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Docking is a computational technique that samples conformations of small molecules in protein binding
sites; scoring functions are used to assess which of these conformations best complements the protein binding
site. An evaluation of 10 docking programs and 37 scoring functions was conducted against eight proteins
of seven protein types for three tasks: binding mode prediction, virtual screening for lead identification,
and rank-ordering by affinity for lead optimization. All of the docking programs were able to generate
ligand conformations similar to crystallographically determined protein/ligand complex structures for at
least one of the targets. However, scoring functions were less successful at distinguishing the crystallographic
conformation from the set of docked poses. Docking programs identified active compounds from a
pharmaceutically relevant pool of decoy compounds; however, no single program performed well for all of
the targets. For prediction of compound affinity, none of the docking programs or scoring functions made
a useful prediction of ligand binding affinity.

Introduction

In the past decades the number of protein structures publicly
available in the Research Collaboratory for Structural Biology
(RCSB) database has grown from one structure in 1972 to
approximately 30 000 protein structures currently, with thou-
sands being added each year.1 This figure does not include the
large number of proprietary structures held by pharmaceutical
and biotechnology companies. Hand in hand with this growth
in available protein structural data has come an increase in the
number of compounds available in a form appropriate for virtual
screening, both actual small molecules available in corporate
and public compound collections and virtual small molecules
accessible through computational enumeration of virtual library
templates. An open question remains of how to best make use
of these data and how to obtain the maximum value from these
structural and synthetic investments using computational meth-
ods that are both theoretically grounded and pragmatically
useful.

The aim of the study described here was to survey the current
state of technology for structure-based drug design, focusing
specifically on docking and scoring algorithms. A growing
number of evaluations of docking programs and scoring
functions have been published in recent years, including
validations of new methods, head-to-head comparisons of
docking programs,2-18 and studies examining correlations
between docking scores and compound affinity.19-26 This study

differed from these primarily in two ways. First, we examined
the performance of many docking programs across a range of
target types. Second, the compound set for each target was made
up of a large number of closely related compounds for which
experimental affinities have been measured using a standard
protocol, generally by a single research group. This study
measured the performance of docking and scoring algorithms
on three tasks of particular relevance to drug discovery:
prediction of protein-bound conformations, virtual screening for
lead identification, and potency prediction for lead optimization.

For the evaluation described here, we compared as many
docking programs as possible, including software currently
licensed at any GlaxoSmithKline Pharmaceuticals (GSK) re-
search site and supplemented by software for which vendors
were willing to provide temporary licenses. The docking
evaluation was carried out for eight protein targets of interest
to GSK. For each protein target, we collected a high-quality
data set containing only pharmaceutically relevant small mol-
ecules. All compounds in the data sets were synthesized in
support of active GSK targets, and all compound classes
represented in the data sets have shown biological activity in
in vitro assays. We did not include decoy compounds selected
from public databases such as the ACD or WDI. By selecting
compounds in this way, we built a combined data set that closely
mimics typical corporate compound collections. For each protein
target/compound set, we had a number of crystallographically
determined protein/ligand structures, ranging from 6 for 1 target
to a maximum of 54 for another. Furthermore, the evaluation
was set up to give programs the best possible opportunity of
performing across a diverse, carefully compiled data set. For
all protein targets, a GSK computational chemist experienced
with a specific protein target provided up-front guidance
concerning details of the protein binding site. For each docking
algorithm, a GSK computational chemist with expertise with a
specific program used that program optimally. By organizing
the evaluation in this manner, this study characterized the state

* To whom correspondence should be addressed. Phone: (610) 917-
5153. Fax: (610) 917-4206. E-mail: Gregory.L.Warren@gsk.com.

† Collegeville, PA.
‡ Research Triangle Park, NC.
# Verona, Italy.
| Essex, U.K.
§ Current address: Locus Pharmaceuticals Inc., Four Valley Square, 512

Township Line Road, Blue Bell, PA 19422.
⊥ Hertfordshire, U.K.
b Current address: Chiron Corporation, 4560 Horton Street, Mailstop

4.2, Emeryville, CA 94608.

5912 J. Med. Chem.2006,49, 5912-5931

10.1021/jm050362n CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/13/2005



of the art for a wide range of docking algorithms and scoring
functions applied to systems of relevance for drug discovery.
The results of this study provided us with a benchmark against
which we can measure future progress along with a validated
data set that can be used to evaluate a wide range of
computational technologies beyond docking and scoring.

The organization of this docking algorithm evaluation paper
is as follows. The next section describes the evaluation process,
including details of the protein and ligand sets, along with a
general overview of how the docking algorithms were applied
to the data sets. The third section contains detailed results of
the evaluation, with discussion in the fourth section. Specific
computational details and parameters for each program are
included in the Methods section at the end of the manuscript,
while detailed tabulated results and graphs for every docking
program/protein target pair are included in Supporting Informa-
tion.

Evaluation Methodology

Protein Targets.The docking evaluation was carried out for
eight specific proteins (the “targets”) of seven protein types
(Table 1). The proteins were chosen to include targets of active
interest within the pharmaceutical industry and to encompass a
variety of modes of action, binding site shapes, and chemical
characteristics.

Chk1 kinase is a serine/threonine protein kinase of the CAMK
family27 and is responsible for cell-cycle arrest in response to
DNA damage.28 Inhibition of Chk1 kinase is therefore an
attractive target for enhancing the action of DNA-damaging
cytotoxic agents in the treatment of cancer. Multiple in-house
crystal structures are available for CHK1/inhibitor complexes.
In all cases, the inhibitors bind in the ATP binding pocket and
form key hydrogen bond interactions with the protein backbone.

Factor Xa is a trypsin-like serine protease and is a key enzyme
in the coagulation cascade.29 Factor Xa initiates fibrin clot
formation through the activation of prothrombin to thrombin
and is a target for the treatment of thrombosis. Much of the
substrate binding site is a shallow solvent-exposed groove, with
the exception of the deep S1 pocket which preferentially binds
the positively charged lysine and arginine amino acids. Inhibitors
of factor Xa bind in this shallow substrate binding groove and
span the S1-S4 subsites.

Gyrase is a bacterial type II topoisomerase involved in DNA
replication, repair, recombination, and transcription.30 The gyrase
A2/B2 tetramer utilizes ATP hydrolysis to negatively supercoil
DNA, with the ATPase activity located in the gyrase B subunit.
The gyrase B inhibitors included in this evaluation all overlap
portions of the ATP binding site and are competitive with ATP.
However, these inhibitors are not ATP mimetics and bind quite
differently from kinase inhibitors binding in kinase ATP sites.

Methionyl tRNA synthetase (MRS), an antibacterial target,
is a class I amino acid tRNA synthetase and loads methionine
amino acids onto tRNA for use in protein synthesis.31 MRS is

a homodimer; each monomer contains a Rossman fold domain
typical of class I tRNA synthetases. Independent binding subsites
for tRNA, ATP, and methionine are located in the MRS
monomers. The methionine binding site has been delineated in
a publicly available crystal structure.32

Hepatitis C RNA polymerase NS5B (HCVP) is an essential
nonstructural enzyme responsible for replication of viral RNA.33

There is no functional counterpart to this enzyme in the human
genome, making HCVP an attractive target for treating hepatitis
C infection. As with other polymerases, the protein fold and
domain arrangement can be illustrated by the palm, thumb, and
fingers of a right hand. HCVP differs from many other
polymerases in that the ends of the thumb and finger domains
are in contact. Because the HCVP binding site accommodates
nucleotide, template, and product, the protein has a large binding
site surface making HCVP a particularly challenging target for
docking algorithms.

Polypeptide deformylase (PDF) is a bacterial enzyme that
removes an N-terminal formyl group from newly synthesized
proteins to generate mature, active proteins.31 This deformylation
reaction is a required step in bacterial protein synthesis but is
not required in mammalian systems. PDF is therefore an
attractive antibacterial target. PDF is a metalloprotease that
carries out the same chemistry as matrix metalloproteases
(MMP). In contrast to the MMPs, PDF is constricted in size
near the metal binding site and does not have prime-side
substrate binding pockets. A large number of high-resolution
(<2.0 Å) public and in-house PDF structures from multiple
bacterial species are available. For this docking evaluation, we
have included PDF orthologues fromE. coli and S. pneumo-
coccus.

Peroxisome proliferator-activated receptorδ (PPARδ) is a
nuclear hormone receptor that plays a role in lipid metabolism.
Agonists of PPARδ have potential therapeutic value for the
treatment of metabolic disorder.34 PPARδ is activated in vivo
by saturated and unsaturated long-chain fatty acids. The binding
site for these amphipathic ligands is a largely hydrophobic cavity
with a specific acid recognition element enclosed within the
protein surface.

Protein Preparation. The protein structures used in this
evaluation were selected by computational chemists with
expertise in each particular protein target (the “system experts”)
and were prepared for docking calculations by a single
computational chemist. Once prepared, the target structures were
passed on to computational chemists with expertise in particular
docking algorithms (the “program experts”). To avoid inadvert-
ent bias in the calculations, there was as little overlap as possible
between the group of system experts and the group of program
experts.

For each protein target, the system expert selected a repre-
sentative protein structure to be used for all docking calculations.
The system expert therefore took special care to select a structure
that both was a high-quality structure of good resolution and

Table 1. Protein and Ligand Data Set Details

protein target type
no. of

ligands
no. of

ligand classes
no. of

cocrystals
max affinity

(nM)
min affinity

(nM)

Chk1 kinase 193 2 15 7 >10000
factorxa serine protease 218 4 10 <1 5000
gyrase B isomerase 138 3 7 4 >10000
HCV polymerase polymerase 205 2 13 5.6 >10000
Met tRNA synthetase synthetase 144 2 31 1 >10000
E. coli PDF metalloprotease 199 3 2 1 >10000
StrepPDF metalloprotease 186 3 4 <2 >10000
PPARδ nuclear hormone receptor 206 5 54 0.3 >10000
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also could accommodate all relevant compound classes. Binding
site residues and amino acid ionization states were identified
using automated methods, and the automated definitions were
modified where necessary by the system expert. The system
expert further provided guidance concerning any crystallo-
graphically identified waters considered important for compound
binding. This collection of information was passed on to each
of the program experts for use in setting up docking calculations.
This process for preparing and distributing the docking structures
was designed to achieve the best possible algorithmic perfor-
mance while reducing the influence of known answers on the
calculations.

