Chemistry 430: Simulation in Chemistry & Biochemistry Spring 2021

Class Meetings: Monday and Wednesday, Lecture, 11:00-11:50, Remote via Zoom
Friday, Laboratory Sessions, One Hour Sessions, 454 Louderman or Remote

Instructor: Jay Ponder (453 Louderman, 935-4275, ponder@dasher.wustl.edu)

Web Site: http://dasher.wustl.edu/chem430/

Objectives: Chemistry 430 explores a wide range of computational applications in molecular modeling, biochemistry and biophysics, including \textit{ab initio} and semi-empirical electronic structure theory, molecular mechanics, molecular dynamics simulation, coarse-grained models, electrostatic methods, biomolecular structure prediction and machine learning in molecular modeling.

A major component of the course consists of weekly laboratory sessions using software programs including VMD, Avogadro, Spartan, Q-Chem, Psi4, Gaussian, VMD, Chimera, Tinker, FFE, APBS, Modeller, AutoDock, SDA7 and others. Many of the lab exercises target proteins, nucleic acids and other biological structures.

Books: The book that most closely follows the course outline is Molecular Modeling by Andrew Leach. While not required, Leach’s book is a well-written introduction. Other useful books are listed below, and readings from these will be provided.

\textit{General Molecular Modeling:}

Molecular Modeling – Principles and Applications, 2nd Ed., Andrew Leach, 2001
Molecular Modeling and Simulation, 2nd Ed., Tamar Schlick, 2010
Introduction to Computational Chemistry, 3rd Ed., Frank Jensen, 2017
Essentials of Computational Chemistry, 2nd Ed., Christopher Cramer, 2004
Computational Chemistry, 2nd Ed., Errol Lewers, 2010

\textit{Algorithms & Theory for Quantum Chemistry:}

Modern Quantum Chemistry, Attila Szabo & Neil Ostland, 1982 (reprinted by Dover)
Quantum Chemistry, 3rd Ed., John Lowe and Kirk Petersen, 2006
Molecular Orbitals & Organic Chemical Reactions, Ian Fleming, 2010
The Theory of Intermolecular Forces, 2nd Ed., Anthony Stone, 2013

\textit{Simulation & Biochemical Applications:}

Computer Simulation of Liquids, 2nd Ed., M. P. Allen & D. J. Tildesley, 2017
Understanding Molecular Simulation, 2nd Ed., Daan Frenkel & Berend Smit, 2002
Computational Biochemistry & Biophysics, Becker, \textit{et al}., 2001
A Guide to Biomolecular Simulations, Becker & Karplus, 2006

Other Info: Chemistry 430 is intended for advanced undergraduates and early graduate students wanting to learn modern computational and modeling approaches to chemical, biochemical and biophysical problems. A course in physical chemistry is recommended as background, but not required. Familiarity with computers to the level of writing scripts or small programs is recommended, but not required.
<table>
<thead>
<tr>
<th>Module 1: Molecular Mechanics & Simulation Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 25</td>
</tr>
<tr>
<td>Jan 27</td>
</tr>
<tr>
<td>Jan 29</td>
</tr>
<tr>
<td>Feb 1</td>
</tr>
<tr>
<td>Feb 3</td>
</tr>
<tr>
<td>Feb 5</td>
</tr>
<tr>
<td>Feb 8</td>
</tr>
<tr>
<td>Feb 10</td>
</tr>
<tr>
<td>Feb 12</td>
</tr>
<tr>
<td>Feb 15</td>
</tr>
<tr>
<td>Feb 17</td>
</tr>
<tr>
<td>Feb 19</td>
</tr>
<tr>
<td>Feb 22</td>
</tr>
<tr>
<td>Feb 24</td>
</tr>
<tr>
<td>Feb 26</td>
</tr>
<tr>
<td>Mar 1</td>
</tr>
<tr>
<td>Mar 3</td>
</tr>
<tr>
<td>Mar 5</td>
</tr>
<tr>
<td>Mar 8</td>
</tr>
<tr>
<td>Mar 10</td>
</tr>
<tr>
<td>Mar 12</td>
</tr>
<tr>
<td>Mar 15</td>
</tr>
<tr>
<td>Mar 17</td>
</tr>
<tr>
<td>Mar 19</td>
</tr>
<tr>
<td>Module 2: ab Initio & Semi-Empirical Quantum Mechanics</td>
</tr>
<tr>
<td>Mar 22</td>
</tr>
<tr>
<td>Mar 24</td>
</tr>
<tr>
<td>Mar 26</td>
</tr>
<tr>
<td>Mar 29</td>
</tr>
<tr>
<td>Mar 31</td>
</tr>
<tr>
<td>Apr 2</td>
</tr>
<tr>
<td>Apr 5</td>
</tr>
<tr>
<td>Apr 7</td>
</tr>
<tr>
<td>Apr 9</td>
</tr>
</tbody>
</table>
Module 3: Electrostatics, Coarse Graining & Biomolecular Structure Prediction

Apr 12 Break Day – No Class
Apr 14 Protein Structure Prediction, Engineering & Design
Apr 16 Lab 10: Homology Modeling of a Lactate Dehydrogenase
Apr 19 Small Molecule & Protein Docking I
Apr 21 Small Molecule & Protein Docking II
Apr 23 Lab 11: Docking Indinavir to HIV Protease Using Autodock
Apr 26 Computing Binding Rate Constants via Brownian Dynamics
Apr 28 Introduction to Convolutional Neural Networks
Apr 30 Lab 12: Diffusional Association of the Barnase-Barstar Complex
May 4 Machine Learning in Computational Chemistry

May 13 Lab Reports & Take-Home Final Assignment Due