
 Unix for the Beginning Mage
A Tutorial by Joe Topjian

1

Chapter One! 6

A Brief History of Unix and Unix-like Spellcrafts 7

The Terminal 7

Chapter Two ! 9

Casting Your First Spell 10

Familiar Concepts 10

An Introduction to the Filesystem 11

Paths 11

Basic Navigation Around the Filesystem 12

Turn On the Bright Lights! 16

Exercises for Chapter 2 17

Spells Learned from Chapter 2 19

Chapter Three! 20

Creating Empty Files 21

Separating Files and Directories 21

Editing Files 22

Reading Files 24

Copying and Moving files 25

Using Paths In Your Spells 27

Sending Files to the Grave 29

Exercises for Chapter 3 32

Chapter 3 Advanced Lesson! 33

A Shell of a Time 33

Shell History 34

Command Completion 34

Customizing Your Prompt 34
2

Spells Learned in Chapter 3 36

Chapter Four! 37

Chapter 4 Advanced Lesson! 41

Raging Rapids 41

Viewing Partitions 41

What Partitions Do 42

Spells Learned in Chapter 4 44

Chapter Five ! 45

Placing Shields On Files 49

Using the Number Method to Place Shields on Files 51

Exercises for Chapter 5 54

Chapter 5 Advanced Lesson! 55

Types of Files 55

Plain File 55

Directory 55

Link 56

Pipes 57

Block Devices and Character Devices 57

Spells Learned in Chapter 5 58

Chapter Six! 59

Casting Spells With Absolute Paths 60

Reading the Instructions for Spells 62

Searching for Spells 63

Using Grep 64

Pipes: the Coffee Filters of Spells 64

Redirection 65
3

Wildcards 66

Exercises for Chapter 6 69

Chapter 6 Advanced Lesson! 71

The Three Basic File Descriptors 71

Standard Output 71

Standard Error 71

Standard Input 72

Combining File Descriptors 73

Disabling All Output 73

Spells Learned in Chapter 6 75

Chapter Seven! 76

Finding Other Mages 77

Ownership 79

Passwords 79

Exercises for Chapter 7 81

Chapter 7 Advanced Lesson! 82

Yet Another Root 82

How To Become Root 82

The Wheel Group 83

Rootʼs UID 83

Spells Learned in Chapter 7 84

Chapter Eight! 85

Daemons (not demons!) 86

Processes 86

Casting Lots of Spells 88

Killing Processes 91
4

Exercises for Chapter 8 93

Spells Learned in Chapter 8 94

Epilogue! 95

Appendix A! 97

Appendix B! 99

Mac OS X 100

BSD 100

Linux 100

Resources 100

5

 Chapter One
Our Guest is greeted and welcomed;

a lesson in history; a description
of our tools.

6

Hello, Young Mage! Welcome to the Tower of Nix! Here you!ll begin your training in the skills of Unix.
I!ll be your Instructor and Narrator.

We here at the tower understand if you!re a little nervous or unsure about learning something so new
and different. However, I can assure you that your stay and training at the Tower will be none other
than the best! Before we begin, I!d like to give you a brief history of the craft you are about to learn.

A Brief History of Unix and Unix-like Spellcrafts
The Unix craft was created long before other spellcrafts -- before Windows, before Macintosh, even
before DOS. It was first forged by archmages in the Fortress of AT&T back in the 1960!s. Later, AT&T
allowed other classes of mages the right to practice Unix -- but for a fealty. One of these classes was
the University of Berkeley. Their branch of Unix became known as BSD, or, Berkeley Software Distri-
bution. Eventually, Berkeley modified their craft of Unix so much that no remnants of AT&T existed.
Berkeley!s version of Unix is free for all and no one is required to pay fealty. Several other branches
of Unix originated from BSD including FreeBSD, NetBSD, OpenBSD, Darwin, and Mac OSX.

At Vrije Universiteit in Amsterdam, another branch of Unix was created called Minix. Minix was forged
from scratch and had no relation to AT&T at all. Minix was not a very popular branch of Unix but it
was the inspiration to yet another branch: Linux. An archmage named Linus forged Linux and wel-
comed any other mage to help out. Today Linux is still being forged by thousands of mages around
the world.

There are still several other branches of Unix that you must pay fealty for -- but the free ones have
been gaining strong popularity. The most popular ones are the few I just mentioned. In the BSD
area, there is FreeBSD, OpenBSD, NetBSD, Darwin, and Mac OSX. As for Linux, there are several
different variations such as RedHat, Fedora, Debian, and SuSE. Though they may look different on
the outside, they are all Linux at the core.

