybridization and connectivity.
Kuntz and co-workers (58) have used two implicit solvent

scoring functions AMBER/GBSA and AMBER/PBSA, implemented
in DOCK 6, for docking small molecules to RNA. Sodium ions were
used to neutralize the backbone charge and a double shell of
explicit water was used to shield the charges. They have found
that the quality of pose prediction increased from 70% to 80% for
moderately flexible ligands (<7 rotatable bonds) and from 26%
to 50–60% for highly flexible ligands (7–13 rotatable bonds).
Huang and Wong have tested the performance of a simple

implicit solvent method (a distance dependent dielectric model)
in comparison to a version of the Generalized Born method
(GBMV) and found it to produce better pose prediction results for
a fraction of the computational cost (69).
Most methods of treating solvation do not take into account

the effects that could be exercised by ‘‘structural’’ water
molecules, that is, those that provide stabilization and/or
recognition through specific hydrogen bonding and even van
der Waals interactions. Villacanas et al. (70) have reviewed the
effect of structural water molecules on docking and concluded
that the general feeling in the literature is that explicit water
molecules improve docking outcomes, both in pose prediction
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and virtual screening. Englebienne and Moitessier (71) have
shown that the consideration of displaceable water molecules,
implemented in FITTED, improves pose prediction, but does not
significantly affect scoring accuracy. They have suggested that
the latter is most likely the outcome of most scoring functions
having been developed for ‘‘dry’’ proteins.

Empirical functions

Korb et al. (72) have developed the PLANTSCHEMPLP and
PLANTSPLP scoring functions, which are based on parts of other,
already published functions. They have used the function
parameterization procedure, which allowed improving pose
prediction in large test sets: 87% in Astex diverse set and 77% in
Cambridge Crystallographic Data Centre (CCDC)/Astex clean list.
Englebienne and Moitessier (73) have developed empirical

scoring functions RankScore 2.0, 3.0, and 4.0 within FITTED,
derived from crystal and docked structures as well as trained from
VS data. They have fine tuned their functions using an iterative
approach by optimizing the correlations between observed
actives and calculated scores and by optimizing the Receiver
Operating Characteristic (ROC) Area Under the Curve (AUC) for
the discrimination of actives and inactives. They have validated
the functions against Wang’s set of 100 complexes (74).
Interestingly, Tarasov and Tovbin (75) have developed an

extremely simple empirical scoring function NScore with the aim
of estimating how sophisticated a scoring function should be in
order to be successful in docking, scoring and ligand ranking.
NScore, based on basic physical principles without any adjust-
ment, training or experimental bias, has performed comparably
to programs with sophisticated scoring functions (ICM, GOLD,
DOCK, and Glide).

Quantum mechanical/molecular mechanical (QM/MM)
scoring functions

There have been several papers in 2009, exploring the potential
of QM/MM scoring (66,76–81). Fong et al. (66) have tested three
functions (HF/6-31G*, AM1d, and PM3) for ligand treatment in
combination with AMBER, GoldScore, and ChemScore for
successful pose prediction of six HIV protease inhibitors. Gleeson
and Gleeson (76) have used the combination of B3LYP/6-31G**

and Universal Force Field (UFF) for successful cross-docking and
re-scoring of nine kinase ligands. Chung et al. (77) have combined
QPLD, a QM/MM docking program, with SiteMap (82), a binding
site classification module. They have used 455 protein-ligand
complexes and demonstrated a scoring improvement, over Glide,
for three possible binding site types (hydrophilic, hydrophobic,
and metalloproteins). Cho and co-workers have tested QM/MM
scoring for different types of binding sites, namely for those with
polar groups, hydrophobic groups, and metalloproteins (78,81).
In metalloproteins (78), they have extended the QM region to
include the protein atoms surrounding the binding site along
with metal ions and ligand atoms. This extension helped the
charge scaling on metal ions and improved binding mode
prediction.

Consensus scoring

Many scoring functions perform very well for the purpose of pose
prediction, but a goal of predicting binding affinities using
scoring functions is still unfulfilled. While the scoring function
advances described above improve their performance in that

respect, it is also clear that the currently available functions could
be used more efficiently in combination. Commonly, a consensus
scoring involves multiple rescoring of a docked pose with
different scoring functions or a combination thereof (83).
Caflisch and co-worker (84) have applied consensus scoring in

their fragment-based virtual screening against Plasmepsins
(targets for malaria). They have used the median rank of four
force-field-based energy functions: the binding free energy
approximated by the linear interaction energy with continuum
electrostatics (LIECE), CHARMm electrostatic interaction energy,
CHARMm van der Waals (vdW) efficiency, and the TAFF
interaction energy. Their consensus scoring yielded the highest
enrichment for the first 1000 compounds, while the TAFF function
worked the best when the whole library was considered. LIECE
and electrostatic interaction energy performed slightly worse
than consensus scoring, and vdW efficiency did not do much
better than random selection.
Cheng et al. (85) have combined ASP, PLP, DrugScore,