Ligand Sets.Our aim was to generate a data set that closely
represented a typical pharmaceutical compound collection.
System experts therefore selected and compiled ligand sets for
each protein target based on the following general guidelines:

(1) The set should include 150-200 compounds for each
protein target.

(2) There should be two or three congeneric series per protein.
(3) A cocrystal must exist for at least one representative from

each compound class.
(4) Ligand affinities for a given protein target should have

been measured using a consistent assay format, and those
affinities should span at least 4 orders of magnitude.

(5) Inactive compounds should make up less than 20% of
the final set for each target. Extremely active compounds should
similarly represent less than 20% of the target set.

Table 1 lists the characteristics of the compound sets used in
this docking and scoring evaluation. Chemical structures are
shown in Figure 1 for a representative of each compound class.
The order in which compound classes appear in this figure
corresponds to the order of protein targets in Table 1; e.g.,
compounds1 and2 in Figure 1 are representatives of the Chk1
kinase compound classes.

For the most part, the selection guidelines were met for all
protein targets. The number of compounds per target ranged
from 138 to 219, with two or three compound classes for six of
the eight targets. The combined PDF compound set contains
199 compounds; affinities for 186 of these have been measured
for bothE. coli andS. pneumococcusPDF. In the case of factor
Xa, the compound set was expanded to include a small number
of compounds for which cocrystal structures are publicly
available. In the case of PPARδ, the boundaries delineating
distinct congeneric series are somewhat arbitrary. The number
of compound classes is therefore larger in order to encompass
compound class differences as fully as possible. In every
instance but one, there was at least one cocrystal structure for
each compound class, with multiple cocrystals for most classes.
In E. coli PDF, one of the three classes did not have a cocrystal
structure, but there were two cocrystals for that class inS.
pneumococcusPDF. The requested affinity ranges were met
for all of the target ligand sets, although not necessarily for
each compound class within a given target set.

Ligand Preparation. Once compiled, the complete set of
1303 compounds was passed on to a single computational
chemist who prepared the compounds for docking calculations.
A single good starting geometry was generated from an input
SMILES string. This starting conformation is not guaranteed
to be a global minimum under any molecular mechanics force
field but is guaranteed to have reasonable bond distances and
angles and correct atom hybridization. From this starting point,
four final SD files were prepared, with variations in the treatment
of hydrogens and ionization: (1) all hydrogens, acids, and bases
ionized for pH 7, (2) polar hydrogens only, acids and bases

ionized, (3) all hydrogens, acids and bases nonionized, and (4)
polar hydrogens only, acids and bases nonionized. These four
ligand SD files were distributed to the program experts, who
selected the small molecule representation most appropriate for
a particular docking algorithm.

Docking Algorithms. The docking and scoring evaluation
described here aimed to include as many docking programs as
possible used as expertly as possible. We evaluated all docking
programs available under GSK’s current licensing arrangements.
The set of already licensed programs was augmented to include
readily available docking programs for which the vendor was
willing to provide a temporary demo license. The 10 programs
evaluated are listed in Table 2. In addition, some of the programs
evaluated offer a choice of multiple scoring functions or docking
algorithms to drive the generation and selection of docked poses
(as indicated in the second column of Table 2), resulting in a
total of 19 docking protocols.

To optimize the performance of each docking program,
computational chemists with expertise in a particular program
were identified from the worldwide GSK computational chem-
istry community. Each program expert was given complete
freedom and sufficient time to maximize the performance of
the docking program. In all cases, but especially for those
programs evaluated under a demo license, consultation with
software vendors was encouraged. The vendors were not able
to see any of the protein targets or ligand structures, but were
able to provide guidance concerning computational details of
the program itself. No time deadlines were imposed so that even
low-throughput docking programs could be evaluated. Indeed,
no constraints whatsoever were placed on the level of agonizing
over details of how each docking protocol was applied.

Analysis Measures.The evaluation focused on three typical
uses of docking programs: (1) prediction of conformations of
small molecules bound to protein targets, (2) virtual screening
of compound databases to identify leads for a protein target,
and (3) prediction of compound affinities to guide lead
optimization efforts. For each of these typical uses, we
conducted separate docking calculations and analyzed the results
using different analysis measures.

Prediction of Protein-Bound Conformations. Two mea-
sures were used to assess the similarity of all docked poses to
the crystallographically identified bound orientations. As the
primary analysis measure, a symmetry-corrected root-mean-
squared deviation (rmsd) was computed for ligand heavy atoms.
Results are reported here for compounds docked within 2 and

Table 2. Docking Protocols Included in This Evaluation

docking program alternative protocols

Dock4 chemistry
contact
energy

DockIt
FlexX FlexX score

DrugScore
Flo Mcdock

Mcdock+
Fulldock
Sdock
Zdock

Fred ChemScore
ScreenScore

Glide
Gold
LigFit CVFF

Dreiding
MOE
MVP
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4 Å of the crystal conformation. These cutoff values were
selected based on visual inspection of many docked poses.
Within the 4 Å cutoff, docked poses were located within the

binding site in a roughly correct global orientation. Within the
2 Å cutoff, docked poses were oriented properly within the
binding site, and details of the binding were predicted well

Figure 1. Representative molecules from the 21 compound classes in the ligand data set.
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enough to be useful for compound design. As a supplementary
analysis tool, a volume overlap Tanimoto similarity indexTvol

was computed as defined by

whereIX andID are self-volume overlap integrals for the crystal
and docked conformations andOX,D is the volume overlap
between crystal and docked poses. If there is no overlap between
a docked pose and the crystal conformation,Tvol ) 0. Con-
versely,Tvol ) 1 would indicate a perfect overlap of the two
orientations. In practice, no docked poses attained this perfect
overlap because initial molecule conformations were generated
from SMILES strings. The bond angles and distances generated
by this method were reasonable but will not perfectly match
the values seen in the crystal structure because different
molecular mechanics force fields were used. For the docked
poses generated across the targets,Tvol ranges between 0.5 and
0.99 for ligands docked within 2 Å of the crystal orientation
(data not shown). In conjunction with the computed rmsd,Tvol

presented a fuller picture of the agreement between docked and
crystal conformations. In particular, this measure allowed the
identification of docked poses that agree with the crystal result
in most instances but have small details incorrect. For example,
a compound docked correctly except for the rotation by 180°
of an asymmetrically substituted phenyl ring would lead to a
relatively large rmsd value, whileTvol would correctly indicate
a high level of similarity between the two orientations.

Docking as a Virtual Screening Tool.Two measures were
used to assess the ability of docking algorithms and their scoring
functions to identify active compounds from a pool of decoys
for a particular target. The first of these measures determined
how quickly active compounds were identified compared to
random chance. This measure, designated enrichment, is the
signal-to-noise ratio. In this case, success was declared if an
algorithm was able to identify at least 50% of the active
compounds within the top 10% of the score-ordered list, giving
an enrichment above random of 5. This value of 5 represented
an enrichment at least halfway between random and the
theoretical maximum enrichment for the data sets used in this
evaluation. The second measure of success, designated lead
identification, is a measure of cost. This measure asked how
many compounds must be screened before at least one active
representative of every active compound class has been identi-
fied. For lead identification we do not need to find all the active
compounds, only one or two representatives from each class.
The molecular data set used in this evaluation contained two to
five active congeneric series for each target. Our lead identifica-
tion measure determined whether a docking algorithm prefer-
entially identified or missed compound series. For lead identi-
fication, success was declared if all active compound classes
were identified within the top 10% of the score-ordered list. In
addition, boost plots of percent actives found versus percent
compounds screened in the docking-score-ordered list for all
targets were generated to aid in the comparison of docking
algorithm performance within and across targets. Plots of initial
enrichment rates along with the complete set of boost-plot data
are included in Supporting Information.

Scoring as an Affinity Prediction Tool. Mathematical
comparisons were made between experimentally measured
compound affinities and calculated docking scores in order to
assess affinity predictions for each target. Measured affinity was
compiled for each compound as IC50, EC50, or Ki. For each

target, the affinity measurements are of a single type: IC50, EC50,
or Ki. There is no mixture of measurement types within a single
target. We have converted the measured affinity to pA
()pAffinity), as defined in

whereA is the measured IC50, EC50, or Ki and the reference
state is 1 M. To allow direct comparisons of scores from
different docking programs, autoscaled docking scoresS′i were
computed as defined in

where Si is the score generated by a single docking program/
scoring function pair for a single docked compound,Sh is the
average score for a single docking program/scoring function
pair applied to all compounds for a given target, andσ is the
standard deviation of these docking scores. For each target in
the evaluation, we have generated graphs of pAffinity versus
scaled docking score for all of the docking programs and scoring
functions. Because measured affinities and calculated scores
have been transformed as defined in eqs 2 and 3, these graphs
can be compared directly to visually assess the ability of scoring
functions to predict compound affinity. To mathematically assess
predictions of compound affinity, we have computed a linear
correlation coefficientr as defined in

whereS′ is the scaled docking score. For comparisons between
pAffinity and scaled docking score, a correlation coefficientr
) -1 would correspond to a perfect correlation between
compound affinity and docking score whiler ) +1 would mean
that the scoring function was universally ranking less active
compounds higher than more active compounds.