The Terminal
Before we begin, please make sure you are in front of a Unix Terminal. While describing every possi-
ble way to access a terminal can take up whole books of their own, we, unfortunately, don!t have time
for that. I will assume you have found access, one way or another, and are happily sitting in front of a
blinking cursor that looks something like this:

The Terminal Program in Mac OSX
7

What you see before you is your terminal. The terminal is the main tool of our craft -- it!s where we
cast our spells. Though different terminals may look different, they all share a few characteristics.

Diagram of a Terminal

Prompt: A prompt is just some text to let you know that your terminal is ready for you to cast a spell.
It also has the ability to tell you other useful information. In the examples above, I have prompts set
to my name, the date, and the name of my computer. Prompts usually end with a symbol such as $,

>, %, or #.

Cursor: The cursor is a block or line to let you know where a letter is going to appear when you

press a key.

Spell Casting Area: The spell casting area is just blank space.

Any blank space after the prompt is where the letters you type will

be displayed. It!s in this blank space that you will be casting your

spells.

Not bad for a first lesson, no? Now that you!re a little more familiar

with what you!re about to get into, let!s start casting spells!

Tip:

Spell Casting is known

as command execution

in the Real World.

8

Examples of
Prompts

Cursor

Spell Casting
Area

 Chapter Two
The Casting of the first spell; the Young

Mage finds familiar ground; a talk of trees
and houses; creating new rooms

and exploring them.

9

Casting Your First Spell

To cast a spell, you simply type the name of the spell and press enter. Let!s try a simple spell

called whoami.

joe$ whoami (enter)

joe

joe$

Casting the whoami spell

whoami stands for Who Am I. As you can see in the figure, after you typed the word whoami and
pressed enter, the spell returned the answer or output. The output of this spell is, oddly enough, your
name (also referred to as a username or login name)1! The purpose of the whoami spell is to tell us
the name of the user we are currently logged in as in Unix. It might sound silly right now, but it!s pos-
sible to cast spells that turn us into other people!

Spells can return a wide range of information. Some return one word answers like whoami, some
spit out pages and pages of text, some put you in interactive programs, and some just don!t return
anything at all!

Familiar Concepts
As you might have noticed, your mouse is not used in the terminal at all. If you!ve never used a com-
mand line before, this can be a confusing concept -- but fear not! You can bring over a lot of the con-
cepts you learned in the Mouse and Window world to the command line world.

For example, with a mouse, you would double-click to open a directory or start a program. With Unix,
we call this spell casting or command execution. You are also familiar with using your mouse for
common, everyday tasks, such as moving files to new directories, renaming files, and even deleting
files. In Unix, we have spells for all those actions as well! There is the cp spell to copy files, the mv

spell to move and rename files, and the dangerous rm spell that deletes files2.

You!re also familiar with opening and closing folders with your mouse to reach different areas. This is
called browsing or exploring in the Windows world. In Unix, we call this navigating the filesystem.
Also, we call folders directories in Unix.

Speaking of the filesystem, that brings us to our next lesson.

10

1 Make sure whoami did not return the name root. See Chapter 7 Advanced Lesson for more infor-
mation.

2 We say rm is dangerous since you cannot raise dead files from the grave in Unix!

An Introduction to the Filesystem
Our world of Unix starts with a single character:

/

This is called root. Just like the root of a tree, root is the beginning of the filesystem. A tree can grow
several branches with leaves on the end. In our filesystem, directories grow from the root and contain
files. You can even think of root as the front door to your house. Inside your house there are several
rooms hallways leading to other rooms. The same is true for our filesystem; there are several directo-
ries and directories leading to other subdirectories.

Let!s say you have a directory called music. In the filesystem, it would look like this:

/music

Now let!s say you have a song called mice_and_mages.mp3 in your music folder. That would look
like this:

/music/mice_and_mages.mp3

Notice how root is always at the beginning. We then use other slashes (/) to separate files and di-
rectories. This is so we can tell where one stops and one begins. The full line is known as a path.

As a second example, let!s say you had a directory inside music called favorites. A directory inside
a directory is called a subdirectory. Inside your favorites folder you have another song called
five_mage_army.mp3. Now it looks like this:

/music/favorites/five_mage_army.mp3

In the mouse and windows world, it would look similar to this:

Paths
Let!s discuss paths a bit more. Paths are just that: paths. In a forest, we walk along paths so we
don!t get lost. In the Tower, we follow paths to different rooms. Filesystem paths are no different;
they will lead you to different directories and files.

There are two types of paths to know about: absolute and relative. An absolute path is from the root
to your destination. It!s like being at the front door of your house and walking to the kitchen. You are
starting from the very beginning of your house. The same is true with a filesystem path -- it starts from
root (/). So any path you see that starts with a slash is an absolute path:

11

/mudroom/hallway/kitchen

A relative path is from your current location to your destination. For example, if you were in your
hallway and wanted to go to your bedroom closet, that is a relative path. You!re not starting at your
front door since you!re already in your house.

bedroom/closet

Relative paths do not start with a slash -- which is a very easy way to tell the difference between ab-
solute and relative paths!