GlideScore, LigScore, and ChemScore in their assessment of
scoring functions, which used a set of 195 diverse high resolution
crystal structures with reliable binding constants from PDBbind
database. They found that consensus scoring schemes have
improved the success rate of pose prediction from 70% to 80% or
even higher (based on the cutoff of 2 Å).
It has been recognized that consensus scoring is strongly

dependent on the initial parameters. To address this issue, a new
algorithm, SeleX-Consensus Scoring (SeleX-CS), has been devised
(86). In SeleX-CS, a subset of scoring functions is initially allowed
to form a consensus score, and that subset is consequently
optimized using the Monte Carlo/Simulated Annealing pro-
cedure. This method was successfully tested in a virtual screen
against two GPCRs. Another consensus scoring optimization
protocol has been developed by Li et al. (87). Their multi-
objective optimization method (MOSFOM) simultaneously con-
siders the energy (AMBER) and the contact score of DOCK, and
was demonstrated to improve enrichment in virtual screening.
Contrary to the above examples, in some studies, it has been
noted that consensus scoring lead to none or only moderate
improvement in docking accuracy and/or overall enrichment
(71,88).
Thus, whereas there are several examples of consensus scoring

delivering better outcomes compared to using a single scoring
function (84–87), the poorly combined scoring functions can
impair the results. Ultimately, the ab initio principles of combining
functions for consensus scoring are unclear and in most cases the
combination is achieved empirically and tested retrospectively.
To address the lack of understanding of the basic principles of
rescoring and consensus scoring O’Boyle et al. (89) have used
three scoring functions associated with GOLD (49,50) (Chem-
Score, GoldScore, ASP) and the Astex Diverse Set to test two
alternative proposals. Their ‘‘consensus hypothesis’’ postulates
that a combination of two scoring functions works by correcting
for false positives (the averaging effect). They found that, while it
may hold true for an experiment where ranks from scoring and
rescoring functions are combined, for an experiment where
the rescoring function is used to rank molecules, which have
been docked by another function, it does not hold. Their
‘‘complementary hypothesis’’ suggests that a combination
works because various scoring functions have different strong
points. They have established that an improvement in ranking
of actives in virtual screening can indeed be achieved if one
scoring function works better for pose prediction (i.e., better
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scoring of different poses of the same ligand), while another
works better for affinity prediction or relative scoring of different
ligands.

Other scoring developments

Fingerprinting

Interaction fingerprints (IFs) and profile-based methods have
been applied to scoring and virtual screening to identify
interaction patterns that can guide and improve predictions.
The Glide XP (extra precision) scoring function descriptors have
been used to locate key pharmacophoric features of docked
fragments, which have been shown to be consistent with features
from known tight binding compounds (90). Perez-Nueno et al.
(91) have improved GoldScore results in VS by supplementing
this scoring function with binding site ‘‘fingerprinting.’’ Nandigam
et al. (92) have introduced weighted Structural Interaction
Fingerprint (w-SIFt) to gain insight into which interactions are
critical in determining inhibitor potency. w-SIFt incorporates an
empirically determined weight fit from inhibitor potency data.

Combination with experimental data

Gonzalez-Ruiz and Gohlke (93) have combined DrugScore
function with experimental data, specifically NMR amide proton
chemical shift perturbations (CSP). They have implemented this
hybrid scoring scheme in AutoDock 3, applied it to 70
protein-ligand complexes, and have observed an improvement
in pose prediction from 71% (without CSP) to 99% (with CSP).

Targeted scoring functions

Seifert reviewed targeted scoring functions for virtual screening
(94). Unlike an accurate universal scoring function, still a major
goal of the field, targeted functions, which capitalize on prior
knowledge, are actually quite effective. The review covers such
approaches as extending existing functions, recalibrating those
using binary data and optimizing by statistical methods,
fingerprint scoring functions, and target-specific filtering. Using
an ensemble of protein kinases, he also demonstrated that a
targeted scoring function can be tuned to multiple targets of a
target class, leading to improved robustness of the resulting
scoring function parameters (95).

OTHER METHODOLOGICAL ADVANCES

Improving pose prediction

In most cases, docking algorithms produce a list of docked poses
ranked by a scoring function(s). Since scoring functions are only
approximate representations of the underlying biochemical and
biophysical phenomena, the ranking is often less than perfect,
with ‘‘correct’’ binding modes occasionally failing to be ranked at
the top of the list. While some advances in the scoring functions
(see above) give promise to better ranking, other methodological
developments have occurred in 2009 to address this issue.
Kolb and Irwin (96) have looked at pose prediction in the

context of virtual screening and asked an important, although
often overlooked question: when we dock, do we predict the
binding modes correctly or we are just lucky in finding binders? A
number of ‘‘complete’’ studies they have reviewed indicated that
indeed docking can often, but not always, predict the binding

mode correctly, increasing confidence in newly identified ligands
(‘‘right for the right reasons’’). They concluded that while there is
no universal docking method, it is clear that docking works best
for (i) small binding sites and/or small ligands (‘‘small is beautiful
for docking’’), (ii) binding sites with small orienting constraints, (iii)
cases with specific knowledge about the receptor, and (iv) high
levels of a practitioner’s experience. They finish with a passionate
plea to investigators to, whenever possible, experimentally solve
structures for their predicted ligands and compare them to the
predictions (prospective validation).
Baker and co-workers (19) have carried out a blind docking

study of pharmaceutically relevant ligands and have identified
several challenges associated with pose prediction: multiple
deep, tight fitting binding pockets and directional polar
interactions (could be overcome by fragment docking followed
by linking); spurious receptor flexibility leading to the binding site
adopting non-native shapes with false binding pockets (could be
dealt with by introducing an energy bonus to native side chain
conformations). While these findings were specifically associated
with RosettaLigand (20), they are clearly relevant to other docking
methods.
Interaction fingerprints (see above) and profile-based