Experimental Design and Aims of the Evaluation.As
described above, the program experts were provided with a
package of information, including a careful delineation of the
residues encompassing the binding site as well as commentary
from the system expert concerning subtleties of the target
structure. However, program experts were not provided with
any example cocrystal structures; indeed, it was strongly
requested that no one seek out such structural data. The program
experts were nevertheless free to make use of their own generic
understanding of the target types; e.g., incorporating algorithmic
procedures for docking into the multiple subsites of a serine
protease or for correctly orienting metal binding groups in a
metalloprotease. This experimental design sought to reproduce
a specific real-life situation: We have a protein structure and
perhaps a lead molecule from high-throughput screening. Can
we predict a priori how that lead sits in the protein binding site
in order to drive early optimization efforts? In the absence of a
lead molecule, can we identify potential leads through docking-
based virtual screening? Can we use docking and scoring to
rank-order compounds during lead optimization? In addition,
this experimental design avoided inadvertent driving of the
calculations toward a known answer, thereby leveling the

Tvol )
OX,D

IX + ID + OX,D
(1)

pA ) -log( A
1 M) (2)

S′i )
-| Si| - (-|Sh|)

σ
(3)

r )

∑
i

(S′i - Sh′)(pAi - pA)

x∑
i

(S′i - Sh')2x(pAi - pA)2

(4)
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playing field as much as possible by allowing each docking
program to compete on the basis of the same core set of
information.

Results and Discussion

This evaluation examined three specific uses of docking
programs; the results for each use are presented separately here.
In results section A we assess the ability of docking programs
to generate and identify crystallographically determined bound
orientations of compounds for which we have protein/ligand
crystal structures. In section B we assess the ability of docking
programs to identify active compounds from a decoy pool and
further examine whether we are able to enrich hit rates for the
right reasons. In section C we examine the most difficult
challenge for docking programs, prediction of binding affinity
for a large number of closely related compounds. In all sections
we make specific observations followed by evaluation results
that support those observations.

A. Prediction of Protein-Bound Conformations. A.1.
Docking programs were able to generate crystal conforma-
tions. Nineteen docking protocols were used to predict bound
conformations for the 136 compounds for which we have
protein/ligand crystal structures. Each docking protocol returned
multiple docking poses for each ligand; rmsd values were
computed for all poses returned. Statistics were compiled for
the best rmsd for a given compound/docking protocol pair,
without consideration of where that pose was ranked in the list
of all poses returned by the docking protocol. Because of the
small number of PDF structures included in the data set, results
for E. coli andS. pneumococcusPDF were combined. The best
rmsd results for the target types are reported in the top panels
of each part of Figure 2. For each program, black bars denote
the percentage of ligands for which any docked pose was within
2 Å of the crystal conformation while gray bars indicate the
additional percentage of ligands docked within 4 Å. Where
multiple protocols were possible for a given docking program,
the single best result is included in the figures; the selected
docking protocols are indicated in Table 3. Complete results
are tabulated in Supporting Information.

As shown in Figure 2, overall success rates were quite good
across the protein targets. For all targets except HCVP, at least
one program was able to dockg40% of the ligands within 2 Å
of the crystal conformation. For five of the seven targets, at
least one program dockedg50% of the ligands well. Indeed,
for several protein targets, 90% of the ligands could be docked
in the correct orientation and 100% could be docked in the
correct location. Clearly, docking algorithms were able to
explore conformational space sufficiently well to generate
correctly docked poses.

For targets Chk1 kinase and PDF, good performance was seen
across many docking protocols, with six docking protocols able
to dock g50% of the compounds within 2 Å of the crystal-

lographic conformation. In both cases, compounds are bound
in relatively small, well-defined binding sites and make a small
number of key orienting interactions with protein atoms. As
the size of the binding site or complexity of the compounds
increased, fewer protocols were able to generate poses close to
the crystal conformation. In particular, the binding site of HCVP
is extremely large, encompassing NTP, template, and product
binding regions. The system expert focused the search space to
the NTP subsite, but even this guidance left a large amount of
protein surface in the search space, and no docking program
was able to generate docked poses within 2 Å for g40% of the
compounds. Conversely, in the case of PPARδ, the binding site
is not particularly large. In this instance, the hydrophobicity
and conformational complexity of the compound classes (17-
21 in Figure 1) may have affected the ability of docking
programs to identify good poses. Figure 3 plots rmsd versus
Tvol for the best-scoring poses returned by Gold. For a substantial
population of docked conformations, rmsd values of 6-10 Å
were seen for poses that overlap significantly (Tvol g 0.5) with
the crystallographic conformation. The compounds were placed
in the binding site but did not adopt small-molecule conforma-
tions that allow the compounds to be oriented correctly within
the site.

A.2. Scoring functions were less successful at identifying
the pose closest to the crystal conformation.Docking accuracy
statistics for the top-scoring pose returned by all docking
programs are shown in the bottom panels of each part of Figure
2. For all targets, when considering only the best-scoring pose
for each compound, a smaller percentage of compounds were
docked within 2 or 4 Å of the crystallographic conformation.
In addition, although several of the docking programs reported
multiple docking scores, none of these scoring functions were
able to reliably identify the best-docked pose (data not shown).
Although docking accuracy decreased for the top-scoring pose
returned, this performance decrease was not as extreme as one
might have expected a priori. For five of the seven target types,
at least one docking program/scoring function pair was able to
identify poses within 2 Å of thecrystallographic conformation
for g40% of the compounds.

A.3. Docking into a single protein structure did not create
large difficulties for multiple compound classes.All of the
docking calculations for this evaluation were carried out using
a single crystal structure for each protein target. Although each
system expert selected a structure that should accommodate all
compound classes, docking a compound into a noncognate
protein structure may have adversely affected chances for
identifying correctly docked poses.

In Figure 4, rmsd values ofe4 Å are plotted for compounds
belonging to each compound class. Each column of the graph
contains rmsd values for all poses generated for all compounds
within a class. Vertical gray lines separate the compound classes
belonging to each target type. Results for all docking programs
are included in this graph.

Table 3. Docking Protocol That Produced the Greatest Number of Correctly Docked Structures

Dock4 FlexX Flo Fred LigFit

kinase energy DrugScore Mcdock ScreenScore ChemScore
protease energy Flexx Fulldock ChemScore
isomerase energy DrugScore Mcdock ChemScorea/ScreenScorea ChemScore
polymerase energy Fulldockb ScreenScorec ChemScore
synthetase energy Flexx Fulldock ChemScore
metalloprotease energy Flexx Mcdock ChemScored Dreiding
NHR contact DrugScore Mcdock+ ScreenScore ChemScore

a Docked using hypothetical reconstructed loop structure.b One water included in binding site definition.c Two waters included in binding site definition.
d Pharmacophore matching in metal-chelating region.
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Figure 2 (Continued on next page)
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Figure 2. The rmsd results for all protein targets. Black bars indicate the percentage of compounds for which a docked pose was found within 2
Å of the crystal structure, while gray bars indicate the percentage of compounds for which a docked pose was found within 4 Å of thecrystal
structure. The first figure in each target section graphs the best rmsd for any pose returned by a particular docking program, and the second figure
in each target section graphs the rmsd for the first pose returned by a particular docking program. Docking programs were able to reproduce
experimentally determined protein-bound conformations in that at least one docking program placedg50 first poses within 2 Å for four of the
seven targets evaluated. However, performance by any docking program was not consistent as noted by the fact that the program with the best
performance, listed first on each of the protein target graphs, changes.
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The graph in Figure 4 identifies only three compound classes
for which no docking program could find a docked pose within
2 Å of the crystallographic conformation: gyrase B compound
classes8 and9 and PPARδ compound class21 (Figure 1). In
all three cases, these compound classes contain features that
would be expected to be particularly challenging.

Compound class8 contains a heterocyclic macrocycle at the
core of the molecule. Given that the starting conformation of
this ring was randomized during ligand preparation and given
the conformational complexity of such a macrocycle, it is
unsurprising that no docking program was able to recover the
crystal-bound conformation of the central ring (Figure 5).
Nevertheless, despite the small-molecule conformational search
issues, the docking program was able to correctly place the
aromatic ring and aminopropanoate substituent. Although the
rmsd for this pose is 3.3 Å, binding features were captured well
enough that chemical insights could be derived from the results
of a docking calculation. Similarly, the best docking pose for
compound class9 oriented the compound correctly within the
binding pocket and captured important binding features. In this
instance, many of the docking programs selected an extended
conformation for the butenylbenzamide substituent. The con-

formational flexibility of PPARδ compound class21 also led
to small-molecule conformational search issues that made
docking challenging for this class. Even so, the acid group was
correctly located near the acid-group recognition site in the
PPARδ binding pocket, and the more hydrophobic portions of
the molecule were docked into the correct subsites.

A.4. No single docking program performed well across
all protein targets. In the top panels of each part of Figure 2,
the results have been ordered such that the better-performing
programs are located toward the top of the graph. A quick scan
of the graphs reveals that different programs docked ligands
well for all targets; there is no one program that is universally
located near the top of the list.

B. Docking as a Virtual Screening Tool.The objective of
this section of the evaluation was to determine how capable
docking algorithms and their associated scoring functions are
at selecting molecules active for a particular target from a pool
of decoy molecules. We have shown in the previous section
that docking algorithms could in many cases solve the search
problem, i.e., could find the correct small molecule conformation
and position the small molecule correctly within the protein
binding site. At a coarse level, virtual screening is a test of the
ability of scoring functions to differentiate between active and
inactive chemotypes within the context of a protein binding site.
In section C, we will examine at a finer level the ability of
scoring functions to differentiate between active and inactive
compounds of a single chemotype.

We would like to remind the reader that this study strove to
evaluate docking algorithms under conditions similar to those
used daily by a computational chemist for lead discovery. A
conscious effort was therefore made to use a molecular test set
that mimics that of a typical corporate collection, e.g., a large
number of diverse chemical classes each of which contains a
number active and inactive close chemical analogues. Com-
pound sets containing congeneric members are typical both in
corporate collections and in purchasable collections, real or
virtual. The case examined here (where the decoy compounds
include both diverse chemical classes and inactive close
analogues) was inherently challenging. Thus, the results from
such a study provided a measure of the state of the art under
the most challenging and realistic of circumstances.