Now, say you!re in your bedroom, but you wanted to leave and go to the kitchen.

../hallway/kitchen

Notice the dot dot (..). That is a special thing in Unix that says “I am leaving my current room”.

Now that you understand paths better, let!s start walking around the Tower of Nix.

Basic Navigation Around the Filesystem
First, it!s always best to know where you are. To find that out, cast a spell called pwd.

joe$ pwd

/Users/joe

joe$

Casting the pwd spell

pwd stands for Print Working Directory and will tell you what directory in the
filesystem you!re currently in -- or what room of the Tower you are standing
in.

The directory you!re now in is also known as your home directory. Think of it
as your dorm room in the Tower of Nix -- it!s your room to store your belong-
ings.

In order to move around, you!ll need somewhere to go. Cast the spell of
mkdir. mkdir stands for Make Directory. It will create a room for us to go
in.

Tip:

In OS X, you will
see /Users. In
Linux or any other
Unix, you will see
/home.

12

joe$ mkdir closet

joe$

Casting mkdir

Notice two things about this spell. The first is that you specified the word closet after mkdir. Some
spells ask for extra information -- anything from one word to several. These extra words are called
arguments. In the case of the mkdir spell, this argument told you what to call your room (closet).

The second thing to notice is that mkdir didn!t tell you anything after you cast it. Remember before
when I mentioned that some spells will never tell us anything? This is one of them! On the other
hand, if something were to have gone wrong when you cast the spell, mkdir would!ve told you. So if
everything went OK, it shuts up, but if there was a problem, it complains. I think we can handle that!

Here!s a little visualization of the room you just created.
It!s an off-shoot of the directory you were already in -- just
like how a closet is another room inside your own room!

Now that you have a room created, feel free to go inside! In order to do that, cast the spell called cd
(which stands for change directory).

joe$ cd closet

joe$

Casting the cd spell

When casting cd, you need to specify the room you want to go in as an argument, so type it after the
name of the spell. The name of the room is just a path. Think back to our recent discussion about
paths. Since closet doesn!t start with a slash, it!s a relative path. This makes sense because you are
starting from your current room and going into your closet.

13

Again, the spell didn!t tell you anything, so we!ll assume everything went OK. To see if you!re in the
new directory, cast pwd again.

joe$ pwd

/Users/joe/closet

joe$

Casting pwd to see if cd worked

Yep! pwd shows that you are now in the closet!

Here!s what it looked like before you cast cd:

And here!s what it looks like after:

14

Now you will learn how to get out of the closet and back to your dorm room. There are actually four
ways you can do that:

1) Typing cd with no arguments is a shortcut to take you directly to your home directory. So if you

were ever lost in the middle of a forest, you can just type plain cd and you will be teleported directly
home!

joe$ cd

2) Typing cd with a tilde at the end will also take you home. The tilde (~) is a nickname for your home
-- weird, huh?

joe$ cd ~

3) From casting pwd earlier, you know that home is /Users/joe, which is right outside the closet. You
also know that to go out of one room, you can use the magic dot-dot. So you can just cast:

joe$ cd ..

This will take you out of the room and in to the one before it.

4) Again, you know that home is at /Users/joe, so you could just use the absolute directory to get
back to it by casting:

joe$ cd /Users/joe

So may choices! You may choose any way you wish!

15

Turn On the Bright Lights!
Next, you!ll learn about a spell called ls that stands for list. ls will tell you everything that is in the di-
rectory -- kind of like turning on the lights in a room! Here!s an example of how it works:

joe$ pwd

/Users/joe

joe$ ls

closet

Casting the ls spell

As you can see, ls shows the closet we made earlier. It might also show you a lot of other files and
directories, but we!re only worried about the closet right now. If the directory is empty, ls will show us
nothing at all.

joe$ cd closet

joe$ ls

joe$

Casting ls in an empty directory

That ends this lesson, Young Mage. What all did we cover? You learned all about casting spells and
how it!s not that different from using a mouse. You also learned all about the different kinds of paths.
Finally, you learned how to walk around the Tower of Nix. Not bad for a first day!

Try the exercises before the next lesson -- but don!t stay up too late doing them!

16

Exercises for Chapter 2
Make sure you are starting at your home directory for each one.

1) Creating some more rooms

Inside your closet, you!ll also need a room to keep all of your spells and robes. After all, what!s a
mage without his spells and magic robes? Use the mkdir spell to create these directories.