approaches to analyzing docked poses are based on the
hypothesis that an active site contains a set of interaction points
exploited by binding ligands. Wallach and Lilien (97) have
proposed an algorithm where docking is combined with
pharmacophore modeling. In their approach, the list of docked
poses is examined to identify those that are maximally
self-consistent with the pharmacophore map generated from
the same poses. They have extensively applied their method to
several protein systems and demonstrated improved pose
prediction. A new atom-pairs-based IF (APIF) considers the
relative positions of pairs of interacting atoms. It has been
developed by Perez-Nueno et al. (91) for post-processing of docking
results and tested in a virtual screen against a range of targets and
using a range of scoring approaches. The IF-based scoring has
demonstrated superior enrichment and pose prediction. Novikov
et al. (98) have improved enrichment in VS against poly-
(ADP-ribose)-polymerase (PARP) by choosing poses conforming
to a predetermined interaction criterion (structural filtering).
Agostino et al. (99) have developed a docking-based site

mapping of antibody binding sites with respect to their binding
to carbohydrate antigens. They have validated their method
against high resolution crystal structures and found site mapping
to be very accurate and robust. For a panel of xenoreactive
carbohydrate-binding monoclonal antibodies they have ident-
ified most likely antigen binding modes (100), by applying
interaction-based filters derived from the antibody site maps and
selecting the carbohydrate poses exhibiting the most preferred
binding characteristics. Thus identified binding modes were
found to be in agreement with experimentally determined
binding profiles and were able to explain the relevant binding
phenomena.
Yasuo et al. (101) have used modified MM/PBSA analysis to

select the most energetically stable pose among docking
solutions. The modification involved ignoring the entropic term
(�TDS), based on the assumption that different conformations of
the same ligand, unlike different ligands, would only have
variations in the entropy term. They found that a CoMFA model
based on the alignment of thus generated poses of 20 known
CYP inhibitors had good statistics, which they accredited to the
quality of pose prediction.
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QMmodifications of/additions to otherwise MM-based scoring
have the potential to improve correct binding mode identifi-
cation. The improvement of binding mode predictions in
metalloproteins has been achieved with the use of modified
QM/MM scoring (see above) (78). Calculation of charges with the
semi-empirical PM6 method (as compared to the Gasteiger
charges) on both ligands and proteins has significantly increased
docking accuracy in AutoDock 4 (102). However, this modification
has not affected the binding affinity estimation, suggesting that a
new scoring function for AutoDock is needed.

Fragment-based docking

The use of molecular docking to assist in Fragment-Based Drug
Design (FBDD) (103,104) is logically obvious. However, due to the
low affinity and non-specific nature of fragment binding, it is also
questionable. Thus, Shoichet and co-workers (105,106) set out to
address this apparent paradox and investigate the relevant
questions: can docking prioritize fragments and predict their
binding modes? Can it lead to the emergence of specific
inhibitors? Can they be optimized for specificity and affinity? How
does in silico fragment-based screening compare to full molecule
screening? Docking their fragment libraries into b-lactamases
failed to identify any lead-like inhibitors. However, it did lead to
the discovery of low affinity fragment inhibitors and novel
chemotypes. Most significantly, docking predictions for fragment
binding modes have been compellingly confirmed by the
subsequent crystallographic investigations – an encouraging
finding for other docking-assisted FBDD projects.
One of the main concerns with respect to fragment based

docking is the applicability of docking programs and scoring
functions, optimized for ‘‘larger small molecules,’’ to small
fragments. To address this issue, Kawatkar et al. (107) have
tested Glide, one of the most widely used docking packages, for
fragment docking from self-docking, cross-docking, and enrich-
ment perspectives. They tested nine different scoring schemes,
associated with Glide. For prostaglandin D2 synthase and DNA
ligase, they found that Glide standard precision (SP) with either
GlideScore or Emodel ranking performed the best, with docking
accuracy similar to that generally reported for lead-like
molecules. They also found that using MM/GBSA did not improve
the results, suggesting that the success of MM/GBSA re-scoring
may be system dependent. Sherman and co-workers (90) have
demonstrated that Glide XP is also successful in predicting
fragment poses, with an RMSD of <1 Å. Impressively, they have
also developed fragment-specific docking settings to generate
poses that explore miscellaneous pockets of a binding site, while
maintaining the docking accuracy of the top ranked pose.
Rarey and co-workers (108) have approached the issue of

predictability in fragment-based docking by devising a retro-
spective validation scheme, not a straightforwardmatter in the de
novo design field. They have used 188 crystal structures of
complexes, belonging to eight different protein families with
diverse functions and attempted to reconstruct ligands from
fragments using FlexNovo. They have demonstrated that, in five
out of eight cases, native ligands could be successfully
reconstructed. In these cases, the ligands were ranked within
the first five candidates.
The Fragment Screening by Replica Generation (FSRG) method

of Fukunishi et al. (109) also attempts to address the potentially
poor surface complementarity between proteins and small
compounds. In this method, several side chains are attached to

the fragment being docked to produce a set of molecules of
increased size. In a way, this method computationally combines
usually separate steps of fragment-based design: identification of
fragments and their evolution. Fukunishi et al. (109) have tested
their procedure on six targets and shown its potential for
retrieving known actives.
Moriaud et al. (110) have developed a computational

fragment-based approach by protein local similarity. Working
at the complete PDB scale, they have generated a database of
MED-Portions (new structural objects encoding protein-fragment
binding sites), derived from mining all available experimental
protein-ligand structures. They have combined this database
with the MED-SuMo (software to superimpose similar protein
interaction surfaces) and MED-Hybridize (a toolkit for recombin-
ing chemical moieties into putative ligand molecules) so that
pools of matching MED-Portions could be retrieved for any
binding site query. This approach has then been applied to two
important drug design target superfamilies (protein kinases and
GPCRs) and its potential for retrieving active known molecules
has been demonstrated (110).
Several docking-based methods have now been developed in

