An Introduction to

Computational Quantum
Mechanics

2.1 Introduction

Our aim in this chapter will be to establish the basic elements of those quantum mechanical
methods that are most widely used in molecular modelling. We shall assume some
familiarity with the elementary concepts of quantum mechanics as found in most ‘general’
physical chemistry textbooks, but little else other than some basic mathematics (see
Section 1.10). There are also many excellent introductory texts to quantum mechanics. In
Chapter 3 we then build upon this chapter and consider more advanced concepts. Quantum
mechanics does, of course, predate the first computers by many years, and it is a tribute to
the pioneers in the field that so many of the methods in common use today are based upon
their efforts. The early applications were restricted to atomic, diatomic or highly symmetri-
cal systems which could be solved by hand. The development of quantum mechanical
techniques that are more generally applicable and that can be implemented on a computer
(thereby eliminating the need for much laborious hand calculation) means that quantum
mechanics can now be used to perform calculations on molecular systems of real, practical
interest. Quantum mechanics explicitly represents the electrons in a calculation, and so it is
possible to derive properties that depend upon the electronic distribution and, in particular,
to investigate chemical reactions in which bonds are broken and formed. These qualities,
which differentiate quantum mechanics from the empirical force field methods described
in Chapter 4, will be emphasised in our discussion of typical applications.

There are a number of quantum theories for treating molecular systems. The first we shall
examine, and the one which has been most widely used, is molecular orbital theory. However,
alternative approaches have been developed, some of which we shall also describe, albeit
briefly. We will be primarily concerned with the ab initio and semi-empirical approaches
to quantum mechanics but will also mention techniques such as Hiickel theory and valence
bond theory. An alternative approach to quantum mechanics, density functional theory, is
considered in Chapter 3. Density functional theory has always enjoyed significant support
from the materials science community but is increasingly used for molecular systems.

Quantum mechanics is often considered to be a difficult subject, and a cursory glance at the
following pages in this chapter may simply serve to reinforce that view! However, if
followed carefully it is possible to see how models that are developed for very simple
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systems can be applied to much more complex systems. As a consequence our treatment
does require some consideration of the mathematical background to the simplest and
most common types of calculation. Our strategy in developing the underlying theory of
molecular orbital quantum mechanical calculations is as follows. First, we revise some
key features of quantum mechanics, including the hydrogen atom. We then discuss the
functional form of an acceptable wavefunction for a molecular system and show how to
calculate the energy of such a system from the wavefunction. This leads to the problem of
determining the wavefunction itself and how this can be done using routine mathematical
methods. We will then be in a position to understand how quantum mechanical calculations
can be performed for ‘real’ systems and will have the background necessary to consider

more advanced topics.

The starting point for any discussion of quantum mechanics is, of course, the Schrédinger
equation. The full, time-dependent form of this equation is

2

Equation (21) refers to a single particle (e.g. an electron) of mass m which is moving through
space (given by a position vector r = xi ++ yj + zk) and time () under the influence of an
external field 7 (which might be the electrostatic potential due to the nuclei of a molecule).
his Planck’s constant divided by 2 and i is the square root of —1. ¥ is the wavefunction which
characterises the particle’s motion; it is from the wavefunction that we can derive various
properties of the particle. When the external potential ¥~ is independent of time then the
wavefunction can be written as the product of a spatial part and a time part:
¥(r,t) = y(r)T(t). We shall only consider situations where the potential is independent of
time, which enables the time-dependent Schrédinger equation to be written in the more
familiar, time-independent form:

P,
{—%V + "V}\Il(r) =E¥(r) (2.2)

Here, E is the energy of the particle and we have used the abbreviation V2 {(pronounced ‘del-
squared’).

» O PP

R (2.3)

Ox
It is usual to abbreviate the left-hand side of Equation (2.1) to #¥, where # is the
Hamiltonian operator:

2
H = —%vzwf (2.4)

This reduces the Schrédinger equation to #¥ = EW. To solve the Schrédinger equation it is
necessary to find values of E and functions ¥ such that, when the wavefunction is operated
upon by the Hamiltonian, it returns the wavefunction multiplied by the energy. The
Schrédinger equation falls into the category of equations known as partial differential eigen-
value equations in which an operator acts on a function (the eigenfunction) and returns the
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function multiplied by a scalar (the eigenvalue). A simple example of an eigenvalue
equation is:

2 p=ry 25)

The operator here is d/dx. One eigenfunction of this equation is y = €™ with the eigenvalue r
being equal to a. Equation (2.5) is a first-order differential equation. The Schrodinger
equation is a second-order differential equation as it involves the second derivative of ¥.
A simple example of an equation of this type is

#y

ey _ 2.6
R (2.6
The solutions of Equation (2.6) have the form y = A coskx + Bsinkx, where A, B and k are
constants. In the Schrodinger equation ¥ is the eigenfunction and E the eigenvalue.

2.1.1 Operators

The concept of an operator is an important one in quantum mechanics. The expectation value
(which we can consider to be the average value) of a quantity such as the energy, position or
linear momentum can be determined using an appropriate operator. The most commonly
used operator is that for the energy, which is the Hamiltonian operator itself, 5. The
energy can be determined by calculating the following integral:

_ [ U A dr

E= [ wdr

(27)
The two integrals in Equation (2.7) are performed over all space (i.e. from —oo to +oo in thex,
y and z directions). Note the use of the complex conjugate notation (T"), which reminds us
that the wavefunction may be a complex number. This equation can be derived by pre-
multiplying both sides of the Schrédinger equation, #'¥ = E¥, by the complex conjugate
of the wavefunction, ¥*, and integrating both sides over all space. Thus:

J\I:*,;m dr — J\II*E\II dr (2.8)
E is a scalar and so can be taken outside the integral, thus leading to Equation (2.7). If the
wavefunction is normalised then the denominator in Equation (2.7) will equal 1.
The Hamiltonian operator is composed of two parts that reflect the contributions of kinetic
and potential energies to the total energy. The kinetic energy operator is

-V (2.9)

and the operator for the potential energy simply involves multiplication by the appropriate
expression for the potential energy. For an electron in an isolated atom or molecule the
potential energy operator comprises the electrostatic interactions between the electron
and the nucleus and the interactions between the electron and the other electrons For a
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single electron and a single nucleus with Z protons the potential energy operator is thus:

Zé?
= — 1
4 47!'801’ (2 O)

Another operator is that for linear momentum along the x direction, which is
ho
i Ox
The expectation value of this quantity can thus be obtained by evaluating the following
integral:

(211)

3]
J‘I'*\Il dr

J\II*I—?Q\IIdT
i Ox

px = (212)

2.1.2 Atomic Units

Quantum mechanics is primarily concerned with atomic particles: electrons, protons and
neutrons. When the properties of such particles (e.g. mass, charge, etc.) are expressed in
‘macroscopic’ units then the value must usually be multiplied or divided by several
powers of 10. It is preferable to use a set of units that enables the results of a calculation
to be reported as “easily manageable’ values. One way to achieve this would be to multiply
each number by an appropriate power of 10. However, further simplification can be
achieved by recognising that it is often necessary to carry quantities such as the mass of
the electron or electronic charge all the way through a calculation. These quantities are
thus also incorporated into the atomic units. The atomic units of length, mass and energy
are as follows:

1 unit of charge equals the absolute charge on an electron, Je] = 1.60219 x 107 C
1 mass unit equals the mass of the electron, m, = 9.10593 x 10~ kg

1 unit of length (1 Bohr) is given by ay = h*/4n*mee? = 5.29177 x 10" "' m

1 unit of energy (1 Hartree) is given by E, = é? /4meqay = 435981 x 10718

The atomic unit of length is the radius of the first orbit in Bohr’s treatment of the hydrogen
atom. It also turns out to be the most probable distance of a 1s electron from the nucleus in
the hydrogen atom. The atomic unit of energy corresponds to the interaction between two
electronic charges separated by the Bohr radius. The total energy of the 1s electron in the
hydrogen atom equals —0.5 Hartree. In atomic units Planck’s constant #t = 27 and so /i = 1.

2.1.3 Exact Solutions to the Schrédinger Equation

The Schrdinger equation can be solved exactly for only a few problems, such as the particle
in a box, the harmonic oscillator, the particle on a ring, the particle on a sphere and the
hydrogen atom, all of which are dealt with in introductory textbooks. A common feature
of these problems is that it is necessary to impose certain requirements (often called boundary
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conditions) on possible solutions to the equation. Thus, for a particle in a box with infinitely
high walls, the wavefunction is required to go to zero at the boundaries. For a particle on a
ring the wavefunction must have a periodicity of 27 because it must repeat every traversal of
the ring. An additional requirement on solutions to the Schrédinger equation is that the
wavefunction at a point r, when multiplied by its complex conjugate, is the probability of
finding the particle at the point (this is the Born interpretation of the wavefunction). The
square of an electronic wavefunction thus gives the electron density at any given point. If
we integrate the probability of finding the particle over all space, then the result must be
1 as the particle must be somewhere:

J T Odr=1 (2.13)

dr indicates that the integration is over all space. Wavefunctions which satisfy this condition
are said to be normalised. It is usual to require the solutions to the Schrédinger equation to be
orthogonal:

J\Il;\lln dr=0 (m#n) (214)

A convenient way to express both the orthogonality of different wavefunctions and the
normalisation conditions uses the Kronecker delta:

Jw;wn dr = b (2.15)

When used in this context, the Kronecker delta can be taken to have a value of 1if m equals n
and zero otherwise. Wavefunctions that are both orthogonal and normalised are said to be
orthoriormal.

2.2 One-electron Atoms

In an atom that contains a single electron, the potential energy depends upon the distance
between the electron and the nucleus as given by the Coulomb equation. The Hamiltonian
thus takes the following form:

B, Zzé
H =——V — 2.1
2m v 4regr (2.16)
In atomic units the Hamiltonian is:
1, Z
— - _Z 217
H=-5V —2 (217)

For the hydrogen atom, the nuclear charge, Z, equals +1. r is the distance of the electron from
the nucleus. The helium cation, He™, is also a one-electron atom but has a nuclear charge of
+2. As atoms have spherical symmetry it is more convenient to transform the Schrédinger
equation to polar coordinates r, 6 and ¢, where r is the distance from the nucleus (located at
the origin), 6 is the angle to the z axis and ¢ is the angle from the x axis in the xy plane
(Figure 2.1). The solutions can be written as the product of a radial function R(r), which
depends only on r, and an angular function Y(8,¢) called a spherical harmonic, which
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v = sin O sin ¢

x=rsin@cos fr————————mmmm———>

Fig. 2 1: The relationship between spherical polar and Cartesian coordinates

depends on § and ¢
Yot = Rnl (T) Yim (07 d)) (218)

The wavefunctions are commonly referred to as orbifals and are characlerised by three
quantum numbers n, m and . The quantum numbers can adopt values as follows:

m: principal quantum number: 0,1, 2, ...
I: azimuthal quantum number: 0,1, ...(n - 1)
m: magnetic quantum number: —I, —(I-1),...0...(I-1), L

The full radial function is:

Ry(r) = — [(n%)a %] o (=5) i (219)

p=2Zr/nay, where gy is the Bohr radius.” The term in square brackets is a normalising
factor. Lﬁlf:ll (p) is a special type of function called a Laguerre polynomial. We shall rarely
be interested in any other than the first few members of the series; moreover, they simplify
considerably if atomic units are used and we write them in terms of the orbital exponent
¢ =Z/n. The first few members of the series for low values of n are given in Table 2.1
and are illustrated graphically in Figure 2.2. As can be seen, the radial part of the wave-

function is a polynomial multiplied by a decaying exponential.

The angular part of the wavefunction is the product of a function of  and a function of ¢:

Yin(0,8) = 04 (0) @1 () (2:20)
These functions are:
B (§) = —=exp(im) (221)

Q1+1) (I—|m|)!]Y?

> () Pi™ (cos 6) (2.22)

@Im (0) =

“Strictly, a, in this case is givenby ay = H? /7% e, where p is the reduced mass, u=mM/(m, + M), Mis
the mass of the nucleus.
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n ) R, (r)

2¢2 exp(—¢r)

2¢°12(1 — cr) exp(~(r)

(4/3)\2¢52r exp(—~(r)

(2/3):/§<:/§(3 — 6Cr + 2¢%r%) exp(—¢r)
(8/9)'/2¢52(2 — ¢r)r exp(~(r)
(8/45)V2¢7/* P exp(—(r)

WwWwWwNN =
N—=O0—=00

Table 2 1 Radial function for one-electron atoms.

The functions @,,(¢) are just the solutions to the Schrédinger equation for a particleon a ring.
The term in square brackets for the function ©y,(6) is a normalising factor. Pllm|(cos f)isa
member of a series of functions called the associated Legendre polynomials (the ‘Legendre
polynomials” are functions for which |m| = 0). The total orbital angular momentum of an
electron in the orbital is given by I(I+ 1) and the component of the angular momentum
along the § = 0 axis is given by Ili. The energy of each solution is a function of the principal
quantum number only; thus orbitals with the same value of n but different [ and m are
degenerate. The orbitals are often represented as shown in Figure 2.3. These graphical
representations are not necessarily the same as the solutions given above. For example,
the “correct’ solutions for the 2p orbitals comprise one real and two complex functions:

2p(+1) = +/3/47R(r) sin 6 (223)
2p(0) = 4/3/4nR(r)cos b (2.24)
2p(—1) = /3/47R(r)sinfe " (2.25)

R(r) is the radial part of the wavefunction and /3/4r is a normalisation factor for the
angular part. The 2p(0) function is real and corresponds to the 2p, orbital that is pictured
in Figure 2.3. A linear combination of the two remaining 2p solutions is used to generate
two ‘real’ 2p wavefunctions, making use of the relationship exp(i¢) = cos ¢ + isin ¢ (Section
1.10.4). These linear combinations are the 2p, and 2p, orbitals shown in Figure 2.3.

2p, = 1/2[2p(+1) + 2p(—1)] = +/3/4nR(r) sin 6 cos ¢ (2.26)
2p, = —1/22p(+1) — 2p(~1)] = /3/47R(r) sinOsin (2.27)

These linear combinations still have the same energy as the original complex wavefunctions.
This is a general property of degenerate solutions of the Hamiltonian operator. The reason
why they are labelled 2p, and 2p, is that in polar coordinates the Cartesian coordinates x, ¥
and z have the same angular dependence as the orbitals in Figure 2.3:

x =rsinfcos¢ (2.28)
y=rsinfsin¢g (2.29)
z=rcosd (230)

The solutions of the Schrédinger equation are either real or occur in degenerate pairs. These
pairs are complex conjugates that can then be combined to give energetically equivalent real
solutions. It is only when dealing with certain types of operator that it is necessary to retain a
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Fig. 2.2. The functions R,y{r) for the first three values of the principal quantum number. (a) 1s; (b) 2s and 2p; (c) 3s,

3p and 3d.

complex wavefunction (for the 2p functions, the operator that corresponds to angular

momentum about the z axis falls into this category). In fact, to simplify matters we will
almost always ignore the complex notation from now on and will deal with real orbitals.

Fir%aﬂy, we should note that the solutions are all orthogonal to each other; if the product of any
pair of orbitals is infegrated over all space, the result is zero unless the two orbitals are the
same. Orthonormality is achieved by multiplying by an appropriate normalisation constant.
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Fig 2 3: The common graphical representations of s, p and d orbitals

The orbital picture has proved invaluable for providing insight and qualitative interpreta-
tions into the nature of the bonding in and reactivity of chemical systems. It is one which
we would like to retain for polyelectronic systems to provide a unifying theme that links
the simplest systems with much more complicated ones.

2.3 Polyelectronic Atoms and Molecules

Solving the Schrédinger equation for atoms with more than one electron is complicated by a
number of factors. The first complication is that the Schrédinger equation for such systems
cannot be solved exactly, even for the helium atom. The helium atom has three particles (two
electrons and one nucleus) and is an example of a three-body problem. No exact solutions can
be found for systems that involve three (or more) interacting particles. Thus, any solutions
we might find for polyelectronic atoms or molecules can only be approximations to the real,
true solutions of the Schrédinger equation. One consequence of there being no exact solution
is that the wavefunction may adopt more than one functional form; no form is necessarily
more ‘correct’ than another. In fact, the most general form of the wavefunction will be an
infinite series of functions.

A second complication with multi-electron species is that we must account for electron spin.
Spin is characterised by the quantum number s, which for an electron can only take the
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value 1. The spin angular momentum is quantised such that its projection on the z axis is
either +h or —h. These two states are characterised by the quantum number m,, which
can have values of +1 or —1, and are often referred to as “up spin’ and ‘down spin’ respec-
tively. Electron spin is incorporated into the solutions to the Schrédinger equation by
writing each one-electron wavefunction as the product of a spatial function that depends
on the coordinates of the electron and a spin function that depends on its spin. Such
solutions are called spin orbitals, which we will represent using the symbol x. The spatial
part (which will be referred to as an orbital and represented using ¢ for atomic orbitals
and y for molecular orbitals) describes the distribution of electron density in space and is
analogous to the orbital diagrams in Figure 2.3. The spin part defines the electron spin
and is labelled a or 3. These spin functions have the value 0 or 1 depending on the quantum
number m; of the electron. Thus o) =1, a(—3) =0, B(+3) =0, B(—3) = 1. Each spatial
orbital can accommodate two electrons, with paired spins. In order to predict the electronic
structure of a polyelectronic atom or a molecule, the Aufbau principle is employed, in which
electrons are assigned to the orbitals, two electrons per orbital. We need to remember that
electrons occupy degenerate states with a maximum number of unpaired electrons
(Hund’s rules), and that there are certain situations where it is energetically more favourable
to place an unpaired electron in a higher-energy spatial orbital rather than pair it with
another electron. However, such situations are rare, particularly for molecular systems,
and for most of the situations that we shall be interested in the number of electrons, N,
will be an even number that occupy the N/2 lowest-energy orbitals.

Electrons are indistinguishable. If we exchange any pair of electrons, then the distribution of
electron density remains the same. According to the Born interpretation, the electron density
is equal to the square of the wavefunction. It therefore follows that the wavefunction must
either remain unchanged when two electrons are exchanged, or else it must change sign. In
fact, for electrons the wavefunction is required to change sign: this is the antisymmetry
principle.

2.3.1 The Born-Oppenheimer Approximation

It was stated above that the Schridinger equation cannot be solved exactly for any molecular
systems However, it is possible to solve the equation exactly for the simplest molecular
species, H; (and isotopically equivalent species such as HD™), when the motion of the elec-
trons is decoupled from the motion of the nuclei in accordance with the Born-Oppenheimer
approximation. The masses of the nuclei are much greater than the masses of the electrons (the
resting mass of the lightest nucleus, the proton, is 1836 times heavier than the resting mass of
the electron). This means that the electrons can adjust almost instantaneously to any changes
in the positions of the nuclei. The electronic wavefunction thus depends only on the positions
of the nuclei and not on their momenta. Under the Born-Oppenheimer approximation the
total wavefunction for the molecule can be written in the following form:

U, . (nuclei, electrons) = ¥(electrons) ¥ (nuclei) (2.31)

The total energy equals the sum of the nuclear energy (the electrostatic repulsion between
the positively charged nuclei) and the electronic energy. The electronic energy comprises
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the kinetic and potential energy of the electrons moving in the electrostatic field of the nuclei,
together with electron-electron repulsion: E,; = E(electrons) + E (nuclei).

When the Born-Oppenheimer approximation is used we concentrate on the electronic
motions; the nuclei are considered to be fixed. For each arrangement of the nuclei the
Schrodinger equation is solved for the electrons alone in the field of the nuclei. If it is desired
to change the nuclear positions then it is necessary to add the nuclear repulsion to the
electronic energy in order to calculate the total energy of the configuration.

2.3.2 The Helium Atom

We now return to the helium atom, our objective being to find a wavefunction that
describes the behaviour of the electrons. The Born-Oppenheimer approximation is not,
of course, relevant to systems with just one nucleus, and the wavefunction will be a func-
tion of the two electrons (which we shall label 1 and 2 with positions in space r; and 15). As
noted above, for polyelectronic systems any solution we find can only ever be an
approximation to the true solution. There are a number of ways in which approximate
solutions to the Schrodinger equation can be found. One approach is to find a simpler
but related problem that can be more easily solved and then consider how the differences
between the two problems change the Hamiltonian and thereby affect the solutions. This is
called perturbation theory and is most appropriate when the differences between the real
and simple problems are small. For example, a perturbation approach to tackling the
helium atom might choose as the related system a ‘pseudo atom’, containing two electrons
that interact with the nucleus but not with each other. Although this is a ‘three-body’
problem, the lack of any interaction between the electrons means that it can be solved
exactly using the method of the separation of variables. The separation of variables
technique can be applied whenever the Hamiltonian can be divided into parts that are
themselves dependent solely upon subsets of the coordinates. The equation to be solved
in this case is:

w_, z¢ B_, Z¢
_Z — A v/ . N = 2.32
{ 2m 1 47’['801"1 2m Vz 47!'801’2 } (rl, rz) EY (rl’ rz) ( )
Oz, in atomic units,
1, Z 1_, Z
il v/ B e = 2.33
{ 2V1 P 2V2 1’2 } (r1,12) = E¥(1y,12) (2.33)
We can abbreviate this equation to
(1 + HYU(r, 1) = EV(x1,12) (2.34)

#, and A, are the individual Hamiltonians for electrons 1 and 2. Let us assume that the
wavefunction can be written as a product of individual one-electron wavefunctions,
¢1(11) and ¢o(17): ¥(r1,12) = 1 (r1)$2(r2). Then we can write:

[+ H3)p1(11)d2(r2) = Egpn (11)2(x2) (235)
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Premultiplying by ¢1(r1)¢2(r2) and integrating over all space gives:
[[ar dratn e aten) 1+ Sl @r)6nte2) = [ [ st )inten)ine)onten) (23

or

[ arionen) #1600 [ draae)0a(en) + [ dra(xoner) | s

= EJdT1¢1(T1)¢1(1‘1)Jd72¢2(r2)¢2(1‘2) (237)

If we assume that the wavefunctions are normalised then it can easily be seen that the total
energy E is the sum of the individual orbital energies E; and E, (Ey = [ dryg (11)#191(11)
and E; = [ dmygo(r2) #2¢2(r2)). When the separation of variables method is used the solu-
tions for each electron are just those of the hydrogen atom (1s, 2s, etc.) in Equation (2.19)
with Z = 2.

We now wish to establish the general functional form of possible wavefunctions for the two
electrons in this pseudo helium atom. We will do so by considering first the spatial part of the
wavefunction. We will show how to derive functional forms for the wavefunction in which the
exchange of electrons is independent of the electron labels and does not affect the electron
density. The simplest approach is to assume that each wavefunction for the helium atom is
the product of the individual one-electron solutions. As we have just seen, this implies that
the total energy is equal to the sum of the one-electron orbital energies, which is not correct
as it ignores electron-electron repulsion. Nevertheless, it is a useful illustrative model. The
wavefunction of the lowest energy state then has each of the two electrons in a 1s orbital:
1s(1)1s(2) (2.38)

“1s(1) indicates a 1s function that depends on the coordinates of electron 1 (r;) and “1s(2)’
indicates a 1s function that depends upon the coordinates of electron 2 (r;). This wave-
function satisfies the indistinguishability criterion, for we obtain the same function when
we exchange the electrons - 1s(1)1s(2) is the same as 1s(2)1s(1). Its energy is twice that of
a single electron in a 1s orbital. What of the first excited state, in which one electron is
promoted to the 2s orbital? Two possible wavefunctions for this state are:

15(1)2s(2) (2.39)

1s(2)2s(1) (2.40)
Do these wavefunctions satisfy the indistinguishability criterion? In other words, do we get
the same function (or its negative) when we exchange the electrons? We do not, for when the
two electrons (1 and 2) are exchanged then a different wavefunction is obtained: “1s(1)2s(2)’
and “1s(2)2s(1)’ are not the same, nor is one simply minus the other. However, linear com-
binations of these two wavefunctions do not suffer from the labelling problem and so we

might anticipate that functional forms such as the following might constitute acceptable
solutions to the Schrédinger equation for the pseudo helium atom:

(1/v2)[15(1)25(2) + 15(2)2s(1)] (2.41)
(1/v/2)[1s(1)2s(2) — 1s(2)2s(1)] (2.42)
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The factor (1/v/2) ensures that the wavefunction is normalised. Of the three acceptable
spatial forms that we have described so far, two are symmetric (i.e. do not change sign
when the electron labels are exchanged) and one is antisymmetric (the sign changes when
the electrons are exchanged):

1s(1)1s(2) symmetric (2.43)
(1/v/2)[1s(1)2s(2) + 1s(2)2s(1)] symmetric (2.44)
(1/v/2)[1s(1)25(2) — 1s(2)2s(1)] antisymmetric (2.45)

We now need to consider the effects of electron spin. For two electrons 1 and 2 there are
four spin states; (1), 5(1), a(2), 8(2). The indistinguishability criterion holds for the spin
components as well, and so the following combinations of spin wavefunctions are possible.

a(1)a(2) symmetric (2.46)
B1B(2) symmetric (2 47)
(1/v2)[(1)B(2) + a(2)8(1)] symmetric (2.48)
(1/v2)[(1)B(2) — »(2)B(1)] antisymmetric (2.49)

When we combine the spatial and spin wavefunctions, the overall wavefunction must be
antisymmetric with respect to exchange of electrons. It is therefore only admissible to com-
bine a symmetric spatial part with an antisymmetric spin part, or an antisymmetric spatial
part with a symmetric spin part. The following functional forms are therefore permissible
functional forms for the wavefunctions of the ground and first few excited states of the
helium atom:

(1/v2)1s(1)15(2)[(1)3(2) — 2(2)8(1)] (2.50)
(1/2)[15(1)25(2) + 1s(2)2s(1)][(1)B(2) — a(2)B(1)] (2.51)
(1/v2)[1s(1)25(2) — 15(2)2s(1)]e(1)ex(2) (2.52)
(1/v2)[1s(1)2s(2) — 1s(2)2s(1)]3(1)5(2) (2.53)
(1/2)[15(1)25(2) — 15(2)2s(1)][(1)8(2) + (2)B(D)] (2.54)

2.3.3 General Polyelectronic Systems and Slater Determinants

We now turn to the general case. What is an appropriate functional form of the wavefunction
for a polyelectronic system (not necessarily an atom) with N electrons that satisfies the anti-
symmetry principle? First, we note that the following functional form of the wavefunction is
inappropriate:

¥(1,2,...N) = xa@Wxa( - xn(N) (2.55)

This product of spin orbitals is unacceptable because it does not satisfy the antisymmetry
principle; exchanging pairs of electrons does not give the negative of the wavefunction.
This formulation of the wavefunction is known as a Hariree product. The energy of a
system described by a Hartree product equals the sum of the one-electron spin orbitals.
A key conclusion of the Hartree product description is that the probability of finding an
electron at a particular point in space is independent of the probability of finding any
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gother electron at that point in space. In fact, it turns out that the motions of the electrons are
correlated. In addition, the Hartree product assumes that specific electrons have been
assigned to specific orbitals, whereas the antisymmetry principle requires that the electrons
are indistinguishable. Recall that for the helium atom, an acceptable functional form for the
lowest-energy state, is:

P =15(1)1s(2)[(1)B(2) — «(2)8(1)]

=1s(1)1s(2)(1)3(2) — 1s(1)1s(2)x(2)B(1) (2.56)
This can be written in the form of a 2 x 2 determinant:
1s(1)e(1)  1s(1)A(D) 257

1s(2)(2)  1s(2)5(2)
The two spin orbitals are
x1=1s(1)a(1) and x, =1s(1)B(1) (2.58)
A determinant is the most convenient way to write down the permitted functional forms of a
polyelectronic wavefunction that satisfies the antisymmetry principle. In general, 1f we have

N electrons in spin orbitals x1, X2, - - -, Xy (Where each spin orbital is the product of a spatial
function and a spin function) then an acceptable form of the wavefunction is:
xi) x@) - xw(D)
o 1 | X1 2 x(2) - XN(2) (2.59
VNI : : =)
x1i(N) x2(N) -+ xn(N)

As before, x;(1) is used to indicate a function that depends on the space and spin coordinates
of the electron labelled "1’. The factor 1/ /NI ensures that the wavefunction is normalised; we
shall see later why the normalisation factor has this particular value. This functional form of
the wavefunction is called a Slater determinant and is the simplest form of an orbital wave-
function that satisfies the antisymmetry principle. The Slater determinant is a particulatly
convenient and concise way to represent the wavefunction due to the special properties
of determinants. Exchanging any two rows of a determinant, a process which corresponds
to exchanging two electrons, changes the sign of the determinant and therefore directly leads
to the antisymmetry property. If any two rows of a determinant are identical, which would
correspond to two electrons being assigned to the same spin orbital, then the determinant
vanishes. This can be considered a manifestation of the Pauli principle, which states that
no two electrons can have the same set of quantum numbers. The Pauli principle also
leads to the notion that each spatial orbital can accommodate two electrons of opposite spins.

When the Slater determinant is expanded, a total of N! terms results. This is because there are
NI different permutations of N electrons. For example, for a three-electron system with spin
orbitals y;, x, and 3 the determinant is

x1(1) x2(1) x3(1)
‘1’=——1~ x12) x(2) x(2) (2.60)
x13) x2(3) x3(3)
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Expansion of the determinant gives the following expression (ignoring the normalisation
constant):

x(Dx2(2)x33) — x1(Wx3(2x2(3) + x2(1)x3(2)x1(3)
—x2(1)xa (2)X3(3) + X3(1)X1(2)X2(3) - Xa(l)Xz(z)Xl('O’) (2.61)

This expansion contains six terms (= 3!). The six possible permutations of three electrons
are: 123, 132, 213, 231, 312, 321. Some of these permutations involve single exchanges of
electrons; others involve the exchange of two electrons. For example, the permutation 132
can be generated from the initial permutation by exchanging electrons 2 and 3. If we do
so then the following wavefunction is obtained:

x1(Dx2(3)x3(2) — x1(D)x3(3)x2(2) + x2(1)x3(3)x1(2)

- x2(Dx103)xs (2)+xs Wxa (3)X2(2) — X3 (1)X2(3)X1(2)

= —x1(D)x22x303) + x1(Dx3(2x2(3) — x2(1)xs 2)x(3)

+ x2(Dxa@x3(3) — xa(Hx1(2)x2(3) + x3(D)x2(2)x1(3)
=-U (2.62)
By contrast, the permutation 312 requires that electrons 1 and 3 are exchanged and then
electrons 1 and 2 are exchanged. This gives rise to an unchanged wavefunction. In general,
an odd permutation involves an odd number of electron exchanges and leads to a wave-

function with a changed sign; an even permutation involves an even number of electron
exchanges and returns the wavefunction unchanged.

For any sizeable system the Slater determinant can be tedious to write out, let alone the
equivalent full orbital expansion, and so it is common to use a shorthand notation. Various
notation systems have been devised. In one system the terms along the diagonal of the
matrix are written as a single-row determinant. For the 3 x 3 determinant we therefore have:

x1(1) x2(1) xs(1)
1?2 0? x@|=hk x Xl (2.63)
x1(3) X2(3) x3(3)

The normalisation factor is assumed. It is often convenient to indicate the spin of each
electron in the determinant; this is done by writing a bar when the spin part is 3 (spin
down); a function without a bar indicates an a spin (spin up). Thus, the following are all
commonly used ways to write the Slater determinantal wavefunction for the beryllium
atom (which has the electronic configuration 15225%):

$1(1) d1s(D) ¢as(1) d2s(D)
1 |92 ¢1:(2) 6262 b2 (2)
V2E|61(3) 61:3) ¢:(3) $x0)
$1(8) d1s(4) ¢s(4) dn(d)

= 1¢1s q—gls ®2s ‘{’25|
=|1s 1s 2s 2| (2 64)
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An important property of determinants is that a multiple of any column can be added to
another column without altering the value of the determinant. This means that the spin
orbitals are not unique; other linear combinations give the same energy. To illustrate this,
consider the first excited state configuration of the helium atom (1s°2s%), which can be
written as the following 2 x 2 determinant:
1s(1)e(1) 2s(1)a(1)
1s(2)a(2) 2s(2)a(2)
We now introduce two new ‘spin orbitals”:

, 1s4+2s _1s—12s

X1= \/i ;. X2 = \/i

With these new orbitals the value of the determinant is as follows:
M) xa(1)| _ [1s(1) +2s(1)][1s(2) — 2s(2)]a(1)o(2)
X1(2) x4(2) 2
[1s(1) — 2s(1)][1s(2) + 2s(2)]a(1)x(2)
2
=-v (2.67)

= 15(1)a(1)25(2)(2) — 1s(2)e(2)25(1) (1) (265)

a (2.66)

o~

This can be helpful because it may enable more meaningful sets of orbitals to be generated
from the original solutions. Molecular orbital calculations may give solutions that are
‘smeared out’ throughout the entire molecule, whereas we may find orbitals that are
localised in specific regions (e.g. in the bonds between atoms) to be more useful.

2.4 Molecular Orbital Calculations

2.4.1 Calculating the Energy from the Wavefunction: the Hydrogen
Molecule

In our treatment of molecular systems we first show how to determine the energy for a given
wavefunction, and then demonstrate how to calculate the wavefunction for a specific
nuclear geometry. In the most popular kind of quantum mechanical calculations performed
on molecules each molecular spin orbital is expressed as a linear combination of atomic
orbitals (the LCAO approach™®). Thus each molecular orbital can be written as a summation
of the following form:

K
=Y Cuity (2.68)
p=1

lfff is a (spatial) molecular orbital, ¢, is one of K atomic orbitals and c,; is a coefficient. In a
simple LCAO picture of the lowest energy state of molecular hydrogen, H,, there are two
electrons with opposite spins in the lowest energy spatial orbital (labelled log), which is

" Computational quantum chemistry is well endowed with acronyms and abbreviations. A list of some
of the more common ones can be found in Appendix 2.1
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formed from a linear combination of two hydrogen-atom 1s orbitals:
log = A(lsa + 1sp) (2.69)
A is the normalisation factor, whose value is not important in our present discussion. To

calculate the energy of the ground state of the hydrogen molecule for a fixed internuclear
distance we first write the wavefunction as a 2 x 2 determinant:

v =

where
x1(1) = 1og(Da(1)
x2(1) = 1og(1)5(1)
x1(2) = 1og(2)a(2)
x2(2) = 10g(2)5(2)

For the hydrogen molecule, the Hamiltonian comprises the kinetic energy operator for each
electron plus the potential energy operator due to the Coulomb attraction between the two
electrons and the two nuclei, and the repulsion between the two electrons. In atomic units
the Hamultonian is thus

(2.71)

1 Z 1
/f:—lvﬁ——v%——‘*—g‘i—z—‘*—é‘dr— (2.72)
2 A "B Taa T T2
The electrons have been labelled 1 and 2 and the nuclei have been labelled A and B. For H,
the nuclear charges Z, and Zg are both equal to 1. First we need to consider how to calculate

the energy of this hydrogen molecule. This is obtained using Equation (2.7):

_Ju#vdr
T [evdr
In general, a quantum mechanical calculation provides molecular orbitals that are normalised

but the total wavefunction is not. The normalisation constant for the wavefunction of the two-
electron hydrogen molecule is 1/ /2 and so the denominator in Equation (2.73) is equal to 2.