2) Navigation shortcuts

What happens when you cast the following spell?

joe$ cd closet/spells

joe$

Why does that work?

What about these spells?

joe$ cd ../..

joe$ cd closet/../closet

Why doesn!t this work?

joe$ cd /closet/spells

17

3) Running into walls

What happens when you cast the following spell and why?

joe$ cd brickwall

4) Bonus Exercise

Roam free around the Tower of Nix using cd, pwd, and ls. Keep an eye out for interesting things and
if you get lost, just cast plain cd to teleport home!

18

Spells Learned from Chapter 2

Spell What it stands for What it does

whoami Who Am I? Prints your username

pwd Present Working Directory Prints the absolute path of the direc-
tory you are in

mkdir [name] Make Directory Makes a directory with the specified
name

cd [path] Change Directory Takes you to the specified path

ls List Prints the contents of the directory

19

 Chapter Three
The Young Mage learns about files; discovering
the world of nano; the many paths of Unix; and

always make sure you have a backup.

20

Our next lesson is with Files. A file is anything that stores information. While a directory can store
files and other directories, a file holds bytes and information. Files are the leaves on the tree or the
furniture in the room.

There are many types of files in Unix. Some just contain text (like your research paper), some con-
tain music (like an mp3), some are spells we can cast (like mkdir and ls), and others do special
functions like provide access to your CDROM.

Creating Empty Files

There are many ways to create files. The first way is with the touch spell. One of the things that
touch can do is create blank files for us. If you followed the exercises from Chapter 2, you now
have a special room in your closet to store all your spells. Well, you can!t just leave them lying
around the room so you!ll have to create a shelf for them!

joe$ cd closet/spells

joe$ touch shelf

joe$ ls

shelf

joe$

Creating your spell shelf

As you can see, you also cast your light-giving spell, ls, which tells you that the shelf was created.

Separating Files and Directories
Just having the word shelf on your terminal looks pretty confusing. How can we tell if it!s a file or di-

rectory? Well one way is to try casting cd and see if you can teleport in it. If cd fails, then it!s a file.

joe$ cd shelf

-bash: cd: shelf: Not a directory

joe$

Casting cd on a file

Yep, it failed. cd came back and told us it!s not a directory. It also mentioned something about
bash3.It would get pretty tedious if we had to cast cd every time we wanted to know if something was
a file or directory. There has to be an easier way. Well, there is!

21

3 bash will be explained in the Advanced Lesson after this chapter

joe$ ls -F

shelf

joe$

Casting ls with the -F argument

OK, that looks like it did no good at all. In fact, you even did extra work with that weird -F thing. Just
give me a minute to explain before you call me crazy!

First, that weird -F thing is called an option. Anytime you cast a spell with a
dash-something after it, you!re using options. Options modify the spell to do
different things. In this case, the -F tells ls to politely give us more detail
about what!s in the room. Unfortunately, if what!s in the room is just a plain
file, -F option won!t report anything extra. However, it will tell us when there
are directories in the room. Take a step out of your spell closet -- which
takes you to your main closet -- and try casting ls -F again.

joe$ cd ..

joe$ ls -F

spells/

joe$

Casting ls -F again

See! I!m not crazy after all! Notice the / at the end of spells. This tells us that spells is a directory!
So when you!re unsure whether or not something is a file or directory, casting ls -F will give you the
answer. There are a few other methods that can tell the difference and we!ll learn about those later.

Editing Files
Now you have your blank file, shelf. Let!s start putting things in it. Why don!t you have it hold all of
the spells you know so far? In order to do that, you!re going to have to edit the file, or, modify the in-
formation inside it.

First, go back into your spell closet where the shelf is located.

Tip:

Make sure you are
using a capital F.
Spells are case-
sensitive!

22

joe$ cd spells

joe$ pwd

/Users/joe/closet/spells

joe$

Going back to the spell directory

Next you!ll need to use a spell called a text editor. There are several text editors available for Unix,
but for now, you!ll use a very simple one called nano. In order to have nano edit a file, you need to
tell it what file we want edited.

joe$ nano shelf

Casting nano

Once you hit enter, the spell takes you into a whole new world -- the won-

derful world of nano. OK, that!s too dramatic. But you did notice that your
terminal just changed, right? This is called an interactive spell or an inter-
active program. It doesn!t just return some output quit. Instead, you con-
tinue using the spell until you!re done.

Think of nano as a very, very basic Microsoft Word. Go ahead and play
around for a bit. Type some gibberish. Move around with your cursor keys.
 Play! When you!re done, erase everything and add your spells. Just type
them in -- no need to get really fancy. And in any order, too.