order to gain binding information for proteins in the absence of
experimentally determined crystal structures of their complexes.
The computational fragment mapping approach, FTMap, was
developed to identify protein regions suitable for drug targeting
(111,112). It has been tested on DJ-1 and GCase, implicated in
Parkinson’s and Gaucher’s diseases, respectively (111), and renin,
a long-standing pharmaceutical target for the treatment of
hypertension (112). Comparison to the data derived from
experimental multiple solvent crystal structures has shown that
FTMap, a computational method for the identification of
fragment binding hot spots, is a robust and accurate complement
and alternative to the expensive experimental approaches.
Several studies have come out of the Caflisch group, which

described their novel fragment-based docking strategy, using a
very large library (millions of molecules), such as ZINC (113) or
iResearch (ChemNavigator, Inc., 2006), as a starting point. Each
molecule of the library is decomposed into mainly rigid
fragments, which are then docked. The library molecules are
then ‘‘re-assembled’’ by docking them flexibly, based on the
positions of their fragments as anchors. They have also used NMR
and MD to complement the in silico work and to guide the
selection of candidates for further testing. In the screen against
Plasmepsins (targets for malaria), several inhibitors showed very
low micromolar activity; these have been identified in the NCI
database, but not in malaria-related collections (84). Testing
against the West Nile virus (WNV) NS3 protease (a target for WNV
and dengue viral infections) has identified novel micromolar
inhibitors (114,115). The significance of these studies is not only
in developing a novel drug design strategy, but also in validating
it prospectively, that is, by predicting novel inhibitors and testing
their predictions.

Covalent docking

Docking of covalently bound ligands is important for gaining
insight of enzymatic processes and designing superior covalent
ligands.
Along with improving receptor flexibility (see above), devel-

opers of AutoDock 4 have implemented twomethods for docking
covalently bound ligands: a grid-based method and a modifi-
cation of the flexible side chain approach (21). While the former
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method showed distinct sensitivity to the choice of Gaussian
map(s), the latter performed excellently on the test cases used.
Juhl et al. (116) have developed a predictive and robust

protocol, termed ‘‘substrate-imprinted docking,’’ where covalent
docking of reaction intermediates and geometry optimization of
the resulting enzyme-substrate complex produces binding site
structures suitable for putative ligands. This method has been
applied to model substrate specificity and enantioselectivity of
lipase and esterases and reproduced experimentally determined
differences in selectivity and specificity with an accuracy of 81%.
Covalent docking has also been applied to oligopeptidase

(117) and proteasome (118) inhibitors, and glycoside hydrolyses
ligands (119).

Combining docking with molecular dynamics

In many studies, docking has been combined with MD in a
sequential fashion to investigate the dynamic behavior of the
complexes (120); this should be distinguished from using MD for
generating receptor ensembles (see above). The following is a
small selection of docking/MD combination studies, addressing
the issues of improved VS performance as well as a better
understanding of binding phenomena.
In the study of binding of an RNA polymerase II to an isomerase

enzyme, an all atom unconstrained MD in an explicit solvent was
applied to a docked complex to simulate an experimentally
known significant loop-bending event, occurring upon binding
(121). Kranjc et al. (122) have used MD in explicit solvent to
predict the free energy of dissociation in a ligand-prion protein
docked system and found values in good agreement with
binding assays and NMR. MD trajectories of docked DNA-ligand
systems have been used to discriminate between optimal
and non-optimal intercalation modes (123). Combination of MD
with covalent docking provided insights into the dynamic
behavior of docked complexes: enzyme-substrate (119) and 20S
proteasome-peptide aldehyde (118). Caflisch and co-workers
(124) have used MD to validate the kinase-ligand binding mode
determined by fragment-based docking, discussed in detail
above. In the study of human cytochrome P450 2A6, the docking/
MD arrangement was used to investigate the question of how
mutations affect the enzymatic mechanism (125).
Docking/MD partnership has even been used as a pre-

screening tool in the development and optimization of new drug
delivery systems. Specifically, it has been used to model and
predict polymer–drug interactions in self-assembled nanoparti-
cles, producing binding energies well correlated with exper-
imental maximum drug loading values (126).

Virtual screening

The focus of virtual screening studies continues to be on
improving performance of docking programs/scoring functions,
as well as fine-tuning the ways to estimate said performance.

How to measure success?

This question is one of the key issues in virtual screening and has
been widely discussed and debated in the field; see, for example,
Journal of Computer-Aided Molecular Design Special Issue on
‘‘Evaluation of Computational Methods,’’ 2008 (3-4).
Existing measures of VS success include enrichment factors

(EF), ROC/AUC, Robust Initial Enhancement (RIE). Which one
performs the best is a contentious issue (127). Hevener et al. (88)

have developed sum of the sum of log rank (SSLR) – a simple
statistical method to more accurately assess scoring performance
by including the inhibition constants of known actives into the
virtual screening evaluation.
Mackey and Melville (127) have focused on another important,

and until recently poorly addressed, issue – the ability to quantify
chemotype retrieval in virtual screening. They have developed
and evaluated two metrics: ‘‘cluster averaging,’’ where the
contribution of each active to the scoring metric is proportional
to the number of other actives of the same chemotype, and ‘‘first
found,’’ where only the first active of a given chemotype
contributes to the score. Using DOCK, DUD and eight targets, they
have shown ‘‘cluster averaging,’’ while less intuitively appealing
than ‘‘first found,’’ to be a more reliable alternative when
performing VS for scaffold hopping purposes.