E (2.73)

We now substitute the hydrogen molecule wavefunction into Equation (2.73) to provide the
following:

E= 3 [[mdn{baa) - xaMu @13V - 198 - (1) - (1/rw)

— (1/72a) = (1/728) + (1/r2)]Da(Dx2(?) — x2(Wxa @)1} (2.74)

dr; indicates that the integration is over the spatial and spin coordinates of electron i. It is
useful to separate the Hamiltonian operator into two H; Hamiltonians plus the inter-
electronic repulsion term:

E= %” dm i (Dxe(2) — xa (W @1 + # + (1/r2)]

x [x1(Dx2(2) — xa(xa(2)]} (275)
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where

1, 1 1 1, 1 1
Hy=—Vi—— = and Hy=--Vi-—_— 2.76
! 27 A s 2 22 A T (276)

We can now start to separate the integral in Equation (2.74) into individual terms and
identify the various contributions to the electronic energy:

k= J J dry drox1(Dx2 () (#1)xa(1)x2(2)

= |4 dma W @(# )xa(Dxa @) + -
+ ]| 4 dnxa (e (#2)xa (1)x2(2)

— |4 dra(xe @)X @) + -

+ [[ an et (%)xl (1x2(2)

- [[an dnxla)m(z)(%)m(l)xl @)+ (277)

Each of these individual terms can be simplified if we recognise that terms dependent upon
electrons other than those in the operator can be separated out. For example, the first term in
the expansion, Equation (2.77), is:

” dry dnxa (Dxa()(#1)x1 (Dx2(2) (2.78)

The operator J#; is a function of the coordinates of electron 1 only, so terms involving
electron 2 can be separated out as follows:

” dry dryxa (D)X (2) (#1)x (Dx2(2)

= [dma@na® [amam(-5v - L )aw (279)
A T
If the molecular orbitals are normalised, the integral [drx»(2)x2(2) equals 1. Further
simplification can be achieved by splitting the integral involving electron 1 into separate
integrals over the spatial and spin parts; the integral over spin orbitals is equal to the product
of an integral over the spatial coordinates and an integral over the spin coordinates:

Jdn x1(1) (—v% — % — é)Xl(l)
= [ty (—%v% L 7};) 10y(1) [dora(1)a() (280)

dv indicates integration over spatial coordinates and do indicates integration over the spin
coordinates. The integral over the spin coordinates equals 1. This expression corresponds
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to the sum of the kinetic and potential energy of an electron in the orbital 1o in the electro-
static field of the two bare nuclei. This integral can in turn be expanded by substituting the
atomic orbital combination for 1o,:

Jdullag(l) (— Vi- % - r]lB) 1o,(1)
_ A2 J oy {155 (1) + 1ss(1)} (- Vi- ;11—A - ;3—3) (1sa() +1ss(1)}  (281)

A is the normalisation constant. The integral in Equation (2.81) can in turn be factorised to
give a sum of integrals, each of which involves a pair of atomic orbitals:

1

[ i0a 1) 1080003 (-3 8 == 1) + 1)

~ [amtead( -39 - - - o J1satt)

A "B

1 1 1
+ [antsn ) (—Ev% -1 ﬁ—B)lsBa) oo (282)

Let us now apply the same procedure to the second term in Equation (2.77):
|Jam dmapa@ e = e [gme@ne @)

This particular integral is zero because the molecular orbitals are orthogonal and so the
integral over the coordinates of electron 2 equals zero:

amena@ =0 (284)
A similar procedure can be applied to the other integrals involving electron-nuclear

interactions; it turns out that there are four non-zero integrals, each of which is equal to
the energy of a single electron in the field of the two hydrogen nuclei.

There remain four integrals arising from electron-electron interactions. These are:

[[anamxanae (2 )ate@ + [[an e (% )emue

-~ [[am e D) - | [ arnemue) (% )utna@ @)

The first two of these can be simplified as follows:
” dr dryxa(1)x2(2) (?}2)’“ (Dxa(2) = ” dvr dvglog(1)10,(2) (%) 1oy(1)104(2)
x Jdo’la(l)a(l)J doB(2)8(2)

- ” vy dvy1og(1)10(1) (%;) 1oy(D)105(2) (286)
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According to the Born interpretation of the wavefunction, 1oy(r1)10g4(1r1) equals the electron
density of electron 1 in orbital 1o, at a position r1. Similarly, 1o,4(r2)104(r,) is the electron
density of electron 2. The electrostatic repulsion between these regions of electron density
thus equals 1oy (1)) 10g(r1) x (1/112) X 1og(12)104(r2), where rq; is the distance between the
two electrons. The integral of this function over all space thus corresponds to the electiro-
static (Coulomb) repulsion between the two orbitals.

If we substitute the atomic orbital expansion, we obtain a series of two-electron integrals,
each of which involves four atomic orbitals:

[ [ dustognoy(2) (71 Y1 (11042)
— [ dustsn@sa@) (- J1sn1802)
+ [ drsasn@) (5 J1sa(y1sa() + - 287)
The remaining two integrals from Equation (2.85) are:
[[an e (5 ) ara@ = | [ dato o) (- )1ey(a10,

x Jdala(l),@(l)J do8(2)a(2) (2.88)

” dn dryxe(1)xa (2)( ) a(Dxa(2) = ” vy dvyloy(1)10,(2) %)mga)mga)

x Jdo—l,@(l)a(l)J dora(2)5(2) (2.89)

Both of these integrals are zero due to the orthogonality of the electron spin states o

and 8.

The triplet excited state of H, is obtained by promoting an electron to a higher-energy
molecular orbital. This higher-energy (antibonding) orbital is written 1o, and can be con-
sidered to arise from two 1s orbitals as follows:

10’u = A(lSA - 1SB) (290)

The triplet state has two unpaired electrons with the same spin («) and so the wavefunction
state is:

1 1 1 1

Gga( ) Gua( ) (291)
loga(2) loya(2)

If we now expand the expression for the energy as for the ground state, terms analogous to

the electron-nucleus and electron-electron interactions can again be obtained. However, the

Cross-terms are no longer equal to zero as was the case for the ground state, because the



46 Chapter 2

electron spins are now the same (both ). For example, compare with Equation (2.88):
1 1
[[amdmae® (L e = [[atmonin (5 )1
x Idala(l)a(l) Jdaza(2)a(2) (2.92)

This contribution is called the exchange interaction. This appears with a minus sign in the
expression for the total energy and so acts to stabilise the triplet 1s'2s! state over the
analogous singlet state. The exchange term is only non-zero for electrons of the same
spin. It has the effect of making electrons of the same spin ‘avoid’ each other. As a result
of this each electron can be considered to have a ‘hole’ associated with it. This hole is
known as the exchange hole or the Fermi hole.

2.4.2 The Energy of a General Polyelectronic System

The hydrogen molecule is such a small problem that all of the integrals can be written out in
full. This is rarely the case in molecular orbital calculations. Nevertheless, the same
principles are used to determine the energy of a polyelectronic molecular system. For an
N-electron system, the Hamiltonian takes the following general form:

1, , 101 1 1 )
H=-=2N VPt 2.93
( 2; ' na T 713 (2%9)

As with the hydrogen molecule, we have adopted the convention that the nuclei are labelled
using capital letters A, B, C, etc,, and the electrons are labelled 1, 2,3, ....

Recall that the Slater determinant for a system of N electrons in N spin orbitals can be written:

) x@® x@ .. xn(@
x1(2) %@ x2 ... xw(2)
x18)  x@) x@) ... xnB) (2.94)
x1(N) x2(N) x3(N) . . xn(N)

Each term in the determinant can thus be written x;(1)x;(2)xx(3) - - - Xu(N — 1)x,(N) where i,
j, k, ..., 4,0 is a series of N integers.

As usual, the energy can be calculated from E = [@#¥/ [ @U:

| ot - [+ Jan dn---dm{[xi(l)xj(z)xk('o‘)--‘]
. (_%Zviz—(l/fm)*(1/f13)"'+(1/712)+(1/713)+"')

< bl @) 1) 295)
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I\II\II = J e Jdrl dry - din{ G (D (2)xx(3) - - 1xa (D (Dxa(3) - - 1} (2.96)

We can now see why the normalisation factor of the Slater determinantal wavefunction
is1 /\/’ If each determinant contains NI terms then the product of two Slater determinants,
gdetermmant][deternunant] contains (N') terms. However, if the spin orbitals form an
arthonormal set then only products of identical terms from the determinant will be non-
zero when integrated over all space. We can illustrate this with the three-electron example.
Corisidering just the first two terms in the expansion we obtain the following:

m dry dry dry s (Dx2(2)x6(3) = 31 () x(2)x2(3) + - ]

X xa(Mx2(2)x33) — x1(Dxa(2)x2(3) +-++] (2.97)

When multiplied out this gives:

”Jdﬁ dry drs[x1(Dx2 (23 3] D1 (Dx2(2)x5(3)]
_ ”j dry iy dr 1 (Dx2 (2 3)] b (Dxs(Dxa(3)] +

+ ”j dry dr drs xa(Dxs (223 b (Dxa(Dx2(3)] + -+ (298)

The first of the integrals in Equation (2.98) equals 1 (if the spin orbitals are normalised). The
second term is zero because the terms involving both electrons 2 and 3 are different (for
example, the integral [ dryx,(2)x3(2) will be zero due to the orthogonality of the spin orbitals
x2 and x3). The third term in Equation (2.98) will be equal to 1, and so on. It turns out that
there are N! such non-zero terms. Thus if each individual term in the determinant is normal-
ised, then:

Jw = NI (299)

Hence the normalisation factor for the determinantal wavefunction is 1/vNL.

Turning now to the numerator in the energy expression (Equation (2.95)), this can be broken
down into a series of one-electron and two-electron integrals, as for the hydrogen molecule.
Each of these individual integrals has the general form:

I . Jdﬁ dr, ... [term1joperator|term2)] (2100)

[term1] and [term?2] each represent one of the NI terms in the Slater determinant. To simplify
this integral, we first recognise that all spin orbitals involving an electron that does not
appear in the operator can be taken outside the integral. For example, if the operator is
1/r1a, then all spin orbitals other than those that depend on the coordinates of electron 1
can be separated from the integral. The orthogonality of the spin orbitals means that the
integral will be zero unless all indices involving these other electrons are the same in



48 Chapter 2

[term1] and [ferm?2]. Again, to use our three-electron system as an example:

dry dry dr3[xa(1)x2(2)x5(3)] -L D1 (Dx2(2)x3(3)]
T

1A
= [[ardmba@r@lbe@xu) [amata (— ;f—A)xl )
= [dma() (—%)ma) 2101)
But:
1
”j dry dr dr3 1 (Dx2(2)xs(3)] (— a) ba(Dxs(2xG)]
= [[dranha@r @l [dnu) (— i) ()
—0 (2.102)

For integrals that involve two-electron operators (i.e. 1/7;), only those terms that do not
involve the coordinates of the two electrons can be taken outside the integral. For example:

m dry dry drylxa (1x2(Dx3(3) (rl) b (D2 B)]

12

= || dn dmofx1(1)x2(2)] L [x1(2)x2(2)] | d73x3(3)x3(3)
r

12

= [[éndnbanaca) ( 12) @) (2.103)

But:

[ j’ j’ dry dry drslxa (Dx2(2)x6 (3) (-}) (D@0

12

= [[4m draba (221 [ = ) b @5 (2)] | dmax3(3)22(3)
1

12
=0 (2.104)

As a consequence of these results, most of the individual integrals in the expansion will
be zero. Nevertheless, it can be readily envisaged that there will still be an extremely
large number of integrals to consider for all except the smallest problems. It is thus more
convenient to write the energy expression in a concise form that recognises the three
types of interaction that contribute to the total electronic energy of the system.

First, there is the kinetic and potential energy of each electron moving in the field of the
nuclei. The energy associated with this contribution for the molecular orbital y; is often
written H”™ and for M nuclei is given by:

M 7

HE™ = jdnxi(l)(—%v,z -2 —)xi(l) (2:105)

ryms L%
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Far N electrons in N molecular orbitals this contribution to the total energy is:

N
1 Z
= () (-3 - 3 2 ) (1) = S (2:106)
i=1 =174 i=1

Here we have followed convention and have used the label ‘1" wherever there is an integral
involving the coordinates of a single electron, even though the actual electron may not be
‘electron 17 Similarly, when it is necessary to consider two electrons then the labels 1 and
2 are conventionally employed. H;”™ makes a favourable (i.e. negative) contribution to
the electronic energy.

The second contribution to the energy arises from the electrostatic repulsion between pairs
of electrons. This interaction depends on the electron-electron distance and, as we have
seen, is calculated from integrals such as:

I = [[amaran @) (5 Jxitwx (2.107)

The symbol J;, is often used to represent this Coulomb interaction between electrons in spin
orbitals i and j, and is unfavourable (i.e. positive). The total electrostatic interaction between
the electron in orbital x; and the other N — 1 electrons is a sum of all such integrals, where
the summation index j runs from 1 to N, excluding i:

N
ulomi 1
B = 3 [ draa(1)(2) == 3 2)(1)
i .

=3 [an dmix gt @ (2108)
i

The total Coulomb contribution to the electronic energy of the system is obtained as a double
summation over all electrons, taking care to count each interaction just once:

N N N
Egd™ =Y > Jdﬁ dnx,a)x,() X(2)x(2) = Z D i (2:109)
i=1j=i+1 i=1j=i+1

The third contribution to the energy is the exchange ‘interaction’. This has no classical
counterpart and arises because the motions of electrons with parallel spins are correlated:
whereas there is a finite probability of finding two electrons with opposite (i.e. paired)
spins at the same point in space, where the spins are the same then the probability is
zero. This can be considered a manifestation of the Pauli principle, for if two electrons
occupied the same region of space and had parallel spins then they could be considered
to have the same set of quantum numbers. Electrons with the same spin thus tend to
‘avoid’ each other, and they experience a lower Coulombic repulsion, giving a lower (i.e.
more favourable) energy. The exchange interaction involves integrals of the form:

K, = | [dm draniin @) (1 )x@00) (2110)
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This integral is only non-zero if the spins of the electrons in the spin orbitals x; and ; are the
same. The energy due to exchange is often represented as Kj;. The exchange energy between
the electron in spin orbital x; and the other N — 1 electrons is:

N
exch 1
EYCTE = dry drya(D)x;(2) | —— Jxi(@)x(D) (2.111)
i "2
The total exchange energy is calculated thus:
N N N N
xch 1
=Y > [[andmau@ (5 Ju@xm =3 3 K @1
i=1 y=it1 12 j=1 j=i+1

The prime on the counter j indicates that the summation is only over electrons with the same
spin as electron i.

2.4.3 Shorthand Representations of the One- and Two-electron Integrals

Various shorthand ways have been devised to represent the integrals involved in an
electronic structure calculation. The two-electron integrals J; and K; are particularly long-
winded to write out. In one scheme the Coulomb interaction J; is written as:

<x$‘ X; Xin> (2.113)

In this notation the complex parts are written on the left-hand side and the real parts on the
right. Sometimes the x symbol is eliminated:

T12

<ij 1 ij> (2.114)
12
The exchange integrals would be written:
<ij 1 ji> (2.115)
12

in this notation.

A notation that is widely used in the chemical literature writes the orbitals that are functions
of electron 1 on the left-hand side (with the complex conjugate orbital first, if appropriate)
and the orbitals that are functions of electron 2 on the right-hand side (again with the
complex conjugate orbital first). In this notation, which is the one that we will adopt, the
Coulomb integral is written (iijj) and the exchange integral (ij|ji). The one-electron integrals
such as Equation (2.105) are written as follows:

(i‘—lv?—iéé ')zfdf (1) —1V?—§:Z—A (1) (2.116)
2 A=1T1A] A 27 fra & .

When calculating the total energy of the system, we should not forget the Coulomb inter-
action between the nuclei; this is constant within the Born-Oppenheimer approximation
for a given spatial arrangement of nuclei. When it is desired to change the nuclear positions,
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it is of course necessary to take the internuclear repulsion energy into account, whuch is
calculated using the Coulomb equation:

>y IQ‘ABB (2.117)

2.4.4 The Energy of a Closed-shell System

In molecular modelling we are usually concerned with the ground states of molecules, most
of which have closed-shell configurations. In a closed-shell system containing N electrons in
N/2 orbitals, there are two spin orbitals associated with each spatial orbital v;: ¢y and ;3.
The electronic energy of such a system can be calculated in a manner analogous to that for
the hydrogen molecule. First, there is the energy of each electron moving in the field of the
bare nuclei For an electron in a molecular orbital x;, this contributes an energy Hi™™. If there
are iwo electrons in the orbital then the energy is 2H;™ and for N/2 orbitals the total
contribution to the energy will be:

N/2
> 2HP™ (2.118)

i=1

If we consider the electron-electron terms, the interaction between each pair of orbitals v;
and y; involves a total of four electrons. There are four ways in which two electrons in
one orbital can interact in a Coulomb sense with two electrons in a second orbital, thus
giving 4J;. However, there are just two ways to obtain paired electrons from this arrange-
ment, giving a total exchange contribution of —2Kj. Finally, the Coulomb interaction
between each pair of electrons in the same orbital must be included; there is no exchange
interaction because the electrons have paired spins. The total energy is thus given as:

N/2 N2 Np2 N/2
E=2Y H+) > (4;—2K)+> I (2.119)
i=1 i=1j=i+1 im=1
A more concise form of this equation can be obtained if we recognise that J; = Kj;:
N/2 N/2 NJ2
E=2> HP*+> > (2], - Ky) (2.120)
i=1 i=1j=1

2.5 The Hartree-Fock Equations

In our hydrogen molecule calculation in Section 2.4.1 the molecular orbitals were provided
as input, but in most electronic structure calculations we are usually trying to calculate the
molecular orbitals. How do we go about this? We must remember that for many-body
problems there is no “correct’ solution; we therefore require some means to decide whether
one proposed wavefunction is ‘better’ than another. Fortunately, the variation theorem
provides us with a mechanism for answering this question. The theorem states that the
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energy calculated from an approximation to the true wavefunction will always be greater
than the true energy. Consequently, the better the wavefunction, the lower the energy.
The “best’ wavefunction is obtained when the energy is a minimum. At a minimum, the
first derivative of the energy, 6E, will be zero. The Hartree-Fock equations are obtained
by imposing this condition on the expression for the energy, subject to the constraint that
the molecular orbitals remain orthonormal. The orthonormality condition is written in
terms of the overlap integral, Sy, between two orbitals i and j. Thus

S = J Xixj 4T = &; (6; is the Kronecker delta) (2.121)

This type of constrained minimisation problem can be tackled using the method of Lagrange
multipliers. In this approach (see Section 1.10.5 for a brief introduction to Lagrange
multipliers) the derivative of the function to be minimised is added to the derivatives of
the constraint(s) multiplied by a constant called a Lagrange multiplier. The sum is then
set equal to zero. If the Lagrange multiplier for each of the orthonormality conditions is
written )y, then:

SE+6> > XS =0 (2.122)
P

In the Hartree-Fock equations the Lagrange multipliers are actually written —2¢;; to reflect
the fact that they are related to the molecular orbital energies. The equation to be solved is
thus:

SE-26% > €;S;=0 (2.123)
P

We will not describe in detail how this equationis solved, as it is rather complicated. However,
a qualitative picture is possible. The major difference between polyelectronic systems and
systems with single electrons is the presence of interactions between the electrons, which,
as we have seen, are expressed as Coulomb and exchange integrals. Suppose we are given
the task of finding the ‘best’ (i.e. lowest energy) wavefunction for a polyelectronic system.
We wish to retain the orbital picture of the system, in which single electrons are assigned to
individual spin orbitals. The problem is to find a solution which simultaneously enables all
the electronic motions to be taken into account, as a change in the spin orbital for one electron
will influence the behaviour of an electron in another spin orbital due to the coupling of the
electronic motions. We concentrate on a single electron in a spin orbital y; in the field of the
nuclei and the other electrons in their (fixed) spin orbitals x;. The Hamiltonian operator for
the electron in y; contains three terms appropriate to the three different contributions to the
energy that were identified above (core, Coulomb, exchange). The result can be written as
an integro-differential equation for x; that has the following form:

[_ %v% - fj —fj‘]x,-(l) + Udexj@)xj@)%]Xf(l)

A=l A

-3 [ dmy@n@ o | = Cen 2124)
j#i 12 j
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This expression can be tidied up by introducing three operators that represent the contribu-
tions to the energy of the spin orbital y; in the “frozen” system:

The core Hamiltonian operator, #°°(1):

%core(l) = _lv% - id: zé_ (2'125)
2 e r1a

In the absence of any interelectronic interactions this would be the only operator present,
corresponding to the motion of a single electron moving in the field of the bare nuclei.

The Coulomb operatot, ¢ ]-(1):
1
70 = a2 =) :126)
This operator corresponds to the average potential due to an electron in ;.

The exchange operator 47;(1):
A(Dxi(1) = Hdex,( )— ! (2)] xj(1) (2.127)

The form of this operator is rather unusual, insofar as it must be defined in terms of its effect
when acting on the spin orbital ;.

Equation (2.124) can thus be written:

H (Dxi(1) + Z f] (Mxi(1) Z A (1 Ixi(1) = Z 51]X] (2'128)
j#i j#i
Making use of the fact that {_#;(1) — o#;(1)}x;(1) = 0 leads to the following form:
N
=)+ Y A0 = o0 ) = Zsl,x, (2129
j=1
Or, more simply:
i = EgX (2.130)
j
/i is called the Fock operator:
N
A1) = A1) + 3 A1) - (1)} (2131)
i=1
For a closed-shell system, the Fock operator has the following form:
N/2
1) = A= (1) + Z{zf,-a) - A;5(1)} (2.132)

The Fock operator is an effective one-electron Hamiltonian for the electron in the poly-
electronic system However, written in this form of Equation (2.130), the Hartree-Fock
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equations do not seem to be particularly useful: on the left-hand side we have the Fock
operator acting on the molecular orbital x;, but this returns, not the molecular orbital multi-
plied by a constant as in a normal eigenvalue equation, but rather a series of orbitals x; multi-
plied by some unknown constants ;. This is because the solutions to the Hartree-Fock
equations are not unique. We have already seen that the value of a determinant is unaffected
when the multiple of any column is added to another column. If such a transformation is
performed on the Slater determinant, then a different set of constants & would be obtained
with the spin orbitals x; being linear combinations of the first set. Certain transformations
give rise to localised orbitals, which are particularly useful for understanding the chemical
nature of the system. These localised orbitals are no more ‘correct’ than a delocalised set.
Fortunately, it is possible to manipulate Equations (2.130) mathematically so that the
Lagrangian multipliers are zero unless the indices i and j are the same. The Hartree-Fock
equations then take on the standard eigenvalue form:

FiXi = EiXi (2.133)

Recall that in setting up these equations, each electron has been assumed to move in a
‘fixed’ field comprising the nuclei and the other electrons. This has important implications
for the way in which we attempt to find a solution, for any solution that we might find by
solving the equation for one electron will naturally affect the solutions for the other electrons
in the system. The general strategy is called a self-consistent field (SCF) approach. One way to
solve these equations is as follows. First, a set of trial solutions x; to the Hartree-Fock
eigenvalue equations are obtained. These are used to calculate the Coulomb and exchange
operators. The Hartree-Fock equations are solved, giving a second set of solutions x;,
which are used in the next iteration. The SCF method thus gradually refines the individual
electronic solutions that correspond to lower and lower total energies until the point is
reached at which the results for all the electrons are unchanged, when they are said to be
self-consistent.

2.5.1 Hartree—-Fock Calculations for Atoms and Slater’s Rules

The Hartree-Fock equations are usually solved in different ways for atoms and for
molecules. For atoms, the equations can be solved numerically if it is assumed that the
electron distribution is spherically symmetrical. However, these numerical solutions are
not particularly useful. Fortunately, analytical approximations to these solutions, which
are very similar to those obtained for the hydrogen atom, can be used with considerable
success. These approximate analytical functions thus have the form:

P = Rnl(r) Yo (07 d)) (2134)

Y is a spherical harmonic (as for the hydrogen atom) and R is a radial function. The radial
functions obtained for the hydrogen atom cannot be used directly for polyelectronic atoms
due to the screening of the nuclear charge by the inner shell electrons, but the hydrogen atom
functions are acceptable if the orbital exponent is adjusted to account for the screening effect.
Even so, the hydrogen atom functions are not particularly convenient to use in molecular
orbital calculations due to their complicated functional form. Slater [Slater 1930] suggested
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a simpler analytical form for the radial functions:
Ru(r) = (20" 2(2n) 2t e (2.135)

These functions are universally known as Slater type orbitals (STOs) and are just the
leading term in the appropriate Laguerre polynomials. The first three Slater functions are
as follows.

Rys(r) = 2¢%2 7% (2.136)
1/2
Ros(r) = Ryp(r) = (%) re ¥ (2.137)
7N\1/2
Rulr) = Roplr) = Rar) = (55 ) 7 (2138)

To obtain the whole orbital we must multiply R(r) by the appropriate angular part. For
example, we would use the following expressions for the 1s, 2s and 2p, orbitals:

bua(e) = /@ exp(—¢1) (2139)
¢os(r) = /¢ /3mrexp(—(r) (2.140)
2p, (1) = 1/ /mexp(—(r) cos b (2.141)

Slater provided a series of empirical rules for choosing the orbital exponents ¢, which are
given by:
Z—o
o
Z is the atomic number and ¢ is a shielding constant, determined as below. n* is an effective
principal quantum number, which takes the same value as the true principal quantum
number for n =1, 2 or 3, but for n =4, 5, 6 has the values 3.7, 4.0, 4.2, respectively. The
shielding constant is obtained as follows:

(2.142)

First, divide the orbitals into the following groups:
(1s); (2s, 2p); (3s, 3p); (3d); (4s, 4p); (4d); (4f); (Bs, 5p); (5d) (2.143)
For a given orbital, o is obtained by adding together the following contributions:

(a) zero from an orbital further from the nucleus than those in the group;

(b) 0.35 from each other electron in the same group, but if the other orbital is the 1s then the
contribution is 0.3;

(¢} 1.0for each electron in a group with a principal quantum number 2 or more fewer than
the current orbital;

(d) for each electron with a principal quantum number 1 fewer than the current orbital: 1.0 if
the current orbital is d or £; 0.85 if the current orbital is s or P

The shielding constant for the valence electrons of silicon is obtained using Slater’s rules as
follows. The electronic configuration of Si is (1s%)(2s?2p®)(3s?3p?). We therefore count
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3 x 0.35 under rule (b), 2.0 under rule (c) and 8 x 0.85 under rule (d), giving a total of 9.85.
When subtracted from the atomic number (14) this gives 4.15 for the value of Z — 0.

2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree—Fock
Theory

Direct solution of the Hartree-Fock equations is not a practical proposition for molecules
and so it is necessary to adopt an alternative approach. The most popular strategy is to
write each spin orbital as a linear combination of single electron orbitals:

K
b= Cudy (2.144)
v=1

The one-electron orbitals ¢, are commonly called basis functions and often correspond to
the atomic orbitals. We will label the basis functions with the Greek letters p, v, A and o.
In the case of Bquation (2.144) there are K basis functions and we should therefore
expect to derive a total of K molecular orbitals (although not all of these will necessarily
be occupied by electrons). The smallest number of basis functions for a molecular system
will be that which can just accommodate all the electrons in the molecule. More sophisti-
cated calculations use more basis functions than a minimal set. At the Hartree-Fock limit
the energy of the system can be reduced no further by the addition of any more basis
functions; however, it may be possible to lower the energy below the Hartree-Fock limit
by using a functional form of the wavefunction that is more extensive than the single
Slater determinant.

In accordance with the variation theorem we require the set of coefficients c,; that gives the
lowest-energy wavefunction, and some scheme for changing the coefficients to derive that
wavefunction. For a given basis set and a given functional form of the wavefunction (i.e.
a Slater determinant) the best set of coefficients is that for which the energy is a minimum,
at which point

OE
— = 145
for all coefficients c,;. The objective is thus to determine the set of coefficients that gives the
lowest energy for the system.

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations

We shall initially consider a closed-shell system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for such a system was first proposed by Roothaan
[Roothaan 1951] and (independently) by Hall [Hall 1951]. The resulting equations are known
as the Roothaan equations or the Roothaan-Hall equations. Unlike the integro-differential
form of the Hartree-Fock equations, Equation (2.124), Roothaan and Hall recast the
equations in matrix form, which can be solved using standard techniques and can be applied
to systems of any geometry. We shall identify the major steps in the Roothaan approach,
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starting with the expression for the Hartree-Fock energy for our closed-shell system,
Equation (2.120):

N/2 N/2 Nj2
E=2> H+> > (2 —Ky) (2.146)
i=1

i=1 j=1

The corresponding Fock operator is (Equation (2.132)):
N/2
£i1) = #°°() + Y _{245(1) - 45D} (2.147)
i=1

We now introduce the atomic orbital expansion for the orbitals ; and substitute for the
corresponding spin orbital y; into the Hartree-Fock equation, #;(1)x;(1) = exxi(1):

K K
/1(1) Z CW¢V(1) =§& Z CV1¢V(1) (2148)
v=1 v=1

Pre-multiplying each side by ¢,(1) (where ¢, is also a basis function) and integrating gives
the following matrix equation:

K K
S on jdulasu(l)/i(lma) —a> on [ dr (1), (1) (2.149)
v=1 v=1

[d1¢,(1)¢,(1) is the overlap integral between the basis functions p and v, written §,,.
Unlike the molecular orbitals, which will be required to be orthonormal, the overlap
between two basis functions is not necessarily zero (for example, they may be located on
different atoms).

The elements of the Fock matrix are given by
F, = Jdulqbu(l)/i(l)qb,,(l) (2.150)

The Fock matrix elements for a closed-shell system can be expanded as follows by substitut-
ing the expression for the Fock operator:

Nj2
F#V = Jdu1¢u(1)%core(1)¢u(1) + ZIdV1¢M(1) [2f](1) — Jf}(l)]qS,,(l) (2151)
j=1

The elements of the Fock matrix can thus be written as the sum of core, Coulomb and
exchange contributions. The core contribution is:

M
o709, (1) = [ s, 1) [ V- > E"ﬁz—/n] H() = HS  (2152)

The core contributions thus require the calculation of integrals that involve basis functions
on up to two centres (depending upon whether ¢, and ¢, are centred on the same nucleus
or not). Each element Hy® can in turn be obtained as the sum of a kinetic energy integral
and a potential energy integral corresponding to the two terms in the one-electron
Hamiltonian.



58 Chapter 2

The Coulomb and exchange contributions to the Fock matrix element F,, are together
given by:

N/2
3 o2 ~ Dl (2150)
j=1

Recall that the Coulomb operator #;(1) due to interaction with a spin orbital x; is given by:

#0) = [dm@) %xj&) (2.154)

We need to write each of the two occurrences of the spin orbital x; in this integral in terms of
the appropriate linear combination of basis functions:

K 1 &
Fi(1) = Jde > caita(2) D a2 (2.155)
a=1 "2 5=

We have used the indices ¢ and A for the basis functions here. Similarly, the exchange
contribution can be written:

K 1 K
H(Dxi(1) = Udfz Z:lc(,jd)g(z)r—uxi(z)] ;cm(z) (2.156)

When the Coulomb and exchange operators are expressed in terms of the basis functions
and the orbital expansion is substituted for y;, then their contributions to the Fock matrix
element F,, take the following form:

N/2

3 jdulasu(l)[zf,-(l) — (D] (D)
i=1
1
2 g & 2jdu1 8,03, (1) 51292
= CxjCay
j=1a=1lo=1 - jdul dV2¢u(1)¢>\(l) ;:1[_2‘751/(2)‘750(2)
N/2 K K
=33 D ayeq2(uvlre) - (uA|vo)] (2.157)
j=1 A=1o=1

We have used the shorthand notation for the integrals in the final expression. Note that the
two-electron integrals may involve up to four different basis functions (i, v, A, o), which may
in turn be located at four different centres. This has important consequences for the way in
which we try to solve the equations.

1t is helpful to simplify Equation (2.157) by introducing the charge density matrix, P, whose
elements are defined as:

N/2 N/2
P, =2 cuc; and Py, =2 > st (2.158)
i=1

i=1
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Note that the summations are over the N/2 occupied orbitals. Other properties can be
calculated from the density matrix; for example, the electronic energy is:

E:li 3 (H ) (2.159)
224 2 Z

The electron density at a point r can also be expressed in terms of the density matrix:

Z Z b (), () (2.160)
u=1v=1

The expression for each element F 1w of the Fock matrix elements for a closed-shell system of
N electrons then becomes:

K K
=HZT+ 303 Puliho) ~ 3 (\vo) (2.161)
A=1o=1

This is the standard form for the expression for the Fock matrix in the Roothaan-Hall
equations

2.5.4 Solving the Roothaan—Hall Equations

The Fock matrix is a K x K square matrix that is symmetric if real basis functions are used.
The Roothaan-Hall equations (2.149) can be conveniently written as a matrix equation:
FC = SCE (2.162)

The elements of the K x K matrix C are the coefficients c,;:

cl,l C1’2 c CLK
C2)1 C2’2 ‘e CZ,K

c=| = _ (2.163)
k1 CK,Z . CK,K

E is a diagonal matrix whose elements are the orbital energies:

&1 0 .ee 0
0 &y ... 0

E=] . (2.164)
O O ... EK

Let us consider how we might solve the Roothaan-Hall equations and thereby obtain the
molecular orbitals. The first point we must note is that the elements of the Fock matrix,
which appear on the left-hand side of Equation (2.162), depend on the molecular orbital
coefficients c,;, which also appear on the right-hand side of the equation. Thus an iterative
procedure is required to find a solution.
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The one-electron contributions Hg® due to the electrons moving in the field of the bare
nuclei do not depend on the basis set coefficients and remain unchanged throughout the
calculation. However, the Coulomb and exchange contributions do depend on the co-
officients and we would expect these to vary throughout the calculation. The individual
two-electron integrals (uv|As) are, however, constant throughout the calculation. An
obvious strategy is thus to calculate and store these integrals for later use.

Having written the Roothaan-Hall equations in matrix form we would obviously like to
solve them using standard matrix eigenvalue methods (discussed in Section 1.10.3). How-
ever, standard eigenvalue methods would require an equation of the form FC=CE. The
Roothaan-Hall equations only adopt such a form if the overlap matrix, S, is equal to the
unit matrix, I (in which all diagonal elements are equal to 1 and all off-diagonal elements
are zero). The functions ¢ are usually normalised but they are not necessarily orthogonal
(for example, because they are located on different atoms) and so there will invariably be
non-zero off-diagonal elements of the overlap matrix. To solve the Roothaan-Hall equations
using standard methods they must be transformed. This corresponds to transforming the
basis functions so that they form an orthonormal set. We seek a matrix X, such that
X"sX = 1. X" is the transpose of X, obtained by interchanging rows and columns. There
are various ways in which X can be calculated; in symmetric orthogonalisation, the overlap
matrix is diagonalised. Diagonalisation involves finding the matrix U such that

UTSU = D = diag(); - - - Ax) (2.165)

D is the diagonal matrix containing the eigenvalues ); of S, and U contains the eigenvectors
of S. UT is the transpose of the matrix U. (This expression is often written U~ 'SU = D since
for real basis functions U™! = U".) Then the matrix X is given by X = UD Y2U", where
D12 is formed from the inverse square roots of D. We shall write X as §71/2, as it can be
considered to be the inverse square root of the overlap matrix: g Y282 =1.