The nano text editor

Tip:

If you get “command
not found” when
casting nano, try

pico. They are the
exact same (be-
sides the name).

23

Also notice the instructions at the bottom. That ^ is called a caret and means to use your control key
on your keyboard. So, to exit, press ctrl+x. It will ask if you want to save the file before it quits --
press y to say “yes”, then enter to confirm the filename to save to. Now you!ll find yourself outside the

nano program and back to the terminal.

You don!t always have to touch files before you edit them. You can cast nano on a file that doesn!t
exist yet, and when you press ctrl+x to exit and save, it!ll be created.

Now that you have some information in your file, how can you read it? One way is to just cast nano
again, but there are other spells that!ll let us read files.

Reading Files
The first spell is cat. cat will just spit the content of the file to the terminal. You can cast it like so:

joe$ cat shelf

mkdir

cd

ls

whoami

touch

joe$

Casting cat

As you can see, cat is very simple. It takes a file as an argument and spits the content out. But
what if the content of the file is too big for the terminal? You!ll never be able to see it since it!ll be cut
off! Then you!ll need to use a spell that supports paging. A paging spell will stop when a screen is
filled up with text and wait for you to press a key to continue. Two paging spells are more and less.

less is the preferred spell to use since you can use your cursor keys to
move up and down the contents as well as using your space bar to scroll a
whole page. When you are done reading the file, you must hit q to stop us-
ing less (it is another interactive spell).

To cast less, type it with a file name for an argument -- just like you do with

cat.

Tip:

Historically, more
came first, then

less. less has
more features
since less is more!

24

The less spell

Now you know four ways to read files. Believe it or not, there are still many other ways to read them!
But four is good enough for now -- we!ve got a lot more stuff to cover besides reading files!

Copying and Moving files
What if you wanted to make a backup copy of your file just incase your closet caught on fire? To do
that, we can use the cp spell. cp stands for Copy and, as the name indicates, it creates a copy of a
file.

joe$ cp shelf shelf-backup

joe$ ls

shelf shelf-backup

joe$

Casting the cp spell

A couple things to notice with this spell. First, it!s the first spell you!ve cast that uses two arguments.
The first argument is the name of the file you want to copy and the second argument is the name you
want to give the copy. The second thing to notice is when you cast ls, you see that cp has, in fact,
created your backup copy, so you now have two files.

Having your backup copy in the same room as your original won!t do you any good since if the room
catches on fire, both will go up in flames. So make a fireproof box to store it in. That way, it!ll be safe.

25

joe$ mkdir fireproofbox

joe$ ls -F

fireproofbox/ shelf shelf-backup

joe$

Creating the fireproof box

Notice how ls -F shows you which one is a directory and which ones are
files.

Now you!ll move the backup copy to your fireproof box. Moving files is done
with the mv spell (guess what that stands for). mv takes two arguments just
like cp. The only difference, really, between mv and cp is that cp leaves a
copy behind while mv doesn!t.

joe$ mv shelf-backup fireproofbox/shelf-backup

joe$ ls -F

fireproofbox/ shelf

joe$

Moving the backup copy to the fireproof box

Again, two things to point out here. One is that ls -F tells you that the backup copy is definitely
gone from its original location. The second point deals with the two arguments of mv. The first argu-
ment is the name of the file we are moving -- that!s easy to see. But what is up with the second ar-
gument? There seems to be a slash in it. From our last lesson, we know that paths contain slashes.
So that must mean that we can use slashes and paths in more of our spells!

What the mv spell did was give the backup copy a new name, just like we wanted -- but it gave it a
new name in another directory. And it used a path to do it! Think of it like you were physically placing
the file inside your fireproof box.

As a shortcut, you didn!t have to cast

joe$ mv shelf-backup fireproofbox/shelf-backup

Tip:

mv can also be
thought of as "re-
name! as well as
"move!.

26

Instead, you could have just cast

joe$ mv shelf-backup fireproofbox

The two spells mean the same thing. Unix is smart enough to know that the second argument is a
directory and that you obviously want to put the file in the directory with the same name.

Using Paths In Your Spells
If mv can take paths for its arguments, what other spells can? Well, since mv and cp are basically the
same thing, cp can as well. ls can, too. Oh and cat. Come to think of it, more and less can. It
works with touch. mkdir, also.

How can all these files use paths? What is the common thing between all of them? Their arguments
specify files. And anywhere we specify a file, we can specify a path, too. Here are some examples:

joe$ cp shelf another_shelf

Here you are just making a copy of your shelf, just like you did before. Nothing new here.

joe$ mv another_shelf /Users/joe/closet

Now you are casting mv and telling it move another_shelf into the directory /Users/joe/closet.

joe$ ls -F /Users/joe/closet

another_shelf spells/

joe$

In this example, you cast ls to see whatʼs in another directory.
Kind of like having a magic eye where you can spy on other rooms!

joe$ cp /Users/joe/closet/another_shelf fireproofbox

Now you are casting cp, but with paths for both the first and second arguments.

