Chemistry 430: Simulation in Chemistry & Biochemistry Spring 2019

Class Meetings: Monday and Wednesday, Lecture, 11:00am-Noon, 201 Lab Science
Friday, Laboratory Sessions, 11:00am-2:00pm, 457 Louderman

Instructor: Jay Ponder (453 Louderman, 935-4275, ponder@dasher.wustl.edu)

Web Site: http://dasher.wustl.edu/chem430/

Objectives: Chemistry 430 explores a wide range of computational applications in molecular modeling, biochemistry and biophysics, including ab initio and semi-empirical electronic structure theory, molecular mechanics, molecular dynamics simulation, coarse-grained models, electrostatic methods, biomolecular structure prediction and machine learning in molecular modeling.

A major component of the course consists of weekly laboratory sessions using software programs including VMD, Avogadro, Spartan, Q-Chem, Psi4, Gaussian, VMD, Chimera, Tinker, FFE, APBS, Modeller, AutoDock, SDA7 and others. Many of the lab exercises target proteins, nucleic acids and other biological structures.

Books: The book that most closely follows the course outline is Molecular Modeling by Andrew Leach. While not required, Leach is a well-written, useful introduction. Other useful books are listed below, and readings from these will be provided.

General Molecular Modeling:

Molecular Modeling – Principles and Applications, 2nd Ed., Andrew Leach, 2001
Molecular Modeling and Simulation, 2nd Ed., Tamar Schlick, 2010
Introduction to Computational Chemistry, 3rd Ed., Frank Jensen, 2017
Essentials of Computational Chemistry, 2nd Ed., Christopher Cramer, 2004
Computational Chemistry, 2nd Ed., Errol Lewers, 2010

Algorithms & Theory for Quantum Chemistry:

Modern Quantum Chemistry, Attila Szabo & Neil Ostland, 1982 (reprinted by Dover)
Molecular Orbitals & Organic Chemical Reactions, Ian Fleming, 2010

Simulation & Biochemical Applications:

Understanding Molecular Simulation, 2nd Ed., Daan Frenkel & Berend Smit, 2002
Computational Biochemistry & Biophysics, Becker, et al., 2001
A Guide to Biomolecular Simulations, Becker & Karplus, 2006

Other Info: Chemistry 430 is targeted at advanced undergraduates, but is also suitable for graduate students wanting to learn modern computational and modeling approaches to chemical, biochemical and biophysical problems. A course in physical chemistry
is recommended as background, but not required. Basic familiarity with computers (text editing, writing small scripts or programs) is useful, but not required.

Module 1: Molecular Mechanics & Simulation Techniques

Jan 14 Overview of Molecular Modeling
Jan 16 Introduction to Molecular Mechanics I
Jan 18 Lab 1: Unix Tutorial: Using Chimera, VMD, FFE & Spartan
Jan 21 Martin Luther King Day – No Class
Jan 23 Introduction to Molecular Mechanics II
Jan 25 Lab 2: Conformational Analysis of Alanine Dipeptide
Jan 28 Potential Energy Surfaces & Optimization Methods
Jan 30 Basics of Molecular Dynamics Simulation I
Feb 1 Lab 3: Liquid Properties via Molecular Dynamics Simulation
Feb 4 Basics of Molecular Dynamics Simulation II
Feb 6 Using Molecular Dynamics to Compute Properties
Feb 8 Lab 4: Global Optimization of Lennard-Jonesium & PolyAlanine
Feb 11 Introduction to Monte Carlo Methods I
Feb 13 Introduction to Monte Carlo Methods II
Feb 15 Lab 5: Relative Hydration Free Energy of Monovalent Ions
Feb 18 Methods for Free Energy Calculations
Feb 20 Electrostatics & Solvation in Biomolecular Systems I
Feb 22 Lab 6: APBS Poisson-Boltzmann Calculations on Lysozyme
Feb 25 Electrostatics & Solvation in Biomolecular Systems II
Feb 27 Proteins I: Amino Acids & Secondary Structure
Mar 1 Lab 7: Homology Modeling of a Lactate Dehydrogenase
Mar 4 Proteins II: Tertiary Structure, Motifs & Fold Classes
Mar 6 Proteins III: Mechanism of Protein Folding
Mar 8 Lab 8: Folding Simulation of the TrpCage Miniprotein, Part I
Mar 11-15 Spring Break – No Class

Module 2: ab Initio & Semi-Empirical Quantum Mechanics

Mar 18 Basics of ab Initio Molecular Orbital Theory I
Mar 20 Basics of ab Initio Molecular Orbital Theory II
Mar 22 Lab 8: Folding Simulation of the TrpCage Miniprotein, Part II
Mar 25 Methods for Treating Electron Correlation
Mar 27 Semi-Empirical Molecular Orbital Methods
Mar 29 Lab 9: Computing the Rotational Barrier in Hydrazine
Apr 1 Density Functional Theory (DFT)
Apr 3 Quantum Mechanics/Molecular Mechanics (QM/MM)
Apr 5 Lab 10: Frontier Orbital Analysis of Regioselectivity

Module 3: Electrostatics, Coarse Graining & Biomolecular Structure Prediction

Apr 8 Protein Structure Prediction, Engineering & Design
Apr 10 Small Molecule & Protein Docking I
Apr 12 Lab 11: Docking Indinavir to HIV Protease Using Autodock

Apr 15 Small Molecule & Protein Docking II
Apr 17 Computing Binding Rate Constants via Brownian Dynamics
Apr 19 Lab 12: Diffusional Association of the Barnase-Barstar Complex

Apr 22 Coarse Grained Molecular Modeling
Apr 24 Machine Learning in Computational Chemistry
Apr 26 Lab 13: Independent Project or Finish Previous Labs

May 8 Lab Reports & Take-Home Final Examination Due