Figure 3. Comparison of rmsd versusTvol for PPARδ for the first
pose returned by the docking program Gold. For the poses from 2 to
4 Å there is a strong correlation between the rmsd andTvol. However,
a significant population of docked conformations between 6 and 10 Å
have a highTvol value (g0.5), indicating the compounds were placed
in the binding site correctly but do not adopt the correct small-molecule
conformation.

Figure 4. Plot of all rmsd values ofe4 Å from all docking programs
for molecules in each compound class. With the exception of classes
8, 9, and 21 all compound classes placed, by at least one docking
program, more than one representative ligand within 2 Å of thecrystal
structure. For the protein targets in this evaluation, cross-docking
multiple compound classes into a single-crystal structure was done
successfully.

Figure 5. Comparison of the cocrystal structure determined protein-
bound small-molecule conformation in gyrase B (shown using green
carbon atoms) with the lowest rmsd pose (3.3 Å) generated by a docking
program (shown using gray carbon atoms). While the conformation of
the heterocyclic macrocycle is incorrect, the important pharmacophore
elements, the aromatic ring and aminopropanoate, are placed correctly.
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This data set differed from data sets used previously4,6-8,11,18

in that it contained a high percentage of active compounds, from
6% to 13%. While this percentage of actives is not typical of
molecule sets routinely used for virtual screening, this richness
could be used to ask more detailed questions about performance.
In particular, are docking algorithms quickly identifying all
active chemotypes? Do inactive analogues confuse the algo-
rithms and cause a decrease in performance? Are enrichment
rates higher when the definition of active is skewed toward more
potent molecules (e100 nM) compared to the rates when less
potent (e10 µM) molecules are included?

B.1. Docking programs could identify molecules active
against a target out of a population of decoy molecules.For
all but the HCV polymerase target, at least one docking program/
scoring function pair had an enrichment factor of 5 or greater
(Table 4). For these seven proteins, performance generally fell
into three broad categories; enrichment close to the theoretical
maximum, intermediate enrichment values, and no or even
negative enrichment (Figure 6A-G). The one exception was
HCV polymerase where the best performance was in the
intermediate range (Figure 6H). In this case, two programs had
enrichment factors of roughly 3.5.

B.2. Docking programs could correctly identify all active
chemotypes from a population of decoy molecules.Enrich-
ment is a measure of performance that asks how quickly active
compounds are found. However, it is not a measure of diversity
or completeness. While finding active leads rapidly is important
in the practical application of these algorithms toward virtual
screening, an equally important measure of algorithm robustness
is the ability to identify chemically diverse leads across diverse
targets. Except for the serine protease factor Xa, at least one
algorithm identified at least one member of all the active
chemotypes within the top 10% of the docking-score-ordered
list (Table 5). One program, Flo+, was able to identify at least
one member of all active series within the top 20% of the
docking-score-ordered list on all protein targets evaluated. With
the exception of factor Xa, the success and consistency rates

using the lead identification measure were considerably higher
than performance based on enrichment alone.

B.3. Inactive close analogues generally did not degrade
lead identification performance.When a corporate compound
collection is virtually screened, it is often difficult to differentiate
between closely related active and inactive analogues. Because
the virtual screening molecule set used by this evaluation
contained inactive analogues, we were able to quantify the effect
inactive analogues had on lead identification performance.

In Table 5 we list the percentage of the docking-score-ordered
list that must be screened to find at least one active member of
all active chemical classes for a particular target. This measure
is designated the “percent to find actives”. In addition, we
examined the percentage of the docking-score-ordered list that
must be screened to find at least one representative, active or
inactive, for all active chemical classes. This measure is
designated “percent to find classes”. If a docking score
misidentifies an inactive analogue and places it before active
compounds in the score-ordered list, then the percent-to-find-
classes number will be less than the percent-to-find-actives
number. To better clarify where performance degradation
occurred, we computed a ratio by dividing the percent-to-find-
actives number by the percent-to-find-classes number. Where
this ratio is greater than 1 (see Table 6) the docking score
misidentified inactive compounds, resulting in a reduction in
lead identification performance.

Of the eight protein targets evaluated, the largest reduction
in lead identification occurred for Chk1 kinase. For Chk1, 7
out of 10 programs ranked inactive analogues above actives
(Table 6). This result suggests that scoring functions were
correctly identifying key interactions of kinase inhibitors with
the ATP binding site but were not capturing more subtle
compound differences that affect affinity. For all the targets,
including Chk1, the algorithm that most rapidly identified at
least one member of all active chemotype (Table 5) was not
fooled by inactive analogues. The docking algorithm Glide,
while not always identifying all active series rapidly (Table 5),
had no inactive-analogue-induced reduction in lead identification
performance.

B.4. With one exception, enrichment rates at 10% screened
did not change when the definition of an active changed.
For the results presented in Figure 6 and Table 4, actives were
defined as compounds with better than micromolar activity. A
further analysis of our virtual screening data set was carried
out for all algorithms across all targets using different definitions
of active, activity ofe10 µM and activity of e100 nM. No
significant changes in performance were observed as measured
by enrichment (data not shown).

The one exception found was for the Chk1 kinase target. In
this case, when active was defined as activity better than 100
nM, several programs (Dock4, DockIt, Gold, LigandFit) showed

Table 4. Enrichment Factor for Actives (e1 µM) Found at 10% of the
Docking-Score-Ordered List

program Chk1 FXa
gyrase

B HCVP MRS
E. coli
PDF

Strep
PDF PPARδ

ideal 10.0 9.8 10.0 9.5 10.0 7.6 8.3 8.6
Dock4 1.4 4.1 1.7 1.8 4.2 0.9 0.8 1.7
DockIt 4.2 2.0 2.0 1.0 1.0 0.2 0.0 3.2
FlexX 7.0 2.2 5.8 0.9 3.9 0.8 0.8 5.2
Flo+ 5.6 2.7 2.3 3.4 1.7 1.5 0.8 3.6
Fred 2.9 4.1 1.9 2.0 0.6 3.2 1.2 1.1
Glide 6.3 3.4 1.0 1.0 5.3 0.6 0.4 4.8
Gold 0.1 4.1 4.0 0.0 0.8 1.0 0.1 5.5
LigandFit 3.3 1.9 2.8 1.8 2.9 2.9 1.7 1.2
MOEDock 3.9 0.6 0.0 0.0 1.0 2.1 0.6 0.0
MVP 7.2 5.8 5.3 3.6 6.4 6.7 6.9 3.9

Table 5. Percent of the Docking-Score-Ordered List Screened To Find
at Least One Active (e1 µM) Representative for All Compound Classes

program Chk1 FXa
gyrase

B HCVP MRS
E. coli
PDF

Strep
PDF PPARδ

Dock4 44.5 92.0 45.2 1.4 0.2 6.3 1.8 12.7
DockIt 62.8 66.4 4.0 2.5 5.6 7.1 20.0 0.9
FlexX 7.6 51.6 49.6 2.0 0.5 10.4 10.6 4.7
Flo+ 7.1 18.6 1.6 0.6 3.8 3.4 12.4 2.4
Fred 10.4 63.7 99.8 70.1 3.5 2.3 7.9 59.9
Glide 2.5 89.0 100 1.8 0.2 16.1 11.4 2.9
Gold 36.8 34.8 98.9 22.8 8.9 8.2 20.1 6.1
LigandFit 37.5 72.5 84.0 0.5 5.6 27.0 7.6 64.7
MOEDock 0.4 73.4 99.5 8.9 5.0 0.8 2.4 94.6
MVP 8.4 63.8 37.4 1.7 0.5 2.6 1.2 95.2

Table 6. Ratio of Percent Screened of Score-Ordered List To Find at
Least One Active Representative versus One Representative, Active or
Inactive, for All Compound Classes

program Chk1 FXa
gyrase

B HCVP MRS
E. coli
PDF

Strep
PDF PPARδ

Dock4 2.4 1.0 1.0 1.0 1.0 1.0 1.0 3.2
DockIt 1.2 1.0 1.0 1.3 1.0 1.0 1.0 1.0
FlexX 3.4 1.0 1.0 1.0 1.8 1.0 1.1 1.0
Flo+ 5.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Fred 1.0 1.0 1.0 1.0 2.1 1.2 1.0 1.3
Glide 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Gold 1.3 1.0 1.0 1.4 1.4 1.0 1.0 1.0
LigandFit 2.1 1.0 1.0 1.7 1.0 6.8 1.0 4.3
MOEDock 1.0 1.0 1.0 1.6 1.8 1.0 1.0 1.0
MVP 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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a significant improvement in enrichment. This improvement
appears to be due to differing performance of these docking

algorithms for compound classes1 and 2. Of the two Chk1
kinase compound classes, only class1 contained compounds

Figure 6. Boost plots of the percent active found versus percent of the docking-score-ordered list screened, using the scoring function with the
highest enrichment at 10% screened for programs across all targets. The heavy black line represents the values expected if actives were selected
at random. The heavy gray line represents the values expected if all active are placed sequentially at the top of the list. It is of interest to note that
algorithm performance or enrichment varies dramatically across the targets.

5922 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 20 Warren et al.



with better than 100 nM activity; no class2 compounds showed
activity of e100 nM. Using thee100 nM definition of activity,
enrichment rates therefore measured the performance of these
algorithms for class1 only. When using thee1 µM activity
definition, these algorithms were less successful at identifying
compound class2 as active for this target; more than 30% of
the compounds had to be screened to find at least one active
example of both chemical classes (Table 5). For these programs,
the resulting enrichment values calculated using the more
stringent activity definition that excluded the missed compound
class2 showed a dramatic improvement.