27

joe$ cp fireproofbox/another_shelf ..

You can even copy things to the magic dot-dot directory.
This will place a copy of another_shelf in the room before the one youʼre currently in.

joe$ less ../another_shelf (press q to quit)

Casting less to read the file, another_shelf, in the room outside your current room.

Are you getting the hang, yet?

joe$ cp ../another_shelf .

Wait! Wait! Wait! What in the world is that dot? Everything was going fine until that dot showed up
and now everything is confusing! We know what a dot-dot is but we!ve never seen a single dot.

It!s OK! It!s not as bad as it seems, I promise!

You know that dot-dot means the directory below us, or the room we came in through. Well, the sin-
gle dot just means the current directory we are in, or, the room we are standing in right now. That!s it.
No rocket science. Just plain here.

The example above is using both the dot-dot and the single dot. Picture grabbing something outside
of your room and bringing it in. Or any action movie where someone gets dragged to safety before
the boulder crushes them. That!s what this example is doing.

But using a single dot isn!t the only way to tell a spell you want something moved here. There are a
few ways that mean the exact same thing. You could even call these spell synonyms.

joe$ cp ../another_shelf .

joe$ cp ../another_shelf another_shelf

joe$ cp ../another_shelf ./another_shelf

Some spell synonyms

28

Note that the following are not the same:

joe$ cp ../another_shelf .another_shelf

joe$ cp ../another_shelf /another_shelf

These spells are not the same

The first one will actually name the file .another_file -- the file starts with a dot. The second one will
copy your file to the root of the filesystem. This will spit an error out at you since only archmages are
allowed to do that4.

But if we combine them to a dot-slash, it will mean the same thing as a single dot. Two wrongs make
a right, I guess.

Sending Files to the Grave
Unfortunately, after our little Path Party, you have shelves laying around all over the place. You don!t
need so many copies -- plus, it just makes your dorm messy. So, get rid of them! There!s a special
spell just for that: the rm spell. rm stands for remove. It!s that dangerous spell I mentioned during the
last lesson. Always be careful with rm because once you remove a file, it is gone forever. rm works
just like the other spells, you cast it with a path at the end.

joe$ ls -F

another_shelf fireproofbox/ shelf

joe$ rm another_shelf

joe$ ls -F

fireproofbox/ shelf

joe$

Casting rm

As you can see, the file is gone. Forever. There are no spells to raise the dead in Unix.

OK, finish cleaning your dorm up. As a matter of fact, get rid of the fireproof box, too. I doubt there!s
going to be a fire in the tower any time soon.

29

4 If it did not print an error, cast whoami to see if you are the user root. If you are, see Chapter 7 Advanced Lesson for

more information.

joe$ rm ../another_shelf

joe$ rm fireproofbox

rm: fireproofbox: is a directory

joe$

Casting rm on a directory

Yep, that!s right. We can!t cast rm on a directory. Instead, we have to cast rmdir. rmdir is the evil
twin of mkdir -- it takes away directories instead of making them.

joe$ rmdir fireproofbox

rmdir: fireproofbox: Directory not empty

joe$

Casting rmdir

Now what!s this? The directory has to be empty!? Why, that means we have to cast cd to teleport in,
ls to see all of the files, then cast rm on all of those until we have an empty directory! And what if the
directory has subdirectories? We have to do the same thing over again! Why would we ever do all
that work?

Well, that!s the safe way to remove things. Since you can!t bring files back from the dead, Unix wants
to make sure you know what you!re doing.

There is a shortcut, however -- but it!s a very dangerous shortcut. It!s one of the most powerful spells
in Unix. If used the wrong way, you can lose all of your information. And you won!t be able to bring
any of it back. The spell is known as rm -rf. The -rf is an option that stands for recursive (r) and
force (f) -- basically, “I don!t care, just get rid of it all!”

joe$ rm -rf fireproofbox/

joe$ ls -F

shelf

joe$

Casting rm -rf

30

And there goes our fireproof box. Just like that. At least we still have our original shelf. After all that
trouble, we reach the end of our lesson with just a single shelf -- but a lot of knowledge and more
spells to add to it!

Before I end this lesson, I just want to remind you again how dangerous rm -rf can be if used the
wrong way. Essentially, you can burn the whole Tower down by typing

joe$ rm -rf /

Burning down the house

Fortunately, there are shields in all the Towers that won!t allow you to do such a thing. However, an
archmage with more power can do it -- but why would they? It would be the same as burning your
house down. Just be careful, Young Mage!