The Roothaan-Hall equations can now be manipulated as follows. Both sides of Equation

(2.162) are pre-multiplied by the matrix s 2

s-12pC = §~2SCE = S/*CE (2.166)
Inserting the unit matrix, in the form S~1/28'/2, into the left-hand side gives:

s-12F(s728'/%)C = S'*CE (2.167)
or

s~12Fg~12(sY/2C) = (S"/*C)E (2.168)

Equation (2.168) can be written FC' = C'E, where F' = s~12F§1/2 and C' = S'C.

The matrix equation F'C' = C'E can be solved using standard methods; a solution only
exists if the determinant |F' — EI| equals zero. In simple cases this can be done by multiply-
ing out the determinant to give a polynomial (the secular equation) whose roots are the
eigenvalues ¢;, but for large matrices a much more practical approach involves the diagona-
lisation of F. The matrix of coefficients, C’, are the eigenvectors of F. The basis function
coefficients C can then be obtained from C using C = §~1/2C’. A common scheme for
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solving the Roothaan-Hall equations is thus as follows:

Calculate the integrals to form the Fock matrix, F.
Calculate the overlap matrix, S.
Diagondlise S.
Form §'/%.
Guess, or otherwise calculate, an initial density matrix, P.
Form the Fock matrix using the integrals and the density matrix P.
Form F = 8§ V2Fs 12,
Solve the secular equation |F' — ElI| = 0 to give the eigenvalues E and the eigenvectors C’
by diagonalising F'.
9. Calculate the molecular orbital coefficients, C from C = s~
10. Calculate a new density mairix, P, from the matrix C.
11. Check for convergence. If the calculation has converged, stop. Otherwise repeat from
step 6 using the new density matrix, P.

PN AR

This procedure requires an initial guess of the density matrix, P. The simplest approach is to
use the null matrix, which corresponds to ignoring all the electron-electron terms so that the
electrons just experience the bare nuclei. This can sometimes lead to convergence problems,
which may be prevented if a lower level of theory (such as semi-empirical or extended
Hiickel} is used to provide the initial guess. Moreover, a better guess may enable the
calculation to be performed more quickly. A variety of criteria can be used to establish
whether the calculation has converged or not. For example, the density matrix can be
compared with that from the previous iteration, and/or the change in energy can be
monitored together with the basis set coefficients.

The result of a Hartree-Fock calculation is a set of K molecular orbitals, where K is the
number of basis functions in the calculation. The N electrons are then fed into these orbitals
in accordance with the Aufbau principle, two electrons per orbital, starting with the lowest-
energy orbitals. The remaining orbitals do not contain any electrons; these are known as the
pirtual orbitals. Alternative electronic configurations can be generated by exciting electrons
from the occupied orbitals to the virtual orbitals; these excited configurations are used in
more advanced calculations that will be discussed in Chapter 3.

A Hartree-Fock calculation provides a set of orbital energies, ;. What is the significance
of these? The energy of an electron in a spin orbital is calculated by adding the core
interaction Hj"™ to the Coulomb and exchange interactions with the other electrons in the
system:

N/2
e =H™ +> (2] — Ky) (2.169)
j=1

The total electronic energy of the ground state is given by Equation (2.120):

N/2 N/2 NJ2

E=2Y Hy*+) > (2~ Ky (2.170)
i=1

i=1 j=1
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The total energy is therefore not equal to the sum of the individual orbital energies but is
related as follows:
N/2 N2

g— > > (2~ Ky (2.171)

i=1 i=1 j=1

M=

E=

The reason for the discrepancy is that the individual orbital energies include contributions
from the interaction between that electron and all the nuclei and all other electrons in the
system. The Coulomb and exchange interactions between pairs of electrons are therefore
counted twice when summing the individual orbital energies.

2.5.5 A Simple lllustration of the Roothaan—-Hall Approach

We will illustrate the stages involved in the Roothaan-Hall approach using the helium
hydrogen molecular ion, HeHT™, as an example. This is a two-electron system. Our objective
here is to show how the Roothaan-Hall method can be used to derive the wavefunction, for a
fixed internuclear distance of 1 A. We use HeH' rather than Hj as our system as the lack of
symmetry in HeH'" makes the procedure more formative. There are two basis functions,
1s, (centred on the helium atom) and Isp (on the hydrogen). The numerical values of the
integrals that we shall use in our calculation were obtained using a Gaussian series approx-
imation to the Slater orbitals (the STO-3G basis set, which is described in Section 2.6). This
detail need not concern us here. Each wavefunction is expressed as a linear combination of
the two 1s atomic orbitals centred on the nuclei A and B:

1,[)1 = ClAlsA =+ C]B]SB (2172)
tp = Coalsa + Colsp (2.173)
First, it is necessary to calculate the various one- and two-electron integrals and to formulate
the Fock and overlap matrices, each of which will be a 2 x 2 symmetric matrix (as there are
two orbitals in the basis set). The diagonal elements of the overlap matrix, S, are equal to 1.0

as each basis function is normalised; the off-diagonal elements have smaller, but non-zero,
values that are equal to the overlap between 1sy and 1sy for the internuclear distance chosen.

The matrix S is:
1.0 0.392
S= (2.174)
0392 1.0

The core contributions Hio® can be calculated as the sum of three 2 x 2 matrices comprising
the kinetic energy (T) and nuclear attraction terms for the two nuclei A and B (V4 and V).
The elements of these three matrices are obtained by evaluating the following integrals:

T/.a/ = ] dul¢u(1)(_%vz)¢u(1)

Z
Vi = | A6, (—;1—3)4»(1)

s
Vi = | A, (—;i)mu) 2.175)
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The matrices are:

1.412 0.081 _ (-334 -0.758 _ (-0525 —0.308 (2176)
~\0081 0.760 AT\ 0758 —1.026 B7\-0308 -1.227 ‘

H¥ is the sum of these three:

—2457 —0.985
core __
H _<—0.985 —1.493) (2177)

As far as the two-electron integrals are concerned, with two basis functions there are a total
of 16 possible two-electron integrals. There are however only six unique two-electron
integrals, as the indices can be permuted as follows:

(i) (1salsallsalsa)=1.056

(i) (Isplsa|1splsp)=(1splsa|lsglss) = (1sp1sp[1sp154)
= (I1sg1lsa|1sa1s4) =0.303

(iii) (Isalsg[lsalsp)=(1s51sp|1sglss) = (1splsy|1s51sp)
= (Isglsa|lsglss) =0.112

(IV) (1SA15A |1SB]-SB) = (1SB].SB |1SA]-SA) =10.496

(v) (Isplsp|lsglsg)=(1sglsa|lsglsg) = (1sglsp|lsalsp)
= (1sg1sp|lsglss) =0.244

(vi) (1sglsg|lsplsp)=10.775

To reiterate, these integrals are calculated as follows:
1
() = [ | i g, (1)6,(1) 2= 92)64@) (2178)

Having calculated the integrals, we are now ready to start the SCF calculation. To formulate
the Fock matrix it is necessary to have an initial guess of the density matrix, P. The simplest
approach is to use the null matrix in which all elements are zero. In this initial step the Fock
matrix F is therefore equal to H®™.

The Fock matrix must next be transformed to F' by pre- and post-multiplying by S/
-1.065 -0.217
~1/2 _
S < —-0.217 1.065 ) (2179)
F for this first iteration is thus:
—2.401 -0.249
.
F= <—0.249 —1.353) (2.180)
Diagonalisation of F gives its eigenvalues and eigenvectors, which are:
—2458 0.0 0975 —-0.220
E= C = (2.181)
00 —1.292 0220 0975
The coefficients C are obtained from C = $7/2C’ and are thus:
0.991 —0.446
_ < (2.182)
0.022  1.087
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To formulate the density matrix P we need to identify the occupied orbital(s). With a two-
electron system both electrons occupy the orbital with the lowest energy (i.e. the orbital
with the lowest eigenvalue). At this stage the lowest-energy orbital is:

b =0.991 1ss +0.022 Isy (2.183)

The orbital is composed largely of the s orbital on the helium nucleus; in the absence of any
electron—electron repulsion the electrons tend to congregate near the nucleus with the larger
charge. The density matrix corresponding to this initial wavefunction is:

1.964 0.044
P— (2184)
0.044 0.001

The new Fock matrix is formed using P and the two-electron integrals together with H™.
For example, the element Fy; is given by:

Fip = HE™ + Pry[(1sa1sa |15z 1s) — 3 (154 Tsa[15A154)]
+ Pp[(1salsp|1salsg) — 3 (1sa1sa|1sA1sB)]
+ Pyu[(1s4154|155185) — 3 (15 1sp|1sa1sp)]
+ Ppo[(1sa1s4|15155) — 3 (1sa1sp|1s41sp)] (2.185)

The complete Fock matrix is:

~1.406 —0.690
= < ¢ ) (2 186)

-0690 -0.618

The energy that corresponds to this Fock matrix (calculated using Equation (2.159)) is —3 870
Hartree. In the next iteration, the various matrices are as follows:

_ (—1.305 —0.347> B (—1.427 0.0 >
—0.347 —0.448 0.0 -0.325
o_ (0.943 —0.334> co (0.931 -—0.560>
0334 0943 0.150  1.076
P (1 735 0.280> Fe (—1.436 ——0.738>
0.280 0045 -0.738 —0.644
Energy = —3.909 Hartree (2.187)

The calculation proceeds as illustrated in Table 2.2, which shows the variation in the co-
efficients of the atomic orbitals in the lowest-energy wavefunction and the energy for the
first four SCF iterations. The energy is converged to six decimal places after six iterations
and the charge density matrix after nine iterations.

The final wavefunction still contains a large proportion of the 1s orbital on the helium atom,
but less than was obtained without the two-electron integrals.
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Jteration c(1s,) c(1sg) Energy
1 0991 0.022 —3.870
2 0.931 0.150 —3.909
3 0915 0.181 -3.911
4 0.912 0.187 —-3.911

Table 2 2 Variation in basis set coefficients and electronic energy for the HeH' molecule.

2.5.6 Application of the Hartree-Fock Equations to Molecular Systems

We are now in a position to consider how the Hartree-Fock theory we have developed can
be used to perform practical quantum mechanical calculations on molecular systems. This is
an appropriate place in our discussion to distinguish the two major categories of quantum
mechanical molecular orbital calculations: the ab initio and the semi-empirical methods.
Ab initio strictly means ‘from the beginning’, or ‘from first principles’, which would imply
that a calculation using such an approach would require as input only physical constants
such as the speed of light, Planck’s constant, the masses of elementary particles, and so
on. Ab initio in fact usually refers to a calculation which uses the full Hartree-Fock/
Roothaan-Hall equations, without ignoring or approximating any of the integrals or any
of the terms in the Hamiltonian. The ab initio methods do rely upon calibration calculations,
and this has led some quantum chemists, notably Dewar (who has played a large part in the
development of semi-empirical methods), to claim that any real difference between the
ab initio and semi-empirical methods is entirely pedagogical. By contrast, semi-empirical
methods simplify the calculations, using parameters for some of the integrals and/or ignor-
ing some of the terms in the Hamiltonian. First we shall consider ab initio methods.

2.6 Basis Sets

The basis sets most commonly used in quantum mechanical calculations are composed of
atomic functions. An obvious choice would be the Slater type orbitals. Unfortunately,
Slater functions are not particularly amenable to implementation in molecular orbital
calculations. This is because some of the integrals are difficult, if not impossible, to evaluate,
particularly when the atomic orbitals are centred on different nuclei. It is relatively straight-
forward to calculate integrals involving one or two centres, such as (uu|vv), (uv|vv) and
(pv|pv). Three- and four-centre integrals are also feasible with Slater functions if the
atomic orbitals are located on the same atom. However, three- and four-centre integrals
are very difficult if the atomic orbitals are based on different atoms. It is common in
ab initio calculations to replace the Slater orbitals by functions based upon Gaussians. A
Gaussian function has the form exp(—ar®), and ab initio calculations use basis functions
comprising integral powers of x, y and z multiplied by exp(- ar):

Yz exp(—ar®) (2.188)
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Fig 2 4: The product of two Gaussian functions is another Gaussian centred along the line joining their centres In
this case the equations of the two functions are y = exp[~0 1(x +1 0)% and y = exp[~0 3(x — 2.0)% and the
equation of the product is y = exp(—27/40)[—0 4(x - 1 25)%] (Equation (2.189))

« determines the radial extent (or ‘spread’) of a Gaussian function; a function with a large
value of a does not spread very far, whereas a small value of a gives a large spread. The
order of these Gaussian-type functions is determined by the powers of the Cartesian vari-
ables; a zeroth-order function has a+b+c=0; a first-order function has a+b+c=1,
and so on. There is thus one zeroth-order function, three first-order functions and six
second-order functions. The idea of using Gaussian functions in quantum mechanical calcu-
lations is often ascribed to Boys [Boys 1950]. A major advantage of Gaussian functions is that
the product of two Gaussians can be expressed as a single Gaussian, located along the line
joining the centres of the two Gaussians m and n (Figure 2.4):

exp(—aty %) exp(—c12) = exp (—ﬁ%rfn) expl(~ar?) (2189)

7, is the distance between the centres m and 7, and the orbital exponent « of the combined
function is related to the exponents a,, and a, by:

=y + ay (2.190)
rc is the distance from point C, which has coordinates:
U Xy + O X, a + o Wy Zy + Oy Z
= mXm nin .= mYm nyn; .= mem nZn (2.191)
Ay, + oy a, + oy oy, + oy

Xyss Yr 2 @0 X, Yy, 2, are the centres of the two original Gaussians m and n respectively.

Thus, in a two-electron integral of the form (uv|Ao), the product ¢ .(1)¢, (1) (where ¢, and ¢,
may be on different centres) can be replaced by a single Gaussian function that is centred at
the appropriate point C. For Cartesian Gaussian functions the calculation is more compli-
cated than for the example we have stated above, due to the presence of the Cartesian
functions, but even so, efficient methods for performing the integrals have been devised.
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The zeroth-order Gaussian function g; has s-orbital angular symmetry; the three first-order
Gaussian functions have p-orbital symmetry. In normalised form these are:

gi(a,7) = <27a)3/4e‘a’2 (2.192)
g(ar) = <%as)l/4xe‘a’z (2.193)
gy(a,7) = <12:3°‘5 )1/4ye“”2 (2.194)
g:(a,1) = <%a5)1/42e“”2 (2.195)

The six second-order functions have the following form, exemplified by two of the functions:

204807 \* , _

gxx(a,r):< 5.3 ) e (2.196)
204807 \*

Suyla, 1) = <9—W3) xye " (2.197)

These second-order functions do not all have the same angular symmetry as the 3d atomic
orbitals, but a set comprising g,,, 8., and g,,, together with two linear combinations of the
G 8y @0d gz, does give the desired result:

8ozz—rr = 3 (282 — Gux — 8yy) (2.198)
Sxr—yy = \/%(gxx — &) (2199)

The remaining sixth linear combination has the symmetry properties of an s function:
8 = VB(gur + 8y + 822) (2:200)

The advantages of Gaussian functions are countered by some serious shortcomings. This can
be readily seen from a graphical comparison of the 1s Slater function and its ‘best’ Gaussian
approximation, Figure 2.5. Unlike the Slater functions the Gaussian functions do not have a
cusp at the origin and they also decay towards zero more quickly. Itis found that replacing a
Slater type orbital by a single Gaussian function leads to unacceptable errors. However, this
problem can be overcome if each atomic orbital is represented as a linear combination of
Gaussian functions. Each linear combination has the following form:

L
¢/L = Z diu¢i(aiu) (2201)
i=1

dy, is the coefficient of the primitive Gaussian function ¢;, which has exponent a;,. L is the
number of functions in the expansion. For example, the linear combinations of Gaussian
Is functions that can be used to represent a 1s Slater type orbital with exponent ¢ = 1 are
given in Table 2.3
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Fig. 2 5 The 1s Slater type orbital and the best Gaussian equivalent.

The coefficients and the exponents are found by least-squares fitting, in which the overlap
between the Slater type function and the Gaussian expansion is maximised. Thus, for the
1s Slater type orbital we seek to maximise the following integral:

3/4
5= —1\/7? <-27T3) Jdr e (2.202)

A graphical comparison of the 1s Slater type orbital and the four Gaussian expansions in
Table 2.3 is shown in Figure 2.6. It is clear that the fit improves as the number of Gaussian
functions increases, but even so, the addition of many more Gaussian functions cannot
properly describe the exponential tail in the “true’ function and the cusp at the nucleus.
This means that Gaussian functions underestimate the long-range overlap between atoms
and the charge and spin density at the nucleus.

A Gaussian expansion contains two parameters: the coefficient and the exponent. The most
flexible way to use Gaussian functions in ab initio molecular orbital calculations permits both
of these parameters to vary during the calculation. Such a calculation is said to use

Number of Gaussians Exponent, a Expansion coefficient, d
1 0.270950 1.00
0.151623 0678914
0.851819 0.430129
3 0.109818 0.444 635
0.405771 0.53528
222766 0.154329
4 0.0880187 0291626
0265204 0.532846
0954620 0260141
5.21686 - 0.056 7523

Table 2 3 Coefficients and exponents for best-fit Gaussian expansions for the 1s Slater type
orbital [Hehre et al 1969]
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Fig 26: Comparison of 1s Slater type orbital and Gaussian expansions with up to four terms

uncontracted or primitive Gaussians. However, calculations with primitive Gaussians require
a significant computational effort and so basis sets that consist of contracted Gaussian
functions are most commonly employed. In a contracted function the contraction coefficients
and exponents are pre-determined and remain constant during the calculation. The series of
Gaussian functions in such cases is commonly referred to as a contraction, with the contraction
length being the number of terms in the expansion. A further approximation that is often
employed for the sake of computational efficiency is to use the same Gaussian exponents
for the s and p orbitals in a given shell. This clearly restricts the flexibility of the basis set,
but it does have the advantage of significantly reducing the number of numerically different
integrals that need to be calculated.

Quantum chemists have devised efficient short-hand notation schemes to denote the basis
set used in an ab initio calculation, although this does mean that a proliferation of abbrevia-
tions and acronyms are introduced. However, the codes are usually quite simple to under-
stand. We shall concentrate on the notation used by Pople and co-workers in their Gaussian
series of programs (see also the appendix to this chapter).

A minimal basis set is a representation that, strictly speaking, contains just the number of
functions that are required to accommodate all the filled orbitals in each atom. In practice,
a minimal basis set normally includes all of the atomic orbitals in the shell. Thus, for
hydrogen and helium a single s-type function would be required; for the elements from
lithium to neon the 1s, 2s and 2p functions are used, and so on. The basis sets STO-3G,
STO-4G, etc. (in general, STO-nG) are all minimal basis sets in which n Gaussian functions
are used to represent each orbital. It is found that at least three Gaussian functions are
required to properly represent each Slater type orbital and so the STO-3G basis set is the
‘absolute minimum’ that should be used in an ab initio molecular orbital calculation. In
fact, there is often little difference between the results obtained with the STO-3G basis set
and the larger mimimal basis sets with more Gaussian functions, although for hydrogen-
bonded complexes STO-4G can perform significantly better. The STO-3G basis set does
perform remarkably well in predicting molecular geometries, though this is due in part to
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a fortuitous cancellation of errors. Of course, the computational effort increases with the
number of functions in the Gaussian expansion.

The minimal basis sets are well known to have several deficiencies. There are particular
problems with compounds containing atoms at the end of a period, such as oxygen or
fluorine. Such atoms are described using the same number of basis functions as the atoms
at the beginning of the period, despite the fact that they have more electrons. A minimal
basis set only contains one contraction per atomic orbital and as the radial exponents are
not allowed to vary during the calculation the functions cannot expand or contract in size
in accordance with the molecular environment. The third drawback is that a minimal
basis set cannot describe non-spherical aspects of the electronic distribution. For example,
for a second-row element such as carbon the only functions that incorporate any anisotropy
are the 2p,, 2p, and 2p, functions. As the radial components of these functions are required
to be the same, no one component (x, y or z) can differ from another.

These problems with minimal basis sets can be addressed if more than one function is used
for each orbital. A basis set which doubles the number of functions in the minimal basis set is
described as a double zeta basis. Thus, a linear combination of a ‘contracted” function and a
‘diffuse’ function gives an overall result that is intermediate between the two. The basis
set coefficients of the contracted and the diffuse functions are automatically calculated by
the SCF procedure, which thus automatically determines whether a more contracted or a
more diffuse representation of that particular orbital is required. Such an approach can
provide a solution to the anisotropy problem because it is then possible to have different
linear combinations for the p,, p, and p, orbitals.

An alternative to the double zeta basis approach is to double the number of functions used to
describe the valence electrons but to keep a single function for the inner shells. The rationale
for this approach is that the core orbitals, unlike the valence orbitals, do not affect chemical
properties very much and vary only slightly from one molecule to another. The notation
used for such split valence double zeta basis sets is exemplified by 3-21G. In this basis set
three Gaussian functions are used to describe the core orbitals. The valence electrons are
also represented by three Gaussians: the contracted part by two Gaussians and the diffuse
part by one Gaussian. The most commonly used split valence basis sets are 3-21G, 4-31G
and 6-31G.

Simply increasing the number of basis functions (triple zeta, quadruple zeta, etc.) does not
necessarily improve the model. In fact, it can give rise to wholly erroneous results, particu-
larly for molecules with a strongly anisotropic charge distribution. All of the basis sets we
have encountered so far use functions that are centred on atomic nuclei. The use of split
valence basis sets can help to surmount the problems with non-isotropic charge distribution
but not completely. The charge distribution about an atom in a molecule is usually perturbed
in comparison with the isolated atom. For example, the electron cloud in an isolated
hydrogen atom is symmetrical, but when the hydrogen atom is present in a molecule the
clectrons are attracted towards the other nuclei. The distortion can be considered to
correspond to mixing p-type character into the 1s orbital of the isolated atom to give a
form of sp hybrid. In a similar manner, the unoccupied d orbitals introduce asymmetty
into p orbitals (Figure 2.7). The most common solution to this problem is to introduce
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Fig 2 7. The addition of a 3dy, orbital to 2p, gives a distorted orbital. (Figure adapted from Hehre W ], L Radom,
P u R Schleyer and | A Hehre 1986 Ab initio Molecular Orbital Theory. New York, Wiley )

polarisation functions into the basis set. The polarisation functions have a higher angular
quantum number and so correspond to p orbitals for hydrogen and d orbitals for the
first- and second-row elements.

The use of polarisation basis functions is indicated by an asterisk (*). Thus, 6-31G* refers to a
6-31G basis set with polarisation functions on the heavy (i.e. non-hydrogen) atoms. Two
asterisks (e.g. 6-31G™) indicate the use of polarisation (i.e. p) functions on hydrogen and
helium. The 6-31G™ basis set is particularly useful where hydrogen acts as a bridgin%
atom. Partial polarisation basis sets have also been developed. For example, the 3-21G("
basis set has the same set of Gaussians as the 3-21G basis set (i.e. three functions for the
inner shell, two contracted functions and one diffuse function for the valence shell) supple-
mented by six d-type Gaussians for the second-row elements. This basis set therefore
attempts to account for d-orbital effects in molecules containing second-row elements.
There are no special polarisation functions on first-row elements, which are described by
the 3-21G basis set.

A deficiency of the basis sets described so far is their inability to deal with species such as
anions and molecules containing lone pairs which have a significant amount of electron
density away from the nuclear centres. This failure arises because the amplitudes of the
Gaussian basis functions are rather low far from the nuclei. To remedy this deficiency
highly diffuse functions can be added to the basis set. These basis sets are denoted using
a ‘+’; thus the 3-21+G basis set contains an additional single set of diffuse s- and p-type
Gaussian functions. ‘++’ indicates that the diffuse functions are included for hydrogen as
well as for heavy atoms. At these levels the terminology starts to become a little unwieldy.
For example, the 6-3114+G(3df, 3pd) basis set uses a single zeta core and triple zeta valence
representation with additional diffuse functions on all atoms. The ‘(3df, 3pd)’ indicates
three sets of d functions and one set of f functions for first-row atoms and three sets of P
functions and one set of d functions for hydrogen. This latter convention is probably the
most generic; one commonly encountered example is the 6-31G(d) basis set, which is
synonymous with 6-31G*.

The basis sets that we have considered thus far are sufficient for most calculations. However,
for some high-level calculations a basis set that effectively enables the basis set limit to be
?Chieved is required. The even-tempered basis set is designed to achieve this; each function
in this basis set is the product of a spherical harmonic and a Gaussian function multiplied
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by a power of the distance from the origin:

Xiin(P: 6, 6) = exp(=GE) Yin (6, 9) (2203)
The orbital exponent ¢, is expressed as a function of two parameters a and 3 as follows.
G=af k=123,...,N (2.204)

The even-tempered basis set consists of the following sequence of functions: 1s, 2p, 3d, 4f,
..., which correspond to increasing values of k. The advantage of this basis set is that it is
relatively easy to optimise the exponents for a large sequence of basis functions.

2.6.1 Creating a Basis Set

There is no definitive method for generating basis sets, and the construction of a new basis
setis very much an art. Nevertheless, there are a number of well-established approaches that
have resulted in widely used basis sets. We have already seen how linear combinations of
Gaussian functions can be fitted to Slater type orbitals by minimising the overlap (see
Figure 2.6 and Table 2.3). The Gaussian exponents and coefficients are derived by least-
squares fitting to the desired functions, such as Slater type orbitals. When using basis sets
that have been fitted to Slater orbitals it is often advantageous to use Slater exponents that
are different to those obtained from Slater’s rules. In general, better results for molecular
calculations are obtained if larger Slater exponents are used for the valence electrons; this
has the effect of giving a ‘smaller’, less diffuse orbital. For example, a value of 1.24 is
widely used for the Slater exponent of hydrogen rather than the 1.0 that would be suggested
by Slater’s rules. It is straightforward to derive a basis set for a different Slater exponent if the
Gaussian expansion has been fitted to a Slater type orbital with ¢ = 1.0. If the Slater exponent
¢ is replaced by a new value, ¢, then the respective Gaussian exponents « and o are related
by:

’ 12
«_< (2.205)
a ¢
A doubling of the Slater exponent thus corresponds to a quadrupling of the Gaussian
exponent The expansion coefficients remain the same. For example, to obtain the exponents
of the Gaussian functions for hydrogen in the STO-3G basis set we need to multiply the
appropriate values in Table 2.3 by 1.24?, giving exponents of 0.168856, 0.623913 and
3.425 25, This strategy can be quite powerful; the STO-nG basis sets were originally defined
with exponents that reproduce ‘best atom” values for the core orbitals, but the exponents for
the valence electrons were values that give optimal performance for a selected set of small
molecules. For example, the suggested exponent for the valence orbitals in carbon was 1.72
rather than the 1.625 predicted by Slater’s rules. The core orbitals have a Slater exponent of

5.67.

Basis sets can be constructed using an optimisation procedure in which the coefficients and
the exponents are varied to give the lowest atomic energies. Some complications can arise
when this approach is applied to larger basis sets. For example, in an atomic calculation
the diffuse functions can move towards the nucleus, especially if the core region is described
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by only a few basis functions. This is contrary to the role of diffuse functions, which is to
enhance the description in the internuclear region. It may therefore be necessary to construct
the basis set in stages, first determining the diffuse functions, using many basis functions for
the core, and then optimising the basis functions for the core region, keeping the diffuse
functions fixed. In many of the popular Gaussian basis sets the coefficients and exponents
of the core orbitals are designed to reproduce calculations on atoms, whereas the valence
basis functions are parametrised to reproduce the properties of a carefully selected set of

molecular data.

The basis sets of Dunning [Dunning 1970] are obtained in a rather different way to those of
Pople and co-workers. The first step is to perform an atomic SCF calculation using a set of
primitive Gaussian functions in which the exponents are optimised to give the lowest
energy for the atom. This set of primitive Gaussian functions (usually far too many for
general use in molecular calculations) is then contracted to a smaller number of Gaussian
functions, so drastically reducing the number of integrals that need be calculated. For
example, Huzinga optimised the exponents of an uncontracted basis set that contained
nine functions of s symmetry and five functions of p symmetry for the first-row elements
[Huzinga 1965] This (9s5p) basis set represents the 1s, 2s and three 2p orbitals and in fact
corresponds to 24 basis functions per atom (9 + 3 x 5). The primitive Gaussians in this
unconiracted basis set are then apportioned to the basis functions in the new, contracted
basis set, which contains three s functions and two p functions and is written [3s2p]. No
primitive is assigned to more than one of the contracted basis functions. The 1s orbital is
constructed from six primitives, the 2s orbital from one set of two primitives and one set
containing just one primitive, and the 2p orbitals are represented by one contracted function
containing five primitives and one contracted function that contains the remaining
primitive. The final basis set, which is illustrated in Table 2.4 for nitrogen, contains a total
of nine basis functions rather than the original 24. Each of the primitive functions appears

Exponent Coefficient Exponent Coefficient Exponent Coefficient
1s 2s 2s

5800 0.001 190 7.193 —0.160 405 0.2133 1000000
887.5 0.009099 1.707 1058215

204.7 0044145

59.84 0150464

20.00 0.356 741

7.193 0.446533

2.686 0145603

2p 2p

26.79 0018254 0.1654 1.000 000

§.956 0.116461

1.707 0390178

0.5314 0637102

Table 2.4 Exponents and contraction coefficients for the three s-type and the two p-type Gaussian functions in the
basis set of Dunning for nitrogen [Dunning 1970].
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in just one basis function with its original exponent. The ratios of the coefficients of the
primitives in the contracted basis set are equal to the ratios of the coefficients determined
in the atomic SCF calculation. The major advantage of this approach is that calculations
with the smaller basis set give results that are almost as good as calculations using the
full basis set but with much less computational effort.

2.7 Calculating Molecular Properties Using ab initio
Quantum Mechanics

We have now considered the key features of the ab initio approach to quantum mechanical
calculations and so, as an antidote to the rather theoretical nature of the chapter so far, it is
appropriate to consider how the method might be used in practice. Quantum mechanics can
be used to calculate a wide range of properties. In addition to thermodynamic and structural
values, quantum mechanics can be used to derive properties dependent upon the electronic
distribution. Such properties often cannot be determined by any other method. In this
section we shall provide a flavour of the ways in which quantum mechanics is used in
molecular modelling. Other applications, such as the location of transition structures and
the use of quantum mechanics in deriving force field parameters, will be discussed in
later chapters. Many different computer programs are now available for performing
ab initio calculations; probably the best known of these is the Gaussian series of programs
which originated in the laboratory of John Pople, who has made numerous contributions
to the field, recognised by the award of the Nobel Prize in 1998.

2.7.1 Setting Up the Calculation and the Choice of Coordinates

The traditional way to provide the nuclear coordinates to a quantum mechanical program is
via a Z-matrix, in which the positions of the nuclei are defined in terms of a set of internal
coordinates (see Section 1.2). Some programs also accept coordinates in Cartesian format,
which can be more convenient for large systems. It can sometimes be important to choose
an appropriate set of internal coordinates, especially when locating minima or transition
points or when following reaction pathways. This is discussed in more detail in Section 5.7.

2.7.2 Energies, Koopman’s Theorem and lonisation Potentials

The energy of an electron in an orbital (Equation (2.169)) is often equated with the energy
required to remove the electron to give the corresponding jon. This is Koopman’s theorert.
Two important caveats must be remembered when applying Koopman’s theorem and
comparing the results with experimentally determined ionisation potentials. The first of
these is that the orbitals in the ionised state are assumed to be the same as in the unionised
state; they are ‘frozen’. This neglects the fact that the orbitals in the ionised state will be
different from those in the unionised state. The energy of the ionised state will thus tend
to be higher than it ‘should’ be, giving too large an ionisation potential. The second
caveat is that the Hartree-Fock method does not include the effects of electron correlation.
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The correction due to electron correlation would be expected to be greater for the unionised
state than for the ionised state, as the former has more electrons. Fortunately, therefore, the
effect of electron correlation often opposes the effect of the frozen orbitals, resulting in many
cases in good agreement between experimentally determined ionisation potentials and
calculated values.

A Hartree-Fock SCF calculation with K basis functions provides K molecular orbitals, but
many of these will not be occupied by any electrons; they are the “virtual’ spin orbitals. If
we were to add an electron to one of these virtual orbitals then this should provide a
means of calculating the electron affinity of the system. Electron affinities predicted by
Koopman’s theorem are always positive when Hartree-Fock calculations are used, because
the virtual orbitals always have a positive energy. However, it is observed experimentally
that many neutral molecules will accept an electron to form a stable anion and so have
negative electron affinities. This can be understood if one realises that electron correlation
would be expected to add to the error due to the ‘frozen’ orbital approximation, rather
than to counteract it as for ionisation potentials.

2.7.3 Calculation of Electric Multipoles

Some of the most important properties that a quantum mechanical calculation provides are
the electric multipole moments of the molecule. The electric multipoles reflect the distribu-
tion of charge in a molecule. The simplest electric moment (apart from the total net charge on
the molecule) is the dipole. The dipole moment of a distribution of charges g; located at
positions r; is given by > g;1;. If there are just two charges +¢ and —g separated by a distance
r then the dipole moment is gr. A dipole moment of 4.8 Debye corresponds to two charges
equal in magnitude to the electronic charge ¢ separated by 1A. The dipole moment is a
vector quantity, with components along the three Cartesian axes. The dipole moment of a
molecule has contributions from both the nuclei and the electrons. The nuclear contributions
can be calculated using the formula for a system of discrete charges:

M
Mnuclear = Z ZARA (2206)
A=1

The electronic contribution arises from a continuous function of electron density and must
be calculated using the appropriate operator:

N
Helectronic = J dT\pO < Z —1',-) ¥y (2207)

i=1

The dipole moment operator is a sum of one-electron operators r;, and as such the electronic
contribution to the dipole moment can be written as a sum of one-electron contributions. The
elecironic contribution can also be written in terms of the density matrix, P, as follows:

K K
Helectronic = Z Z P;u/ Jd7¢u(_r)¢u (2208)

p=1v=1
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Fig. 2 8. A quadrupole moment can be obtained from various arrangements of two positive and two negative chaiges

The electronic contribution to the dipole moment is thus determined from the density matrix
and a series of one-electron integrals |dr¢,(—1)¢,. The dipole moment operator, 1, has
components in the x, y and z directions, and so these one-electron integrals are divided
into their appropriate components; for example, the x component of the electronic contribu-
tion to the dipole moment would be determined using:

K K
w=3 30, jdmﬁu(—x)aﬁy (2.209)

p=1v=1

The quadrupole is the next electric moment. A molecule has a non-zero electric quadrupole
moment when there is a non-spherically symmetrical distribution of charge. A quadrupole
can be considered to arise from four charges that sum to zero which are arranged so that they
do not lead to a net dipole. Three such arrangements are shown in Figure 2.8. Whereas the
dipole moment has components in the x, y and z directions, the quadrupole has nine
components from all pairwise combinations of x and y and is represented by a 3 x3
matrix as follows:

Y Ly Y4
0= Sayx Yaw vz (2210)

Sqizx L4y 2 4izi
The three moments higher than the quadrupole are the octopole, hexapole and decapole.
Methane is an example of a molecule whose lowest non-zero multipole moment is the
octopole. The entire set of electric moments is required to completely and exactly describe

the distribution of charge in a molecule. However, the series expansion is often truncated
after the dipole or quadrupole as these are often the most significant.