B.5. Enrichment and lead identification alone were not
comprehensive criteria for determining algorithm perfor-
mance.This evaluation has stressed measuring the performance
of docking algorithms under standard working conditions.
However, the criteria by which practical application performance
is judged are and should be different from the criteria used for
algorithm development. The ideal docking program, when
applied to virtual screening, should be able to quickly identify
all active compounds and all chemotypes across a diverse set
of target proteins. Neither the enrichment nor lead identification
criteria alone are adequate for determining ideal performance.
For five of the targets evaluated in this study, at least one
algorithm met both the enrichment and lead identification criteria
for success as set by this evaluation. An exception was factor
Xa where four docking algorithms had an enrichment factor
greater than 4 at 10% screened yet required screening of more
than 30% of the compound list before identifying at least one
member of all the active chemotypes. Again, for gyrase B, three
algorithms had enrichment at or greater than 4 and again
required screening of more than 30% of the compound list
before identifying active members of all chemotypes. A last
example comes from the HCV polymerase target data. No
docking algorithm met the enrichment criteria for success against
this target. However, with only two exceptions all the algorithms
successfully met the lead identification criteria (Table 5). Thus,
we have demonstrated that neither enrichment or lead identifica-
tion alone are sufficient measures for optimizing algorithm
performance during development.

B.6. While docking programs could correctly identify
active molecules, performance across diverse targets was
inconsistent.We have shown that at least one docking algorithm
could correctly identify a majority of the active compounds in
the top 10% of the docking-score-ordered list of compounds
for seven of the eight targets examined. In addition, we have
shown that at least one program for each target could correctly
identify all the chemical templates active against the target from
a pool of decoy compounds. However, there was no single
program that met either criteria for success for every target. In
fact, there are many examples where a program had an
enrichment factor greater than 5 at 10% screened for one target
and an enrichment of 1 or less for another target. While there
were examples of this for all of the algorithms evaluated, we
illustrate the point using data from the program Glide (Figure
7 and Table 4) where for half of the protein targets evaluated
Glide had enrichment rates ofg3.4 at 10% screened and for
the other half Glide had enrichment rates at or less than random.

The inconsistency in enrichment performance was mirrored
in our lead identification performance measure (Table 5). No
program was able to place at least one active molecule in the
top 10% of the docking-score-ordered list for all 21 chemotypes.
For many algorithms, performance fluctuated dramatically across
the protein targets studied. The inconsistency in performance
observed in this evaluation suggests that in the absence of

training or validation data it is impossible to tell a priori whether
a docking program will be successful at virtual screening for a
given target.

B.7. Good performance in reproduction of experimentally
determined binding modes did not impart success in virtual
screening.For five of the seven targets evaluated, more than
70% of the top-ranked poses are within 4 Å of theexperimen-
tally observed binding mode, and for four of the targets greater
than 55% of the top-ranked poses were within 2 Å of the
crystallographic conformation. However, we did not see a
consistent correlation between the ability to reproduce binding
modes and enrichment in virtual screening for lead identification.
In these evaluation results, we saw examples of each of the
four possible outcomes: (1) Cognate compounds were well-
docked, and enrichment rates were high, e.g., Chk1/FlexX with
an enrichment rate of 7.0. (2) Cognate compounds were well-
docked, but enrichment rates were low, e.g.,E. coli PDF/Gold
with an enrichment rate of 1.0. (3) Cognate compounds were
poorly docked, and enrichment rates were low, e.g., HCVP/
FlexX with an enrichment rate of 0.9. (4) Cognate compounds
were poorly docked, and yet enrichment rates were high, e.g.,
factor Xa/MVP with an enrichment rate of 5.8.

Of these four possibilities, outcomes 1 and 3 are consistent
with our expectations; if we get the docking pose correct, we
would expect to enrich our ability to select active compounds
from the pool of decoys. Outcome 2 implies a failure on the
part of the scoring function; the scoring function did not
differentiate between active and inactive compounds even
though the docked poses being evaluated were largely correct.
Outcome 4 is particularly troubling because it suggests that the
enrichment rates are a result of chance; we are getting the right
result for the wrong reason.

B.8. The application of knowledge about a protein target
improved enrichment and consistency, and the application
of such knowledge did not aid in the rapid identification of
diverse chemotypes.We have demonstrated that while algo-
rithm performance was inconsistent across the protein targets
evaluated by this study, docking algorithms could enrich and
identify leads. But are there ways to improve performance and
consistency? One approach for improvement in enrichment
could be found in the PDF data.

The E. coli andS. pneumococcusPDF targets are bacterial
metalloproteases. Thus, it is reasonable to assume that inhibitors
of these targets will contain metal binding moieties. The docking
program Fred has the ability to use a SMARTS string defined
pharmacophore constraint during docking. As is shown in Figure

Figure 7. Illustrative example of how enrichment by a single program
varied across the targets evaluated using data from the program Glide.
Similar variation in performance was observed in all docking programs
evaluated.

Docking Programs and Scoring Functions Journal of Medicinal Chemistry, 2006, Vol. 49, No. 205923



8 for E. coli PDF, when Fred was run in a naive manner against
either PDF target, its performance was at or worse than random.
However if a metal binding pharmacophore constraint was
placed near the metal, then enrichment forE. coli PDF andS.
pneumococcusPDF increased by factors of 26 and 10, respec-
tively.

One of the guidelines for this evaluation was complete
freedom on the part of the program expert to optimize program
performance. The docking algorithm MVP, as applied in this
study, used atom-typed target points for superimposing ligand
conformations within the protein binding site. These target points
or pharmacophore points were determined manually by inspect-
ing protein/ligand complexes from homologous protein struc-
tures. As a result, the target points contained more knowledge
about binding for the protein target than similar nonatom typed
target points did. For six of the eight targets evaluated, MVP
met the enrichment criteria for success and for HCV polymerase
had the highest enrichment rate of the programs evaluated for
this target (Table 4). This result demonstrates that the application
of knowledge about the target, gleaned either from the target
itself or from homologous proteins, improved performance and
consistency. However, the improvement in enrichment came
with a cost. MVP was less successful than other algorithms at
rapidly identifying all active chemotypes (Table 5). These
examples demonstrate that the application of knowledge about
a target or a compound class (informed docking) improved
enrichment performance when compared with naive docking.

C. Scoring as an Affinity Prediction Tool. In the first results
section, Prediction of Protein Bound Conformations, we have
shown that docking algorithms could generate the experimentally
observed small-molecule conformation and binding mode for a
protein target. In other words, docking algorithms could
essentially do virtual crystallography, although scoring functions
could not reliably identify the best-docked pose. In the second

section, Docking as a Virtual Screening Tool, we showed that,
at a coarse level, scoring functions could distinguish active
chemotypes from inactive chemotypes. While algorithm per-
formance was inconsistent, with skilled use and application of
knowledge about the protein target, docking algorithms and their
associated scoring functions could perform virtual screening and
identify leads. In this last section, we probe more finely the
performance of scoring functions associated with docking
algorithms and ask if these functions can distinguish between
active and inactive molecules within a congeneric series or
across several active series. In other words, can docking
algorithms be used to predict potency or rank compounds by
potency for lead optimization?

We point out that as part of our effort to evaluate docking
algorithms under conditions similar to those used for lead
optimization, the data sets used in this part of the evaluation
are of moderate size and contained from two to five congeneric
series spanning an activity range greater than 3.5 log units. This
allows for an evaluation of algorithm performance for potency
prediction within and across chemical series while reducing the
likelihood of spurious correlations present in data sets of small
size.

C.1. No strong correlation was observed for any scoring
function protein target pair. Even a cursory examination of
the data revealed that there is no statistically significant
correlation between measured affinity and any of the scoring
functions evaluated across all eight protein targets examined
(Table 7). An extremely modest positive correlation was
observed for Chk1 kinase target, with the largest correlation
coefficient (r) observed being-0.57 (Figure 9). However, all
of the correlation between measured affinity and docking score
resided within a single compound series (r ) -0.64). No
correlation (r ) 0.0) was observed for the second compound
series directed toward this kinase target (Figure 10).

Figure 8. Boost plot demonstrating an improvement in enrichment
by the docking program Fred when knowledge aboutE. coliPDF (heavy
green line) is used versus no knowledge (light-green line). In this case,
the only knowledge applied was a metal binding SMARTS pharma-
cophore constraint near the active site metal resulting in a 26-fold
improvement in enrichment.

Table 7. Best Correlation Coefficientr between the-log Affinity (pAffinity) and Docking Score for All Programs across All Targets

program Chk1 FXa gyrase B HCVP MRS E. coli PDF StrepPDF PPARδ

Dock4 -0.33 -0.31 -0.39 0.00 -0.13 -0.38 -0.34 0.07
DockIt -0.49 -0.19 -0.37 0.04 -0.28 -0.13 -0.30 -0.34
FlexX -0.57 -0.31 -0.39 -0.12 -0.01 -0.42 -0.25 -0.36
Flo+ -0.44 -0.38 -0.36 -0.09 0.05 -0.27 -0.39 -0.42
Fred -0.14 0.01 -0.13 -0.07 0.13 0.07 -0.24 0.06
Glide -0.47 -0.08 -0.21 -0.04 0.08 -0.13 -0.12 -0.35
Gold -0.42 -0.05 -0.14 -0.09 0.04 -0.12 -0.11 -0.43
LigandFit -0.45 -0.13 -0.39 -0.06 -0.15 -0.21 -0.49 -0.10
MOEDock -0.29 0.00 0.07 -0.01 -0.13 0.08 0.20 0.17
MVP -0.26 0.10 -0.33 -0.01 -0.18 -0.17 -0.16 -0.18

Figure 9. Plot of scaled score for Chk1 kinase vs pAffinity. The results
from the scaled FlexX total score are depicted here. The correlation
coefficient in this case isr ) -0.57. The majority of the correlation
comes not from the correct ordering of the compounds by affinity but
from a low false negative rate.
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There were statistically insignificant correlations (r ) -0.5
to -0.3) between affinity and docking scores observed for the
gyrase B, factor Xa, PPARδ, PDF, and MRS targets (Table 7).
We present a single illustrative example from the MRS data of
the many pAffinity versus scaled score plots generated, but not
shown, as part of our analysis of these data. Though the
correlation coefficient calculated for the plotted MRS data is
-0.3, even a superficial examination of Figure 11 reveals that
no useful correlation existed between the measured affinity and
the docking score. For HCV polymerase, no correlation (r e
-0.1) between score and measured affinity was observed for
any of the 37 scoring functions analyzed as part of this
evaluation. The complete results are tabulated in Supporting
Information.