Early rejection approaches

In a paper aptly entitled ‘‘Knowing when to give up: early
rejection stratagems in ligand docking,’’ Skone et al. (128) have
addressed the issue of reducing the computational cost of virtual
screening. They have applied the ‘‘lazy evaluation’’ principle used
elsewhere in computer science to the problem of scoring
thresholds in molecular docking. This paradigm is that a
calculation that makes no contribution to the final outcome
should be avoided. They found that applying either of the two
investigated methods – threshold-based function approximation
and quota-based ligand rejection – has proved beneficial by
reducing the run times of database docking without a substantial
deterioration in ligand placement. They concluded that this
principle should be easily implemented in a wide range of
docking programs.

Automation

Even with the recent advances, docking remains a manually
intensive method and still requires expert handling and decision
making (129). For virtual screening to become truly useful for
medicinal chemists, it should become fully automatable. Irwin
et al. (129) have investigated the feasibility of such automation
using their DOCK Blaster server (blaster.docking.org) and tested it
for pose fidelity and enrichment. Useful results, that is, good pose
fidelity and good enrichment were obtained in 25–40% of the
cases. While these results are relatively poor, especially compared
to expert studies, DOCK Blaster offers a way to automatically
leverage the exponentially increasing structural protein data for
drug discovery.
Other advancements in automation of virtual screening

include the development of integrated computational platforms,
such as Virtual Screening Data Management on an Integrated
Platform (VSDMIP) (130).

Distributed docking/virtual screening

To address the issue of data management in parallel applications
in structure-based design, several advances have been made in
the use of high performance computing for docking and virtual
screening.
The Docking@Home project (131) has been developed to

distribute scientific calculations, such as virtual screening against
drug targets, among volunteer/general public computers,
connected to the Internet (120). Zhou and Caflisch (132) have
developed a distributed VS data management system (DVSDMS),
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which performs the data handling and job distribution using
MySQL, the structured query language database. The core idea of
DVSDMS is the separation of the data management from the
docking and ranking applications. Garcia-Sosa et al. (133) have
combined paradigms of grid computing and collaborative
research in their Chemomentum computing environment.

Other developments in VS

Several approaches have been tested to improve enrichment in
VS, including: application of interaction fingerprints for post-
processing of docking results (91,98,134), consensus (84,86) and
QM/MM (79) scoring, combining docking with pharmacophore
perception (90,134–138) or other ligand-based methods
(64,139–141), accounting for receptor flexibility (142–144). and
use of machine-learning strategies (67,145). These advances are
discussed in some detail elsewhere in this review.

GPCRs as a case study for docking and virtual screening

In 2009, GPCRs have arguably been the hottest target for
structure-based drug design. Their importance is due to them
being targeted by a very large number of drugs (146). The
increased interest in the virtual screening against GPCRs is thanks
to the 2007–2008 determination of the crystal structures of
the b2- and b1-adrenergic (b2-AR and b1-AR, respectively) and
adenosine A2A receptors (147–151). In one of the first virtual
screens against b2-AR, both potent and novel chemotypes have
been found (152). These new structures have also delivered an
opportunity for virtual screening against the homology models
of other GPCRs, generated using these crystal structures as
templates. This prospect has been tested in ‘‘GPCR Dock 2008’’ – a
community-wide blind assessment of the prediction algorithms
(153).
One of the very important challenges for structure-based drug

design (SBDD) is the ability to predict different pharmacological
profiles, that is, antagonists versus agonists versus inverse
agonists for different GPCRs (154). Another main challenge of
designing GPCR ligands is the robustness of SBDD methods with
respect to their potential to generate subtype-specificity. Katritch
et al. (155) have demonstrated such potential by b2-AR receptor
optimization in the presence of docked ligands and the resultant
improved prediction of agonist binding affinities. Generally,
optimization of GPCR binding sites by flexible receptor docking,
particularly as a measure to improve and test the quality of GPCR
homology model, has evolved as a mainstream theme in the
GPCR field as exemplified by a number of recent studies
(156–159).
Many docking studies have been published where improved

GPCR ligands were identified. The following examples represent a
snapshot of this exciting and rapidly developing field. Virtual
screening against two GPCRs (CB1, cannabinoid receptor 1; CCR2,
chemokine receptor 2) has been a testing ground for the new
consensus scoring algorithm SeleX-CS (86), which delivered
promising outcomes. Computational fragment-based approach
by protein local similarity has then been applied to GPCRs, and its
potential for retrieving active known molecules was demon-
strated (110). Dailey et al. (160) have carried out a VS experiment
against CXCR4 using Surflex-Dock (38) and identified low
micromolar inhibitors. Dong et al. (161) have used docking with
ICM (34) to elucidate the structural basis of natural peptide
binding to a family A GPCR, the type 1 cholecystokinin receptor.

The resulting agonist-occupied GPCR models were in agreement
with experimental data.

VALIDATION STUDIES

Structural validation issues

A program’s ability to predict a ligand pose within a reasonable
RMSD to the experimental structure (usually, 2 Å (96,162)) as its
top or highly ranked pose is considered a docking success. While
this approach is the field’s de factomethod of structural validation
and usually works very well for the problem at hand, it raises
several issues. Firstly, is a crystallographically determined pose
always a good benchmark? More specifically, is a given crystal
structure a ‘‘good’’ structure to be used for benchmarking? And,
generally speaking, do static crystal structures give us a correct
picture of a dynamic binding process? The last question brings us
to the second issue to be raised with respect to binding modes
predicted by docking. Namely, should we only consider the top
ranked docked pose or attempt to ascertain the dynamic nature
of binding afforded by considering multiple alternative binding
modes generated by docking? And finally, is RMSD an
appropriate and sufficient measure to be used for the judgment
of pose prediction quality or should we use alternative and/or
complementary assessmentmetrics? Belowwewill briefly discuss
the latest developments with respect to these issues.