31

Exercises for Chapter 3
Remember to start from your home directory for each one.

1) Cloning boxes

Go to your spell closet. Create a new fireproof box and place a copy of your shelf inside. Next, make
a copy of your fireproof box called iceproofbox. In order to copy directories, you will need to use the
-R option (which means recursive):

joe$ cp -R fireproofbox iceproofbox

Do the contents of the directory copy over as well? Or is it empty?

Now cast mv to move iceproofbox to airtightbox. Again, did everything copy over?

2) Oh, what to do?

Using nano, create a new file called todo. Inside todo, write a list of things you would like to do next
week. Next, figure out this files absolute path and cast cat, more, and less with the absolute path.

3) Bonus Exercise - Attention! Extension!

From living in the Mouse and Window world, you know that files have extensions at the end of them --
those 3 character things after the dot like .txt, .mp3, and .doc.

Unix files can have those, too, but they aren!t required.

For the first part of this exercise, rename your todo list that you made in Exercise 2 so it has a .txt ex-
tension at the end of it. Look a little more familiar now?

For the second part, you will use a new spell called file. When you cast file on a file, it will tell
you what kind it is. Try casting it on your todo list:

joe$ file todo.txt

4) Finally, walk around the Tower and cast ls -F and file on various files you see. Note the different
types of files you!ll run into!

32

Chapter 3 Advanced Lesson

A Shell of a Time
In this lesson, you!re going to learn all about shells. A shell does a lot of things -- it runs the com-
mand once you hit enter, it provides your prompt, it keeps variables for you -- lots!

Think of Unix as some foreign stranger you bump into on the street. All of the sudden you!re both
yelling at each other in two different languages -- you in English and Unix in binary. Neither of you
understand one another and nothing gets accomplished.

This is where the shell comes in. The shell is that guy that runs out of the deli, breaking up the fight
between you and Unix, speaking both languages.

The name shell originally came about because it!s viewed as the outermost layer of Unix. Like an
egg -- the egg and yolk are the Operating System while the shell is, well, the shell.

Without the shell, you!d have no way of communicating with Unix -- just two guys yelling in a street.

Historically, the very first shell was known as sh. As time went on, more shells were created: csh,

tcsh, and bash for instance. bash is the most popular one today, and chances are, it!s what you!re
currently using. You can see what shell you!re using by echoing an environment variable. Environ-
ment variables and echo will be explained in a later chapter. (This is an advanced lesson, after all!)

joe$ echo $SHELL

/bin/bash

joe$

Echoing the $SHELL variable

bash uses the $SHELL variable while others use $shell. Remember, Unix is case sensitive -- up-
per and lowercase letters make a difference! If nothing showed up on your screen, try the next ex-
ample.

joe$ echo $shell

/bin/tcsh

joe$

Echoing the $shell variable

33

Shells can provide us with some cool features. We!ll be looking at three of them: history, command
completion, and customizing your prompt.

Shell History
You!re being watched. Every command you type is being recorded -- by the shell! Why? Just incase
you forget how to run a command or maybe you want to see how someone else typed a command.

You can see your history of commands by typing just that -- history.

You can also view commands you!ve previously used by using your up and down cursor keys. Pretty
neat, huh?

Command Completion

What if you couldn!t remember how a command was spelled, but you knew it began with ca? With
command completion, you can type the letters ca then press tab twice. A list of all the commands
that start with ca will appear!

If there is only one command that fits the description you!re typing, pressing tab once will complete
the command for you. So how do you know to use one tab or two? Rule of thumb is to hit tab once, if
nothing comes up, try twice.

You can even use the completion feature for directories, too! Try using the cd command to go into
the closet directory, but instead of typing closet, type:

joe$ cd clo (press your tab key after o)

Notice how the directory will automatically complete for you! The same rule applies here with the tab
key: if there!s only one result, one tab press will do, but if there!s more than one, you need to hit tab
twice.

Customizing Your Prompt
OK, it!s time to Pimp that Prompt! Well, customizing your prompt isn!t that cool, but if you want to
think of it that way, then go for it!

In order to change your prompt, you have to set an environment variable. It isn!t as hard as it sounds.

If you!re using the bash shell, here!s how you change your prompt:

joe$ PS1=”My New Prompt> “

My New Prompt>

Changing your bash prompt
34

If you!re using another shell, like tcsh or csh, here!s how to change your prompt:

joe$ set prompt=”My New Prompt> “

My New Prompt>

Changing you csh or tcsh prompt

Here are two websites that have more examples on prompt customization:

• http://www2.linuxjournal.com/article/3215

• http://www.freebsddiary.org/prompt-tcsh.php

That!s all for this advanced lesson!