The observed lack of a strong correlation between affinity
and score for PDF, the metal-containing protease target in this
study, was surprising because previously published data reported
a strong correlation for peptidic inhibitors of human metallo-
proteases (r2 ) 0.78)22 and for dicarboxylic acid inhibitors of
metallo-â-lactamase (r2 ) 0.87).25 It has been noted previously
that success at potency prediction is more likely when the
members of a congeneric series are of similar size and do not
have large conformational differences between the protein bound
and solution states.35 The molecular weight range for each of
the three PDF compound classes was greater than 180. One

possible explanation for the contrast in correlation between
affinity and docking score observed for this study versus
previously published data could be the compound size variation
present in this data set.

A general observation with respect to scoring function
performance on this data set is that no scoring function was
able to rank-order within the congeneric series or to predict
compound potency across series. Except for the case ofS.
pneumococcusPDF where the compound affinity was weighted
toward nanomolar compounds, any correlation between docking
score and affinity came from a reduction in the false negative
rate (active compounds predicted to be inactive by the docking
score) and not from a correct rank-order (data not shown).

C.2. In most cases, reproduction of the binding mode did
not improve rank-order or potency prediction performance.
For the targets included in this evaluation, no statistically
significant correlation between docking score and affinity was
observed. One possible explanation is that the docking algo-
rithms did not reproduce the correct binding mode. According
to this hypothesis, we would expect an improvement in
correlation if the experimentally observed binding modes were
evaluated by the scoring function. We remind the reader that
for comparisons between pAffinity and scaled docking score, a
correlation coefficientr ) -1 would correspond to a perfect
rank-ordering of compounds by affinity whiler ) +1 would
mean that the scoring function was universally ranking poorly
active compounds higher than more active compounds. Ac-
cordingly, we would hope that correlation coefficients would
be more negative for well-docked compounds than for poorly
docked compounds.

Two of the target data sets, PPARδ and MRS, contained a
large enough number of cocrystal structures to allow us to assess
whether affinity prediction improves for well-docked molecules.
For each target, we computed a correlation coefficient for only
those compounds for which the best-ranked pose was within 2
Å rmsd of the crystallographically determined pose. Table 8
lists the number of well-docked ligands for both of these targets
along with correlation coefficients for the full data set and for
the subset of well-docked ligands. Only programs that correctly
docked at least 30% of the target-specific compounds are
included in Table 8. The comparison between pAffinity and
docking score for a single program is presented graphically in
Figure 12. In this figure, all compounds in the data set are
marked with diamonds while the well-docked compounds are
emphasized by large squares.

Five programs were able to dock at least 30% of the
cocrystallized PPARδ ligands within 2 Å of thecrystallographi-
cally determined conformation (Table 8); the rest of the 54
cocrystallized ligands were poorly docked. For most of the
compounds in the full PPARδ data set, we did not have

Figure 10. Plot of scaled score vs pAffinity where the two Chk1 kinase
chemical classes are plotted in magenta (class1) and blue (class2). It
is readily apparent that all of the correlation observed between the scaled
docking score and affinity is found in the class1 molecules and that
no correlation exists between the docking score and class2 compound
affinities.

Figure 11. Plot of scaled score vs pAffinity for MRS and PPARδ.
While the calculated correlation coefficient for the data shown for MRS
is r ) -0.28, this plot clearly demonstrates that these values are
meaningless. No useful correlation exists between the docking score
and compound affinity.

Table 8. Comparison of the Best Correlation Coefficientr between
pAffinity and Docking Score versus the Correlation Coefficient between
pAffinity and Score for Top-Ranked Poses with rmsd ofe2 Å a

MRS PPARδ

program

no. of
well-docked

ligands
all

data
good
pose

no. of
well-docked

ligands
all

data
good
pose

FlexX 17 -0.36 -0.56
Flo+ 29 -0.42 -0.36
Glide 17 0.08 0.50 16 -0.35 -0.54
Gold 23 0.04 0.01 21 -0.43 -0.72
MVP 22 -0.18 -0.31

a The comparison is shown for selected docking programs on two targets,
MRS and PPARδ.
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crystallographic data to allow us to determine whether the
compounds were well docked. For four of the five programs
listed in Table 8, we saw an improvement in the correlation
coefficient computed for only those compounds we know to be
well docked. Indeed, for Gold the change was from a statistically
insignificantr ) -0.43 to a significant correlationr ) -0.72.
This result is depicted graphically in Figure 12A; the points
marked by squares clearly show a trend in the right direction.

Conversely, only two programs were able to dock MRS
compounds well, although in both cases>50% of the com-
pounds were docked within 2 Å of the crystallographically
determined conformation. In both of these cases, we saw no
improvement in correlation between pAffinity and docking score
for well-docked compounds. The absolute value of the correla-
tion coefficient appears to have improved for Glide. However,
r ) +0.5 indicates that the scoring function had inverted
predictions of affinity; less active compounds were being scored
better than more active compounds.

In Figure 12 we compare the results generated by a single
docking program, Gold, for both PPARδ and MRS. While we
see a clear correlation between Gold docking score and pAffinity
for PPARδ for well-docked compounds, we can see in Figure
12B that the points for well-docked compounds are distributed
randomly throughout the graph. These differing results suggest
that for PPARδ (but not for MRS) typical scoring functions
applied to single well-docked poses captured key features
contributing to binding affinity. This observation would be more
compelling if the improvement in correlation were universally
observed. However, even in the best case of PPARδ we saw
only one example of statistically significant correlations between
affinity and score. Indeed, for the program that docked more
than 50% of the 54 cocrystallized PPARδ agonists within 2 Å

of the crystal pose, we instead saw a slight decrease in
correlation coefficient for well-docked compounds. More careful
examination of systems such as PPARδ and MRS may therefore
prove to be useful for guiding improvements to docking
algorithms and scoring functions.

Conclusion
This evaluation has shown that docking programs are usually

successful in generating multiple poses that include binding
modes similar to the crystallographically determined bound
structure. In the few cases where the reproduction of the
observed binding mode was less precise, the difficulty was not
in positioning the ligand within the binding site but in
reproduction of the small-molecule conformation. In addition,
we have shown that for the proteins used in this evaluation
docking into a single protein structure by multiple compound
classes did not prohibit reproduction of the observed binding
mode even when the protein was held rigid. While docking
programs were highly successful at reproducing binding modes,
scoring functions were less successful at correctly identifying
the binding mode. However, the decrease in performance was
not extreme in that for five of the seven targets the success rate
was greater than 40%. It is important to note that while some
programs were consistently better than others at reproducing
binding modes, no program was able to reproduce greater than
35% of the binding modes within 2 Å across all targets. This
inconsistency highlights that while docking programs are being
used successfully to predict binding modes, binding mode
prediction is not a consistently solved problem and may require
considerable intervention by a skilled computational chemist.

This evaluation of the performance of docking programs and
scoring functions in the area of virtual screening has shown
that active compounds could be found from a pool of biologi-
cally active decoy compounds. In most cases the detection rate
by the top-performing algorithm was close to the theoretical
limit through 5% of the score-ordered list. This result is even
more compelling when one considers that for each of the targets
at least 2% of the decoy compounds were inactive analogues
of the active chemical series. Thus, we have shown that virtual
screening can be successful when using data that mimic a typical
pharmaceutical compound collection. While we have demon-
strated that virtual screening is successful, we have also shown
that in the absence of prior knowledge about the protein target
program performance was inconsistent across the target types
evaluated. This inconsistency means that when there is an
absence of knowledge about the target, one cannot predict a
priori whether a particular program will be successful against
the given target. Because we have demonstrated that the
application of knowledge about a target, whether broad or
specific, could improve reliability in terms of enrichment, one
obvious solution is to use all available knowledge when
performing virtual screening. However, the application of
knowledge comes with a cost, a loss in the diversity of the leads
identified. The result of this behavior on the part of docking
algorithms is that a burden is placed on the practitioner to make
a determination early as to what is most important for virtual
screening, fast and early lead detection or the identification of
all diverse leads. One observation made by this evaluation was
that high fidelity in the reproduction of observed binding modes
did not automatically impart success in virtual screening.
However, of particular concern was the observation that some
scoring functions required no correct structural information for
success in virtual screening. This result implies that under certain
circumstances scoring functions are not ranking compounds
based on structural information.

Figure 12. Plot of scaled score vs pAffinity for PPARδ (A) and MRS
(B). Diamonds represent the score for the first pose returned by Gold,
while the squares highlight scores where the rmsd ise2 Å from the
crystallographically determined structure. For PPARδ we see a
significant correlation between pAffinity and docking score for
compounds known to be well docked while we see no correlation for
well-docked MRS compounds.
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One goal of this evaluation was to quantify the relationship
between docking scores and compound affinity. We have
demonstrated that for the eight proteins of seven evolutionarily
diverse target types studied in this evaluation, no statistically
significant relationship existed between docking scores and
ligand affinity. While this result was not unexpected given the
large number of approximations used by docking scores to
improve computation efficiency, it is the first time, to our
knowledge, that an extensive evaluation of this area of docking
and scoring has been published. We have shown in the binding
mode prediction section that docking programs could reproduce
the experimentally observed ligand binding modes. We have
also shown that there was no consistent improvement in the
correlation between docking scores and measured affinity if one
considered only those docked poses similar to the crystallo-
graphically determined binding mode. Thus, good performance
in reproduction of experimentally determined binding modes
did not impart success in predicting affinity or in rank-ordering
compounds by affinity within or across congeneric series. From
the data generated by this evaluation, it is not clear what faults
or failures cause poor ligand affinity predictions by docking
scores because the performance was poor across all target types
for all scoring methods tested. The fault was not in the
reproduction of the experimentally observed binding mode by
the docking programs or in the ability to differentiate active
ligands from decoys but in the inability of the current scoring
functions to distinguish, differentiate, and quantitate the some-
times subtle differences that can change ligand affinity from
highly potent to inactive.