Crystal structure as a validation benchmark

What must be always remembered when using crystal structures
of receptor-ligand complexes as benchmarks of docking
performance is that the positioning of small ligands within
protein binding sites is still a challenge in X-ray crystallography,
especially for structures solved at moderate resolution. As has
been shown by Malde and Mark (163), the higher disorder
associated with ligands, compared to the surrounding protein,
makes it difficult (and, sometimes, impossible) to orient the
ligand correctly. What makes ligand positioning particularly
complicated is the lack of correlation between atom type and
electron density. As a result, the ligand positioning is often
subjective and frequently incorrect. Bound ligands in crystal
structures, which are ‘‘assumed to be experimental,’’ (163) can be
positioned incorrectly.
Furthermore, one issue, which is often overlooked when

validating a docked outcome, is the presence or absence of
crystal-induced artifacts and water-mediated contacts in the
crystal structure, to which it is compared. Sondergaard et al. (164)
have analyzed ligands in the PDBBind 2007 refined data set and
found that 36% of ligands were influenced by crystal contacts
and that the performance of X-Score scoring function was
affected by these contacts. The authors have suggested two
solutions that may help to overcome the influence of crystal-
lographic contacts: either through the representation of the
protein-ligand complex as a ‘‘solution-like’’ ensemble (e.g., via MD;
see above) or by exclusion of the affected crystal structures from
validation and development data sets.

Pose prediction measures

As a measure of pose prediction, RMSD suffers from a range of
drawbacks. Any pose above the cutoff (usually, 2 Å) is considered
incorrect, which leads to a loss of potentially useful information,
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and a very small number of bad poses may skew the overall
outcome. Most importantly, poses with low RMSDmay incorrectly
describe intermolecular interactions and vice versa. A distinct
example of how the incorrect placement of a flexible
solvent-exposed portion of a ligand may affect an RMSD of an
otherwise nearly perfectly docked ligand has been described by
Agostino et al. (165)
Alternative/complementary prediction metrics have been

proposed in the past, such as the relative displacement error
RDE (166) and interaction-based accuracy classification IBAC
(167). The advantage of the latter measure is that it captures
information about intermolecular interactions encapsulated in
the experimental binding mode and reproduced in the docked
structure, however it has been mentioned (46) that it is not
amenable to automation. Site-mapping approach of Agostino
et al. (99) is based on the intermolecular interactions in an
ensemble of docked poses and addresses the lack of automation
in the IBAC scheme. This site-mapping method has been
validated against a range of crystal structures and applied to the
investigation of antibody–carbohydrate interactions important
for xenoantigen recognition.
Several measures, which are based on RMSD but designed to

overcome the associated drawbacks, have been proposed. Baber
et al. (162) have developed Generally Applicable Replacement for
RMSD (GARD), which is based on normalizing RMSD to the unit
interval. Docking failures are given a low value (close to 0) of
GARD and good poses are valued close to unity. Another method
has been proposed by Brooks and co-workers (120), where
docking accuracy is calculated as the frequency of finding
high-quality docked poses among a collection of low energy
ligand conformations.
Huang and Wong (32) have addressed the issue of measuring

pose prediction in flexible receptor docking, where the structure
of the protein as well as that of the ligand can change upon
docking. They have generated distance matrices to characterize
the relative positioning of the receptor and the ligand and have
used the correlation coefficient between elements of distance
matrices from docked and experimental structures as the
measure of success. This approach is independent of the choice
of protein atoms, that otherwise would be needed to bemade for
superimposition, and allows monitoring whether the proper
structural change is induced in the receptor upon ligand binding.
Zavodszky et al. approached the assessment of pose prediction

quality from a very different perspective. They have postulated
that, as long as a scoring function is performing adequately, the
scores should correlate with distances (between docked and
experimental binding modes) (168). They have applied thus
derived correlation coefficient, called correlation-based score
(CBS), to redocking of 50 protein-ligand systems with SLIDE and
found it to be a good measure of pose prediction.

Validations for different target and ligand types

Most scoring functions in use today have been developed for
protein–ligand interactions, where ligands are mostly small
organic molecules. It has been long recognized in the docking
field that various docking programs/scoring functions perform
differently for different targets (169). Cross et al. (47) have
identified trends in program performance when testing them for
pose prediction and VS against specific protein families.
Furthermore, macromolecules other than proteins, for example,
DNA, are increasingly becoming interesting drug design targets.

Similarly, docking studies for ligands other than small organic
molecules, offer novel ways to investigate mechanisms of
interactions in systems, such as enzyme-carbohydrate com-
plexes. Novel docking programs, and more importantly – scoring
functions, need to be developed for these systems. Alternatively,
existing programs/functions need to be tested for these systems
before they can be used reliably.

Nucleic acids

DNA significantly differs from proteins as a ligand receptor due to
its high charge density and solvent exposure of its binding site as
well as the sequence-dependent nature of its location.
Ricci and Netz (170) have tested AutoDock 4 for different

scenarios of DNA-ligand docking: cognate and cross docking as
well as intercalation, major groove binding and covalent binding.
They have evaluated AutoDock in cognate and cross-docking and
have demonstrated that the current limitations of docking
methods, with respect to nucleic acids as targets, can be
overcome by a proper choice of target conformation. They have
shown that, by using a modified canonical B-DNA as a target and
artificially introducing an intercalation gap, they could use
AutoDock to efficiently, if only qualitatively, evaluate ligand–DNA
interactions.
Kuntz and co-workers (58) have tested DOCK 6 for modeling

RNA-small molecule complexes using a test set of 70 complexes.
With the optimized parameters and a minimal scoring function,
they have successfully predicted experimentally determined
binding modes: in 70% of the cases for moderately flexible
ligands (<7 rotatable bonds) and in 26% of the cases for highly
flexible ligands (7–13 rotatable bonds).
Several other groups have investigated docking to nucleic

acids to search for quadruplex binders (171–173) and to study
intercalation (123,174–176).