Extensive comparisons have been made of experimental and calculated dipole moments
(and in some cases the higher moments, though these are difficult to determine accurately
by experiment). Factors such as the basis set and electron correlation can have a significant
impact on the accuracy of the results, but it is found in many cases that the errors are
systematic and that a simple scaling factor can be used to convert the results of a calculation
with a small basis set to those obtained from experiment or with a much larger basis set. To
illustrate how calculated dipole moments can vary, Table 2.5 provides the dipole moments
for formaldehyde calculated at the experimental geometry using a variety of basis sets. Itis
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$TO-3G 1.5258 3-21G 2.2903 4-31G 3.0041
631G’ 2.7600 6-31G™ 2.7576 6-311G" 2.7807

Table 25 Dipole moments calculated for formaldehyde using various basis sets at the experimental geometry.

also important to note that the dipole moment can be very sensitive to the geometry from
which it is calculated.

2.7.4 The Total Electron Density Distribution and Molecular Orbitals

The electron density p(r) at a point r can be calculated from the Born interpretation of the
wavefunction as a sum of squares of the spin orbitals at the point r for all occupied molecular
orbitals. For a system of N electrons occupying N/ 2 real orbitals, we can write:

N/2

pr) =2 li(r)? (2.211)
i=1

If we express the molecular orbital 1); as a linear combination of basis functions, then the
electron density at a point r is given as:

N2 , K K
o0 =23 (Zl Cutul®)) (V;cm-asy(r))
N/2 K N/2 K K
—2ZZcﬂlcm¢ﬂ(r)¢ﬂ(r)+ ZZ Z 4 (1), (t) (2212)
i=1u= Fim W e

Equation (2.212) can be tidied up considerably if it is written in terms of the elements of the
density matrix:

N/2
<Pﬂ,, = ZZ cm-c,,,-)
K
p(r) = Z Z 1w () B, (T)

K K K
Z Pudu®du® +23" S PLe,(0e,) (2.213)

p=1lv=p+1

The integral of p(r) over all space equals the number of electrons in the system, N

N/2

- J drp(r) =23 Jdr| ()P (2.214)
i=1

If the overlap between two orbitals ¢, and ¢, is written as 5, and if the basis functions are
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Fig. 2 9: Contour map showing the variation in electron density around formamide

assumed to be normalised (S,,, = 1), then:

K K K
N=3P,+2> > PuSu (2 215)
p=1

p=1lv=p+1

The electron density can be visualised in several ways. One approach is to construct
contours on slices through the molecule, such that each contour connects points of equal
density, as shown in Figure 2.9 for formamide. The electron density can also be represented
as an isometric projection (or a ‘relief map’, Figure 2.10), in which the height above the plane

Fig 2 10: Isometric projection of the electron density around formamide
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represents the magnitude of the electron density. These diagrams show that the electron
density tends to be greatest near the nuclei, as would be expected. The electron density
can also be represented as a solid object, whose surface connects points of equal density.
The surface shown in Figure 2.11 (colour plate section) corresponds to an electron density
of £.0001 a.u. around formamide. Other properties such as the electrostatic potential can
be mapped onto this surface, as we shall see in Section 2.7.9.

The electron density distribution of individual molecular orbitals may also be determined
and plotted The highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) are often of particular interest as these are the orbitals most
commonly involved in chemical reactions. As an illustration, the HOMO and LUMO for
formamide are displayed in Figures 2.12 and 2.13 (colour plate section) as surface pictures.

2.7.5 Population Analysis

Population analysis methods partition the electron density between the nuclei so that each
nucleus has a ‘number” (not necessarily an integral number) of electrons associated with it.
Such a partitioning provides a way to calculate the atomic charge on each nucleus. It should
be noted that there is no quantum mechanical operator for the atomic charge and so any
partitioning scheme must be arbitrary. Hence many methods have been devised. Here we
will consider Mulliken and Lowdin analysis and Bader’s theory of atoms in molecules.
The alternatives include natural population analysis [Reed et al. 1985; Bachrach 1994].
Wiberg and Rablen have compared a number of methods for calculating atomic charges,
and we refer to some of their results in the following discussion [Wiberg and Rablen
1993]. To illustrate the variation that can be obtained in the results, for methane they
found that the charge on the carbon atom varied from —0.473 to +0.244, depending upon
the method chosen! We will also consider the problem of calculating atomic charges in
more detail in Chapter 4 on molecular mechanics.

2.7.6 Mulliken and Lowdin Population Analysis

RS Mulliken suggested a widely used method for performing population analysis [Mulliken
1955]. The starting point is Equation (2.215), which relates the total number of electrons to
the density matrix and to the overlap integrals. In the Mulliken method, all of the electron
density (P,,) in an orbital is allocated to the atom on which ¢,, is located. The remaining
electron density is associated with the overlap population, ¢,¢,. For each element ¢,¢, of
the density matrix, half of the density is assigned to the atom on which ¢, is located and
half to the atom on which ¢, is located. The net charge on an atom A is then calculated
by subtracting the number of electrons from the nuclear charge, Z:

K K K
da=Za— >, Pu— > > P.S. (2.216)
p=1;pon A p=lponA v=Lv#yu

Mulliken population analysis is a trivial calculation to perform once a self-consistent field
has been established and the elements of the density matrix have been determined
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However, there are some serious shortcomings to the method, as Mulliken himself pointed
out.

A Mulliken analysis depends upon the use of a balanced basis set, in which an equivalent
number of basis functions is present on each atom in the molecule. For example, it is possible
to calculate a wavefunction for a molecule such as water in which all of the basis functions
reside on the oxygen atom; if a large enough basis set is used then a quite reasonable wave-
function for the whole molecule can be obtained. However, the Mulliken analysis would put
all of the charge on the oxygen. This is an extreme example of a general problem; p, d and f
orbitals are spread quite far from the nucleus with which they are associated and so may be
very close to other atoms, yet the charge associated with electron occupation of such orbitals
is assigned to the atom on which the orbital is centred. The equal apportioning of electrons
between pairs of atoms, even if their electronegativities are very different, can lead in some
cases to quite unrealistic values for the net atomic charge. In extremis, some orbitals may
‘contain’ a negative number of electrons and others more than two electrons, in clear contra-
diction of the Pauli principle. A Mulliken analysis assumes that each basis function can be
associated with an atomic centre and so is not applicable if basis functions not centred on
the nuclei are used. The atomic charges can be very dependent upon the basis set; for
example, Wiberg and Rablen found that the charge on the central carbon in isobutene
changed from +0.1 with a 6-31G" basis set to +1.0 for a 6-311++G™ basis set.

In the Lowdin approach to population analysis [Léwdin 1970; Cusachs and Politzer 1968]
the atomic orbitals are transformed to an orthogonal set, along with the molecular orbital
coefficients. The transformed orbitals ¢, in the orthogonal set are given by:

K
9, =57ty (2217)
v=1
The electron population associated with an atom becomes:
K
ga=Za— . (SVPS?), (2.218)
p=1,ponA

Lowdin population analysis avoids the problem of negative populations or populations
greater than 2. Some quantum chemists prefer the Lowdin approach to that of Mulliken as
the charges are often closer to chemically intuitive values and are less sensitive to basis set.

2.7.7 Partitioning Electron Density: The Theory of Atoms in Molecules

R F W Bader’s theory of ‘atoms in molecules’ [Bader 1985] provides an alternative way to
partition the electrons between the atoms in a molecule. Bader’s theory has been applied
to many different problems, but for the purposes of our present discussion we will
concentrate on its use in partitioning electron density. The Bader approach is based upon
the concept of a gradient vector path, which is a curve around the molecule such that it is
always perpendicular to the electron density contours. A set of gradient paths is drawn in
Figure 2 14 for formamide. As can be seen, some of the gradient paths terminate at the
atomic nuclei. Other gradient paths are attracted to points (called critical points) that are
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Fig 2 14: Gradient vector paths around formamide The paths terminate at atoms or at bond critical points (indicated
by squares)

not located at the nuclei; particularly common are the bond critical points, which are located
between bonded atoms. Other types of critical point can occur; for example, a ring critical
point is found in the centre of a benzene ring.

The bond critical points are points of minimum electron charge density between two bonded
atoms. If we follow the contour in three-dimensional space from such a point down the
gradient path along which the density decreases most rapidly then this gives a means of
partitioning the density. This is shown in Figure 2.15 for hydrogen fluoride and in Figure
2.16 for formamide. This procedure can be performed for each bond, resulting in a three-
dimensional partitioning of the electron density. The electron population that is assigned
to each atom is then calculated by numerically integrating the charge density within the
region surrounding that atom.

Wiberg and Rablen found that the charges obtained with the atoms in molecules method
were relatively invariant to the basis set. The charges from this method were also consistent
with the experimentally determined C-H bond dipoles in methane (in which the carbon is
Positive) and ethyne (in which the carbon is negative), unlike most of the other methods they
examined.

2.7.8 Bond Orders

As with atomic charges, the bond order is not a quantum mechanical observable and so
various methods have been proposed for calculating the bond orders in a molecule.
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Fig 2 15 Partitioning the electron density in hydrogen fluonde

Fig 2 16* Partitioning the electron density in formamide
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Molecule Bond STO-3G 4-31G
H, H—H 1.0 1.0
Methane C—H 0.99 096
Ethene C=C 2.01 1.96
C—H 098 0.96
Ethyne C=C 300 3.27
C—H 0.98 0.86
Water O—-H 0.95 0.80
N, N=N 3.0 2.67

Table 2.6 Bond order obtained from the Mayer bond order scheme [Mayer 1983]

Mayer defined the bond order between two atoms as follows [Mayer 1983]:

BAB = Z Z [(PS)/LV(PS)V/L + (PSS)/LV(PSS)V/L} (2219)

pgonA vonB

P is the total spinless density matrix (P =P* 4+ P’) and P* is the spin density matrix
(P° = P* + P”). For a closed-shell system Mayer’s definition of the bond order reduces to:

BAB = Z Z (PS)/LV(PS)V/L (2'220)

ponA vonB

The bond orders obtained from Mayer’s formula often seem intuitively reasonable, as
illustrated in Table 2.6 for some simple molecules. The method has also been used to
compute the bond orders for intermediate structures in reactions of the form
H+XH—-HX+H and X+ H, - XH+H (X=F, Cl, Br). The results suggested that
bond orders were a useful way to describe the similarity of the transition structure to the
reactants or to the products. Moreover, the bond orders were approximately conserved
along the reaction pathway.

As with methods for allocating electron density to atoms, the Mayer method is not
necessarily ‘correct’, though it appears to be a useful measure of the bond order that
conforms to accepted pictures of bonding in molecules.

2.7.9 Electrostatic Potentials

The electrostatic potential at a point r, ¢(r), is defined as the work done to bring unit
positive charge from infinity to the point. The electrostatic interaction energy between a
point charge g located at r and the molecule equals (). The electrostatic potential has
contributions from both the nuclei and from the electrons, unlike the electron density,
which only reflects the electronic distribution. The electrostatic potential due to the M
nuclei is:

Paua(r) = ]ZM: _Za_ (2221)
A=1 |1‘ - RAl
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Fig 2 17: Electrostatic potential contours around cytosine Negative contours are dashed, the zero contout is bold.
The minima near N3 and O are marked

The potential due to the electrons is obtained from the appropriate integral of the
electron density:

dr'p(r
Pelec(¥) = — J ¥ p_(l.)‘ (2'222)
The total electrostatic potential equals the sum of the nuclear and the electronic contribu-
tions:

¢(I) = ¢nucl(r) + Pelec (1‘) (2223)

The electrostatic potential has proved to be particularly useful for rationalising the inter-
actions between molecules and molecular recognition processes. This is because electrostatic
forces are primarily responsible for long-range interactions between molecules. The
electrostatic potential varies through space, and so it can be calculated and visualised in
the same way as the electron density. Electrostatic potential contours can be used to propose
where electrophilic attack might occur; electrophiles are often attracted to regions where the
electrostatic potential is most negative. For example, the experimentally determined position
of electrophilic attack at the nucleic acid cytosine is at N3 (Figure 2.17). This atom isnext to a
minimum in the electrostatic potential (also shownin Figure 2.17), as pointed out by Politzer
and Murray [Politzer and Murray 1991].

Non-covalent interactions between molecules often occur at separations where the van der
Waals radii of the atoms are just touching and so it is often most useful to examine the
electrostatic potential in this region. For this reason, the electrostatic potential is often
calculated at the molecular surface (defined in Section 1.5) or the equivalent isodensity
surface as shown in Figure 2.18 (colour plate section). Such pictorial representations
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can be used to qualitatively assess the degree of electrostatic similarity between two
molecules.

2.7.10 Thermodynamic and Structural Properties

The total energy of a system is equal to the sum of the electronic energy and the Coulombic
nuclear repulsion energy:

E=Eaect ), >, (2.224)
A=1B=A+1 4B

A more useful quantity for comparison with experiment is the heat of formation, which is
defined as the enthalpy change when one mole of a compound is formed from its constituent
elements in their standard states. The heat of formation can thus be calculated by subtracting
the heats of atomisation of the elements and the atomic ionisation energies from the total
energy. Unfortunately, ab initio calculations that do not include electron correlation
(which we will discuss in Chapter 3) provide uniformly poor estimates of heats of formation
with errors in bond dissociation energies of 25-40kcal/mol, even at the Hartree-Fock limit
for diatomic molecules.

When combined with an energy minimisation algorithm, quantum mechanics can be used
to calculate equilibrium geometries of molecules. The results of such calculations can be
compared with the structures obtained from gas-phase experiments using microwave
spectroscopy, electronic spectroscopy and electron diffraction. Extensive tables listing
comparisons between calculations and experiment for many molecules have been published
in several reviews. Not surprisingly, the agreement between theory and experiment for
ab initio calculations generally improves as one increases the size of the basis set. Hehre
et al. suggest that the 3-21G basis set offers a good compromise between performance and
applicability [Hehre ef al. 1986]. It is often found that errors in structural predictions are
systematic rather than random. For example, STO-3G bond lengths are generally too long,
whilst 6-31G™ bond lengths tend to be too short. By analysing the trends in such calculations
it can be possible to derive scaling factors which enable more accurate predictions to be
made for each level of theory.

Quantum mechanics can be used to calculate the relative energies of conformations and the
energy barriers between them. Experimental data is available for both relative stabilities and
barrier heights in some cases, though this tends to be limited to relatively simple molecules.
Butane is one molecule that has been investigated in great detail, with its gauche and anti
conformations and the barriers that separate them. The energy difference between the syn
and anti conformations of butane (Figure 2.19) was found to fall significantly with increasing
basis set size, particularly when correlated levels of theory were employed [Wiberg and
Murcko 1988; Allinger et al. 1990; Smuth and Jaffe 1996]. However, the smaller energy differ-
ence between the minimum energy anti and gauche conformations can be calculated quite
accurately even with a relatively small basis set. Quantum mechanics calculations of the
change in energy as a bond is rotated are often used to parametrise the torsional terms in
molecular mechanics force fields, as will be discussed in Section 4.18.
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anti syn gauche

Fig 2.19. syn, anti and gauche conformations of butane (C-C-C-C torsion angles 0°, 180° and +£60° respectively).

2.8 Approximate Molecular Orbital Theories

Ab initio calculations can be extremely expensive in terms of the computer resources
required. Nevertheless, improvements in computer hardware and the availability of easy-
to-use programs have helped to make ab initio methods a widely used computational tool.
The approximate quantum mechanical methods require significantly less computational
resources. Indeed, the earliest approximate methods such as Hiickel theory predate
computers by many years. Moreover, by their incorporation of parameters derived from
experimental data some approximate methods can calculate certain properties more
accurately then even the highest level of ab initio methods.

Many approximate molecular orbital theories have been devised. Most of these methods are
not in widespread use today in their original form. Nevertheless, the more widely used
methods of today are derived from earlier formalisms, which we will therefore consider
where appropriate. We will concentrate on the semi-empirical methods developed in the
research groups of Pople and Dewar. The former pioneered the CNDO, INDO and
NDDO methods, which are now relatively little used in their original form but provided
the basis for subsequent work by the Dewar group, whose research resulted in the popular
MINDO/3, MNDO and AM1 methods. Our aim will be to show how the theory can be
applied in a practical way, not only to highlight their successes but also to show where
problems were encountered and how these problems were overcome. We will also consider
the Hiickel molecular orbital approach and the extended Hiickel method Our discussion of
the underlying theoretical background of the approximate molecular orbital methods will be
based on the Roothaan-Hall framework we have already developed. This will help us to
establish the similarities and the differences with the ab initio approach.

2.9 Semi-empirical Methods

A discussion of semi-empirical methods starts most appropriately with the key components
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of the Roothaan-Hall equations, which for a closed-shell system are:

FC = SCE (2.225)
K K
=H,* Z Z rol (v A0) — 3 (pAlvo)] (2.226)
N/2
Py, =2 )it (2.227)
i=1
core 1 2 M ZA
H;u/ :del¢u(1)l:~§V - Z | l:|¢1/(1) (2228)
A=1

In ab initio calculations all elements of the Fock matrix are calculated using Equation (2.226),
irrespective of whether the basis functions ¢,, ¢,, ¢, and ¢, are on the same atom, on atoms
that are bonded or on atoms that are not formally bonded. To discuss the semi-empirical
methods it is useful to consider the Fock matrix elements in three groups: F . (the diagonal
elements), F,, (where ¢, and ¢, are on the same atom) and F,, (where ¢, and ¢, are on
different atoms).

We have mentioned several times that the greatest proportion of the time required to
perform an ab initio Hartree-Fock SCF calculation is invariably spent calculating and
manipulating integrals. The most obvious way to reduce the computational effort is
therefore to neglect or approximate some of these integrals. Semi-empirical methods achieve
this in part by explicitly considering only the valence electrons of the system; the core
electrons are subsumed into the nuclear core. The rationale behind this approximation is
that the electrons involved in chemical bonding and other phenomena that we might
wish to investigate are those in the valence shell. By considering all the valence electrons
the semi-empirical methods differ from those theories (e.g. Hiickel theory) that explicitly
consider only the 7 electrons of a conjugated system and which are therefore limited to
specific classes of molecule. The semi-empirical calculations invariably use basis sets
comprising Slater type s, p and sometimes d orbitals. The orthogonality of such orbitals
enables further simplifications to be made to the equations.

A feature common to the semi-empirical methods is that the overlap matrix, S (in Equation
(2.225)), is set equal to the identity matrix I. Thus all diagonal elements of the overlap matrix
are equal to 1 and all off-diagonal elements are zero. Some of the off-diagonal elements
would naturally be zero due to the use of orthogonal basis sets on each atom, but in addition
the elements that correspond to the overlap between two atomic orbitals on different atoms
are also set to zero. The main implication of this is that the Roothaan-Hall equations are
ﬁimphfled FC = SCE becomes FC = CE and so is immediately in standard matrix form. It
is important to note that setting S equal to the identity matrix does not mean that all overlap
integrals are set to zero in the calculation of Fock matrix elements. Indeed, it is important

specifically to include some of the overlaps in even the simplest of the semi-empirical
madels.
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2.9.1 Zero-differential Overlap

Many semi-empirical theories are based upon the zero-differential overlap approximation
(ZDO). In this approximation, the overlap between pairs of different orbitals is set to zero
for all volume elements dv:

Gudydv =10 (2.229)
This directly leads to the following result for the overlap integrals:
S = b (2.230)

If the two atomic orbitals ¢, and ¢, are located on different atoms then the differential
overlap is referred to as diatomic differential overlap; if ¢, and-¢, are on the same atom
then we have monatomic differential overlap. If the ZDO approximation is applied to the
two-electron repulsion integral (uv|Ao) then the integral will equal zero 1f p # v and/or if
)\ # . This can be written concisely using the Kronecker delta:

(1|Aa) = (pulAN)8,050 (2.231)

It can immediately be seen that all three- and four-centre integrals are set to zero under the
ZDO approximation. If the ZDO approximation is applied to all orbital pairs then the
Roothaan-Hall equations for a closed-shell molecule (Equation (2.226)) simplify consider-
ably to give the following for p = v:

K
o= HS® 4> Pa(uslMN) = 3 Py (upsls) (2.232)
A=1

The summation over ) includes A = y, and the terms in (pulpy) can be separated to give:

K
Fpu = H® + 3P, (uplus) + Y Pua(mul\) (2.233)
A=1; As#p
For v # u we have.
F, =Hg"* - 1P, (pplvv) (2.234)

Sensible results cannot be obtained by simply applying the ZDO approximation to all pairs
of orbitals carte blanche. There are two major reasons for this.

The first consideration is that the total wavefunction and the molecular properties calculated
from it should be the same when a transformed basis set is used. We have already encoun-
tered this requirement in our discussion of the transformation of the Roothaan-Hall
equations to an orthogonal set. To reiterate: suppose a molecular orbital is written as a
linear combination of atomic orbitals:

Y= Cudy (2235)
17

If an alternative basis set is used in which the basis functions are just linear combinations
of the original basis functions, then the same wavefunction can be written as a linear
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combination of these new transformed functions:

A (2.236)
$o=> t. o, (2.237)
Hax

t,. are the coefficients of the original basis functions in the linear expansion of the trans-
formed basis set. Different types of transformation are possible; for example, some transfor-
mations mix orbitals with the same principal and azimuthal quantum numbers (e.g. mixing
2p., 2p, and 2p,); others mix orbitals with the same principal quantum number but dlfferent
azimuthal quantum numbers (e.g. mixing 2s, 2p,, 2p, and 2p, orbitals to give sp> hybrid
orbitals); yet other transformations mix orbitals located on different atoms. Suppose we
mix 2p, and 2p, atomic orbitals on the same atom. The differential overlap between these
two orbitals is 2p,2p,. We now introduce the following two new coordinates, which
correspond to a rotation in the xy plane:

x = \/ii (x +v) (2238)
y= % (—x+y) (2.239)

The overlap between the 2p), and 2pj, orbitals in this new coordinate system is %(2p§ —2p2). If
the zero differential overlap approximation were applied, then different results would be
obtained for the two coordinate systems unless the overlap in the new, transformed
system was also ignored.

The second reason why the ZDO approximation is not applied to all pairs of orbitals is that
the major contributors to bond formation are the electron-core interactions between pairs of
orbitals and the nuclear cores (i.e. H,;). These interactions are therefore not subjected to the
ZDO approximation (and so do not suffer from any transformation problems).

2.9.2 CNDO

The complete neglect of differential overlap (CNDO) approach of Pople, Santry and Segal
was the first method to implement the zero-differential overlap approximation in a practical
fashion [Pople et al. 1965]. To overcome the problems of rotational invariance, the two-
electron integrals (uu|A)\), where u and X are on different atoms A and B, were set equal
to a parameter v,5 which depends only on the nature of the atoms A and B and the
internuclear distance, and not on the type of orbital. The parameter 745 can be considered
to be the average electrostatic repulsion between an electron on atom A and an electron
on atom B. When both atomic orbitals are on the same atom the parameter is written

7aa and represents the average electron-electron repulsion between two electrons on an
atom A,

Wlth this approximation we can divide the elements of the Fock matrix into three groups:
u« (the diagonal elements), F,, (where y and v are on different atoms) and F,, (where p
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and v are on the same atom). To obtain F,, we substitute y5p for the two-electron integrals
(up|AXN) where p and ) are on different atoms and v, where 1t and ) are on the same atom
into the Fock matrix equations, Equations (2.240)-(2.242):

K K

F,,=H,* + Z Puvas — 3Puvan + Z PyxvaB (2.240)
A=1;AonA A=1; Anoton A

F, =Hy" - 1P, 7aa; wand v both on atom A (2.241)

F, =Hy" - 1P, 1ap, wand v on different atoms, Aand B (2.242)

Equation (2.240) is rather untidy, involving summations over basis functions on atom A and
basis functions not on atom A. It is often simplified by writing Paa as the total electron
density on atom A, where:

A
Pan= Y Pu (2.243)

Aon A

A similar expression can also be introduced for Pgg. With this notation F,,, simplifies to:

P/L/L = H;CL(/)Ie + (PAA —% uu)7AA + Z PgpyaB (2'244)
BZA

The core Hamiltonian expressions, H© and HJ', correspond to electrons moving in the
field of the parent nucleus and the other nuclei, In semi-empirical methods the core electrons
are subsumed into the nucleus and so the nuclear charges are altered accordingly (for
example, carbon has a nuclear ‘charge’ of +4).

In CNDO H{® is separated into an integral involving the atom on which ¢, is situated
(labelled A), and all the others (labelled B). Thus:

HO® = U, — > Vas (2.245)
B#A
where:
1 Z
u =<‘——V2~——A—— ) and V :< _ =B ) 2.246
w=\H 3 Rl |” AB “|r1—RBIM (2.246)

U, is thus the energy of the orbital ¢, in the field of its own nucleus (A) and core electrons;
—Vap is the energy of the electron in the field of another nucleus (B). To maintain consistency
with the way in which the two-electron integrals are treated, the terms

(1

must be the same for all orbitals ¢, on atom A (i.e. the interaction energy between any
electron in an orbital on atom A with the core of atom B is equal to Vag).

Zp

lr1 — Rg|

u) (2.247)
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w s
Hamiltoman has the following form:

We next consider H;®, where ¢, and ¢, are both on the same atom, A. In this case the core

1 Z Z
(e )
! #72 Ity — Ral B;\ ey — Ry
Zgp
—Uu. — ~B_ 2.24
/w Z <u lry — Rg| V) (2:248)

B#£A

As ¢, and ¢, are on the same atom, U, is zero due to the orthogonality of atomic orbitals.
The term
¢

is zero in accordance with the zero-differential overlap approximation. Thus H;J® is zero in

CNDO.

Finally, if ¢, and ¢, are on two different atoms A and B, then we can write:

: R Chs
v)— b -
c;;,s |1‘1 _RCI

H[c[c})/re — (Ml _EVZ
The second term corresponds to the interaction of the distribution ¢,¢, with the atoms C
(# A, B). These interactions are ignored. The first part (known as the resonance integral and
commonly written §,,) is not subject to the ZDO approximation, because it is the main
cause of bonding. In CNDO the resonance integral is made proportional to the overlap
integral, S,,:

Zp
|ty — Rg|

1/) (2.249)

Z, Zs
[r1 —Ra| |1 — Rg

u) (2.250)

H/c;re = ﬂOABS;w (2 251)
where 5 is a parameter which depends on the nature of atoms A and B.

With these approximations the Fock matrix elements for CNDO become:

Foo=U,+ > Vap+ (Pan —3Pu)van + D Popvas (2252)
B£A B#A

F, =—1P,7aa; #andv on the same atom, A (2.253)

F,, = O%8Suw —3Puyas, ponAandvonB (2 254)

To perform a CNDO calculation requires the following to be calculated or specified: the
overlap integrals, S,,,, the core Hamiltonians U, the electron-core interactions Vg, the
electron repulsion integrals yap and y,4 and the bonding parameters 4. The CNDO
basis set comprises Slater type orbitals for the valence shell with the exponents being
chosen using Slater’s rules (except for hydrogen, where an exponent of 1.2 is used as this
value is more appropriate to hydrogen atoms in molecules). Thus the basis set comprises
1s for hydrogen and 2s, 2p,, 2p, and 2p; for the first-row elements. The overlap integrals
are calculated explicitly (the overlap between two basis functions on the same atom is,
of course, zero with an s, p basis set). The electron repulsion integral parameter v5p is
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calculated using valence s functions on the two atoms A and B:

a5 = | [ dunen a0 - ) bea(Dn(2 (2.255)

The use of spherically symmetric s orbitals avoids the problems associated with transforma-
tions of the axes. The core Hamiltonians (U,,) are not calculated but are obtained from
experimental ionisation energies. This is because it is important to distinguish between s
and p orbitals in the valence shell (i.e. the 2s and 2p orbitals for the first-row elements),
and without explicit core electrons this is difficult to achieve. The resonance integrals,
@3 p, are written in terms of empirical single-atom values as follows:

P =1(5 + ) (2.256)

The ° values are chosen to fit the results of minimal basis set ab initio calculations on
diatomic molecules.

The electron-core interaction, Vg, is calculated as the interaction between an electron in a
valence s orbital on atom A with the nuclear core of atom B:

Vap = del¢s A(1) i |¢s A1) (2.257)

CNDO is rightly recognised as the first in a long line of important semi-empirical models.
However, there were some important limitations with the model. One especially serious
deficiency of the first version of CNDO (introduced in 1965 [Pople and Segal 1965, Pople
et al. 1965] and now known as CNDO/1) is that two neutral atoms show a significant
(and incorrect) attraction, even when separated by several angstroms. The predicted equili-
brium distances for diatomic molecules are also too short and the dissociation energies too
large. These effects are due to electrons on one atom penetrating the valence shell of another
atom and so experiencing a nuclear attraction. This penetration effect can be quantified more
explicitly as follows. The net charge on an atom B equals the difference between its nuclear
charge and the total electron density: Qp =Zp — Pgg. If we now substitute for Pgp
(= Zg — Qg) in the diagonal elements of the Fock matrix, Equation (2.252), we obtain:

= U, + (Paa —3P,u)7an + Z [~Qr7aB + (Zp7aB — Vas)] (2.258)
BZA

—Qpvap is the contribution from the total charge on atom B; this is zero if the atomic charge is
exactly balanced by the electron density. Zgyap — Vap is called the penetration integral. It was
this contribution that caused the anomalous results for two neutral atoms at large separa-
tion. In the second version of CNDO (CNDQ/2 [Pople and Segal 1966]) the penetration
integral effect was eliminated by putting Vg = Zgyap. The core Hamiltonian U, was
also defined differently in CNDO/2, using both ionisation energies and electron affinities.

2.9.3 INDO

CNDO makes no allowance for the fact that the interaction between two electrons depends
upon their relative spins. This effect can be particularly severe for electrons on the same
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atom. Thus, in CNDO all two-electron integrals (uv|Av) are set to zero, and integrals (uu|vv)
and (puplpp) are forced to be equal (to yaa). The next development was the intermediate
neglect of differential overlap model (INDO [Pople ef al. 1967]), which includes monatomic
differential overlap for one-centre integrals (ie. for integrals involving basis functions
centred on the same atom) This enables the interaction between two electrons on the
same atorn with parallel spins to have a lower energy than the comparable interaction
between electrons with paired spins. For this reason the Fock matrix elements are usually
written with the spin (« or B) explicitly specified. The elements F,, and F,, (where p and
v are located on atom A) then change from their CNDO/2 values as follows:

Foo=Uy+ > D [Puolpulo) — P, (uMuo)] + Y (Pes — Zp)van (2.259)
AonA conA B#A

Fo=Uy+ Y. Y [Pa(pvro) = P& (uAlvo)l; pand v both onatom A (2.260)
AonA conA

In Equation (2.259) we have included the CNDO/ 2 approximation Vg = Zpyap. The matrix
element F,,, where p and v are on different atoms, is the same as in CNDO/2:

F, =183 + B8)Suw — Prvas (2.261)

In a closed-shell system, P, = Pﬁ,, = %Pﬂ,, and the Fock matrix elements can be obtained by
making this substitution. If a basis set containing s, p orbitals is used, then many of the one-
centre integrals nominally included in INDO are equal to zero, as are the core elements U,
Specifically, only the following one-centre, two-electron integrals are non-zero: (up|ppu),
(pplvy) and (pv|uv). The elements of the Fock matrix that are affected can then be written
as follows:

Fup=Upu+ Y [Pou(pulvv) =3P, (uvluv)] + > (Pos — Zs)van (2:262)
vonA B#£A
F,, =3P, (uv|pv) =3P, (uplvv); p,v on the same atom (2.263)

Some of the one-centre two-electron integrals in INDO are semi-empirical parameters,
obtained by fitting to atomic spectroscopic data. The core integrals U,,, are obtained in a
slightly different fashion to that of CNDO/2, to take into account the new electronic
configurations under the INDO model for atoms and their cations and anions. An INDO
calculation requires little additional computational effort compared with the corresponding
CNDO calculation and has the key advantage that states of different multiplicities can be
distinguished. For example, in CNDO the singlet and triplet configurations 1s?2s*2p of
carbon have the same energy, whereas these can be distinguished using INDO. Two of the
systems considered in the original INDO publication were the methyl and ethyl radicals,
the unpaired electron density being compared with experimentally determined hyperfine
coupling constants. INDO gave a much more favourable result for these systems than CNDO.

2.9.4 NDDO

The next level of approximation is the neglect of diatomic differential overlap model (NDDO
[Pople et al. 1965]); this theory only neglects differential overlap between atomic orbitals on
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different atoms. Thus all of the two-electron, two-centre integrals of the form (uv|\o), where
p and v are on the same atom and A and o are also on the same atom, are retained. The Fock
matrix elements become:

Fo=H+ 3 N [P(uulho) — 1Py (o)l + Y Y D Puluulro) (2264)

AonA gonA B#A AonB oconB
Fu=H+ Y D [Pa(ur|ro) = 3Pa(uAvo)]
AonA ocon A
+ Z Z Z Py (pv|rs); pandvy bothon A (2.265)
B#A AonB oconB
1
F =H —> > > Pu(uolvd); ponAandvonB (2.266)
AonB oon A

It is again possible to tidy up equations (2.264) and (2.265) when an s, p basis set is used:
Fo = HZ 4+ 3 [Py (updvr) - 3P (i)l + 3 3 3 Palunpo)  (2.267)

vonA B#A AonB oonB

F,=H + 3P, (wlw) — 1P, (uulvv) + Y Y D Pa(pv|do) (2.268)
B#A AonB oconB

Whereas the computation required for an INDO calculation is little more than for the
analogous CNDQ calculation, in NDDO the number of two-electron, two-centre integrals
is increased by a factor of approximately 100 for each pair of heavy atoms in the system.

2.9.5 MINDO/3

The CNDO, INDO and NDDO methods, as originally devised and implemented, are now
little used, in comparison with the methods subsequently developed by Dewar and
colleagues, but they were of considerable importance in showing how a systematic series
of approximations could be used to develop methods of real practical value. Moreover,
the calculations could be performed in a fraction of the time required to solve the full
Roothaan-Hall equations. However, they did not produce very accurate results, largely
because they were parametrised upon the results from relatively low-level ab initio calcula-
tions, which themselves agreed poorly with experiment. They were also limited to small
classes of molecule, and they often required a good experimental geometry to be supplied
as input because their geometry optimisation algorithms were not very sophisticated.

It was through the introduction of the MINDO/3 method by Bingham, Dewar and Lo
[Bingham ef al. 1975a-d] that a wider audience was able to apply semi-empirical methods
in their own research. MINDO/3 was not so much a significant change in the theory,
being based upon INDO (MINDO stands for modified INDO), but it did differ significantly
in the way in which the method was parametrised, making much more use of experimental
data. It also incorporated a geometry optimisation routine (the Davidon-Fletcher-Powell
method; see Chapter 5), which enabled the program to accept crude initial geometries as
input and derive the associated minimum energy structures.
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MINDQ/3 uses an s, p basis set and its Fock matrix elements are:

Foo=Uy+ > (Pu(plvv) — 3Py, (uluv)) + > (Pes — Zp)vas (2.269)
vonA B#A

F,, = —3Pu(uv|uv); pand v both on the same atom A (2.270)

F,, =Hg" - 3P, () = Hy® =3P, 7ap; pon AandvonB (2.271)

The two-centre repulsion integrals v,5 in MINDO/3 are calculated using the following
function.
2

4
YaB = > 5

1/ ¢ e 12
Ri += < +—=— ) }
[ AB s 8B

ga is the average of the one-centre, two-electron integrals g, on atom A (i.e. g, = (pplvv))
and gp is the equivalent average for atom B. This seemingly complex function for ~ap is, in
fact, quite simple; at large Rz it tends towards the Coulomb’s law expression e ? /R s and as
R4 tends to zero it approaches the average of the one-centre integrals on the two atoms. The
two-centre, one-electron integrals H,,® are given in MINDO/3 by:

H® = S,,8as(L, + 1) (2273)

(2.272)

S, is the overlap integral, I, and I, are ionisation potentials for the appropriate orbitals and
A is a parameter dependent upon both of the two atoms A and B.