It was the goal of this docking and scoring evaluation to
examine as systematically and exhaustively as possible the
current state of the art in docking and scoring to determine where
strengths and weaknesses exist. Docking programs were able
to reproduce experimentally observed binding modes and in
many cases identify that binding mode as the correct one.
Docking programs and scoring functions could identify active
ligands from a pool of decoy molecules. While it is true that
greater reliability and accuracy in these two areas would be
beneficial, the current state of the art allows for the useful
application of these tools by a skilled computational chemist.
However, in the area of rank-ordering or affinity prediction,
reliance on a scoring function alone will not provide broadly
reliable or useful information that can be applied to lead
optimization. This study demonstrates unequivocally that sig-
nificant improvements are needed before compound scoring by
docking algorithms will routinely have a consistent and major
impact on lead optimization. Because it is not completely
obvious by what means these improvements will arise, it is our
hope that studies such as this will provoke healthy debate and
encourage significant collaborative research in the field.

Methods

A. Protein Targets. Protein structures were selected by system
experts for each protein target. All hydrogen atoms were added to
protein structures, and Asn, Gln, and His orientations were set
automatically using the program Reduce.36 In all but one case,
hydrogens were added with no ligand present. The orientation and
protonation of a His residue in PPARδ are affected by the presence
of the negatively charged ligands, so in this one case, hydrogens
were added with a representative ligand present. Apolar hydrogens
were subsequently removed, and positions of polar hydrogen atoms
were optimized under the CHARMm22 force field.

Initially, residues defining protein binding sites were identified
using an automated procedure that located convex cavities on an
R shape of the protein surface. These preliminary binding site

definitions were then assessed and amended by each system expert.
To define a common reference frame for all docking programs,
the principal moments of inertia were computed for atoms of
binding site residues; the geometric center of the binding site was
placed at the origin, and principal axes were aligned along theX,
Y, andZ axes.

By default, no crystallographic waters were included in binding
site definitions. All crystallographic waters were oriented to match
the protein orientation described above. Systems experts then
provided commentary concerning the importance of specific waters
for compound binding; each program expert made his/her own
decision about how to incorporate that information in the docking
calculations. Coordinates for protein and water atoms were provided
to all program experts in PDB format along with a FASTA format
sequence file identifying binding site residues.

All cocrystal structures for a given target were placed in the same
orientation frame by a least-squares fit of backbone atoms to the
protein structure used in docking calculations, and coordinates for
ligand atoms were extracted. The rmsd calculations for predictions
of bound conformation were carried out using SVL code provided
by support scientists at the Chemical Computing Group. This code
takes as input a database of ligands extracted from cocrystal
structures and a database of docked poses, matches docked poses
to the corresponding cocrystal structure, and computes the sym-
metry-corrected rmsd between the two. Volume integrals for
computation of Tanimoto volume overlapTvol were computed using
the Shape toolkit from OpenEyes Scientific Software.

B. Ligand Set. Small-molecule ligands for each protein target
were supplied as SMILES strings, and the full set of 1303 ligands
merged into a single SMILES file. Random codes were assigned
to all molecules in the merged set in order to ensure that compounds
belonging to a given protein target and compound class were not
clustered together in the input to the docking calculations. Chiral
centers not explicitly denoted were identified and expanded using
the Daylight tool Chiralify. For those compound classes where
structural information on the absolute stereochemistry existed, the
stereochemistry of congeneric compounds was restricted to the
observed stereochemistry. All possible stereochemistries of chiral
compounds for which stereochemical information was unavailable
were generated and retained.

Initial three-dimensional conformations from the resulting SMILES
file were generated using Corina version 1.8.1. These conformations
were imported into MOE version 2002.03beta, and the compounds
were ionized using the WashMDB function. Small-molecule
conformations were minimized twice using the MMFF94 force field.
During the first minimization hydrogen atoms were added, the initial
conformations were rebuilt, distance-dependent electrostatics and
nonbonded cutoffs were turned off, chirality was constrained to
the initial chirality, the GBSA solvation model was turned off, and
the structures were minimized to a gradient of 0.1. During the
second minimization, structures were further minimized from the
previous coordinate positions to a gradient of 0.01 with distance-
dependent electrostatics turned on (dielectric 1, solvent dielectric
80, dielectric offset-0.09, 1-4 scale 0.75, buffer 0.05), GBSA
solvation model turned on, nonbonded cutoffs turned off, and
chirality constrained to the initial chirality. Small-molecule con-
formations were visually inspected to ensure correct atom typing
and hybridization states. The resulting coordinates were exported
to SD files containing all hydrogen or only polar hydrogen.

C. Docking Programs. C.1. Dock4.37-41 The initial ligand files
in SD format were converted to Tripos mol2 format. Nonpolar
hydrogen atoms were added to protein structures, Kollman 1994
charges were assigned to all protein atoms, Ni atoms were assigned
a charge of+2, and protein atom coordinates and partial charges
were saved in Tripos mol2 format.

To define the binding site for Dock4 calculations, all polar and
nonpolar hydrogens were stripped from the protein, and the program
dms as implemented in the Midas modeling package42 was used to
compute a molecular surface. For large systems, only residues
within 8 Å (HCV polymerase) or 10 Å (factor Xa, MRS) of the
predefined binding site were included in the molecular surface
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calculation. Active site spheres were generated using SPHGEN40

with default parameters. Sphere clusters were examined visually,
and the cluster(s) that best filled the binding site as defined by the
system expert were retained. The number of spheres selected ranged
from 54 forS. pneumococcusPDF up to 148 for HCV polymerase.

Scoring grids were computed for a box extending 2-4 Å in all
directions beyond the binding site sphere cluster(s). Grids were
computed for the chemical, contact, and energy scoring methods.
Parameters were set to default values with the following three
exceptions: grid spacing set to 0.2 Å, use of an all-atom model,
and use of a bump filter.

Three separate docking runs were carried out for each protein
target, using chemical, contact, and energy scoring grids to drive
the docking calculations. Flexible ligand docking was carried out
for all molecules with 12 or fewer rotatable bonds. An anchor search
using a simultaneous search method was carried out, and all docked
ligands were minimized for 100 iterations. Ten docked poses were
stored for each compound.

C.2. DockIt.43 All docking calculations were carried out using
DockIt, version 1.0. Protein coordinates were converted to CEX
format using DockIt tools. Binding site spheres were generated by
manually placing a dummy molecule in the binding site region and
selecting the cluster overlapping with that dummy molecule. Where
necessary, sphere parameters were adjusted to adequately represent
the binding site as defined by the system expert. Ligand geometries
were input, converted to tdt files, and converted to CEX format
using DockIt tools. One-hundred docked poses were generated per
ligand, all of which were output and rescored using the PLP44 and
PMF45 scoring functions. In addition, two additional scores were
calculated: DOCKPLP (the sum of DOCK and PLP scores) and
DOCKPMF (the sum of the DOCK and PMF scores). The top-
scoring 32 poses based on DockIt score were stored for each
compound.

C.3. Flexx.All docking calculations were performed with FlexX,
version 1.10.1,46,47 as implemented in the version 6.8 release of
the SYBYL modeling package.48 Protonation states of binding site
residues and torsion angles at the hydroxyl groups of serine,
threonine, and tyrosine amino acids were set in the receptor
description file by visual inspection of the PDB file with polar
hydrogens.

Docking runs were carried out using the standard parameters of
the program for iterative growing and subsequent scoring of FlexX
poses. Two scoring functions as implemented within FlexX were
used to score the poses. The default FlexX scoring function
(a modified version of the empirical scoring function developed
by Boehm49) and DrugScore (a knowledge-based scoring function50)
were utilized for all docking calculations. Formal charges were used
throughout all the simulations. Multiple conformations for rings
were computed with the use of Confort.51 The top 30 solutions
were retained and stored in a single mol2 file. Finally, the saved
poses were rescored by the following five scoring functions:
Dock,39 Gold,52 PMF,45 ChemScore,53 and FlexX as implemented
within CScore.54

C.4. Flo. All docking calculations were performed using Flo+,
version 0802. The protein coordinates containing polar hydrogen
were converted to Macromodel format using Flo+ tools. All
residues within a 20 Å sphere centered around a residue identified
visually as central in the binding site were selected, and the rest of
the protein atoms were removed. The residues lining the binding
site pocket (approximately 10 Å from same residue near the center
of the active site) were selected to allow movement during
minimization steps. The remaining residues were held rigid during
all docking and minimization calculations. In the three cases (Chk1
kinase, factor Xa, and HCVP) where crystallographic water was
present and included, the oxygen atom of the water was constrained,
using a square-well potential, within a 0.2 Å sphere from its
crystallographic position and attached hydrogen atoms were allowed
to move freely during minimization.

Five docking algorithms present in Flo+, version 0802, were
evaluated: mcdock (old scoring function), mcdock+, sdock+,
fulldock+, and zdock+. The two mcdock algorithms rely on a

Monte Carlo perturbation/fast search/energy minimization algorithm
but use different scoring functions. For these algorithms 2000 steps
of perturbation were performed and the 25 top-ranked poses
retained. The remaining three methods are systematic docking
algorithms with fulldock+ including 500 steps of a local Monte
Carlo search followed by minimization to the results of sdock+.
For sdock+ and fulldock+, the 25 top-ranked poses were retained.
For zdock+, a single pose was retained.