Metalloproteins

Ligand binding to metalloproteins can be dramatically different
compared to other proteins, particularly because it could be
covalent in nature. While there have been recent advances in
covalent docking (discussed elsewhere in this review), the
validation of docking protocols for these systems is particularly
important. Michielin and co-workers (177) have tested their
EADock 2 program for docking ligands to heme proteins and
introduced the Morse-like metal binding potentials, fitted to
reproduce DFT calculations (178). Compared to a standard
docking protocol, where the iron-ligand interactions are under-
estimated, the pose prediction improved approximately two-fold
as a result (i.e., from 28% to 62% of cases).

Carboranes

Boron-containing ligands are becoming increasing important as
therapeutic and diagnostic agents, particularly in cancer.
However, their structure-based design is hampered by the lack
of boron atom type parameters in most molecular modeling
packages. Tiwari et al. (179) have developed simple and efficient
strategies to overcome this hurdle by the replacement of boron
atom types with carbon atom types. They have validated this
approach by cognate ligand docking into the human dihydro-
folate reductase (hDHFR) and comparing the poses and binding
energies to the experimental structures.

wileyonlinelibrary.com/journal/jmr Copyright � 2010 John Wiley & Sons, Ltd. J. Mol. Recognit. 2011; 24: 149–164

E. YURIEV ET AL.

1
5
8



Carbohydrates

There are some peculiarities to protein–carbohydrate inter-
actions, compared to general protein–ligand interactions, which
make carbohydrate docking particularly challenging: extreme
flexibility, a large number of hydroxyl groups, extensive hydrogen
bonding networks, and the formation of crucial CH-p contacts.
Therefore, widely used docking programs and scoring functions,
which account differently for these types of interactions, may not
perform as well for protein–carbohydrate complexes. Agostino
et al. (165) have evaluated several docking programs (Glide,
AutoDock, GOLD, and FlexX) by cognate and cross-docking
antibody–carbohydrate simulations and demonstrated that
generally docking has been performed well by Glide. GOLD
and AutoDock had several problems and FlexX performed poorly.
Glide appears to be a popular choice for docking carbo-

hydrates, and this choice is supported by a range of studies where

carbohydrate docking into diverse proteins has been structurally
validated. Kolomiets et al. (180) have cognately docked C-fucosyl
dipeptide into P. aeruginosa lectin LecB and confirmed the
accuracy of their result against the crystal structure. Benltifa et al.
(181) have used Glide XP to dock a series of glucose-based
spiro-isoxazolines into glycogen phosphorylase b. The docked
structures were found to be in excellent agreement with
experiment, both in terms of docked pose/crystal structure
RMSDs and docked score/experimental free binding energies
correlations.

COMPARISON STUDIES

A universal docking tool (algorithm plus scoring function) that
outperforms all others on every system does not exist at the
moment (19,61,85,169). Therefore, objective assessment and

Table 1. Docking program/scoring functions comparison studies

Programs/functions compareda Test set
Pose
prediction

Affinity
prediction/VS
performance

Performance
measure Refs.

DOCK, FlexX,Glide, ICM, PhDOCK,
Surflex, Surflex Ringflex

Astex with additional kinase
and nuclear receptor target

Y N RMSD, GARD (162)

DOCK, FlexX, Glide, GOLD,
Surflex; ChemScore, D-Score,
F-Score, G-Score, GlideScore,
GoldScore, Grid-Score, PMF-Score,
X-Score, Surflex-Score

Crystal structure of
dihydropteroate synthase
(DHPS). Ligand decoy sets:
Schrodinger, ZINC, and ACD,
seeded with 65 known actives

Y Y RMSD, enrichment
factors, and ROC
curves

(88)

Kang’s GA, GOLD, Glide, Surflex,
DOCK6

GOLD data set of 134 crystal
structures

Y N RMSD (59)

DOCK, FlexX, Glide, ICM, PhDOCK,
Surflex

A set of 68 diverse high
resolution crystal structures;
DUD

Y Y RMSD, ROC factors,
and ROC AUCs

(47)

AutoDock, Glide, FlexX, Surflex Crystal structure of hDHFR
with carboranyl ligands

Y Y RMSD (179)

ASP, ChemScore, D-Score,
DrugScore, F-Score, G-Score,
GlideScore, GoldScore, Jain,
LigScore, LUDI, PLP, PMF,
PMF-Score, X-Score

A set of 195 diverse high
resolution crystal structures;
binding constants from
PDBbind database

Y Y RMSD, binding affinity (85)

APIF, GoldScore, CHIF Trypsin, rhinovirus, HIV
protease, carboxypeptidase,
estrogen receptor-a;
Maybridge ligand database

Y Y RMSD, enrichment
factors

(91)

ChemScore, DockScore,
DrugScore, eHiTS, FlexX, Glide,
GOLD, Hammerhead, LigScore,
PLP, PMF, RankScore (FITTED),
Surflex, X-Score

58 complexes (HIV protease,
thrombin, trypsin, and matrix
metalloproteases)

N Y Binding affinity, rank
ordering

(71)