The core-core interaction between pairs of nuclei was also changed in MINDO/3 from the
form used in CNDO/2. One way to correct the fundamental problems with CNDO/2 such
as the repulsion between two hydrogen atoms (or indeed any neutral molecules) at all
distances is to change the core—core repulsion term from a simple Coulombic expression
(Ea = ZaZp/Rap) to:

Exg = ZaZyVaB (2.274)

In fact, while this correction gives the desired behaviour at relatively long separations, it
does not account for the fact that as two nuclei approach each other the screening by the
core electrons decreases. As the separation approaches zero the core-core repulsion
should be described by Coulomb’s law. In MINDO/3 this is achieved by making the
core~-core interaction a function of the electron-electron repulsion integrals as follows:

Eap = ZaZp{"ap + [(€*/Rag) — 7asl exp(—aapRas)} (2.275)

aap is a parameter dependent upon the nature of the atoms A and B. For OH and NH bonds
a slightly different core-core interaction was found to be more appropriate:

Exar = ZxZu{war + [(€2/Rua) — var)oxm exp(—Rxa)} (2.276)

The parameters for MINDO/3 were obtained in an entirely different way from previous
semi-empirical methods. Some of the values that were fixed in CNDO, INDO and NNDO
were permitted to vary during the MINDO/3 parametrisation procedure. For example,
the exponents of the Slater atomic orbitals were allowed to vary from the values given by
Slater’s rules, and indeed the exponents for s and p orbitals were not required to be the
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same. U, and B,p were also regarded as variable parameters. Another key difference was
that the MINDO/3 parametrisation used experimental data such as molecular geometries
and heats of formation, rather than theoretical values from ab initio calculations or data
from atomic spectra. The parametrisation effort was a considerable undertaking, and it
was only at the fourth attempt that an acceptable model was obtained (as is implicit in
the appearance of the ‘3’ in the name). For example, just to parametrise two atoms such
as carbon and hydrogen using a set of 20 molecules required between 30000 and 50000
SCF calculations for each parametrisation scheme that was investigated.

2.9.6 MNDO

MINDO/3 proved to be very successful when it was introduced; it is important to realise
that even simple ab initio calculations were beyond the computational resources of all but
a few research groups in the 1970s. However, there were some significant limitations. For
example, heats of formation of unsaturated molecules were consistently too positive, the
errors in calculated bond angles were often quite large, and the heats of formation for
molecules containing adjacent atoms with lone pairs were too negative. Some of these
limitations were due to the use of the INDO approximation, and in particular the inability
of INDO to deal with systems containing lone pairs. Dewar and Thiel therefore introduced
the modified neglect of diatomic overlap (MNDO) method, which was based on NDDO
[Dewar and Thiel 1977a,b]. The Fock matrix elements in MNDO were as follows:

B = B+ 3 [Polow) ~ 3Pl + Y- 30 30 Puuulhe)  (2277)
vonA B#A AonB gonB

where HO® =U,,— Y Vs (2278)
B#A

F;w = H;CL?/re + %Pﬂ,,(,ulll,ull) _% ;w(HMW)
+ Z Z Z Py, (uvjAo); pand v both on A (2.279)

B#A AonB oonB

where Ho®=-> V.5 (2.280)
B#£A
Fo,=H-13" > P, (uolv)); ponAandvonB (2.281)
AonB ocon A
where H® =15,.(8,+8,) (2.282)

The similarity with the NDDO expressions, Equations (2.264)-(2.266), can clearly be seen;
the major new features are the appearance of terms V3 and V.5 and a new form for the
two-centre, one-electron core resonance integrals, which depend upon the overlap S,
and parameters 8, and 3, as shown in Equation (2.282). V,,p and V,p are two-centre,
one-electron attractions between an electron distribution ¢,¢, or ¢,¢,, respectively, on
atom A and the core of atom B. These are expressed as follows:

Vs = —Zp(akalssss) (2.283)
Vb = —Zp(1aValssSB) (2.284)
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The core-core repulsion terms are also different in MNDO from those in MINDO/ 3, with
OH and NH bonds again being treated separately:

Enp = ZaZp(sasalspsp){1 + exp(—aaRap) + exp(—apRas)} (2285)
Exx = ZxZu(sxsx|susm){1 + Rxy exp(—axRx)/Rap) + exp(—anRxu)} (2.286)

Perhaps the most significant advantage of MNDO over MINDO/ 3 is the use throughout of
monatomic parameters; MINDO/3 requires diatomic parameters in the resonance integral
(Bap) and the core-core repulsion (asp). It has been possible to expand MNDO to cover a
much wider variety of elements such as aluminium, silicon, germanium, tin, bromine and
lead. However, the use of an (s, p) basis set in the original MNDO method did mean that
the method could not be applied to most transition metals, which require a basis set
containing d orbitals. In addition, hypervalent compounds of sulphur and phosphorus
are not modelled well. In more recent versions of the MNDO method d orbitals have
been explicitly included for the heavier elements [Thiel and Voityuk 1994]. Another serious
limitation of MNDO is its inability to accurately model intermolecular systems involving
hydrogen bonds (for example, the heat of formation of the water dimer is far too low in
MNDOQ). This is because of a tendency to overestimate the repulsion between atoms when
they are separated by a distance approximately equal to the sum of their van der Waals
radii. Conjugated systems can also present difficulties for MNDO. An extreme example of
this occurs with compounds such as nitrobenzene in which the nitro group is predicted to
be orthogonal to the aromatic ring rather than conjugated with it. In addition, MNDO
energies are too positive for sterically crowded molecules and too negative for molecules
containing four-membered rings.

2.9.7 AM1

The Austin Model 1 (AM1) model was the next semi-empirical theory produced by Dewar’s
group [Dewar et al. 1985]. AM1 was designed to eliminate the problems with MNDO, which
were considered to arise from a tendency to overestimate repulsions between atoms
separated by distances approximately equal to the sum of their van der Waals radii. The
strategy adopted was to modify the core-core term using Gaussian functions. Both attractive
and repulsive Gaussian functions were used; the attractive Gaussians were designed to
overcome the repulsion directly and were centred in the region where the repulsions
were too large Repulsive Gaussian functions were centred at smaller internuclear separa-
tions. With this modification the expression for the core-core term was related to the
MNDO expression by:

VAVAS
Rag

Eap = Eympo +
x { Y K exp[-La(Rag —Ma )1+ Y Kg, exp[—Lg (Rap — MB,-)Z]} (2.287)
i i

The additional terms are spherical Gaussian functions with a width determined by the
parameter L It was found that the values of these parameters were not critical and many
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E (AM1) - E (MNDO)
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Distance (A)

Fig 2 20. The difference in the core-core energy for AM1 and MNDO for carbon-hydrogen and oxygen—hydrogen
interactions

were set to the same value, The M and K parameters were optimised for each atom, together
with the o parameters in the exponential terms in Equations (2.285) and (2.286). In the
original parametrisation of AM1 there are four terms in the Gaussian expansion for
carbon, three for hydrogen and nitrogen and two for oxygen (both attractive and repulsive
Gaussians were used for carbon, hydrogen and nitrogen but only repulsive Gaussians for
oxygen). The effect of including these Gaussian functions can be seen in Figure 2.20,
which plots the difference in the MNDO and AM1 core-core terms for the carbon-hydrogen
and oxygen-hydrogen interactions. The inclusion of these Gaussians significantly increased
the number of parameters per atom, from seven in the MNDO to between 13 and 16 per
atom in AM1. This, of course, made the parametrisation process considerably more difficult.
Overall, AM1 was a significant improvement over MNDO and many of the deficiencies
associated with the core repulsion were corrected.

2.9.8 PM3

PM3 is also based on MNDO (the name derives from the fact that it is the third parametrisa-
tion of MNDO, AM1 being considered the second) [Stewart 1989a, b]. The PM3 Hamiltonian
contains essentially the same elements as that for AM1, but the parameters for the PM3
model were derived using an automated parametrisation procedure devised by J J P Stewart
By contrast, many of the parameters in AM1 were obtained by applying chemical
knowledge and ‘intuition’. As a consequence, some of the parameters have significantly
different values in AM1 and PM3, even though both methods use the same functional
form and they both predict various thermodynamic and structural properties to approxi-
mately the same level of accuracy. Some problems do remain with PM3. One of the most
important of these is the rotational barrier of the amide bond, which is much too low and
in some cases almost non-existent. This problem can be corrected through the use of an
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empirical torsional potential (see Section 4.5). There has been considerable debate over the
relative merits of the AM1 and PM3 approaches to parametrisation.

2.9.9 SAM1

The final offering from the Dewar group” was SAM1, which stands for ‘Semi-Ab-initio
Model 1" [Dewar et al. 1993]. The name was chosen to reflect Dewar’s belief that methods
like AM1 offer such a significant enhancement over the earlier semi-empirical methods
like CNDO/2 that they should be given a different generic name. In SAM1 a standard
STO-3G Gaussian basis set is used to evaluate the electron repulsion integrals; close inspec-
tion of the results from AM1 and MNDO suggested that steric effects were overestimated
because of the way in which the electron repulsion integrals were calculated. The resulting
integrals were then scaled, partly to enable some of the effects of eleciron correlation to be
included and partly to compensate for the use of a minimal basis set. The Gaussian terms in
the core-core repulsion were retained to fine-tune the model. The number of parameters in
SAM1 1s no greater than in AM1 and fewer than in PM3. It does take longer to run (by up to
two orders of magnitude) though it was felt that with the improvements in computer
hardware such an increase was acceptable.

2.9.10 Programs for Semi-empirical Quantum Mechanical Calculations

The popularity of the MNDO, AM1 and PM3 methods is due in large part to their implemen-
tation in the MOPAC and AMPAC programs. The programs are able to perform many kinds
of calculation and to calculate many different properties.

The contributions of the Dewar group are rightly recognised as particularly significant in the
development of semi-empirical methods, but other research groups have also made impor-
tant contributions. The SINDO1 and ZINDO programs have been developed in the groups
of Jug and Zerner, respectively, and both contain novel features. The ZINDO program of
Zerner and co-workers can perform a wide variety of semi-empirical calculations and has
been particularly useful for calculations on transition metal and lanthanide compounds
and for predicting molecular electronic spectra.

2.10 Hiickel Theory

Hiickel theory can be considered the ‘grandfather’ of approximate molecular orbital
methods, having been formulated in the early 1930s [Hiickel 1931]. Hiickel theory is limited
to conjugated 7 systems and was originally devised to explain the non-additive nature of
certain properties of aromatic compounds. For example, the properties of benzene are
much different from those of the hypothetical ‘cyclohexatriene’ molecule. Although
Hiickel theory, as originally formulated, is relatively little used in research today, extensions

“ Michael Dewar died m 1997
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to it such as extended Hiickel theory are still employed and can provide qualitative insights
into the electronic structure of important classes of molecule. Hiickel theory is also widely
used for teaching purposes to introduce a ‘real’ theory that can be applied to relatively
complex systems with little more than pencil and paper or a simple computer program.

Hiickel theory separates the m system from the underlying o framework and constructs
molecular orbitals into which the 7 electrons are then fed in the usual way according to
the Aufbau principle. The 7 electrons are thus considered to be moving in a field created
by the nuclei and the ‘core’ of o electrons. The molecular orbitals are constructed from
linear combinations of atomic orbitals and so the theory is an LCAO method. For our
purposes it is most appropriate to consider Hiickel theory in terms of the CNDO approxima-
tion (in fact, Hiickel theory was the first ZDO molecular orbital theory to be developed). Let
us examine the three types of Fock matrix element in Equations (2.252)~(2.254). First, F,,,. In
a neutral species, the net charge on each atom will be approximately zero, and so if we take
Equation (2.258), from which penetration effects have been eliminated, then we are left with
U, +(Pas—0 5P, )7aa- Now if each nucleus (A) in the 7 system is the same (i.e. carbon)
then this expression will be approximately constant for all nuclei being considered. The
matrix elements F,, are often (confusingly) called Coulomb integrals in Hiickel theory
and are assigned the symbol a. All off-diagonal elements of the Fock matrix are assumed
to be zero with the exception of elements F,,, where y and v are 7 orbitals on two bonded
atomns. These F,, are assumed to be constant, are assigned the symbol 3 and are known
as resonance integrals, The Fock matrix in Hiickel theory thus has as many rows and
columns as the number of atoms in the 7 system with diagonal elements that are all set to
a. All off-diagonal elements F; are zero unless there is a bond between the atomns i and j,
in which case the element is §. For benzene the Fock matrix is of the following form
(atom labelling as in Figure 2.21):

a 5 0 0 0 g
B o p 0 00
0 00
pra b (2.288)
0 0 8 a p 0
000 B a p
8 0 0 0 g8 a
E
1
Yo a-2p
6 2 Wi, Ys o=
5 3
Y2, 3 —H —H o+p
4 L3l H a+2p

Fig 2 21: Benzene and its Hiickel molecular orbitals.



An Introduction to Computational Quantum Mechanics 101

Fig 222 Three fullerenes, Cgy, C7p and Co.

As with the other semi-empirical methods that we have considered so far, the overlap
matrix is equal to the identity matrix. The following simple matrix equation must then be
solved:

FC = CE (2 289)

The equation can be solved by standard methods to give the basis set coefficients and
the molecular orbital energies E. The orbital energies for benzene are E; = o +28;
Ey Es=a+ 8 Ey Es=a— 3 E; =a~ 28, and so the ground state places two electrons
in ¢; and two each in the two degenerate orbitals 1, and 3. The lowest-energy orbital
is a linear combination of the six carbon p orbitals.

Hiickel theory was extended to cover various other systems, including those with hetero-
atoms, but it was not particularly successful and has largely been superseded by other
semi-empirical methods. Nevertheless, for appropriate problems Hiickel theory can be
very useful. One example is the calculations of P W Fowler and colleagues, who studied
the relationship between geometry and electronic structure for a range of buckminster-
fullerenes (the parent molecule of which, Cgy, was discovered in 1985) [Fowler 1993] The
fullerenes (or ‘buckyballs’) are excellent candidates for Hiickel theory as they are composed
of carbon and have extensive 7 systems; three examples are shown in Figure 2.22.

The results of their calculations were summarised in two rules. The first rule states that at
least one isomer C, with a properly closed p shell (ie. bonding HOMO, antibonding
LUMO) exists for all # = 60 + 6k (k=10,2,3,..., but not 1). Thus Cgy, Cyp, Cyg, etc., are in
this group. The second rule is for carbon cylinders and states that a closed-shell structure
is found for n = 2p(7 +3k) (for all k). Cy is the parent of this family. The calculations
were extended to cover different types of structure and fullerenes doped with metals.

2.10.1 Extended Hiickel Theory

Hiickel theory is clearly limited, in part because it is restricted to 7 systems. The extended
Hiickel method is a molecular orbital theory that takes account of all the valence electrons
in the molecule [Hoffmann 1963]. 1t is largely associated with R Hoffmann, who received
the Nobel Prize for his contributions The equation to be solved is FC=SCE, with the
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Fock matrix elements taking the following simple forms:
Fot =H,, =-I, (2.290)
FA2 =H,, = ~1K(I,+1)S, (2.291)

In these equations, p and v are two atomic orbitals (e.g. Slater type orbitals), I, is the
ionisation potential of the orbital and K is a constant, which was originally set to 1.75. The
formula for the off-diagonal elements H,v (where y and v are on different atoms) was
originally suggested by R S Mulliken. These off-diagonal matrix elements are calculated
between all pairs of valence orbitals and so extended Hiickel theory is not limited to =
systems.

The extended Hiickel approach has proved to be rather successful for such a simple theory;
for example, the famous Woodward-Hoffmann rules (see Section 5.9.4) were based upon
calculations using this model. Extended Hiickel theory has found particular application in
those areas where alternative theories cannot be used. This is largely due to the fact that
the basis set requires no more than experimentally determined ionisation potentials. It is
particularly useful for studying systems containing metals; these systems are problematic
for many other methods due to the lack of suitable basis sets.

2.11 Performance of Semi-empirical Methods

Our discussion of the application of quantum mechanics calculations was not explicitly
directed towards any particular quantum mechanical theory but was - implicitly at least
- written with ab initio methods in mind. All of the properties we considered in
Section 2.7 can also be determined using semi-empirical methods. Extensive tables
detailing the performance of the popular semi-empirical methods have been published,
both in the original papers and in review articles, some of which are listed at the end of
this chapter. The parametrisation of the semi-empirical approaches typically includes
geometrical variables, dipole moments, ionisation energies and heats of formation. In
Table 2.7 we provide a summary of the performance of the MINDO/3, MNDO, AM1,
PM3 and SAM1 semi-empirical methods from data supplied in the original publications.
The performance of successive semi-empirical methods has gradually improved from
one method to another, though one should always remember that anomalous results
may be obtained for certain types of system. Some of these limitations were outlined in
the discussion of the various semi-empirical methods. It is worth emphasising that some
of the major drawbacks with the semi-empirical methods arise simply because one is
trying to calculate properties that were not given a major consideration in the parametrisa-
tion process. For example, many of the molecules used for the parametrisation of the
MNDO, AM1 and PM3 methods had little or no conformational flexibility and it is
therefore not so surprising that some rotational barriers are not calculated with the same
accuracy as (say) heats of formation. In addition, to achieve optimal performance for
specific classes of molecules (e.g. the amino acids) or specific properties (e.g. conforma-
tional barriers) then it would be appropriate to include representative systems during
the parametrisation procedure.



putational Quantum Mechanics

"SPOYIIUL (POLIAUII-1UIS STOLBA YJIm PayuINIIL) sayyuvnb fo uosuvduiony /-7 a1qvL,

[€661 /e 12 Jema(q]

[S861 “/e 22 Jema]

[9L£61 1911 pue temaq]

DUIBLY

aceo
1S

LINVS

aoro aseo
[4%4 88
N26T°0

aoezo

889

L0’S

E€Nd LNV

A2 6E°0
azeo
79'9
(8'S
aseo
Ow-N
vY7Ll00
€9

OGN

AR LED
arso
69'LL
L6
ast'o
29'
Y7200
oLl

£/0QNIN

sjuswow sjodip 961

(Jowy|e]) uonewlioy Jo s}eay 9oy
so161aus uonesiuol g7

syuswow ajodip 9t

(lowy|exy) O Jo/pue N Yiim sapads Joj uollewloy Jo s1eay 0g
(|owy/|ey) suUOqIed0JpAY JO UO[LWIO) JO S189Y 85

syuswow sjodip /g
so|bue |6
syibua| puoq 87z

(|lowy/|exy) uoneuloy Jo syeay g€




104 Chapter 2

Appendix 2.1 Some Common Acronyms Used in
Computational Quantum Chemistry

AM1 Austin Model 1

AO Atomic obital

B3LYP Scheme for hybrid Hartree-Fock/density functional theory
introduced by Becke

BLYP Becke-Lee-Yang-Parr gradient-corrected functional for use with
density functional theory

BSSE Basis set superposition error

CASSCF Complete active space self-consistent field

I Configuration interaction

CIs Configuration interaction singles

CIsD Configuration interaction singles and doubles

CNDO Complete neglect of differential overlap

DFT Density functional theory

DIIS Direct inversion of iterative subspace

DVP Double zeta with polarisation

DZ Double zeta

EHT Extended Hiickel theory

GVB Generalised valence bond model

HF Hartree-Fock

HOMO Highest occupied molecular orbital

INDO Intermediate neglect of differential overlap

LCAO Linear combination of atomic orbitals

LDA Local density approximation

LSDFT Local spin density functional theory

LUMO Lowest unoccupied molecular orbital

MBPT Many-body perturbation theory

MINDO/3 Modified INDO version 3

MNDO Modified neglect of diatomic overlap

MO Molecular orbital

MP Mgller-Plesset

MP2, MP3, etc. Megller-Plesset theory at second order, third order, etc.

NDDO Neglect of diatomic differential overlap

PM3 Parametrisation 3 of MNDO

QCISD Quadratic configuration interaction singles and doubles

QCISD(T) Configuration interation method involving single, double and
quadratic excitations with an estimated triple excitation

RHF Restricted Hartree-Fock

SAM1 Semi-Ab initio Model 1

SCF Self-consistent field

STO Slater type orbital

STO-3G, STO-4G, etc. Minimal basis sets in which 3, 4 etc, Gaussian functions are used to
represent the atomic orbitals on an atom
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UHF Unrestricted Hartree-Fock
WVN Correlation functional due to Wilk, Vosko and Nusair
ZDO Zero differential overlap
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CHAPTER THREE

Advanced ab initio
Methods, Density
Functional Theory and
Solid-state Quantum
Mechanics

3.1 Introduction

In Chapter 2 we worked through the two most commonly used quantum mechanical models
for performing calculations on ground-state ‘organic’-like molecules, the ab initio and semi-
empirical approaches. We also considered some of the properties that can be calculated
using these techniques. In this chapter we will consider various advanced features of the ab
initio approach and also examine the use of density functional methods. Finally, we will
examine the important topic of how quantum mechanics can be used to study the solid state.

3.2 Open-shell Systems

The Roothaan-Hall equations are not applicable to open-shell systems, which contain one or
more unpaired electrons. Radicals are, by definition, open-shell systems as are some ground-
state molecules such as NO and_O,. Two approaches have been devised to treat open-shell
systems. The first of these is spin-restricted Hartree-Fock (RHF) theory, which uses combi-
nations of singly and doubly occupied molecular orbitals. The closed-shell approach that
we have developed thus far is a special case of RHF theory. The doubly occupied orbitals
use the same spatial functions for electrons of both o and 3 spin. The orbital expansion
Equation (2.144) is employed together with the variational method to derive the optimal
values of the coefficients. The alternative approach is the spin-unrestricted Hartree-Fock
(UHF) theory of Pople and Nesbet [Pople and Nesbet 1954], which uses two distinct sets
of molecular orbitals: one for electrons of a spin and the other for electrons of § spin.
Two Fock matrices are involved, one for each type of spin, with elements as follows:

K K
F = H® + ; Z [IP%, + P4 )(uv|Ao) — Pa(pAlvo)] @1
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K K
Fp, =Hpe+ Y Z P} (v Ao) — P2 (uX|vo)] (32)
A=1 o=1

UHF theory also uses two density matrices, the full density matrix being the sum of these
fwar

Pi, =) i P, = Z chich (3.3)

P,=P% +P, (3.4)

The summations in Equations (3.3) and (3 4) are over the occupied orbitals with o and 3 spin
as appropriate. Thus, oo 4 Focc €quals the total number of electrons in the system. In a
closed-shell Hartree-Fock wavefunction the distribution of electron spin is zero everywhere
because the electrons are paired. In an open-shell system, however, there is an excess of
electron spin, which can be expressed as the spin density, analogous to the electron
density The spin density p*"(r) at a point r is given by:

PP = p (1) — (1) = Z Z [P = Plulu(®)¢u(r) (35)

Clearly, the UHF approach is more general and indeed the restricted Hartree-Fock approach
is a special case of unrestricted Hartree-Fock. Figure 3.1 illustrates the conceptual difference
between the RHF and the UHF models. Unrestricted wavefunctions are also the most appro-
priate way to deal with other problems such as molecules near the dissociation limit. The
simplest example of this type of behaviour is the H, molecule, the ground state of which
is a singlet with a bond length of approximately 0.75 A. The restricted wavefunction is
the appropriate Hartree-Fock wavefunction, with two paired electrons in a single spatial
orbital. As the bond length increases towards the dissociation limit, this description is
clearly inappropriate, for hydrogen is experimentally observed to dissociate to two

RHF UHF

Fig. 3.1, The conceptual difference between the RHF and UHF models
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Fig. 3.2. UHF and RHF dissociation curves for Hy. (Figure adapted from Szabo A, N S Ostlund 1982. Modern
Quantum Chemstry Introduction to Advanced Electronic Structure Theory. New York, McGraw-Hill.)

hydrogen atoms. This behaviour cannot be achieved using a restricted Hartree-Fock wave-
function, which requires the two electrons to occupy the same spatial orbital and leads to H*
and H, but it is appropriately described by a UHF wavefunction. Beyond about 12 A the
‘correct’ wavefunction for hydrogen must thus be obtained using UHF theory. The results
obtained by calculating the potential energy curves of the hydrogen molecule using the
RHF and UHF theories are shown in Figure 3.2. As can be seen, RHF theory gives a dissocia-
tion energy that is much too large, whereas the UHF theory shows the correct dissociation
behaviour.

3.3 Electron Correlation

The most significant drawback of Hartree-Fock theory is that it fails to adequately
represent electron correlation. In the self-consistent field method the electrons are
assumed to be moving in an average potential of the other electrons, and so the instanta-
neous position of an electron is not influenced by the presence of a neighbouring electron.
In fact, the motions of electrons are correlated and they tend to ‘avoid” each other more
than Hartree-Fock theory would suggest, giving rise to a lower energy. The correlation
energy is defined as the difference between the Hartree-Fock energy and the exact
energy. Neglecting electron correlation can lead to some clearly anomalous results,
especially as the dissociation limit is approached. For example, an uncorrelated calculation
would predict that the electrons in H; spend equal time on both nuclei, even when they are
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infinitely separated. Hartree-Fock geometries and relative energies for equilibrium
structures are often in good agreement with experiment and as many molecular modelling
applications are concerned with species at equilibrium it might be considered that
correlation effects are not so important. Nevertheless, there is increasing evidence that
the inclusion of correlation effects is warranted, especially when quantitative information
is required. Moreover, electron correlation is crucial in the study of dispersive effects
(which we shall consider in Section 4.10.1), which play a major role in intermolecular
interactions. Electron correlation is most frequently discussed in the context of ab initio
calculations, but it should be noted that the effects of electron correlation are implicitly
included in the semi-empirical methods because of the way in which they are
parametrised. However, specific electron correlation methods have also been developed
for use with the various levels of semi-empirical calculation; this in turn necessitates the
modification of some parameters.

3.3.1 Configuration Interaction

There are a number of ways in which correlation effects can be incorporated into an ab initio
molecular orbital calculation. A popular approach is configuration interaction (CI), in which
excited states are included in the description of an electronic state. To illustrate the principle,
let us consider a lithium atom. The ground state of lithium can be written 1s?2s! (although
we have used the conventional nomenclature here, we should remember that the wave-
function is really a Slater determinant). Excitation of the outer valence electron gives
states such as 1s°3s". A better description of the overall wavefunction is a linear combination
of the ground and excited-state wavefunctions. If a Hartree-Fock calculation is performed
with K basis functions then 2K spin orbitals are obtained. If these 2K spin orbitals are
filled with N electrons (N < 2K) there will be 2K — N unoccupied, virtual orbitals. The
wavefunction obtained from the single-determinant approach that we have considered
thus faf is expressed only in terms of the occupied orbitals. For example, a very simple
calculation on Hy, using as a basis set just the 1s orbitals on each hydrogen, results in two
molecular orbitals (lo, and 10,). In the ground state, the 1o, orbital is filled with two
electrons. An excited state can be generated by replacing one or more of the occupied
spin orbitals with a virtual spin orbital. Possible excited states for the hydrogen molecule
might thus include 102,03, and 102 (in fact, the first of these two configurations cannot be
combined with the ground state, as we shall see). In addition to the replacement of single
spin orbitals by single virtual orbitals, two spin orbitals can be replaced by two virtual
orbitals, three spin orbitals by three virtual orbitals, and so on. In general, the CI wave-
function can be written as:

U= Co‘llo + Cl‘lll + 02‘112 + .- (36)

¥, is the single-determinant wavefunction obtained by solving the Hartree-Fock equations.
¥y, ¥y, etc. are wavefunctions (expressed as determinants) that represent configurations
derived by replacing one or more of the occupied spin orbitals by a virtual spin orbital.
The energy of the system is then minimised in order to determine the coefficients ¢y, c;,
etc., using a linear variational approach, just as for a single-determinant calculation. A CI



112 Chapter 3

calculation thus involves an additional level of complexity; each configuration is written in
terms of molecular orbitals, which in turn are expressed as a linear combination of basis
functions. The number of integrals can become extremely large. The total number of ways
to permute N electrons and K orbitals is (2K!)/[N!(2K — N)!]. This is a very large number
for all except small values of K and N, which explains why it is not usual to consider all
possibilities (termed full configuration interaction) except for very small systems. However,
full CI is important because it is the most complete treatment possible within the limitations
imposed by the basis set. In the limit of a complete basis set full CI becomes complete CT and
virtually exact - but is generally considered impractical as at large K the number of Slater
determinants increases exponentially with N as KN/N!. 1t is common practice to limit the
excited states considered. For example, in configuration interaction singles (CIS) only wave-
functions that differ from the Hartree-Fock wavefunction by a single spin orbital are
included. The next levels of the theory involve double substitutions (configuration inter-
action doubles, CID) or both singles and double substitutions (configuration interaction
singles and doubles, CISD). Even at the CIS or CID levels, the number of excited states to
be included can be very large, and it may be desirable (or necessary) to restrict the spin
orbitals that are involved in the substitutions. For example, only excitations involving the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) may be permitted. Alternatively, the orbitals corresponding to the inner electron
core may be neglected (the ‘frozen core’ approximation). Some of these options are
illustrated in Figure 3.3.

Not all excitations necessarily help to lower the energy; some determinants do not mix with
the ground state. A consequence of Brillouin’s theorem is that single excitations do not mix

=
i i
-

only only

Fig. 3.3 Some of the ways in which excited-state wavefunctions can be included in a configuration inferaction
calculation (Figuie adapted fromt Hehre W ], L Radom, P v R Schleyer and | A Hehre 1986 Ab initio Molecular
Orbital Theory New York, Wiley )
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directly with the single-determinant, ground-state wavefunction ¥,. It would therefore be
anticipated that double excitations would be most important and that single excitations
would have no effect on the energy of the ground state. However, the single excitations
can interact with the double excitations, which in turn interact with ¥,, and so single excita-
tions do have a small indirect effect on the energy. The determinants of triple and higher
excitations also do not interact directly with ¥, (though they may do indirectly via other
levels of excitation). This is because the Hamiltonian contains elements involving at most
interactions between pairs of electrons, and so if the Slater determinants differ by more
than two electron functions, their integral over all space will be zero.

In a ‘traditional’ CI calculation the determinants in the expansion, Equation (3.6), are those
obtained from a Hartree-Fock calculation; only the coefficients cg, c;, etc. are permitted to
vary. Clearly, a better (i.e. lower-energy) wavefunction should be obtained if the coefficients
of the basis functions themselves can vary as well as the coefficients of the determinants.
This approach is known as the multiconfiguration self-consistent field method (MCSCF).
MCSCF theory is considerably more complicated than the Roothaan-Hall equations and
well beyond the scope of our discussion. One MCSCF technique that has attracted consider-
able attention is the complete active-space SCF method (CASSCF) of Roos [Roos et al. 1980].
CASSCF enables very large numbers of configurations to be included in the calculation by
dividing the molecular orbitals into three sets: those which are doubly occupied in all
configurations, those which are unoccupied in all configurations, and then all the remaining
‘active” orbitals. The list of configurations is generated by considering all possible
arrangements of the active electrons among the active orbitals.

A Cl calculation is variational: the energy obtained is guaranteed to be greater than the ‘true’
energy. A drawback of CI calculations other than those performed at the full CI level is that
they are not size consistent. Simply put, this means that the energy of a number N of non-
interacting atoms or molecules is not equal to N times the energy of a single atom or
molecule. Another consequence of size consistency is that, as the bond length in a diatomic
molecule increases to infinity, so the energy of the system should become equal to the sum of
the energies of the respective atoms. To illustrate why this lack of size consistency arises,
consider CID calculations on Be; and on two beryllium atoms. The electronic configuration
of Beis 15?25 and so if we label the two atoms A and B, then the wavefunction for each of the
two separated atoms will include the configuration 1s32p31s§2p3 (=1s31s3 2p%2p3), in
which two electrons have been promoted in each beryllium atom from the 2s to the 2p
orbitals. This configuration represents a guadruple excitation for the beryllium dimer,
which has the electronic configuration 1s3 153253 2s3. This quadruply excited configuration
is not included in the CID wavefunction for the dimer, which is restricted to double excita-
tions. In fact, the energy of a CI calculation including only doubly excited states is expected
to scale in proportion to v/N, where N is the number of non-interacting species present,
rather than N. The Quadratic Configuration Interaction method (QCISD) was introduced
to try to deal with this; it can be considered a size-consistent CISD theory [Pople et al.
1987]. The procedure involves the addition of higher excitation terms which are quadratic
in their expansion coefficients. Higher still in theory is QCISD(T), in which an estimated
contribution from the triple excitations can be incorporated, though with extra computa-
tional expense.
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3.3.2 Many-body Perturbation Theory

Maeller and Plesset proposed an alternative way to tackle the problem of electron correlation
[Meller and Plesset 1934] Their method is based upon Rayleigh-Schrédinger perturbation
theory, in which the ‘true’ Hamiltonian operator # is expressed as the sum of a ‘zeroth-
order Hamiltonian #, (for which a set of molecular orbitals can be obtained) and a
perturbation, 7

Ho=Hg+V (3.7)

The eigenfunctions of the true Hamiltonian operator are ¥; with corresponding energies
E,. The eigenfunctions of the zeroth-order Hamiltonian are written \Iffo) with energies E,(O).
The ground-state wavefunction is thus ‘If(()o) with energy E(()O). To devise a scheme by
which it is possible to gradually improve the eigenfunctions and eigenvalues of #, we
can write the true Hamiltonian as follows:

H o= Hg+ NV (3.8)
) is a parameter that can vary between 0 and 1; when ) is zero then #’ is equal to the zeroth-

order Hamiltonian, but when X is 1 then # equals its true value. The eigenfunctions ¥; and
eigenvalues E; of # are then expressed in powers of X:

0 =00 4000 4 22e? o= e (3.9)
n=0
E=EQ 4 2ED 4 NEP . = Y AED (3.10)
n=0

Ef]) is the first-order correction to the energy, Egz) is the second-order correction, and so on.
These energies can be calculated from the eigenfunctions as follows:

E9 = J v O, dr (3.11)
EY = J Oy gr (3.12)
E? = J v Oyl gr (3.13)
E® J vy 0P dr (3.14)

To determine the corrections to the energy it is therefore necessary to determine the
wavefunctions to a given order. In Mgller-Plesset perturbation theory the unperturbed
Hamiltonian J#, is the sum of the one-electron Fock operators for the N electrons:

N N N
%ozgifi:;(fcorl?_‘_j:zl(fi-*-fi)) (315)

The Hartree-Fock wavefunction, ‘Ifgo), is an eigenfunction of #, and the corresponding
zeroth-order energy Ef)o) is equal to the sum or orbital energies for the occupied molecular
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orbitals:
occupied
V= 3" ¢ (3 16)
i=1

In order to calculate higher-order wavefunctions we need to establish the form of the
perturbation, ¥”. This is the difference between the ‘real’ Hamiltonian # and the zeroth-
order Hamiltonian, /. Remember that the Slater determinant description, based on an
orbital picture of the molecule, is only an approximation. The true Hamiltonian is equal
to the sum of the nuclear attraction terms and electron repulsion terms:

Ho = Z(%’C"“’—HZ Z ~ (317)

i=1j=i+1 Y
Hence the perturbation ¥~ is given by:
N N
V:ZZT——Z(}’]+%) (318)
i=1j=i4+1"Y j=1
The first-order energy E(()l) is given by:
1) Ioaen T
Ey) =5 > — (i) - (i) (3.19)

STy

The sum of the zeroth-order and first-order energies thus corresponds to the Hartree-Fock

energy (compare with Equation (2.110), which gives the equivalent result for a closed-shell
system):

N N
EY B = Zel O3 (Gl ~ i) (3.20)

i=1j=1

To obtain an improvement on the Hartree-Fock energy it is therefore necessary to use
Meller-Plesset perturbation theory to at least second order. This level of theory is referred
to as MP2 and involves the integral j‘lf(o)"V \If(l) dr. The higher-order wavefunction \If(l) is
expressed as linear combinations of solutions to the zeroth-order Hamiltonian:

1 1 0
V) = > Ml (3.21)

The ‘II}O) in Equation (3.21) will include single, double, etc. excitations obtained by
promoting electrons into the virtual orbitals obtained from a Hartree-Fock calculation.
The second-order energy is given by:

—— x1<1>x]<2)( )[xua)xb(z) o (Dxa(2)]

=222

i j>1 a b>a

(3.22)

€a+Ep— & — &

These integrals will be non-zero only for double excitations, according to the Brillouin
theorem. Third- and fourth-order Megller-Plesset calculations (MP3 and MP4) are also
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available as standard options in many ab initio packages. For the fourth-order calculations
single, triple and quadruple excitations will also contribute. As the triple substitutions are
most difficult to perform computationally a partial theory that involves just single, double
and quadruple substitutions (MP4SDQ) is a popular alternative.