For the virtual screening evaluation, three docking algorithms
present in Flo+, version 0802, were evaluated: mcdock, mcdock+,
and zdock+. The mcdock algorithms were run using 300 steps of
perturbation, and the five top-ranked poses were retained. For the
remaining method zdock+, a single pose was retained.

C.5. Fred. Ligand conformations were precomputed from the
initial SD file using Omega, version 1.0. A maximum of 200
conformations were generated for each ligand, with an rms cutoff
of 0.8 Å and an energy window of 8 kcal/mol. The maximum
number of rotors was set to 30 to ensure that even the most flexible
molecules in the set were included in the docking calculations.

Fred, version 1.2.1, docking calculations were carried out using
protein structures with polar hydrogen atoms only and with the
binding site definitions provided by system experts. Default Fred
parameters were used with the following exceptions: the maximum
number of poses passing through the shape-fitting filter was
increased to 5000;κ was set to 1.75;γ was set to 0.0; the excluded
volume was set to 5000 Å3 for MRS and to 2500 Å3 for all other
protein targets. In separate docking runs, poses that passed the
shape-fitting filter were scored using either ChemScore or Screen-
Score. For PDF, additional docking runs were carried out using a
pharmacophore filter to bias toward placing metal binding func-
tionality near the Ni atom. For gyrase B, additional docking runs
were carried out using a protein structure in which coordinates for
a missing stretch of protein had been rebuilt using the homology
modeling module in MOE. Up to 10 poses were saved for each
docked ligand.

C.6. Glide.55,56 All protein PDB files were minimized with
Batchmin, version 8.0, in Maestro, version 2.0, using the MMFF94S
force field, which promotes planarity of delocalized trigonal
nitrogens, and using the water solvation model with extended
cutoffs. All heavy atoms were constrained to their original PDB
coordinates with a parabolic potential of 100 kJ/Å; 100 iterations
of PRCG minimization were used in each case, which was sufficient
to relax the hydrogen coordinates. Individual water molecules and
metal ions were included as provided.

Binding sites were defined from the provided list of residue
numbers using the ASL command language in Maestro. This was
done to avoid biasing the site as a function of ligand scaffold. Glide
grids were computed using these definitions for the inner grid box,
which defines the range of motion for the center of each ligand.
Outer (or enclosing) grid boxes were generally 15-20 Å longer
than the inner grid box on each side, depending on the ligand length.
The van der Waals (vdW) radii for nonpolar receptor atoms was
scaled by 0.9.

Ligands were converted from .sdf format to .mae format using
the Schrodinger utility sdconvert. Each ligand was then minimized
with the MMFF94S force field (same as protein preparation) using
the Schrodinger utility premin, which uses Batchmin version 8.0
and truncated Newton minimization and no solvation. Ligands were
provided in ionized form where possible.

Docking calculations were performed with Glide (Impact, version
2.0) in standard sampling mode with maxkeep) 5000 and maxref
) 400 and using the previously computed grids. The vdW radii
for nonpolar ligand atoms was scaled by 0.8. Each docking job
was run on a SGI server in parallel using the Schrodinger para_glide
utility.

C.7. Gold. Gold, version 1.2, was used for all docking calcula-
tions. The ligand file bearing all hydrogens but with appropriately
ionized polar groups was used for all Gold docking runs. GOLD
atom-type checking was turned on for both ligand and protein
atoms. For docking into HCV polymerase, two docking runs were
carried out in which two key waters were either included explicitly
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or omitted. For HCV polymerase, only the immediate active site
was used to avoid known docking problems associated with the
whole protein. For each protein, nonpolar hydrogens were added
using Sybyl. In the case of PDF, which contains a bound Ni atom,
Zn was substituted as the best surrogate for Ni.

Docking calculations were parallelized across the nodes of a
Linux cluster, using Perl scripts to launch jobs and collate final
results. The output was such that the directory hierarchy mimicked
that which would be produced by a single GOLD run, facilitating
the use of pre-existing Sybyl SPL scripts used for extracting the
data into a Sybyl molecular spreadsheet. From this point, both the
text file of GOLD energy data and an SD file containing docked
ligand coordinates and the associated GOLD energy data were
saved. The extraction SPL script clusters the results according to
rmsd, and thus, only results that areg1.5 Å rmsd different from
one another are represented. In practice, up to 50 different poses
were saved for each docked ligand.

C.8. LigandFit. Parallel LigandFit was used as implemented in
Cerius2, version ccN. Two independent docking runs were con-
ducted for each protein target, one with the CFF, version 1.01, force
field and the second with the Dreiding force field. Protein atoms
were typed using the CFF or Dreiding force fields. For the PDF
target, the Ni in the binding site was unbonded from amino acid
side chains and typed as a Zn2+. An SD file containing ionized
ligands was used for docking. Ligands were autotyped and
autocharged using the CFF and Dreiding force fields. The docking
site was defined by using the Cerius2 site finder with a site opening
size of 7.0 Å. The site was manually edited to include all of the
binding site residues defined by the system expert. The energy grid
was calculated with a distance-dependent dielectric constant of 1.0
and a nonbonded cutoff distance of 10.0 Å, and the grid was
extended 5.0 Å from the site. Docking was performed with a flexible
ligand. A variable number of Monte Carlo steps were used with
the number of steps equal to 1000 times the number of torsion
angles in the ligand. A Monte Carlo search step for torsions
containing polar hydrogens was set to 30.0°. Site partitioning was
used with three partitions. Rigid body minimization was performed
on the four orientations of the docked ligand. Clustering of the
docked ligands was performed with a maximum of 10 clusters per
ligand and a rmsd threshold of 1.5 Å for cluster formation. Only
diverse conformers were saved with a maximum of five conformers
saved for each ligand. The docked ligands were scored with
Ligscore2, PMF, and PLP1 scoring functions. For Ligscore2, the
grid was extended from the site by 5.0 Å.

C.9. MOE. The standard docking routine as implemented in
MOE, version 2002.03, was customized to enable high-throughput
docking. Modified docking code was provided by the support
scientists at CCG to run the algorithm in batch mode on a database
of ligands. A routine was added to sort the database of docking
results for each individual ligand by their total energy score. The
best scoring orientation was then written out to a database that stored
the optimal pose for each ligand in the test set. Docking of each
ligand under standard stochastic search conditions was extremely
time-consuming and not suitable for high-throughput mode. Con-
sequently, the number of runs per ligand, the number of moves
per run, and the length of the tabu list were reduced to a minimum
to speed up the calculations. Additionally, the code was modified
to reduce the number of random starting conformations of each
ligand employed in the generation of the energy scoring grid.
Finally, the predefined failure energy cutoff of the starting
conformation was raised to 1012 kcal/mol to prevent premature
termination of the docking run. The Engh-Huber united-atom force
field implemented in MOE was employed for the docking calcula-
tions. MMFF94s parameters were used for the ligand, which was
fully protonated. Partial charges were computed using the PEOE
formalism as implemented in MOE.

The total interaction energy score returned by MOE includes an
internal energy term without any reference to a low-energy
conformation. To enable direct comparison of different ligands, the
energy of each pose was recalculated using the MOE implementa-
tion of MMFF94s. A reference database of ligands was subjected

to a limited stochastic conformational search, using MMFF94s, to
generate a representative low-energy conformation of each mol-
ecule. The energy of this reference conformation was subtracted
from the energy of the docked conformation and added to the vdW
and electrostatic interaction energies between the ligand and protein
to give a corrected docking score.

C.10. MVP. The MVP program57 implements several different
docking algorithms, including a “grow” procedure that grows
ligands within the binding site and a “superdock” procedure that
fits fully grown compounds into the binding site by superimposition
onto target points. The growth procedure starts the growth process
from an “anchor group” within each compound and works best
when the binding orientation of the anchor group is known. The
superdock procedure was used for this study to avoid any
requirement for this prior knowledge. The superdock approach is
broadly similar to that of the original DOCK program,39 although
the MVP implementation uses multiple atom types, a model for
solvation, and more complete energy minimization. In addition,
MVP accounts for desolvation and some aspects of configurational
entropy by running two separate calculations for each compound,
one in the binding site and one free in solution, calculating the
binding energy using Boltzmann summations over the respective
minima.57 The superdock approach starts by using the grow
procedure to run a conformational search calculation free in solution,
retaining up to 1200 distinct low-energy conformations. Each of
these conformations is then fitted into the binding site by
superimposing four atoms or pseudoatoms from the ligand onto
four target points of corresponding atom type within the binding
site. The calculations used four main atom types: hydrogen bond
donor, hydrogen bond acceptor, donor/acceptor (e.g., hydroxyl),
and lipophilic. Target points were determined manually by inspec-
tion of available crystal structures, including protein/ligand com-
plexes involving homologous protein structures. As with the DOCK
program,39 many different orientations are generated by using
different matchings of the ligand atoms to the target points. These
candidate orientations are initially refined with three steps of internal
coordinate energy minimization with a short nonbonded interaction
cutoff. Candidate orientations with sufficiently low energy were
selected for six additional steps of internal coordinate energy
minimization using a somewhat longer nonbonded cutoff. Orienta-
tions surviving this second filter were selected for 30 steps of
Cartesian coordinate energy minimization with a longer nonbonded
cutoff. Cluster analysis was used to identify redundant conforma-
tions in each cycle, effectively funneling the candidate binding
modes down to a set of 50 low-energy, nonredudant binding modes.
Throughout the calculation, energies are calculated with a simple
solvation model based on solvent-exposed surface areas.57 The
initial conformational search used an additional term equal to-0.1
kcal per square angstrom of solvent-exposed area to penalize folded
conformations and favor extended conformations. The binding
energy is estimated asEcpx - Efree, where the energies in the
complex and free in solution are calculated from Boltzmann
summations up to 50 conformations in the complex and up to 1200
conformations in solution, respectively, omitting the penalty term
for folded conformations. This formulation captures desolvation
effects and some portion of the configurational entropy of binding.
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