QM/MM combinations of:
AMBER, GoldScore, ChemScore;
HF/6-31G*, AM1d, PM3

Six HIV protease-inhibitor
complexes

Y N RMSD (66)

a Top performing programs/scoring functions indicated by bold font.
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comparison of docking programs and scoring functions (together
or separately for the latter) is a critical ongoing theme in the field.
Such comparisons are usually focused on the ability of programs
to (i) successfully recapitulate the experimentally determined
binding mode (as discussed in detail above) and/or (ii) predict
ligands binding affinities or, at least, correctly rank ligands with
respect to their binding affinities. It is widely accepted that
meaningful comparison of docking approaches (algorithms and/
or scoring functions) is difficult, non-trivial (182), and sometimes
‘‘intriguing’’ (85). It has also been shown that expert use of the
software, compared to the novice, default, ‘‘out-of-the box’’
implementation, may have a significant effect on the docking
results (47).
Cheng et al. (85) have carried out an extensive assessment and

comparison of scoring functions and their performance from the
points of view of ‘‘Docking Power’’ (ability to identify the correct
pose among computer-generated decoys), ‘‘Ranking Power’’
(ability to correctly rank different ligands), and ‘‘Scoring Power’’
(ability to correlate scores to experimental binding affinities,
ideally – linearly). They combined poses from several docking
programs and clustered them to produce a non-redundant, low
energy set of poses for each protein. Thus, the authors of this
study have cleverly separated the issue of docking performance
from scoring performance, therefore evaluating just the functions
and not the programs, by which they are driven. They have
concluded, based on their findings, that today’s scoring functions
generally perform better in pose prediction than in affinity
prediction. However, some functions did better in terms of
docking power, while others performed better in terms of
ranking/scoring. Therefore, the authors have emphasized that it is
important to select a function in accordance with a specific
purpose. Cross et al. (47) came to a similar conclusion in their
comparison study, where some programs performed better in
pose prediction, while others in virtual screening.
A summary of docking and/or scoring comparative studies,

published in 2009, and their findings is given in Table 1.
According to these studies, two packages that consistently
outperform other ones are Glide (23–26) and Surflex (37,38).
However, as has already been pointed out in this review, docking
program/scoring function performance is both target- and
ligand-dependent and should always be evaluated and validated
for the problem at hand.

CONCLUDING REMARKS

It is evident from docking literature, that accounting for flexibility
and successful scoring remain significant challenges. However,
important advances are being made.
In respect to receptor flexibility, Armen et al. (33) have

observed various effects of receptor flexibility on docking
accuracy. While this result is not surprising, it is reasonable to
expect that the effect of the degree of incorporated/allowed
flexibility on the docking accuracy is different for different
proteins and will depend on the extent of conformational
change/induced fit occurring during binding. It will be interesting
to watch the field in anticipation of more studies of that type to
have a more comprehensive view on the ‘‘required’’ or ‘‘optimal’’
degree of receptor flexibility in docking and virtual screening.
The issues of ligand flexibility have recently come back to the

forefront. For as long as ligand flexibility has been incorporated
into docking algorithms, it appeared that the issue of input ligand

conformation is resolved and cannot create major problems. It
has been generally assumed in the field that the input ligand
conformation does not affect the docking results, provided that it
is a reasonable one. Does it? In the study by Feher and Williams
(51), no ligand starting geometry (experimental structures, as well
as CORINA, conformational search, or MD structures) was found
to consistently produce the most accurate docking pose. The
authors seemed to be surprised that the crystal structure, when
used as an input, could produce worse result than a random
conformation. Given the work by Cross et al. (47) and Corbeil and
Moitessier (40), this indeed should seem unexpected. However, if
anything, this outcome should have been treated as an
advantage of the conformational ligand treatment considered:
even if not successful in redocking, it clearly demonstrated no
bias based on the input structure. Thus, in our opinion, the jury is
still out and the potential bias of docking results towards input
conformation requires further evaluation. Notwithstanding, the
implications of Feher and Williams’ (51) findings, and the
questions they raise, could be significant: while using a single
input conformation and performing a single docking run is likely
to decrease docking accuracy, having multiple ligand input does
not guarantee said accuracy.
Similar to input ligand conformation, the aspects of input

speciation (i.e., ligand protonation, tautomerism, and stereo-
isomerism) have also been tested in the recent docking efforts.
The studies by ten Brink and Exner (61) and Kalliokoski et al. (62)
represent somewhat contradictory outcomes and, therefore,
recommendations. Since these studies have used different
programs and different data sets, it is difficult to compare their
findings and validity of their recommendations. Thus, more work
is needed. In this future work, the influence of the structures
being validated/evaluated against should be taken into account
(see Crystal Structure As a Validation Benchmark Section).
Ultimately, the dilemma of multiple versus single input form is,
to some extent, similar to considering stochastic versus
systematic methods in conformational analysis. Similar to that
problem, the solution will most likely be in superior algorithms
and scoring functions (as has been suggested by ten Brink and
Exner (61)), rather than in deciding which input approach to use.
With respect to scoring, the matters of consensus scoring

continue to be actively evaluated and debated. Friedman and
Caflisch (84) have found that their consensus scoring improved
early enrichment in virtual screening. To give more weight to the
value of consensus scoring (at least in that study), it must be
remembered that only a limited number of top-ranking
compounds is usually given visual inspection and even a smaller
number is tested experimentally. Thus, when thinking of early,
rather than full, enrichment, it seems that consensus scoring is
indeed making a difference. Another, still unresolved, matter with
respect to consensus scoring is the lack of understanding of its
basic principles. O’Boyle et al. (89) have assessed the factors
underlying the success of rescoring and consensus scoring using
three ‘‘related’’ functions. It would be interesting to see more
work in that direction to ascertain how unrelated functions, at
least those from different developers, would behave in a similar
scenario.
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