The advantage of many-body perturbation theory is that it is size-independent, unlike
configuration interaction - even when a truncated expansion is used. However, Meller-
Plesset perturbation theory is not variational and can sometimes give energies that are
lower than the ‘true’ energy. Meller-Plesset calculations are computationally intensive
and so their use is often restricted to ‘single-point’ calculations at a geometry obtained
using a lower level of theory. They are at present the most popular way to incorporate
electron correlation into molecular quantum mechanical calculations, especially at the
MP2 level. A Mgller-Plesset calculation is specified using the level of theory used (e.g.
MP2, MP3) together with the basis set. Thus MP2/6-31G" indicates a second-order
Mgller-Plesset calculation with the 6-31G" basis set.

Certain properties benefit more from the use of correlation methods than others do. For
example, a single-determinant Hartree-Fock method and a reasonable basis set give
geometrical parameters often very close (bond lengths within 0.01- 0.02A and angles
within 1-2°) to the experimental values. This contrasts with the situation for processes
which result in the unpairing of electrons. A simple example is the bond dissociation
energy of Hy, for which the Hartree-Fock limit is 84 kcal/mol. MP2, MP3 and MP4 calcula-
tions using the 6-31G"™* basis set give results of 101, 105 and 106 kcal/mol, respectively, for
this process, much closer to the experimental value of 109kcal/mol. In these and similar
situations, electron correlation is often advised, if the computational resources permit.
However, one class of reactions can be well described using single-determinant Hartree-
Fock theory. These are known as isodesmic reactions, which are transformations in which
the number of electron pairs is constant and the chemical bond types are conserved. Such
reactions would be expected to benefit from a judicious cancellation of errors as only the
environment of the bonds has changed. Examples of isodesmic reactions are:

CH,CH,CHj; + CH; — 2CH;CH,

CF;CHO + CH,; — CF;H + CH;CHO

CHRCH=C=0 + 2CH, — CH;CH,; + CH,=CH, + H,C=0
Even at the STO-3G level quite respectable results can often be obtained.

In an attempt to deal with some of the shortcomings of even the correlated methods a
number of correction factors have been developed. The Gaussian-n procedures [Pople ef al.
1989, Curtiss et al. 1991, 1998] represent an attempt to develop a protocol for the accurate
calculation of various properties such as atomisation energies, ionisation potentials, electron
affinities and proton affiruties for atoms and molecules containing first-row and second-
row elements. Currently, the most recent member of this series is Gaussian-3 (G3) theory
[Curtiss et al. 1998]. The G3 method involves a defined sequence of calculations involving
geometry optimisation first at the Hartree~Fock level with the 6-31G” basis set and then at
the MP2/6-31G" level. A single-point calculation is next carried out using this geometry
with the full MP4 method (singles, doubles, triples and quadruples). This energy is then
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refined through a series of corrections, which deal with the need for higher polarisation
functions, for correlation effects beyond fourth-order perturbation theory (i.e. QCISD(T))
and for larger basis set effects. These correction factors are combined, together with a
zero-point energy derived from a series of scaled harmonic frequencies determined from
the first, HF/6-31G", geometry optimisation, to give the final G3 energy. When tested on
299 experimental energies the overall average absolute deviation from experiment was
1.02keal/mol, with the average deviations for the four different types of data being
0.94 keal/mol for the enthalpies of formation (148 values), 1.13kcal/mol for the ionisation
energies (85 values), 1.00kcal/mol for electron affinities (58 values) and 1.34kcal/mol for
proton affinities (eight values). Detailed examination of the results can help to identify
systems requiring most attention in subsequent developments of the theory. For example,
the enthalpy of formation of both SO, and PF; have large negative deviations from experi-
ment, perhaps due to the need for a larger basis set to describe the bonding in these
molecules. Likewise some of the strained hydrocarbon ring systems (cyclopropene, cyclobu-
tene and bicyclobutane) also show relatively large deviations.

The G3 method is still rather computationally intensive and so some efforts have been made
to reduce the computational requirements whilst retaining an acceptable level of error. The
G3(MP2) variant [Curtiss et al. 1999] replaces the MP4 calculations (which are particularly
time-consuming), with comparable calculations at the MP2 level. This leaves the
QCISIXT) stage as the most demanding step. The average absolute deviation of the energies
calculated using the G3(MP2) method was 1.89 kcal/kmol on the entire 299 test systems, a
significantly less accurate result than that of the full G3 method, but still noteworthy.

3.4 Practical Considerations When Performing ab initio
Calculations

Ab initio calculations can be extremely time-consuming, especially when using the higher
levels of theory or when the nuclei are free to move, as in a minimisation calculation (see
Chapter 5). Various ‘tricks’ have been developed which can significantly reduce the compu-
tational effort involved. Many of these options are routinely available in the major software
packages and are invoked by the specification of simple keywords. One common tactic is to
combine different levels of theory for the various stages of a calculation. For example, a
lower level of theory can be used to provide the initial guess for the density matrix prior
to the first SCF iteration. Lower levels of theory can also be used in other ways. Suppose
we wish to determine some of the electronic properties of a molecule in a minimum
energy structure. Energy minimisation requires that the nuclei move and is typically
performed in a series of steps, at each of which the energy (and frequently the gradient of
the energy) must be calculated. Minimisation is therefore a computationally expensive
procedure, particularly when performed at the high level of theory. To reduce this compu-
tational burden a lower level of theory can be employed for the geometry optimisation. A
‘single-point’ calculation using a high level of theory is then performed at the geometry
s0 obtained to give a wavefunction from which the properties are determined. The assump-
tion here of course is that the geometry does not change much between the two levels of
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theory. Such calculations are denoted by slashes (/). For example, a calculation that is
described as ‘6-31G*/STO-3G’ indicates that the geometry was determined using the
STO-3G basis set and the wavefunction was obtained using the 6-31G* basis set. Two
slashes are used when each calculation is itself described using a slash, such as when
electron correlation methods are used. For example, ‘MP2/6-31G" //HF/6-31G" indicates
a geometry optimisation using a Hartree-Fock calculation with a 6-31G" basis set followed
by a single-point calculation using the MP2 method for incorporating electron correlation,
again using a 6-31G” basis set.

3.4.1 Convergence of Self-consistent Field Calculations

In an SCF calculation the wavefunction is gradually refined until self-consistency is
achieved For closed-shell ground-state molecules this is usually quite straightforward
and the energy converges after a few cycles. However, in some cases convergence is a
problem, and the energy may oscillate from one iteration to the next or even diverge
rapidly. Various methods have been proposed to deal with such situations. A simple
strategy is to use an average set of orbital coefficients rather than the set obtained from
the immediately preceding iteration. The coefficients in this average set can be weighted
according to the energies of each iteration. This tends to weed out those coefficients that
give rise to higher energies.

The initial guess of the density matrix may influence the convergence of the SCF calculation;
a null matrix is the simplest approach, but better results may be obtained by using a density
matrix from a calculation performed at a lower level of theory. For example, the density
matrix from a semi-empirical calculation may be used as the starting point for an ab initio
calculation. Conversely, such an approach may itself lead to problems if there is a significant
difference between the density matrices for the lower and higher levels of theory.

A more sophisticated method that is often very successful is Pulay’s direct inversion of the
iterative subspace (DIIS) [Pulay 1980]. Here, the energy is assumed to vary as a quadratic
function of the basis set coefficients. In DIIS the coefficients for the next iteration are
calculated from their values in the previous steps. In essence, one is predicting where the
minimum in the energy will lie from a knowledge of the points that have been visited
and by assuming that the energy surface adopts a parabolic shape.

3.4.2 The Direct SCF Method

An ab initio calculation can be logically considered to involve two separate stages. First, the
various one- and two-electron integrals are calculated. This is a computationally intensive
task and considerable effort has been expended finding ways to make the calculation of
the integrals as efficient as possible. In the second stage, the wavefunction is determined
using the variation theorem. In a “traditional’ SCF calculation all of the integrals are first
calculated and stored on disk, to be retrieved later during the SCF calculation as required.
The number of integrals to be stored may run into millions and this inevitably leads to
delays in accessing the data, particularly as the retrieval of information from a disk requires
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physical movement of the read head and so is slow. Modern computers (both workstations
and supercomputers) have much faster (and cheaper) processing units, and many of these
machines also have a substantial amount of internal memory, which can be accessed in a
fraction of the time it takes to read data from the disk. In a direct SCF calculation, the
integrals are not stored on the disk but are kept in memory or recalculated when required
[Almlof et al. 1982].

A much-quoted ‘fact’ is that ab initio calculations scale as the fourth power of the number of
basis functions for ground-state, closed-shell systems. This scaling factor arises because each
two-electron integral (uv|Ac) involves four basis functions, so the number of two-electron
integrals would be expected to increase in proportion to the fourth power of the number
of basis functions. In fact, the number of such integrals is not exactly equal to the fourth
power of the number of basis functions because many of the integrals are related by
symmetry. We can calculate exactly the number of two-electron integrals that are required
in a Hartree-Fock ab initio calculation as follows. There are seven different types of two-
electron integral:

1. (ablcd) = (abldc) = (balcd) = (baldc) = (cd|ab) = (cd|ba) = (dc|ab) = (dc|ba)

2. (aalbc) = (aalcb) = (bclaa) = (cb|aa)

3. (ablac) = (ablca) = (balac) = (baca) = (ac|ab) = (ac|ba) = (ca|ab) = (ca|ba)
4, (aalbb) = (bblaa)

5. (ablab) = (ablba) = (balab) = (ba|ba)

6. (aalab) = (aa|ba) = (ablaa) = (ba|aa)

7. (aajan)

For a basis set with K basis functions, there are K(K — 1)(K —2)(K — 3) integrals of type
(abled), but due to symmetry only one-eighth of these are unique as shown. Similarly,
there are 2K(K — 1)(K — 2) of type (2); 4K(K — 1)(K — 2) of type (3); K(K — 1) of type (4);
2K(K — 1) of type (5); 4K(K — 1) of type (6) and K of type 7. Thus, a basis set with 200 func-
tions has a total of 202015 050 unique two-electron integrals. For all but the smallest of basis
sets most integrals are of type (1) which is why an ab initio problem is often considered to
scale as K*/8 (200*/8 = 200000 000). Including electron correlation adds significantly to
the computational cost; for example, MP2 calculations scale as the fifth power of the
number of basis functions. Electron correlation methods may also require significantly
more memory and disk than the comparable SCF calculation; the higher levels scale as
the sixth power, and in QCISD(T), one part of the calculation is seventh order.

In practice, ab initio calculations often scale as a significantly smaller power than four. It is
found that in favourable cases the computational cost of a direct SCF calculation on a
large molecule scales as approximately the square of the number of basis functions used.
This significant reduction (from four to two) is due to several factors. We have already
noted some of the ways in which a carefully chosen basis set can reduce the computational
effort, for example by making many of the integrals (particularly the two-electron integrals)
identical by using the same Gaussian exponents for s and p orbitals in the same shell.
Another way in which the calculation time can be significantly reduced is to exploit any
Symmetry of the system. Many isolated molecules contain symmetry elements such as
centres of inversion and mirror planes, information which can be used to reduce the
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computational effort required. In the case of an ab initio calculation that scales as the fourth
power of the number of basis functions then a four-fold reduction in the number of atoms
can (in principle at least) result in the computational time being reduced by about 250
times. The most effective way to reduce the computational effort is to identify integrals
which are so small that ignoring them (i.e. setting them to zero) will not affect the results,
The number of ‘important’ integrals is believed to scale as K*In K. The negligible integrals
are determined by calculating an upper limit for each integral. This can be done rapidly
and so those integrals that are guaranteed to be negligible can be identified and so
ignored. The cutoff value which determines whether an integral is explicitly calculated or
is set to zero can vary from one program to another, so it is always useful to check its
value if different programs give different results for a given calculation.

3.4.3 Calculating Derivatives of the Energy

Considerable effort has been spent devising efficient ways of directly calculating the first
and second derivatives of the energy with respect to the nuclear coordinates. Derivatives
are primarily used during minimisation procedures for finding equilibrium structures
(the first derivative of the energy with respect to its coordinates equals the force on an
atom) and are also used by methods which locate transition structures and determine
reaction pathways.

A self-consistent field wavefunction (and thus its energy) can be considered a complicated
function of the nuclear coordinates, basis functions and basis function coefficients (and, for a
ClI calculation, the coefficients of single determinantal wavefunctions). In order to determine
the first, second, etc. derivatives of the energy with respect to the nuclear coordinates [Pulay
1977] it is necessary to consider not only how the energy depends directly on the nuclear
coordinates but also whether there is an indirect dependence via other parameters.
Indeed, it is only the one-electron part of the Hamiltonian that depends directly upon the
nuclear coordinates (H*"(1), Equation (2.125)), to which is added an internuclear
Coulomb repulsion term. For the other parameters the derivative with respect to the
nuclear coordinates is generally determined via the chain rule (for first derivatives). For
example, for a generic nuclear coordinate g; and a generic parameter x; we can write:

OE _ OE Ox;

e Rt | 3.23
0q; 8x] 0q; ( )

In Equation (3.23) g; would be the x, y or z coordinate of an atom and x; would be a
parameter such as a basis function coefficient or a basis function exponent. An important
result is that the terms involving variationally determined parameters (such as basis func-
tion coefficients) are equal to zero; the energy is a minimum when (0E/dc;) is zero. This
greatly reduces the computational effort. Most of the numerical work in calculating the
gradient is due to the various basis set parameters (e.g. orbital centres and exponents)
which require the derivatives of the various electron integrals. For Gaussian basis sets
these derivatives can be obtained analytically and indeed it is relatively straightforward
to obtain first derivatives for many levels of theory. The time taken to calculate the deriva-
tives is comparable to that required for the calculation of the total energy. Second (and
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higher) derivatives are more difficult and expensive to calculate, even at the lower levels of
theory.

A possible alternative approach to the calculation of forces is via the use of the Hellmann-
Feynman theorem. If ¥ is an exact wavefunction of a Hamiltonian H with energy E then this
theorem states that the derivative of E with respect to some parameter P can be written:

ZTE _ <%£PI> (3.24)

In the case of the derivative with respect to some nuclear coordinate g;, we would consider
the exact force and the Hellmann-Feynmann force to be equal:

i(‘I’IHI‘I’) = <‘I’ Z—Z“If> (3.25)

04
Unfortunately, this only holds for the exact wavefunction and certain other types of
wavefunction (such as at the Hartree-Fock limit). Moreover, even though the Hellmann-
Feynman forces are much easier to calculate they are very unreliable, even for accurate
wavefunctions, giving rise to spurious forces (often referred to as ‘Pulay forces’ [Pulay
1987]).

3.4.4 Basis Set Superposition Error

Suppose we wish to calculate the energy of formation of a bimolecular complex, such as the
energy of formation of a hydrogen-bonded water dimer. Such complexes are sometimes
referred to as ‘supermolecules’. One might expect that this energy value could be obtained
by first calculating the energy of a single water molecule, then calculating the energy of
the dimer, and finally subtracting the energy of the two isolated water molecules (the
‘reactants’) from that of the dimer (the ‘products’). However, the energy difference obtained
by such an approach will invariably be an overestimate of the true value. The discrepancy
arises from a phenomenon known as basis set superposition error (BSSE). As the two water
molecules approach each other, the energy of the system falls not only because of the
favourable intermolecular interactions but also because the basis functions on each molecule
provide a better description of the electronic structure around the other molecule. It is clear
that the BSSE would be expected to be particularly significant when small, inadequate basis
sets are used (e.g. the minimal basis STO-nG basis sets) which do not provide for an
adequate representation of the electron distribution far from the nuclei, particularly in the
region where non-covalent interactions are strongest. One way to estimate the basis set
superposition error is via the counterpoise correction method of Boys and Bernardi, in
which the entire basis set is included in all calculations [Boys and Bernardi 1970]. Thus, in
the general case:

A+B— AB (3.26)
AE = E(AB) — [E(A + E(B)] (3.27)

The calculation of the energy of the individual species A is performed in the presence of
‘ghost’ orbitals of B; that is, without the nuclei or electrons of B. A similar calculation is
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performed for B using ghost orbitals on A. An alternative approach is to use a basis set in
which the orbital exponents and contraction coefficients have been optimised for molecular
calculations rather than for atoms. The relevance of the basis set superposition error and its
dependence upon the basis set and the level of theory employed (i.e. SCF or with electron
correlation) remains a subject of much research.

3.5 Energy Component Analysis

The interaction between atoms and molecules can vary from the weak attraction between a
pair of closed-shell atoms (e.g. two rare gas atoms in a molecular beam) to the large energy
associated with the formation of a chemical bond. Intermediate between these two extremes
are interactions due to hydrogen bonding or electron donor-acceptor processes. In these
intermediate cases it is often difficult to determine what factors are important in contributing
to the interaction. For example, what can a hydrogen bond be ascribed to?

Morokuma analysis is a method for decomposing the energy change on formation of an
intermolecular complex into five components: electrostatic, polarisation, exchange
repulsion, charge transfer and mixing [Morokuma 1977]. Suppose we have performed ab
initio SCF calculations on two molecules, X and Y, and on the intermolecular complex (or
‘supermolecule’) XY. The wavefunctions obtained can be written AYY, ATY and ADY,.
‘A’ indicates the use of an antisymmetrised wavefunction (e.g. a Slater determinant). The
sum of the energies of the isolated molecules is E, and the energy of the supermolecule is
E, (we follow the original notation of Morokuma). The interaction energy AE is thus
given by E, — Eg. The five components are calculated as follows.

The electrostatic contribution equals the interaction between the unperturbed electron
distributions of the two isolated species, A and B. It is identical to the classical Coulomb
interaction and equals the difference E; — Ey, where E; is the energy associated with the
product of the two individual wavefunctions, ¥;:

U, = AU ATY (328)

The electronic distributions of both X and Y will be changed by the presence of the other
molecule. These polarisation effects cause a dipole to be induced in (say) molecule Y due
to the charge distribution in molecule X and vice versa. Polarisation also affects the
higher-order multipoles. To calculate the polarisation contribution we first calculate
molecular wavefunctions ¥, and ¥y in the presence of the other molecule. The energy of
the wavefunction ¥, is determined as E,, where VU, is:

U, = AU ATy (329)
The polarisation contribution equals E; — E; and is always attractive.

In determining ¥; and ¥,, no electron exchange interactions are, considered. The overlap
between the electron distributions of X and Y at short range causes a repulsion because to
bring together electrons with the same spin into the same region of space ultimately leads
to a violation of the Pauli principle.
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The exchange repulsion is calculated as E3 — E;, where Ej is the energy of the wavefunction
‘Ijgi
Uy = A(TY - 0Y) (3.30)

¥, is derived from the undistorted wavefunctions of X and Y but the exchange of electrons is
permitted. The exchange term is always repulsive.

The charge transfer term arises from the transfer of charge (i.e. electrons) from occupied
molecular orbitals on one molecule to unoccupied orbitals on the other molecule. This contri-
bution is calculated as the difference between the energy of the supermolecule XY when this
charge transfer is specifically allowed to occur, and an analogous calculation in which it is not.

The Morokuma formalism also requires an additional, ‘mixing’ or ‘coupling’ term to be
included This equals the difference between the total SCF difference, AE, and the sum of
the four contributions (electrostatic, polarisation, exchange repulsion and charge transfer).
The mixing term has little physical significance and is used because the four components
do not completely account for the entire interaction energy (it is a fudge factor!). Fortunately,
it is often relatively small.

Morokuma studied a number of hydrogen-bonded complexes using this scheme in order to
assess the contribution from each component. The systems studied were typically of inter-
molecular complexes involving small molecules such as H,O, HF and NHj. In addition,
Morokuma and his colleagues also examined a series of electron donor-acceptor complexes
such as H3;N-BF;, OC-BH;, HF-CIF and benzene-OC(CN),. He also studied the basis-set
dependence of the results and observed that the energy components were more sensitive
than the energy differences. For example, a minimal STO-3G basis set overestimates the
charge transfer contribution, whereas double zeta basis sets tend to exaggerate the electro-
static interaction.

3.5.1 Morokuma Analysis of the Water Dimer

The water dimer (H,0), has been subject to perhaps the closest scrutiny of all hydrogen-
bonded complexes. A variety of stable geometries are available to the water dimer, in
which one or more hydrogen bonds are present. There has been considerable debate over
the relative energies of these structures and even some dispute over which structures are
actually at minimum points on the energy surface [Smith ef al. 1990]. As might be expected,
the results depend upon the basis set used. A linear geometry is observed experimentally
and is also predicted to be the most stable structure by ab initio calculations with a wide
variety of basis sets (see Figure 3.4). Using a 6-31G™ basis set, Umeyama and Morokuma
calculated that the —5.6kcal/mol stabilisation energy was composed of —7.5kcal/mol
electrostatic stabilisation, 4.3 kcal/mol exchange repulsion, —0.5kcal/mol polarisation and
—1.8kcal/mol charge transfer [Umeyama and Morokuma 1977]. The ‘mixing term’ con-
tributed —0.1kcal/mol. Thus the hydrogen bond in the water dimer was considered to
arise primarily from electrostatic effects with a smaller charge transfer contribution.
Morokuma and Umeyama also extended their analysis of charge transfer to investigate
whether this was due to transfer from the proton donor to the acceptor, or from acceptor
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Fig. 3.4 The linear structure of the water dimer [Smith et al 1990].

to donor. The results showed that approximately 90% of the charge transfer resulted from
proton acceptor to proton donor transfer.

Morokuma analysis was widely used in the years after its introduction; it is less popular
now as some problems have been encountered when trying to interpret the results with
the larger basis sets that are feasible with today’s faster computers and improved algo-
rithms. In particular, when diffuse basis sets are used then there is a substantial amount
of intermolecular overlap even at relatively large distances, which can make it difficult to
factor out the different components. Nevertheless, the approach is certainly a useful way
to assess the major causes of a particular type of intermolecular interaction, if only to
provide a qualitative picture.

3.6 Valence Bond Theories

An entirely different way to treat the electronic structure of molecules is provided by valence
bond theory, which was developed at about the same time as the molecular orbital approach.
However, valence bond theory was not so amenable to calculations on large molecules, and
molecular orbital theory came to dominate electronic structure theory for such systems.
Nevertheless, valence bond theories are often considered to be more appropriate for certain
types of problem than molecular orbital theory, especially when dealing with processes that
involve bonds being broken and/or formed. Recall from Figure 3.2 that a self-consistent
field wavefunction gives a wholly inaccurate picture for the dissociation of Hy; by contrast,
the correct dissociation behaviour is naturally built into valence bond theories.

Valence bond theory is usually introduced using the famous Heitler-London model of the
hydrogen molecule [Heitler and London 1927] This model considers two non-interacting
hydrogen atoms (a and b) in their ground states that are separated by a long distance.
The wavefunction for this system is:

U= ¢lsa(1)¢]sb (2) (331)

As the two hydrogen atoms approach to form a hydrogen molecule, such a wavefunction is
inappropriate as it implies that electron 1 remains confined to orbital 1sa and electron 2 to
orbital 1sb. This clearly violates the indistinguishability principle, and so a linear combina-
tion is used

Uy, X B1sa(1)P166(2) + P15a(2) 160 (1) (3.32)
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The corresponding molecular orbital function for this system is:

‘I’mo X ¢1sa(1)¢1sb (2) + ¢1sa(2)¢1sb(1) + ¢1sa(1)¢1sa(2) + d1sb (1)¢15b(2) (3 33)

The additional terms in the molecular orbital wavefunction correspond to states with the
two electrons in the same orbital, which endows ionic character to the bond (H"H™). The
valence bond wavefunction does not include any ionic character and in fact it correctly
describes the dissociation into two hydrogen atoms. The simple valence bond and molecular
orbital pictures in Equations (3.32) and (3.33) are extremes, with the ‘true” wavefunction
being somewhere in the middle. The valence bond representation can be improved by
including a degree of ionic character as follows:

‘I’vb X ¢1sa(1)¢1sb(2) + ¢1sa (2)¢lsb (1) + A[¢lsa(1)¢]sa (2) + ¢lsb(1)¢]sb (2)] (334)

X is a parameter that can be varied to give the ‘correct’ amount of ionic character. Another
way to view the valence bond picture is that the incorporation of ionic character corrects the
overemphasis that the valence bond treatment places on electron correlation. The molecular
orbital wavefunction underestimates electron correlation and requires methods such as
configuration interaction to correct for it. Although the presence of ionic structures in
species such as H, appears counterintuitive to many chemists, such species are widely
used to explain certain other phenomena such as the ortho/para or meta directing proper-
ties of substituted benzene compounds under electrophilic attack. Moverover, it has been
shown that the ionic structures correspond to the deformation of the atomic orbitals when
they are involved in chemical bonds.

One widely used valence bond theory is the generalised valence bond (GVB) method of
Goddard and co-workers [Bobrowicz and Goddard 1977]. In the simple Heitler-London
treatment of the hydrogen molecule the two orbitals are the non-orthogonal atomic orbitals
on the two hydrogen atoms. In the GVB theory the analogous wavefunction is written:

Pevp x u(r(2) + u(2)v(1) (3.35)

u and v are non-orthogonal orbitals that are each expressed as a basis set expansion with the
coefficients being variationally optimised to minimise the energy. The construction of the
wavefunction from orbitals that are not necessarily orthogonal is characteristic of many
valence bond theories and complicates the computational problem. The GVB approach is
particularly successful for describing the electronic nature of systems as they approach
dissociation.

Another approach is spin-coupled valence bond theory, which divides the electrons into two
sets: “core’ electrons, which are described by doubly occupied orthogonal orbitals, and
‘active” electrons, which occupy singly occupied non-orthogonal orbitals. Both types of
orbital are expressed in the usual way as a linear combination of basis functions. The
overall wavefunction is completed by two spin functions; one that describes the coupling
of the spins of the core electrons and one that deals with the active electrons. The choice
of spin function for these active electrons is a key component of the theory [Gerratt et al.
1997]. One of the distinctive features of this theory is that a considerable amount of
chemically significant electronic correlation is incorporated into the wavefunction, giving
an accuracy comparable to CASSCF. An additional benefit is that the orbitals tend to be
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Fig 35 « orbital for benzene obtained from spin-coupled valence bond theory (Figure redrawn from Gerratt |, D L
Cooper, P B Karadakov and M Raimondi 1997 Modern valence bond theory Chemical Society Reviews 87 100)

The figure also shows the two Kekulé and three Dewar benzene forms which contribute fo the overall wavefunction;
each Kekulé form contributes approximately 40.5% and each Dewar form approximately 6.4%

localised, closely resembling atomic or hybrid atomic orbitals, and consequently very visual.
Various chemical phenomena have been examined using this approach, including
dissociation reactions and hypervalence. One particularly interesting study was of the =
system of benzene [Cooper et al. 1986]. This calculation resulted in six orbitals, each localised
on one of the carbon atoms in the ring, though with some deformations towards neigh-
bouring atoms (Figure 3.5). Moreover, the spin-coupling patterns suggested that the
bonding was more akin to the Kekulé picture of benzene (with alternating double and
single bonds) together with small contributions from Dewar benzene rather than the
completely delocalised representation from molecular orbital theory.

3.7 Density Functional Theory

Density functional theory (DFT) is an approach to the electronic structure of atoms and
molecules which has enjoyed a dramatic surge of interest since the late 1980s and 1990s
[Parr 1983; Wimmer 1997]. Our approach here will be to introduce the key elements of
the theory and to identify the similarities and differences between DFT and the Hartree-
Fock approach. In Hartree-Fock theory the multi-electron wavefunction is expressed as a
Slater determinant which is constructed from a set of N single-electron wavefunctions (N
being the number of electrons in the molecule). DFT also considers single-electron functions.
However, whereas Hartree-Fock theory does indeed calculate the full N-electron wave-
function, density functional theory only attempts to calculate the total electronic energy
and the overall electronic density distribution. The central idea underpinning DFT is that
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there is a relationship between the total electronic energy and the overall electronic density.
This is not a particularly new idea; indeed an approximate model developed in the late 1920s
(the Thomas-Fermi model) contains some of the basic elements. However, the real break-
through came with a paper by Hohenberg and Kohn in 1964 [Hohenberg and Kohn 1964],
who showed that the ground-state energy and other properties of a system were uniquely
defined by the electron density. This is sometimes expressed by stating that the energy, E,
is a unique functional of p(r). A functional enables a function to be mapped to a number
and is usually written using square brackets. Thus:

Q) = @) ar (336)

The function f (r) is usually dependent upon other well-defined functions. A simple example
of a functional would be the area under a curve, which takes a function f(r) defining the
curve between two points and returns a number (the area, in this case). In the case of
DFT the function depends upon the electron density, which would make Q a functional
of p(r), in the simplest case f(r) would be equivalent to the density (ie. f(r) = p(r)). If the
function f(r) were to depend in some way upon the gradients (or higher derivatives) of
p(r) then the functional is referred to as being ‘non-local’, or ‘gradient-corrected’. By
contrast, a ‘local’ functional would only have a simple dependence upon p(r). In DFT the
energy functional is written as a sum of two terms:

ELp(0)] = | Veu(s)pls)dr + Flo(0)] (337)

The first term arises from the interaction of the electrons with an external potential Vi, (r)
{typically due to the Coulomb interaction with the nuclei). F[p(r)] is the sum of the kinetic
energy of the electrons and the contribution from interelectronic interactions. The
minimum value in the energy corresponds to the exact ground-state electron density, so
enabling a variational approach to be used (i.e. the ‘best’ solution corresponds to the
minimum of energy and an incorrect density gives an energy above the true energy).
There is a constraint on the electron density as the number of electrons (N) is fixed:

N= Jp(r) dr (3.38)

In order to minimise the energy we introduce this constraint as a Lagrangian multiplier
(~p), leading to:

s |00 = oty ] =0 (339)
From this we can write:
SEpm]\ _
( ép(x) )Vext— g (040

Equation (3.40) is the DFT equivalent of the Schrodinger equation. The subscript Ve
indicates that this is under conditions of constant external potential (i.e. fixed nuclear
positions) It is interesting to note that the Lagrange multiplier, , can be identified with
the chemucal potential of an electron cloud for its nuclei, which in turn is related to the
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electronegativity, x:

—Xx=p= (%5) ) (3.41)

The second landmark paper in the development of density functional theory was by Kohn"
and Sham who suggested a practical way to solve the Hohnberg-Kohn theorem for a set of
interacting electrons [Kohn and Sham 1965]. The difficulty with Equation (3.37) is that we do
not know what the function F[p(r)] is. Kohn and Sham suggested that F[p(r)] should be
approximated as the sum of three terms:

Flp(r)] = Exg[p(r)] + Enlo(r)] + Exc[o(r)] (342)

where Exg[p(r)] is the kinetic energy, Ey[o(r)] is the electron-electron Coulombic energy, and
Exclp(r)] contains contributions from exchange and correlation. It is important to note that
the first term in Equation (3.42), Exg[p(r)], is defined as the kinetic energy of a system of
non-interacting electrons with the same density p(r) as the real system:

N 2
Baclo)] = 3. [0) (T )t 343

i=1

The second term, Ey(p), is also known as the Hartree electrostatic energy. The Hartree
approach to solving the Schrodinger equation was introduced briefly in Section 2.3.3 and
almost immediately dismissed because it fails to recognise that electronic motions are
correlated. In the Hartree approach this electrostatic energy arises from the classical
interaction between two charge densities, which, when summed over all possible pairwise
interactions, gives:

Eutlo(e)] %JJ% dry i, (3.44)

Combining these two and adding the electron-nuclear interaction leads to the full expres-
sion for the energy of an N-electron system within the Kohn-Sham scheme:

o) = > [0 (= ey + 5 [ A2,y + Bl

= [t — 12

M
Z
-AZ_] J E _I;{A| p(r) dr (3 45)

This equation acts to define the exchange-correlation energy functional Exc[p(r)], which thus
contains not only contributions due to exchange and correlation but also a contribution due
to the difference between the true kinetic energy of the system and Exg[p(r)].

" Walter Kohn, whose name appears on the two key papers wluch provided the impetus for the
development of ‘modern’ density functional theory, was awarded the Nobel Prize for Chemistry in
1998, jointly with John Pople
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Kohn and Sham wrote the density p(r) of the system as the sum of the square moduli of a set
of ane-electron orthonormal orbitals:

N
pr) = () (3 46)
i=1

By introducing this expression for the electron density and applying the appropriate
variational condition the following one-electron Kohn-Sham equations result:

G f: L + J p(tz) ——=4dry + Vxcltn] p4i(ry) = enfi(r1) (347)
2 A1 ma 12 ! !

In Equation (3.47) we have written the external potential in the form appropriate to the
interaction with M nuclei. ¢; are the orbital energies and Vy¢ is known as the exchange-
correlation functional, related to the exchange-correlation energy by:

Vel = (2eE) (348)

The total electronic energy is then calculated from Equation (3.45).

To solve the Kohn-Sham equations a self-consistent approach is taken. An initial guess of
the density is fed into Equation (3.47) from which a set of orbitals can be derived, leading
to an improved value for the density, which is then used in the second iteration, and so
on until convergence is achieved.

3.7.1 Spin-polarised Density Functional Theory

Local spin density functional theory (LSDFT) is an extension of ‘regular’ DFT in the same
way that restricted and unrestricted Hartree-Fock extensions were developed to deal
with systems containing unpaired electrons. In this theory both the electron density and
the spin density are fundamental quantities with the net spin density being the difference
between the density of up-spin and down-spin electrons:

o(r) = py(r) — py(x) (3.49)
The total electron density is just the sum of the densities for the two types of electron. The

exchange-correlation functional is typically different for the two cases, leading to a set of
spin-polarised Kohn-Sham equations:

{—%2— (i é) + Jp(r2)dlz + Vxclr, ]}Tﬁ?(l‘l) =& i) o=0,5 (350)

A=1ha 12
This leads to two sets of wavefunctions, one for each spin, similar to UHF theory.
3.7.2 The Exchange-correlation Functional

The exchange-correlation functional is clearly key to the success (or otherwise) of the density
functional approach. One reason why DFT is so appealing is that even relatively simple
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approximations to the exchange-correlation functional can give favourable results. The
simplest way to obtain this contribution uses the so-called local density approximation
(LDA; the acronym LSDA is also used, for local spin density approximation), which is
based upon a model called the uniform electron gas, in which the electron density is constant
throughout all space. The total exchange-correlation energy, Exc, for our system can then be
obtained by integrating over all space:

Buclo] = [ pe)exclo) dr (3.51)

exc(p(r)) is the exchange-correlation energy per electron as a function of the density in the
uniform electron gas. The exchange-correlation functional is obtained by differentiation of
this expression:

Vel = ) 2D 1 eyt (352)
In the local density approximation it is assumed that at each point r in the inhomogeneous
electron distribution (i.e. in the system of interest) where the density is p(x) then Vyc[p(x)]
and exc(p(r)) have the same values as in the homogeneous electron gas. In other words,
the real electron density surrounding a volume element at position r is replaced by a
constant electron density with the same value as at r. However, this ‘constant’ electron
density is different for each point in space (Figure 3.6).

The exchange-correlation energy per electron (i.e. the energy density) of the uniform
electron gas is known accurately for all densities of practical interest from various
approaches such as quantum Monte Carlo methods [Ceperley and Alder 1980]. In order
to be of practical use this exchange-correlation energy density is then expressed in an
analytical form that makes it amenable to computation. It is usual to express exclp(r)] as
an analytical function of the electron density and to consider the exchange and correlation
contributions separately. However, some analytical expressions for the combined exchange
and correlation energy density do exist, such as the following expression of Gunnarsson and

H

dr r

Fig 36 Schematic representation of the way in which the local density approximation assumes that the electron
density within a volume element dr surrounding a point v is assumed to be constant.
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Lundqvist [Gunnarsson and Lundqvist 1976]:

0.458
P 0. 0666G<11 4)

Gm=ﬂ“ﬂmﬁHfﬂw+zﬂ 2=

exc(p(r)) = —
3
4rp(r)

The following relatively simple expression is commonly used for the exchange-only energy
under the local density approximation [Slater 1974]:

(3.53)

1/3
Edrana] =3 () [(A°0+ o ) 354)

where a and g represent up and down spins. In general, more attention has been paid to the
correlation contribution, for which there is no such simple functional form. Perdew and
Zunger suggested the following parametric relationship for the correlation contribution
[Perdew and Zunger 1981]:

—0.1423/(1 + 1.9529r2% + 0.3334r,) r,21

(3.55)
—0.0480 4+ 0.0311Inr, — 0.01167, + 0.0020r, Inr, 7 <1

ec(p(m) = {

This result applies when the number of up spins equals the number of down spins and so is
not applicable to systems with an odd number of electrons. The correlation energy functional
was also considered by Vosko, Wilk and Nusair [Vosko et al. 1980], whose expression is:

2 Ry
cclp(r) = { +Ban L o o) 2O gy 1
x= rsl/z, X(x)=x"+bx+c, Q= (4c - bz)l/z; (3.56)
A=0.0621814, x,=-0409286, b=13.0720, c=42.7198

"XG) Z+b Xxo) | X(x) Q 2x 1 b

In addition to the energy terms for the exchange-correlation contribution (which enables the
total energy to be determined) it is necessary to have corresponding terms for the potential,
Vxclp(r)], which are used to solve the Kohn-Sham equations. These are obtained as the
appropriate first derivatives using Equation (3.52).

To solve the Kohn-Sham equations a number of different approaches and strategies have
been proposed. One important way in which these can differ is in the choice of basis set
for expanding the Kohn-Sham orbitals. In most (but not all) DFT programs for calculating
the properties of molecular systems (rather than for solid-state materials) the Kohn-Sham
orbitals are expressed as a linear combination of atomic-centred basis functions:

K
= ety 357)
v=1

Several functional forms have been investigated for the basis functions ¢,. Given the vast
experience of using Gaussian functions in Hartree-Fock theory it will come as no surprise
to learn that such functions have also been employed in density functional theory.
However, these are not the only possibility: Slater type orbitals are also used, as are numerical
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basis functions. We encountered Slater type orbitals in Chapter 2, but the notion of a
numerical basis function is new. A numerical basis function can be generated by solving
the Kohn-Sham equations for isolated atoms. This gives a set of values on a spherical
polar grid centred on each atom. The variation at each grid point can be stored as a cubic
spline function so enabling analytical gradients to be calculated. One advantage of a
numerical basis set (if properly derived) is that it has the correct nodal behaviour close to
the nucleus together with an exponential decay.

More than one function may be used to represent a particular atomic orbital. This is
obviously a well-understood tactic when using Gaussian functions, but the use of basis
set contractions also applies to the Slater type orbitals and the numerical basis sets. For a
numerical basis set the ‘contraction’ can be derived from two functions, one corresponding
to the neutral atom and the other to a positive ion.

If the basis set expansion for the Kohn-Sham orbitals in Equation (3.57) is substituted into
the Kohn-Sham equations then it is possible to express them in a matrix form, identical in
form to the Roothaan-Hall equations:

HC = SCE (358)

In this matrix equation the elements of the Kohn-Sham matrix H are given by:

2 M
H, = Jdrlas#(rl){—% - (Z é) + |22 ch[rﬂ}qsu(rl) 359)

A r12

The first two terms are straightforward and are equal to the core contribution, Hy;. The
Coulomb repulsion contribution (the Hartree term) can be expanded in terms of the basis
functions and the density matrix, P:

BDPEI D) 4 g S g p [[LIDBENOEN) 4, (360
” nn =33 A“ vy dr,  (3.60)

71— x| o

For a closed-shell system with N electrons the elements of the density matrix are given by:

N/2
P, =2 ¢ (3.61)
i=1

This is just the same as for the Roothaan-Hall approach to Hartree-Fock theory. The overlap
matrix, S, is defined similarly:

5, = J% (1) (x) e (3.62)

The overall procedure to achieve self-consistency is very reminiscent of that used in
Hartree—Fock theory, involving first an initial guess of the density by superimposing
atomic densities, construction of the Kohn-Sham and overlap matrices, and diagonalisation
to give the eigenfunctions and eigenvectors from which the Kohn-Sham orbitals* can be

* It is important to note that the Kohn-Sham orbitals used in density functional theory are a set of non-
interacting orbitals designed to give the correct density and have no physical meaning beyond that,
unlike the orbitals used in Hartree-Fock theory
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canstructed and thus the density for the next iteration. This cycle continues until conver-
gence is achieved.

The appearance of the four-centre integrals in Equation (3.60) might lead one to question the
advantage of the DFT approach, at least as far as computational efficiency is concerned.
Whilst these integrals can certainly be tackled using the same techniques as in Hartree-
Fock theory, it is also viable in density functional theory to avoid having to calculate
them by considering the left-hand side of Equation (3.60). There are two basic ways to do
this. First, one can approximate the charge density by another basis set expansion:

pr) = Y adi(r) (3.63)
k

These auxiliary basis functions ¢’ have the same functional form as the orbital expansion and
the coefficients ¢, are obtained by a least-squares fitting procedure. Substituting for the
density in the four-centre integrals gives a computationally less demanding three-centre,
two-electron integral:

J J¢M(r1)¢u(rl)¢A(rz)¢a(rz) iy dey — J J¢M(r1)¢u(r1)¢i(rz) ey i, (3.64)

[r1 — 1] 11— 12|

The second approach focuses on the Coulomb integral and uses Poisson’s equation. Let us
introduce Vg (1)

p(r2)

(3.65)
[F1 — T2

Va(n) = J

Poisson’s equation relates the second derivative of the electric potential to the charge

density’

V2V (x) = —4mp(r) (3.66)
We can thus write:
o[ p(r2) _
\% Jr o dry = —4np(xy) (3.67)

This equation can be solved numerically on a grid to determine Vi (r;) The same grid is
then used to numerically integrate the four-centre, two-electron integral, Equation (3.60),
as follows:

”@W drydry, = J% (1) Vel (t1) o (¥1) = XP: ¢, (R)VaR)p RI)W:  (3.68)
i1

In this equation the P points R; correspond to the grid used to solve the Poisson equation for
Vg and W, are weighting factors.

It might be wondered why these two simplifications for the four-centre, two-electron
integrals can be used in density functional theory and not in Hartree-Fock theory. The
reason is that the exchange contribution in Hartree-Fock theory is not a function that can
be simplified (technically, it is a non-local functional), in contrast to the situation in
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density functional theory. As the four-centre integrals must therefore still be determined for
the exchange component in Hartree-Fock theory there is nothing to be gained from simpli-
fying the corresponding Coulomb term.

The exchange-correlation contribution to the Kohn-Sham matrix elements (the final term in
Equation (3.59)) is invariably evaluated using a grid of points. This is a consequence of the
complexity of the functionals employed. The integration may then be performed using the
grid directly or by fitting a further auxiliary basis set expansion with which analytical
integration can be used. If a DFT program uses a basis set containing K functions and
employs either a grid-based integration scheme with P points or an auxiliary basis set
with P functions then the computational complexity of the calculation scales as K?P. As P
is often linearly related to K, density functional theory is often said to scale as the cube of
the number of basis functions, K°. This contrasts with the fourth-power scaling for conven-
tional Hartree-Fock calculations. However, many practical density functional calculations
with a well-engineered computer program do not scale as the simple third power, just as
practical Hartree-Fock calculations do not scale as the fourth power; these oft-quoted state-
ments apply only to the most naive implementations or for calculations on very small, test
systems where integral neglect thresholds are not employed.

Whilst most of the programs which use density functional theory for molecular calculations
employ one of the three types of basis set described thus far, there are two important alter-
natives to this approach. The first of these involves the solution of the Kohn-Sham equations
numerically (on a grid) using what is sometimes referred to as a ‘basis-set free’ approach
[Becke and Dickson 1990]. Such an approach is thus free from the limitations of a finite
basis set expansion (provided, of course, that sufficient grid points are employed!) and
can be used to evaluate different exchange-correlation functionals, as these represent the
only remaining source of error. The second alternative is particularly important for the
study of bulk systems such as metals and alloys and involves the use of plane waves. This
approach will be discussed later in this chapter when we consider the general problem of
using quantum mechanics to study the solid state.

3.7.3 Beyond the Local Density Approximation: Gradient-corrected
Functionals

The most important feature of density functional theory is probably the way in which it
directly incorporates exchange and correlation effects; the latter in particular are only truly
considered in the more complex, post-Hartree-Fock approaches such as configuration inter-
action or many-body perturbation theory. Despite its simplicity the local density approxima-
tion performs surprisingly well. However, the local density approximation has been shown to
be clearly inadequate for some problems and for this reason extensions have been developed.
The most common method is to use gradient-corrected, “non-local’ functionals which depend
upon the gradient of the density at each point in space and not just on its value. These gradient
corrections are typically divided into separate exchange and correlation contributions. A
variety of gradient corrections have been proposed in the literature. The gradient correction
to the exchange functional proposed by Becke is popular [Becke 1988, 1992]; this corrects
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the local spin density approximation tesult as follows:

2
V|
Exlp(r)] = B[] - b > J 3/3 Yo dr; xa=| o 3.69
x[o(t)] X le()] — s 1+6bxas' ; ,1%) p§/3 ( )

EXP2[p(1)] is the standard Slater form of the exchange energy, Equation (3.54). The form
written in Equation (3.69) is for a spin-unrestricted system, from which the appropriate
expression for a closed-shell system is easily derived. x, is a dimensionless parameter
and b is constant with a value of 0.0042a.u. The value of b was determined by fitting to
exact exchange Hartree-Fock energies for the noble gas atoms helium to radon. Two
particular features of this functional form are that in the limit » — oo the limiting form of
the exchange-correlation integral is correctly achieved and that it uses just a single
parameter, b. The correlation functional of Lee, Yang and Parr is also widely used [Lee
et al. 1988]; in its original form it was expressed as follows (for a closed-shell system):

Eclo(r)] = —a

1 _ 13
JW{TWP 2RCepP — 2y + Gty + 5 Vo)™ |}dr

tw(r)=XNj————'vif"((:))'2—§v2p; Cr =337
i=1 i

(3 70)

4, b, ¢ and d are constants with values 0.049, 0.132, 0.2533 and 0.349, respectively. This
expression provides both local and non-local components within a single expression and
the gradient contribution to second order. A combination of the standard local spin
density approximation exchange result (Equation (3.54)) with the Becke gradient-exchange
correction and the Lee-Yang-Parr correlation functional is currently a popular choice,
commonly abbreviated to BLYP (pronounced ‘blip’).

3.7.4 Hybrid Hartree-Fock/Density Functional Methods

As we stated earlier, a key feature of density functional theory is the way in which correlation
effects are incorporated from the beginning, unlike Hartree-Fock theory. Moreover, the
incorporation of correlation into the Hartree-Fock formalism often involves significant
computational overhead, as we have considered in Section 3.3. However, it is important to
recognise that Hartree-Fock theory does provide an essentially exact means of treating the
exchange contribution. One potentially attractive option is thus to add a correlation energy
derived from DFT (e.g. the local density approximation) to the Hartree-Fock energy. In
such an approach the exchange-correlation energy is written as a sum of the exact exchange
term together with the correlation component from the local density approximation. This
“exact’ exchange energy is obtained from the Slater determinant of the Kohn-Sham orbitals.

Unfortunately, this simple approach does not work well, but Becke has proposed a strategy
which does seem to have much promuse [Becke 1993a, b]. In his approach the exchange-
Correlation energy Exc is written in the following form:

1
Exc = JO Ugcdi (3.71)
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Equation (3.71) contains a coupling parameter A, which takes values from 0 to 1. A value
of zero corresponds to a system where there is no Coulomb repulsion Uyc between
the electrons (i.e. the Kohn-Sham non-interacting reference state). As A increases to 1 the
interelectronic Coulomb repulsion is introduced until A =1, which corresponds to the
‘real’ system with full interactions. For all values of A the electron density is the same
and equal to the density of the real system. It is not practical to perform this integral
analytically and so it must be approximated. The simplest approximation is a linear
interpolation:

Exc = 3 (Uxe + Uxc) (372)

When A = 0 we have U, which is the exchange-correlation potential energy of the non-
interacting reference system As there are no electronic interactions in this system there is
no correlation term and so U3¢ corresponds to the pure exchange energy of the Kohn-~
Sham determinant and can be determined exactly. Uxc is the exchange-correlation potential
energy of the full-interacting real system. Becke proposed that this should be calculated
using the local spin-density approximation. This potential energy (note that it is not the
total energy, E) is available from:

e ~ TR = [uxc [pale),o5(6)] d (3.73)

uyc is the exchange-correlation potential energy density of an electron gas for which
appropriate expressions are available.

This so-called ‘half-and-half’ theory proved to be significantly better than the alternative
methods based upon mixing exact exchange and correlation energies. In a refinement of
the scheme, Becke recognised that there were problems with the model when A =10
These problems arise because the electron gas model is not appropriate near this
exchange-only limit for molecular bonds. Hence a key feature of Becke’s modified model
is to eliminate the term UYc and to write the exchange-correlation energy as the following
linear combination:

Exc = ERPA + ag (BR™ — EXPY) + ax AL + ac AEES (3.74)

In Equation (3.74) EX® is the exact exchange energy (obtained from the Slater determinant
of the Kohn-Sham orbitals), EX">* is the exchange energy under the local spin density
approximation, AESC is the gradient correction for exchange and AEEC is the gradient
correction for correlation. g, ax and ac are empirical coefficients obtained by least-squares
fitting to experimental data (56 atomisation energies, 42 ionisation potentials, eight proton
affinities and the total atomic energies of the ten first-row elements). Their values are
ag = 0.20, ax = 0.72 and ac = 0.81. In Becke's original paper his own gradient correction
for exchange was used together with a gradient correction for correlation suggested by
Perdew and Wang,. An alternative to this scheme is to employ the Lee-Yang-Parr correlation
functional (with the gradient term) and the standard local correlation functional due to
Vosko, Wilk and Nusair (VWN). This is the “B3LYP’ density functional:

ERP = (1— ag) EEP 1 0B + axAER® +acEe™ + (1-a)EE™  (B7)
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3.7.5 Performance and Applications of Density Functional Theory

The application of density functional theory to isolated, ‘organic’ molecules is still in rela-
tive infancy compared with the use of Hartree-Fock methods. There continues to be a
steady stream of publications designed to assess the performance of the various
approaches to DFT As we have discussed there is a plethora of ways in which density
functional theory can be implemented with different functional forms for the basis set
(Gaussians, Slater type orbitals, or numerical), different expressions for the exchange
and correlation contributions within the local density approximation, different expressions
for the gradient corrections and different ways to solve the Kohn-Sham equations to
achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations,
which mostly use one of a series of tried and tested Gaussian basis sets and where there
is a substantial body of literature to help choose the most appropriate method for incorpor-
ating post-Hartree-Fock methods, should that be desired.

A clear conclusion from such comparative studies is that density functional methods using
gradient-corrected functionals can give results for a wide variety of properties that are
competitive with, and in some cases superior to, ab initio calculations using correlation
(e.g. MP2). Gradient-corrected functionals are required for the calculation of relative
conformational energies and the study of intermolecular systems, particularly those
involving hydrogen bonding [Sim ef al. 1992]. As is the case with the ab initio methods
the choice of basis set is also important in determining the results. By keeping the basis
set constant (6-31G” being a popular choice) it is possible to make objective comparisons.
Four examples of such comparative studies are those of Johnson and colleagues, who
considered small neutral molecules [Johnson et al. 1993]; St-Amant et al., who examined
small organic molecules [St-Amant et al. 1995]; Stephens et al., who performed a detailed
study of the absorption and circular dichroism spectra of 4-methyl-2-oxetanone [Stephens
et al. 1994]; and Frisch et al., who compared a variety of density functional methods with
one another and to traditional ab initio approaches [Frisch et al. 1996]. The evolution of
defined sets of data such as those associated with the Gaussian-n series of models has
also acted as a spur to those involved in developing density functional methods. For
example, much of Becke’s work on gradient corrections and on mixed Hartree-Fock/
density function methods was evaluated using data sets originally collated for the
Gaussian-1 and Gaussian-2 methods. A more recent example is a variant of the
Gaussian-3 method which uses B3LYP to determine geometries and zero-point energies
[Baboul ef al. 1999].

One of the most important developments for the practical application of DFT were methods
for calculating analytical gradients of the energy with respect to the nuclear coordinates.
This enables molecular geometries to be optimised. Once more there are some differences
between the way this is done with density functional theory compared with Gaussian-
based Hartree-Fock methods. A potential problem is that the use of grid-based integration
schemes makes it difficult to provide exact expressions for the gradients. However, the
errors associated with the grid-based method are generally very small and do not cause
problems during the optimisation.
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3.8 Quantum Mechanical Methods for Studying the Solid State
3.8.1 Introduction

The quantum mechanical methods used to study the behaviour of solid-phase systems are
often somewhat different to those traditionally employed for studies of individual molecules
or isolated intermolecular complexes. A perfect crystalline system can be constructed by
stacking copies of some repeating unit (the unit cell) in a systematic fashion without overlap-
ping and without gaps. The structure of a crystal can be specified by defining the size and
shape of the unit cell and the positions of the atoms within it. The unit cell is parallelepiped
in shape and is characterised by three lattice vectors a, b and c and the angles between them
(Figure 3.7). It may be possible to conceive of more than one unit cell, with different unit
cell parameters In such cases a set of standard cell parameters can be obtained by the
application of standardisation rules. The coordinates of the atoms in the unit cell may be
expressed as fractional coordinates (ca, Sb, yc). Indeed, any general vector r can be
written in terms of these basis vectors:

r = {aa, b, vc) (376)

where a, 3and 7 are not necessarily restricted to values between 0 and 1. There are fourteen
different types of basic unit cell; these are the Bravais lattices. Common Bravais lattices
include the simple cubic, body-centred cubic and face-centred cubic (Figure 3.8). Another
common structure also shown in Figure 3.8 is the hexagonal close-packed arrangement,
for which the underlying Bravais lattice (called the simple hexagonal) is formed from an
underlying triangular arrangement. In addition to the translational symmetry that the
unit cell must possess there may be some symmetry to the arrangement of the atoms
within the unit cell. The particular combination of symmetry elements in a crystal defines
its space group. There are 230 different space groups. If there is symmetry within the unit
cell then it is strictly only necessary to specify the asymmetric unit (the unique part of the
structure); the positions of the other atoms can be generated using the appropriate symmetry
operators.

Fig. 3 7* The six parameters a, b, ¢, o, B, ¥ which characterise the unit cell.
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Fig. 38 Some basic Bravais lattices (a) simple cubic, (b) body-centred cubic, (c) face-centred cubic and (d) simple

hexagonal close-packed (Figure adapted in part from Ashcroft N W and Mermin N D 1976. Solid State Physics
New York, Holt, Rinehart and Winston.)

@

Another concept that is extremely powerful when considering lattice structures is the
reciprocal lattice. X-ray crystallographers use a reciprocal lattice defined by three vectors
a’, b” and ¢ in which a" is perpendicular to b and ¢ and is scaled so that the scalar
product of a* and a equals 1. b* and ¢* are similarly defined. In three dimensions this
leads to the following definitions:

. bxc . axc « axb

At =———: b= =
a-bxc’ b.axc’ c-axb

(3.77)

Note that the denominator in each case is equal to the volume of the unit cell. The fact thata®,
b* and ¢* have the units of 1/length gives rise to the terms ‘reciprocal space’ and ‘reciprocal
lattice’. It turns out to be convenient for our computations to work with an expanded
reciprocal space that is defined by three closely related vectors a®, b* and ¢, which are
multiples by 2r of the X-ray crystallographic reciprocal lattice vectors:

a® =2ra*; b =2ab"; * =2xc* (3.78)

A simple illustrative example of reciprocal space is that of a 2D square lattice where the
vectors a and b are orthogonal and of length equal to the lattice spacing, a. Here a* and
b are directed along the same directions as a and b respectively and have a length 1/a



142 Chapter 3

combined to give the equivalent of molecular orbitals. It is based on the assumption that the
effect of orbital overlap is to modulate but not change completely the initial atomic levels.
The approximation is traditionally considered most useful for describing the electronic
structure of systems such as insulators and transition metals with partially filled d shells.
The second approach is called the nearly free-electron approximation. This theory starts by
considering the electrons as free particles whose motion is modulated by the presence of
the lattice. The nearly free-electron approximation is traditionally considered the more
suitable approach to systems such as metals where there is substantial overlap of the
valence orbitals. We will outline both approaches in turn, making use of some of the
fundamental principles and properties of lattices discussed earlier.

3.8.2 Band Theory and Orbital-based Approaches

Band theory is perhaps easier for chemists to understand, starting as it does from an orbital
picture. We will therefore spend somewhat less space discussing this than the nearly free-
electron approximation. We will start by considering the simplest problem, a 1D lattice.
Initially we consider what happens if we bring together two atoms along the x axis until
they are separated by a distance, a. If each atom has one s orbital, then the combined
system has two molecular orbitals (one bonding and one anti-bonding). If we then add a
third atom then three molecular orbitals are obtained (one bonding, one non-bonding and
one anti-bonding). Four atoms give four energy levels, and so on. As more atoms are
added the energy levels merge to give what is an essentially continuous band of energy
levels (Figure 3.11). Each energy level can accommodate two electrons so if each atom con-
tributes one electron the band will be half full. The presence of unoccupied energy levels
near to the top of the filled level means that it is very easy to excite electrons from the
filled to the unfilled levels. The electrons are consequently very mobile, giving rise to the
special conduction and thermal properties of a metal. By contrast, if each atom contributes
two electrons then the band will be completely filled. Such electrons would have to be
excited to higher bands, which might, for example, be formed by the overlap of p orbitals.
In an insulator the energy of this p band would typically be significantly higher than the
lower s band and so excitation would require considerable energy. In a semiconductor
the band gap is smaller and it may be possible to excite electrons from the top of the
highest filled band (the valence band) to the lowest unoccupied band (the conduction band)
at normal temperatures. These three difference scenarios are illustrated in Figure 3.11.

The periodicity of the lattice means that the values of a function (such as the electron
density) will be identical at equivalent points on the lattice. Likewise there is a relationship
between the wavefunction at a point (x in our 1D lattice) and at an equivalent point else-
where on the lattice (for the 1D lattice this would be x + na, where # is an integer). Bloch’s
theorem provides the link; each allowed lattice wavefunction must satisfy the following
relationship:

P*(x + a) = eM9p(x) (3 81)

In this equation we have identified the wavefunction with a label, k, which for now can
be considered an index; there are as many values of k as there are atoms in the 1D lattice.
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Fig 311: The creation of a band of energy levels from the overlap of two, three, four, etc atomic orbitals, which
eventually gives rise to a continuum Also shown are the conceptual differences between metals, insulators and
semiconductors

We wish to construct linear combinations of the atomic orbitals such that the overall
wavefunction meets the Bloch requirement. Suppose the s orbitals in our lattice are labelled
X, Where the nth orbital is located at position x = na. An acceptable linear combination of
these orbitals that satisfies the Bloch requirements is:

= ey, (3.82)

We now need to consider how the form of the wavefunction varies with k. The first situation
we consider corresponds to k = 0, where the exponential terms are all equal to 1 and the
overall wavefunction becomes a simple additive linear combination of the atomic orbitals:

P0=Y xu=x0txitxat- (3.83)
n

The other situation we consider is k = 7/a. Recall that exp(ix) can be written cos(x) + i sin(x).
ifk = 7/a then the sine terms will all be zero, leaving just the cosine terms cos{nr), which can
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Fig 312 The variation in energy with k for a 1D lattice for a set of s orbitals (left) and for a set of p, orbitals (right)
Also shown are the corresponding arrangements of orbitals.

be expressed more generally as (—1)". Hence the wavefunction is:

Y= (D) e =x0—XaF X2~ (3.84)
n

Equations (3.83) and (3.84) correspond to the lowest- and highest-energy wavefunctions for
our simple system over this range of k. Wavefunctions for values of kbetween0 and m/ahave
intermediate energies. The energy varies in a cosine-like manner with k between k = 0 and
k = w/a (Figure 3.12). Note that k can adopt negative values and that E(—k) equals E(k). Also
worthy of note is that p orbitals show different behaviour to the s orbitals. For a set of p,
orbitals it is the k = 0 state that is of highest energy and k = w/a is of lowest energy, due
to their nodal behaviour

The graph of energy versus k is called the band structure; the bandwidth is the difference in
energy between the lowest and highest levels in the band. For the one-dimensional lattice
the bandwidth is determined by the lattice spacing; a smaller spacing a gives a greater band-
width in much the same way that the difference between the bonding and antibonding
orbitals in H, increases as the atoms get closer together. As we noted above there are as
many values of k (and so as many energy levels) as there are atoms in the lattice and that
each energy level can accommodate two electrons.

We now move on to consider a two-dimensional square lattice in the (x,y) plane, where the
inter-lattice spacing is still 2. The Bloch theorem is now written in the following more general
form:

P +T) =Ty () (3.85)

In Equation (3.85) T is a translation vector that maps each position into an equivalent
position in a neighbouring cell, r is a general positional vector and k is the wavevector
which characterises the wavefunction k has components k, and k, in two dimensions and
is equivalent to the parameter k in the one-dimensional system. For the two-dimensional
square lattice the Schrédinger equation can be expressed in terms of separate wavefunctions
along the x- and y-directions. This results in various combinations of the atomic 1s orbitals,
some of which are shown in Figure 3.13. These combinations have different energies. The
lowest-energy solution corresponds to (k, =0, k,=0) and is a straightforward linear
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k.=mnla, k,=0 k=n/a, k,=nla

Fig 3.13. Some of the possible combinations of atomic 1s orbitals for a 2D square lattice corresponding to different
values of k, and k,. A shaded circle indicates a positive coefficient; an open circle corresponds to a negative coefficient.

combination of the atomic orbitals The highest-energy solution corresponds to the situation
where both k, and k, have values of 7/a. The wavefunction for this high-energy solution
shows a rapid variation in sign. Another important feature evident in Figure 3.13 is the
wave-like nature of the various linear combinations, particularly if one imagines the
lattice extending infinitely in all directions over the (x,y) plane.

The reciprocal space and the reciprocal lattice are directly related to the wavevector, k;
different values of k can be considered as points within the reciprocal space defined by
a®, b® and c. It turns out that, when we are calculating the wavefunction and energy
levels for a solid, we need to restrict k to one cell in the reciprocal lattice (typically chosen
to the cell containing k =0, or the first Brillouin zone), otherwise there is a danger of
counting some states more than once. A very common way to represent the band structure
for lattice structures is to plot how the energy changes as a function of k along certain lines of
symmetry within the first Brillouin zone. For example, to return to our square lattice
(for which the reciprocal lattice is also square) one could imagine taking a ‘tour’ starting
at the origin (k = (0,0)), moving along the x axis to k = (r/a,0) up the y axis to
k= (m/a,r/a), and finally returning to the origin. As we undertake this tour the energy
changes as shown in Figure 3.14. In this diagram we have labelled certain values of k
which have particular symmetry with their conventional Roman or Greek capital letters,
I, Xand M [Bradley and Cracknell 1972].
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Fig. 3.14: Variation in energy for a ‘tour’ (I-X-M-T') of the reciprocal lattice for a 2D square lattice of hydrogen
atoms. (Figure adapted in part from Hoffinann R 1988. Solids and Surfaces. A Chenust’s View on Bonding in
Extended Structures New York, VCH Publishers.)

3.8.3 The Periodic Hartree—Fock Approach to Studying the Solid State

In the periodic Hartree-Fock approach the elements of the Fock matrix are constructed from
linear combinations of so-called Bloch functions:

P =Y a1)ps(r) (3.86)

Each Bloch function is itself a linear combination of atomic orbitals:

ek =" xLx)explik-T) (3.87)
T

x% is the wth atomic orbital in the crystal cell characterised by the lattice vector T. As
such, this method works in real space, which contrasts with the usual implementations of
the alternative plane-wave methods that we will discuss below [Dovesi et al. 2000]. Each
atomic orbital is expressed as a linear combination of (for example) Gaussian functions, as
in molecular Hartree-Fock theory. The coefficients a,;(k) in Equation (3.86) are obtained
by solving the following matrix equation for every value of k to self-consistency:

FiAy = ScALEy (3 88)

S, is the overlap matrix for the Bloch functions for the wavevector k, with Ey being the
energy matrix and A the matrix of coefficients. Fy is the Fock matrix, which consists of a
sum of one- and two-electron terms. The values of k are typically selected to sample from
the first Brillouin zone according to a special scheme as described in Section 3.8.6. When
these terms are expanded they involve infinite sums over the nuclei and electrons in the
lattice. As is usual in a Hartree-Fock approach the one-electron terms involve the sum of
a kinetic energy term and one due to the Coulomb interaction between the nuclei and the



Advanced ab initio Methods 147

electrons; the two-electron terms involve Coulomb and exchange two-electron integrals.
Unfortunately, if these sums were to be evaluated individually and to completion then
they would not converge to a consistent value, but would diverge. However, effective
ways to determine these infinite sums have been proposed [Pisani and Dovesi 1980;
Dovesi et al. 1983]. These involve a variety of procedures. The Coulomb interactions are
divided into a series of terms corresponding to interacting and non-interacting charge
distributions The latter can then be grouped together into ‘shells” and the interaction
calculated using multipole expansions (see Section 4.9.1). For the shorter-range exchange
mteraction it is possible to truncate the integral summation at an appropriate distance
without loss of accuracy. The truncation distance can depend upon the three-dimensional
structure of the material and so may vary from one calculation to the next.

Within the periodic Hartree-Fock approach it is possible to incorporate many of the variants
that we have discussed, such as UHF or RHF. Density functional theory can also be used.
This makes it possible to compare the results obtained from these variants. Whilst density
functional theory is more widely used for solid-state applications, there are certain types
of problem that are currently more amenable to the Hartree-Fock method. Of particular
relevance here are systems containing unpaired electrons, two recent examples being the
electronic and magnetic properties of nickel oxide and alkaline earth oxides doped with
alkali metal ions (Li in CaO) [Dovesi et al. 2000].

3.8.4 The Nearly Free-electron Approximation

Whereas the tight-binding approximation works well for certain types of solid, for other
systems it is often more useful to consider the valence electrons as free particles whose
motion is modulated by the presence of the lattice. Our starting point here is the Schrédinger
equation for a free particle in a one-dimensional, infinitely large box:

& 2mE
() =-(5)» o)
The solutions to this equation are:

¢ = Cexplikx); E= (H*k*)/2m (3.90)

The energy for a free particle can be related to the momentum by E = p*/2m and so the
wavefunction is related to the momentum p by:

3y = Cexp(xipx/h) (3.91)

The wavelength of this motion is #/p and the parameter k is equal to 2xp/h. Thus k has units

of 1/length (i.e. reciprocal length). The energy for a free particle varies in a quadratic fashion
with k and in principle any value of the energy is possible.

In two dimensions we obtain the following wavefunction:
Yuy = Cyexp(ikex/h)Cy exp(ik,y/h) = Cexp(ik -1 /h) (3.92)

Note that in Equation (3.92) we have expressed the wavefunction in terms of a vector, k
(which has components in the x and y directions of k, and k,) and the Cartesian vector .
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The energy varies as a quadratic function of both k, and k;:

hZ
Euy = 1 (6 +) 3.9

An analogous expression is obtained in three dimensions. We now need to consider periodic
systems. As we have discussed, the wavefunction for a particle on a periodic lattice must
satisfy Bloch’s theorem, Equation (3.85). The wavevector k in Bloch’s theorem plays the
same role in the study of periodic systems as the vector k does for a free particle. One
important difference is that whereas the wavevector is directly related to the momentum
for a free particle (i.e. k = p/h) this is not the case for the Bloch particle due to the presence
of the external potential (i.e. the nuclei). However, it is very convenient to consider ik as
analogous to the momentum and it is often referred to as the crystal momentum for this
reason. The possible values that k can adopt are given by:
_ (Ma_s Mays T s
k= (Ea FULE ) (3.94)
Mg, Mg and m,, are integers and N, NyN, = N, the number of unit cells in the crystal. For a
macroscopic system where N is very large (of the order of Avogadro’s number) k thus
varies continuously. As we have seen before, the wavevector k in the Bloch theorem
(Equation (3.85)) can be considered as a point within the reciprocal lattice defined by a’,
b® and ¢®. It can also be shown (see Appendix 3.1) that a wavefunction that satisfies
Bloch’s theorem can be written in the following form:

P4 () = X Tu() (3.95)

Here, u*(r) is a function that is periodic on the lattice. Recall from our earlier discussions on
reciprocal lattice vectors that one way to construct such a periodic function is as a Fourier
series expansion of plane wavefunctions exp(iG - 1):

uk(@) = cEexp(iG 1) (3.96)
G

The sum runs over the reciprocal lattice vectors G we considered above A simple case is
G = a°, for which exp(iG -1) corresponds to a wave travelling perpendicular to the real-
space axes b and ¢ and with a wavelength such that it fits exactly into the unit cell. If
G = 2a® then two wavelengths fit into the cell.

The external potential due to the nuclei is periodic in the lattice and it too can be written asa
Fourier expansion of exponential functions of the reciprocal lattice:

Ur) =) Ugexp(iG ) (397)
G

U, is the Fourier coefficient. When this form of the potential is incorporated into the
Schrédinger equation the following equation can be derived [Ashcroft and Mermin 1976]:

F

2
G’
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We can recover the free-particle result (i.e. zero potential) from Equation (3.98) by setting all
of the Fourier coefficients Ug to zero, in which case the equation reduces to:

i 2 )
i Gl°— = 3.
<2mlk+ "~E)c& =0 (3.99)
The solution of this equation requires that E = k?|k + G|?/2m with the wavefunctions
being of the form (r) o« expli(k + G)-1]. Although cast in a slightly different form, this
is equivalent to our earlier expression for the wavefunction of a free particle, Equation (3.92).

The summations in Equations (3.98) are over all reciprocal lattice vectors G. As can be seen,
for a given value of k there are as many forms of this equation as there are reciprocal lattice
vectors in the system. Each of these equations for the different values of G gives rise to a
solution which is labelled with the band index n. Thus there are as many values of n as
there are reciprocal lattice vectors G. Just as there are n solutions to this Schrédinger
equation for a given value of k, so it is also possible to consider how the energy varies
with k for a given value of n. To understand the entire band structure of a solid requires
one to consider the variation of both k and n. As we indicated above, when calculating
the band structure it is usual to restrict k to just the first Brillouin zone to avoid duplicate
counting of states.

Let us now examine how these results can be applied to some simple one- and two-
dimensional periodic systems. Initially we will consider the situation where there is no
external potential and then discuss what happens when we introduce one. The first
case is the one-dimensional lattice, which has reciprocal lattice vectors at £27/a, 247 /a, etc.
In order to derive the energy diagram we need to consider, for each reciprocal lattice vector
G, how the energy varies as we change k over the first Brillouin zone (which in this case
corresponds to varying k from —m/a to +m/a). The first reciprocal lattice vector is G =0,
for which the energy simply varies quadratically with k, from zero at k = 0 to F*(rr/a)*/2m
at k = £27/a. We next need to consider the two reciprocal vectors G = +27/a. At the point
k = 0 the energy due to both of these reciprocal lattice vectors is /i*(2r/a)*/2m. As k increases
from 0 to ++/a the value of |k + G|? increases for the reciprocal lattice vector G = 2r/a but it
decreases for the reciprocal lattice vector G = —2r/a. Conversely, as k varies from 0 to —/a
the energy increases for the reciprocal lattice vector G = —2/a and decreases for G = 2/a.
These variations in energy are shown in Figure 3.15. Two types of energy diagram are shown
in this figure; one is the ‘reduced-zone’ scheme because the entire dependency of the energy
on the wavevector is contained within the first Brillouin zone. The alternative representation is
called an extended-zone scheme in which the energy levels are “folded out’ for values of k
beyond the first Brillouin zone.

We next need to introduce the weak potential, which acts to modulate the wavefunctions
and the associated energy levels. The effects of the potential are found to be most acute
where there is degeneracy of the energy levels. This arises even in the one-dimensional situa-
tion, where we have degenerate energy levels due to different reciprocal lattice vectors at
k=0 and k = 7/a. The effect of the potential is to perturb these energy levels in such a
way that lifts the degeneracy to create an energy gap. In the one-dimensional case the
effect of the potential is to ‘flatten’ the energy levels in the region close to the edge of the
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Fig 3.15. Extended-zone and veduced-zone representations of band diagram for 1D lattice with no external potential.

Brillouin zone as shown in Figure 3.16. One way to explain the appearance of the energy gap
at the edges of the Brillouin zone is fo recognise that the states of a free electron are waves
with a specific wavelength (27/k in the simple one-dimensional system). When the wave-
length becomes comparable to the lattice spacing the lattice diffracts the wave and at the
boundary of the Brillouin zone (k= +7/a) a standing wave is created. Two different
standing waves are possible in a one-dimensional system, as shown in Figure 3.17. For
one of the standing waves (A in Figure 3.17) the peak electron density occurs in the vicinity
of the lattice points (the positive nuclei). This standing wave thus has a more favourable (i.e.
lower) energy than the equivalent free travelling wave. By contrast, the peak electron
density of the other standing wave (B in Figure 3.17) occurs between the nuclei and so its
energy is higher. Further gaps arise at k = +2x/a, and so on.

A somewhat more complex case is that of the 2D hexagonal lattice. As for the one-dimen-
sional system we initially consider a free particle, restricting ourselves to wavevectors
within the first Brillouin zone with higher-energy states being due to reciprocal lattice
vectors beyond in the second, third, etc. Brillouin zones. We will consider how the energy
varies as we undertake a “tour’ of the first Brillouin zone in reciprocal space starting at
the origin (k = (0,0)), then moving to one of the vertices of the hexagon (the point
(k = cos7/6,sin7/6)), along to the mid-point of one of the edges (k = (0, sinw/6)), and
finally back to the origin (Figure 3.18). The origin, the vertex and the mid-point are all
points of symmetry and are identified by the symbols I', K and M, respectively. For a



Advanced ab initio Methods 151

E
—2nt/a —Tt/a 0 T/a 2n/a  k
E
—/a 0 a k

Fig 3 16: The effect of introducing a weak potential into the 1D lattice is to lift the degeneracy of the energy levels
near to the edge of the Brillouin zone (shown in both extended-zone and reduced-zone representation)

given value of k we compute the value of |k + G[? and thus the energy for the relevant
reciprocal lattice vectors.

The simplest case is that corresponding to G = 0. We still obtain a quadratic variation of
energy with |k| wherever we move within the first Brillouin zone. The variation in energy
for the three ‘legs’ of this tour can be represented in an energy band diagram as shown in
Figure 3.18. As there are six nearest-neighbour cells in this system, there are six energy
levels to monitor at the next stage. The distance from the origin to each of these six reciprocal
lattice points is 2 cos /6. At k = 0 we therefore find that all six energy levels are degenerate

AR AWaARANAY
/\/\/\/\/\

Fig 317 The two possible sets of standing waves at the Brillouin zone boundary Standing wave A concentrates
electron density at the nuclei, whereas wave B concentrates electron density between the nuclei. Wave A thus has a
lower energy than wave B
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Fig 3.18: Energy band diagram (bottom) for a free-particle ‘tour” (I'-K-M-TI') of the reciptocal lattice fora2D
hexagonal structure (top left) A total of seven bands are shown, due to the central reciprocal lattice vector G = 0 and
the reciprocal lattice vectors from the six neighbouring cells The energy varies as |k + G|?, where the vector k + G 15
computed as shown in the top right of the figure (k. bold arrow; k + G: thin arrow).

and have a value of 37%/2m ((2cos 7/6)* = 3). Moving towards the point (cos 7/6, sin7/6)
we find that the six vectors separate into three pairs of degenerate levels. These six reciprocal
lattice points are labelled 1-6 in Figure 3.18, together with the corresponding energy levels.
As the tour continues, the different energy bands show two-, three- and six-fold degeneracy,
depending upon the value of k. Another key feature is that along some legs of the tour
certain pairs of bands are degenerate, though this degeneracy will often be lifted when a
different leg is traversed. For example, the pairs 1-2, 3-6 and 4-5 are degenerate from r
to K. Between K and M the pair 0-4 are degenerate; and on the final leg there is degeneracy
between the pairs 2-6 and 3-4. When the periodic potential is introduced some, but not
necessarily all, of this degeneracy will be lifted, giving rise to band gaps. The way in
which this can occur is shown schematically in Figure 3.19.
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Fig. 319. The effect of a weak external potential is to lift degeneracy and create band gaps as illustrated for a 2D
hexagonal lattice (compare with Figure 3.18).

3.8.5 The Fermi Surface and Density of States

To determine the ground state of a periodic system it is necessary to determine its band
structure, by varying k over the first Brillouin zone and computing at each value of k the
different energy bands resulting from the reciprocal lattice vectors. The number of energy
levels in a band (i e. the number of values permitted to k) is equal to the number of primitive
cells in the crystal, just as was the case for the orbital model in the tight-binding approxima-
tion. For each energy level corresponding to a particular value of k the Pauli principle
permits two electrons of opposite spin to be assigned. This process is repeated for the
different bands until all the electrons have been allocated. The energy level of the highest
occupied state is called the Fermi energy (for a metal; for an insulator, the Fermi energy is
in the middle of a band gap). When all the electrons have been assigned then one of two
different situations may result. In the first case all the occupied bands are completely
filled. As we saw earlier, this gives rise to a band gap between the top of the highest occupied
level and the bottom of the lowest empty level. The number of energy levels in each band is
equal to the number of primitive cells in the crystal, so a band gap can only arise if there is an
even number of electrons per primitive cell. The tight-binding approximation discussed in
Section 3.8 2 may be an appropriate model to apply in this case. The second situation arises
when one or more bands are partially filled. For each of these partially filled bands one can
consider there to be a surface in the k space that separates the occupied and the unoccupied
levels, as defined by the Fermi energy. This set of surfaces is known as the Fermi surface and it
defines a border between the occupied and unoccupied states. In many cases the Fermi
surface is contained within a single band; if not, then the parts of the Fermi surface due
to partially filled individual bands are known as the branches of the Fermi surface The
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Fermi surface will show the same underlying periodicity as the reciprocal lattice. A particu-
larly attractive feature of the Fermi surface is that it can be measured experimentally, so
providing a link between theory and experiment.

The density of levels is another useful way to describe the electronic structure of a solid.
The density of levels indicates how many energy levels there are for a particular
energy. It can thus be defined as the number of levels between E and E + dE. This is often
normalised by volume, leading to the density of levels per unit volume g(E), which is given by:

g(E) = g4(E) (3.100)
The sum is over the bands 1, with g, (E) being the density of levels in the band n:
1
- _ 3
8u(B) = 5 [ 8(E ~ E(10) (3101)

The delta function §(E — E,(k)) has a value of 1 if E,(k) is in the range E to E+dE and 0
otherwise. The density of states D(E) is closely related to the density of levels; in the
simple case where we have two electrons in each level then the density of states is just
twice the density of levels. The integral of the density of states up to the Fermi level is
equal to the number of electrons and the integral of the density of states multiplied by the
energy is the total electronic energy:

N= JD(E) dE (3.102)

Ey = JD( E)EdE (3 103)

The density of states can be usefully visualised by plotting the energy versus D(E). For
the simple one-dimensional situation where the energy varies in a cosine-like manner
with k and the levels are equally spaced, the density of states is greatest at the top and
bottom of the band (Figure 3.20). The density of states is thus inversely proportional to

Energy Energy

k Density of states

Fig 3.20. Variation of the density of states, D(E), for the simple 1D lattice, shown with the corresponding encrgy
diagram
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Fig. 3.21. Band structure and density of states for TiN.

the slope of the energy versus k curve; the flatter the band the greater the density of states
at that energy.

The density of states is somewhat like an orbital energy diagram, but unlike the latter does
not contain well-defined individual energy levels. Nevertheless, in some situations it is
possible to determine from which atomic orbitals a particular energy band is largely
derived. Of course, most real systems have rather more complex electronic structures
than the simple cases we have used to discuss the background, as illustrated in Figure
3.21, which shows the band structure and density of states diagram for TiN.

3.8.6 Density Functional Methods for Studying the Solid State:
Plane Waves and Pseudopotentials

Plane waves are often considered the most obvious basis set to use for calculations on periodic
systems, not least because this representation is equivalent to a Fourier series, which itself is
the natural language of periodic functions. Each orbital wavefunction is expressed as a linear
combination of plane waves which differ by reciprocal lattice vectors:

PEE) =Y dxicexplilk +G) ) (3.104)
G
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The Kohn-Sham equations of the density functional theory then take on the following
form:

7’12
> {ﬂ Ik + Glocer + Vion(G — G) + Ve (G — G') + V(G — G’)}a,-,kw =il
GI

(3.105)

Vions Veree and Ve represent the electron-nuclei, electron-electron and exchange-correlation
functionals, respectively. The delta function bgc is zero unless G = G/, in which case it has
a value of 1 There are two potential problems with the practical use of this equation for a
“macroscopic’ lattice. First, the summation over G’ (a Fourier series) is in theory over an
infinite number of reciprocal lattice vectors. In addition, for a macroscropic lattice there
are effectively an infinite number of k points within the first Brillouin zone. Fortunately,
there are practical solutions to both of these problems.

We are usually interested in the valence electrons of an atom, as these are largely responsible
for the chemical bonding and most physical properties. The core electrons are little affected
by the atomic environment. It is therefore common only to consider explicitly the valence
electrons in the calculation and to subsume the core electrons into the nuclear core. One
potential drawback to the representation of valence electron wavefunctions with a plane-
wave basis set is that near to the atomic nuclei the wavefunctions of the valence electrons
show rapid oscillations. This is because their wavefunctions must be orthogonal to those
of the core electrons. These oscillations give rise to a large kinetic energy, and a very large
number of plane waves would be required to properly model this behaviour. This
corresponds to taking many terms in the plane-wave expansion of the orbital, Equation
(3.104). This problem is compounded by the fact that the solid systems of interest often
contain elements much later in the periodic table than are usually encountered in molecular
Hartree-Fock calculations. Heavy elements have many more core electrons and so an even
more pronounced oscillatory behaviour. However, in this inner region the kinetic energy is
largely cancelled by the hugh electrostatic potential energy of interaction with the nucleus A
popular way to deal with these problems is to replace the “true’ potential in these core
regions with a much weaker one called a pseudopotential. This represents the way in which
the valence electrons interact with the combined nucleus plus core electrons [Heine 1970].
A pseudopotential is a potential function that gives wavefunctions with the same shape
as the true wavefunction outside the core region but with fewer nodes inside the core
region, as illustrated in Figure 3.22. This has the effect of reducing the number of terms
required for the plane wave expansion of the wavefunction, which in turn drastically
reduces the scale of the computational problem.

Pseudopotentials are usually derived from all-electron atomic calculations. The valence
electron pseudopotential is then required to reproduce the behaviour and properties of
the valence electrons in the full calculation. For example, the energy levels with the
pseudopotential should be the same as for the all-electron calculation. In addition, the
pseudopotential will often depend upon the orbital angular momentum of the wavefunction
(ie. for s, p, d, etc. orbitals) and it will be desired that the total valence electron density
within the core radius equals that in the all-electron situation. Such pseudopotentials are
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referred to as ‘non-local norm-conserving’. An additional advantage of the use of pseudo-
potentials for the heavy elements is that they enable some relativistic effects to be included
in the model. A number of functional forms are possible for the pseudopotentials; it is
usual to assume a specific functional form and then to vary the parameters. The various
pseudopotentials differ in the number of plane waves that are required for their represen-
tation and in the degree to which they can be transferred between different atomic
environments. So-called ‘soft’ pseudopotentials require fewer plane waves and are therefore
computationally more attractive, though there is to some extent a trade-off between softness
and transferability. Subsequently developed were the ‘ultrasoft’ or ‘supersoft’ pseudo-
potentials, which require even fewer plane waves.

In practice, therefore, a pseudopotential is invariably employed and only plane waves with a
kinetic energy (= (i%/2m)|k + G|?) less than some cutoff are included in the calculation The
cutoff used depends on the nature of the system under investigation. For example, in the
first-row elements the 2p valence orbitals approach closer to the nucleus than the com-
parable 3p orbitals in the second-row elements (the latter are repelled by the lower 2p
states). Thus elements such as silicon or sulphur usually have softer pseudopotentals
than their first-row equivalents carbon and oxygen. Everything else being equal, a higher
cutoff is consequently required for the latter and hence more plane waves in the expansion
(i.e. more reciprocal lattice vectors, G). Note that in the plane wave expansion the basis
functions are not associated with particular atoms but are defined over the whole cell
(this also removes the problem of basis-set superposition errors as an additional benefit).
The coefficients a;) | ¢ are obtained by following the usual density functional scheme: an
initial guess is made of the electron density variation p(r), the Kohn-Sham and overlap
matrices are constructed, diagonalisation gives the eigenfunctions and eigenvectors (and
thus the coefficients 4) from which the Kohn-Sham orbitals can be constructed and hence
the density for the next iteration.

The second important practical consideration when calculating the band structure of a
material is that, in principle, the calculation needs to be performed for all k vectors in the
Brillouin zone This would seem to suggest that for a macroscopic solid an infinite number
of vectors k would be needed to generate the band structure. However, in practice a discrete
sampling over the Brillouin zone is used. This is possible because the wavefunctions at points



158 Chapter 3

that are close together in k space will be almost identical and can be represented by a single
representative point. Each of these discrete values is multiplied by a weight factor related to
the volume of reciprocal space it represents. Obviously, the denser the set of k vectors the
smaller will be the error in the calculation Various schemes have been suggested for selecting
suitable sets of k vectors which can give very accurate approximations to properties such as
the charge density; the method of Monkhorst and Pack is particularly popular [Monkhorst
and Pack 1976]. The selection of k vectors is also influenced by the size and shape of the
system; indeed, if the unit cell is large then it may only be necessary to consider just one
vector. Typically, between ten and 100 vectors are sufficient to understand the structural
and electronic properties of a solid, though for certain types of problem such as calculating
the optical properties of a metal many more k vectors may be required (several thousands).
Ideally, one should ensure that the calculation converges both in terms of the number of wave-
vectors k considered and in terms of the number of reciprocal lattice vectors G. An additional
consideration is that the symmetry of the Brillouin zone itself may mean that it is not necessary
for k to vary over the entire zone but that only a smaller section need be considered For
example, in our two-dimensional hexagonal close-packed case we would only have to
consider the small right-angled triangle over which we undertook our “tour’. This has an
area one-twelfth that of the entire zone. This is an example of the use of the point symmetry
of the Brillouin zone rather than the translational symmetry of the lattice. The small section
contaming the explicit k vectors required for the calculation is sometimes referred to as the
irreducible part of the Brillouwn zone

3.8.7 Application of Solid-state Quantum Mechanics to the Group 14
Elements

The combination of density functional methods with pseudopotentials has been used
extensively to study a wide variety of materials. Three systems that have been the subject
of much interest are the group 14 elements carbon, silicon and germanium, reflecting
their natural abundance, commercial importance (especially for silicon) and the large
amount of experimental data available. Of particular interest is the problem of predicting
the lowest-energy structure at a given volume [Cohen 1986; Mujica and Needs 1993,
Needs and Mujica 1995]. In effect, this corresponds to predicting the most stable structure
at a particular pressure. These elements all exist in the familiar diamond structure at
normal pressures and temperatures but alternative structures can be formed by the
application of pressure, at least for silicon and germanium. There has also been much
speculation as to whether diamond itself could be transformed should a high enough
pressure be applied. This last problem does have some practical interest as it would
provide a theoretical upper limit to the pressures that could be achieved with ultra high-
pressure diamond anvil cells.

There are many alternatives to the diamond structure, including body-centred cubic, face-
centred cubic, hexagonal close-packed, simple hexagonal, simple cubic, §-tin, double-
hexagonal close-packed and two complex tetrahedral structures. a body-centred cubic
structure with eight atoms per unit cell and a simple tetragonal structure with twelve
atoms per unit cell, not forgetting of course the many fullerene forms. Not all studies
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consider every one of these phases but by quoting the list in full we can appreciate the range
of possibilities. The energy differences between many of these phases are often small and so
it is particularly important to achieve an effective sampling of points in k space (recent
studies suggest several thousands of such points are needed). The plane-wave cutoff can
also have an effect on the results. The calculations involve minimising each structure at a
number of different volumes and then fitting a polynomial to the data points. The results
are usually displayed as a graph of the total energy versus the volume, as shown in
Figure 3 23. Another way to display this type of data is an enthalpy-pressure plot, from
which the most stable phase at any pressure is easily identified as that with the lowest
enthalpy. Various bulk structural properties can also be calculated for comparison with
experiment.

As we alluded, of the forms mentioned above only the diamond structure has been observed
experimentally for carbon. For both silicon and germanium there is a transition to the g-tin
phase around 100-130kbar. Silicon further transforms into other structures such as the
simple hexagonal with a relatively modest further increase in pressure, whereas for germa-
nium this transition requires much more pressure. Why should this be, given that they are
all in the same group? The electronic structure calculations provide some significant insights
into this problem. Thus silicon has a strongly repulsive p-orbital pseudopotential due to the
irmer (2p) electrons, which carbon does not. This repulsion contributes to the formation of a
single peak in the electron density along each Si-Si bond, whereas for carbon there are two
peaks, each being near the position for the atomic p orbitals (Figure 3.24). The differences
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Fig 324: Valence electron density for the diamond structures of carbon and silicon (Figure redrawn from Cohen M L
1986 Predicting New Solids and Superconductors. Science 234 549-553 )

between silicon and germanium are ascribed to the d electron states; silicon does not have
core d electrons, whereas germanium does. Certain transitions (e.g. carbon — g-tin) do
not depend upon the d character of the electronic configuration in contrast to subsequent
transitions.

3.9 The Future Role of Quantum Mechanics: Theory and
Experiment Working Together

Of all the methods that we will discuss in this book, quantum mechanics is probably the
most widely used and the most extensively developed. The importance of the subject can
be gauged in many ways, from citation counts to the number of Nobel prizes awarded.
The systems studied using quantum mechanics range from the simplest molecular species
(e.g. Hi, HD', Hi) to some very large and complex molecules (e.g. DNA, proteins and
complex solid-state materials). Some of the most productive situations occur when
experiment and theory are used in combination to tackle a problem. The methylene
molecule, CHj, is of particular historical interest. Despite its small size, this molecule and
the controversy surrounding it played an important role in establishing the role of computa-
tional quantum mechanical methods in modern-day research and the relationship between
theory and experiment [Schaeffer 1986]. The early debate concentrated on the ground state
of the molecule and whether its geometry was linear or bent. Early ab initio calculations by
Foster and Boys [Foster and Boys 1960] suggested an H-C-H angle of 129° but this was
refuted by spectroscopic data from Herzberg’s laboratory, which were interpreted to indi-
cate a linear geometry Unfortunately for Foster and Boys, empirical calculations favoured
by their head of department, Longuet-Higgins, also gave a linear geometry. Events came
to a head when Bender and Schaeffer calculated a geometry of 135.1° and concluded that
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the energy barrier between the linear and bent geometries was so large that no further
improvement in the theoretical model could remove it. Soon thereafter several other experi-
ments were undertaken, showing a bent structure. Moreover, when Herzberg re-examined
his original data it was found to be consistent with a bent model. As we shall see in the
remaining chapters there are many kinds of problem that can be tackled using computa-
ional chemistry methods. By no means do they always work, but there is often a synergistic
relationship between experiment and theory, which means that the two combined can be
much more productive than either in isolation.

Appendix 3.1 Alternative Expression for a Wavefunction
Satisfying Bloch’s Function

We have Equation (3.81):

¥ (x4 a) = Mk (x) (3.106)
We write 1(x) as the product of the exponential and a function u(x):
(%) = Pi(x)/ exp(ikx) (3107)

If we perform the same manipulation for ¢/(x + a) we get:

ika
Ug(x +a) = ¢:ﬂ(ci i—:) = wg"(‘fzz’:‘l = ¢:ig) = u(x) (3.108)

Thus u(x) is a periodic function which can be used to formulate acceptable wavefunctions:

Ui(x) = € uy(x) (3.109)

Further Reading

Ashcroft N W and N D Mermin 1976. Solid State Physics New York, Holt, Rinehart and Winston.

Atkins P W 1991 Quanta. A Handbook of Concepts Oxford, Oxford University Press.

Atkins P W and R S Friedman 1996. Molecular Quantum Mechanics, 3rd edition. Oxford, Oxford
University Press.

Catlow CR A 1997. Computer Modelling as a Techmque in Materials Chemustry In Catlow CR A and
A K Cheetham (Editors). New Trends in Materials Chemistry, NATO ASI Series C 498, Dordrecht,
Kluwer.

Catlow C R A 1998. Solids Computer Modelling. In Schleyer, P v R, N L Allinger, T Clark, ] Gasteiger,
P A Kollman, H F Schaeffer IIl and P R Schreiner (Editors) The Encyclopedia of Computational
Chemistry, Chichester, John Wiley & Sons

Gillan M J 1991 Calculating the Properties of Materials from Scratch In Meyer M and V Pontikis
(Editors) Computer Simulation, NATO ASI Series E 205 (Computer Simulations in Materials
Science) pp 257-281.

Hehre W ], L Radom, P v R Schleyer and | A Pople 1986. Ab initio Molecular Orbital Theory New York,
John Wiley & Sons



62 Chapter 3

. York,
Hoffmann R 1988. Solids and Surfaces: A Chemist’s View on Bonding in Extended Structures. New Yor
VCH Publishers. . 1
Kohn W, A D Becke and R G Parr 1996, Density Functional Theory of Electronic Structure. fournal of
Chemical Physics 100-12974-12980.
. i H March
Kohn W and P Vashita 1983. General Density Functional Theory. In Lu“‘;guﬁtss and N
(Editors). Theory of Inhomogeneous Electron Gas, New York, Plenum, pp. 79-120. -
Kutzelnigg W and P von Herigonte 2000. Electron Correlation at the Dawn of the 21st Century
Advances in Quantum Chemistry 36.185-229, .

Pisani C, R Dovesi and C Roetti 1988 Hartree-Fock Ab initio Treatment of Crystalline Systems. Lecture
Notes in Chemistry Vol. 48. Berlin, Springer-Verlag L
Pisani C, R Dovesi, C Roetts, M Cansa, R Orlando, S Casass and V R Saunc.iers 2000.tl CRE?"I;:A s:‘;;g

EMBED, Two Cemputational Tools for the ab initio Study of Electronic Properties 1y .

International Journal of Quantum Chemistry 77. 1032-1048.

. Press.

Schaeffer H T 1L (Editor) 1977. Applications of Electronic Structure Theory. New EO;};, Pl:;u;’r;essr
Schaeffer H F 11T (Editor) 1977 Methods of Electronic Structure Theory.‘New York, Plenu o S;ructure
Szabo A and N S Ostlund 1982, Modern Quantum Chemistry Introduction to Advanced Electron

Theory New York, McGraw-Hill t
Wimmer E 1991 Density Functional Theory for Solids, Sutface and Molecules: from Ef‘er?yMB;;;z o

Molecular Bonds In Labanowsk: ] R and ] W Andzelm (Editors) Density Functiona

Chemistry. Berlin, Springer-Verlag, pp 7-31

References

. i b initi
Almlé J, K Faegri Jr and K Korsell 1982, Principles for a Direct SCF Approach to LCAO-MO Ab initio
Calculations Journal of Computational Chemistry 3.385-399 .
” ; ton.
Ashcroft N W and N D Mermin 1976 Solid State Physics New York, HOlt’- Rme}"}';rt ; YJT;O Density
Baboul A G, L A Curtiss, P C Redfern and K Raghavachari 1999. Gtaussmn-.?» 16(2%50—76%7
Functional Geometries and Zero-Point Energies. Journal of Che.mzcul PhyleS},\ 1C ot As r'nptotic
Becke A D 1988. Density-functional Exchange-energy Approximation with Corr y
Behaviour. Physical Review A38 3098-3100. Gradient
Becke A D 1992 Density-funchional Thermochemistry. 1. The Effect of the Exchange-only Gradi
Correction. Journal of Chemical Physics 96:2155-2160 ) . . Io
Becke A D 1993a. A New Mixing of Hartree-Fock and Local Dens1ty—funct10nal Theories Journal of
Chemical Physics 98 1372-1377 al o
Becke A D 1993b Density-functional Thermochemistry. TII The Role of Exact Exchange Journ of
Chemical Physics 98.5648-5652. . ; tomic
Becke A D and R M Dickson 1990, Numerical Solution of the Schroedinger Equation in Polyato
Molecules. Journal of Chemical Physics 92:3610-3612 . lized
Bobrowicz F W and W A Goddard UI 1977 The Self—Consiste_nt Field Equations I;O; %?n(eég;’;;
Valence Bond and Open-Shell Hartree-Fock Wave Funcho;s In Schaeffer
Modern Theoretical Chemistry III, New York, Plenum, pp. 79-127. s of
Boys S F and F Bernardi 1970 The Calculation of Small Molecular Interachions by Fhelggge;fgggq
Separate Total Energies Some Procedures with Reduced Errors. Mole‘culur .Phyg:;ma Clarendon
Bradley CJ and A P Cracknell 1972 The Mathematical Theory of Symmetry in Solids ’
Press.

; hysical
Ceperley D M and B ] Alder 1980 Ground State of the Electron Gas by a Stochastic Method. Phy
Review Letters 45-566-569.



Advanced ab initio Methods 163

Cohen M L 1986. Predicting New Solids and Superconductors. Science 234-549-553

Cooper D L, ] Gerratt and M Raimondi 1986. The Electromc Structure of the Benzene Molecule. Nature
323. 699-701.

Curtiss L A, K Raghavachari, G W Trucks and J A Pople 1991 Gaussian-2 Theory for Molecular
Energies of First- and Second-row Compounds. Journal of Chemical Physics 94.7221-7230.

Curtiss L A, K Raghavachari, P C Redfern, V Rassolov and ] A Pople 1998. Gaussian-3 (G3) Theory for
Molecules Containing First and Second-row Atoms. Journal of Chemical Physics 109:7764-7776
Curtiss L A, P C Redfern, K Raghavachari, V Rassolov and ] A Pople 1999. Gaussian-3 Theory Using

Reduced Moller-Plesset Order. Journal of Chemical Physics 110:4703-4709

Dovesi R, R Orlandg, C Roetti, C Pisani and V R Saunders 2000. The Periodic Hartree-Fock Method and
Its Implementation in the CRYSTAL Code. Physica Status Solidi B217.63-88.

Dovesi R, C Pisani, C Roetti and V R Saunders 1983 Treatment of Coulomb Interactions in Hartree-
Fock Calculations of Periodic-Systems Physical Review B28:5781-5792.

Foster ] M and S F Boys 1960. Quantum Variational Calculations for a Range of CH, Configurations
Reviews in Modern Physics 32:305-307.

Frisch M J, G W Trucks and J R Cheeseman 1996. Systematic Model Chemistries Based on Density
Functional Theory: Comparison with Traditional Models and with Experiment. Theoretical and
Cormputational Chemistry (Recent Developments and Applications of Modern Density Functional Theory)
4:679-707.

Gerratt J, D L Cooper, P B Karadakov and M Raimondi 1997. Madern Valence Bond Theory. Chemical
Society Reviews pp 87-100.

Gunnarsson O and B I Lundqvist 1976. Exchange and Correlation in Atoms, Molecules, and Selids by
the Spin-density-functional Formalism. Physical Review B13:4274-4298.

Heine V 1970. The Pseudopotential Concept Solid State Physics 24:1-36

Heitler W and F London 1927 Wechselwirkung neutraler Atome und Homéopolare Bindung nach der
Quantenmechanik Zeitschrift fiir Physik 44:455-472.

Hohenberg P and Kohn W 1964. Inhomogeneous Electron Gas. Physical Review B136:864-871.

Johnson B G, P M W Gill and J A Pople 1993. The performance of a family of density functional
methods. Journal of Chemical Physics 98 5612-5626

Kohn W and L J Sham 1965. Self-consistent Equations Including Exchange and Correlation Effects.
Physical Review A140-1133-1138.

Lee C, W Yang and R G Parr 1988 Development of the Colle-Salvetti Carrelation Energy Formula into a
Functional of the Electron Density Physical Review B37-785-789.

Maller C and M S Plesset 1934. Note on an Approximate Treatment for Many-Electron Systems Physical
Review 46:618-622.

Monkhorst H J and ] D Pack 1976 Special Points for Brillouin-zone Integration. Physical Review
B13.5188-5192.

Morckuma K 1977. Why Do Molecules Interact? The Origin of Electron Donor-Acceptor Complexes,
Hydrogen Bonding, and Proton Affinuty. Accounts of Chemical Research 10 294-300

Mujica A and R J Needs 1993, First-principles Calculations of the Structural Properties, Stability, and
Band Structure of Complex Tetrahedral Phases of Germamum. ST12 and BC8. Physical Review
B48:17010-17017.

Needs R | and Mujica 1995. First-principles Pseudopotential Study of the Structural Phases of Silicon.
Physical Review B51:9652-9660.

Parr R G 1983 Density Functional Theory. Annual Review of Physical Chemistry 34.631-656

Perdew ] P and A Zunger 1981. Self-Interaction Correction to Density-Functional Approximations for
Many-Electron Systems. Physical Review B23:5048-5079.

Pisani C and R Dovesi 1980. Exact-Exchange Hartree-Fock Calculations for Periodic Systems. 1
Mustration of the Method. International Journal of Quantum Chemistry XVII-501-516.



164 Chapter 3

Pople ] A, M Head-Gordon and K Raghavachari 1987. Quadratic Configuration Interaction A General
Technique for Determining Electron Correlation Energies. Journal of Chemical Phyics 87.5968-5975

Pople ] A, M Head-Gordon, D J Fox, K Raghavachari and L A Curtiss 1989 Gaussian-1 Theory:
A General Procedure for Prediction of Molecular Energies Journal of Chemical Physics 90:5622-
5629

Pople ] A and R K Nesbet 1954. Self-consistent Orbitals for Radicals. Journal of Chemical Physics 22.571-
572

Pulay P 1977 Direct Use of the Gradient for Investigating Molecular Energy Surfaces In Schaeffer H F
III (Editor). Applications of Electronic Structure Theory, New York, Plenum, pp 153-185.

Pulay P 1980. Convergence Acceleration of Tterative Sequences. The Case of SCF lIteration Chemical
Physics Letters 73:393-398.

Pulay P 1987 Analytical Derivative Methods in quantum Chemistry In Lawley K P (Editor) Ab initio
Methods in Quantum Chemistry - I, New York, John Wiley & Sons, pp 241-286.

Roos BO, PR Taylor and E M Siegbahm 1980 A Complete Active Space SCF Method (CASSCF) Using a
Density Matrix Formulated Super-CI Approach Chemical Physics 48 157-173.

Schaeffer H F III 1986. Methylene: A Paradigm for Computational Quantum Chemustry Scienice
231-1100-1107

Sim F, St-Amant A, I Papai and D R Salahub 1992. Gaussian Density Functional Calculations on
Hydrogen-Bonded Systems Journal of the American Chemical Society 114.4391-4400

Slater ] C 1974. Quantum Theory of Molecules and Solids Volume 4: The Self-Consistent Field for Molecules and
Solids. New York, McGraw-Hill

Smith BJ, D ] Swanton, J A Pople, HF Schaeffer TII and L Radom 1990. Transition Structures for the
Interchange of Hydrogen Atoms withm the Water Dimer. Journal of Chemical Physics 92:1240-1247.

St-Amant A, W D Cornell, P A Kollman and T A Halgren 1995. Calculation of Molecular Geometries,
Relative Conformational Energies, Dipole Moments and Molecular Flectrostatic Potential Fitted
Charges of Small Organic Molecules of Biochemical Interest by Density Functional Theory.
Journal of Computational Chemistry 16 1483-1506

Stephens P J, F ] Devlin, CF Chabalowski and M J Frisch 1994. Ab Initio Calculation of Vibrational
Absarption and Circular Dichroism Spectra Using Density Functional Force Fields. Journal of
Physical Chemistry 98'11623-11627

Umeyama H and K Morokuma 1977. The Origin of Hydrogen Bonding An Energy Decompaosition
Study Journal of the American Chemical Society 991316-1332

Vosko S H, L Wilk and M Nusair 1980. Accurate Spin-dependent Electron Liquid Correlation Energies
for Local Spmn Density Calculations: A Critical Analysis Canadian Journal of Physics 581200-1211.

Wimmer E 1997. Electronic Structure Methods. In Catlow CR A and A K Cheetham (Editors). New
Trends in Materials Chemistry, NATO ASI Series C 498 Dordrecht, Kluwer.