35

Spells Learned in Chapter 3

Spell What it stands for What it does

touch [name] touch Creates a blank file

nano Nano One of several text-editors

pico Pico Another text-editor

cat [file1] ([file2]).. Concatenate Sends the output of one or more
files to the screen

less [file] Less Allows you to read a file with many
pages easily

more [file] More Allows you to read a file with many
pages easily

cp [src] [copy] Copy Creates a copy of a file or directory

mv [src] [dst] Move Moves a file or directory to a new
location

rm [file] Remove Removes a file

rmdir Remove Directory Removes an empty directory

file [file] File Prints the type of file

36

 Chapter Four
With a spinning head, the Young Mage
takes a walk around the Tower; discovers

several rooms and floors, but no maze.

37

We!ve been making great progress so far, Young Mage! Why don!t we take a little break and walk
around the Tower for some fresh air. I!ll show you all the different rooms that are here. Cast cd to

teleport to root (/) and we!ll begin!

If you cast ls here, you!ll see several different rooms. You won!t be learning about all of them, but I!ll
teach you about the most important ones.

The first floor of the Tower

The first one we!ll look at is /bin. Inside /bin are lots of files -- but not just any kind of files, these

are all spells! /bin holds all of our most important spells in the Tower. We give it the name bin be-
cause bin is short for binaries. A binary is an executable, compiled program that only Unix can un-
derstand. If you try casting cat on a binary file, you!ll get nothing but gibberish back.

Speaking of cat, there it is in /bin/cat. And ls too! In fact, almost all of the spells you have
learned so far are here! There are also lots and lots of other spells you haven!t even heard of. Unfor-
tunately, I can!t teach you all of them, but I!ll show a way to learn them yourself, later on.

Next, we!ll go into /dev. If you cast ls in /dev, you!ll, again, see lots of files. /dev stands for de-
vices and these files are device files. They are special files that can interact with hardware -- like
your monitor and your CDROM drive and your Keyboard. There are lots of different ways we can use
dev files, but we needn't worry about that now.

The next room is /etc. /etc is our board room where config files are stored. Laws and rules that
govern how the Tower runs are made and kept here. For example, if the Tower wanted to make a law
that kept a certain mage out of the tower because he!s been causing problems, we place that law in
/etc.

/home is next. These are the dorms of the Tower, as you already know.

Each mage who lives here has a dorm room in /home. And there we can
see yours!

Now we come to /lib, our Library. Sometimes
when we cast spells, they need to look up some
information on how to cast them properly. Yes!
Spells are smart enough to do that! Even while
they!re being cast, they can still make a quick trip to the Library. All of this
happens without the mage knowing!

The next room is /sbin. /sbin is another spell directory, but these are
important spells that only archmages should use. Some have shields that

Tip:

If you are using
Mac OSX, you will
see /Users in-

stead of /home.
Tip:

There is no /lib in
Mac OSX, but

there is /usr/lib.

38

prevent you from casting these spells, but others don!t. Even so, if you try casting one of the spells in
/sbin, chances are it won!t work correctly.

The last room we!ll look at on the first floor is /var. /var stands for variable and it!s where we keep
things that change all the time. For example, your mail is usually stored on var. Another important
thing kept in /var is the log room. The log room holds all the histories of the Tower so we can go
back and reference them later. Mages entering the Tower and spells being cast are two of the many
things kept track of in log.

Now we come to one of the staircases in the Tower. This staircase is called /usr.

The second floor of the Tower

At the top /usr, we see a lot of directories and most of them have the same name as on the first

floor! We see a bin, a lib, an sbin, and sometimes we!ll even see an etc. These rooms all have
the same purpose as the ones on the first floor, only now everyone in the Tower should be able to use
the rooms here. Since the rooms on the first floor can be really important, shields are sometimes put
in place to protect them.

There!s a second staircase here called local.

The third floor of the Tower

39

At the top of local, we, once again, see rooms with the same names as the first and second floors.

The local rooms are usually customized for the Tower itself -- the archmages can create whatever
they want here. It!s an unwritten mage rule that says you should try to keep your Towers first two
floors similar, but you can use the third floor however you want. So don!t be surprised if you ever visit
another Tower and see that the third floor looks completely different!

That!s it for this lesson, mage. No exercises tonight, but if you feel like, take another walk around the
tower and see all the new directories you learned about!

40

Chapter 4 Advanced Lesson

You just learned about the different floors to the Tower. While our Tower only has three floors, others
can have as many as they need. These floors, as you know, are nothing but simple subdirectories,
but some of them can be known as partitions. This is what we!ll cover in this advanced lesson.

Raging Rapids
Let!s say you wake up one morning, grab a cup of coffee, and hear a low rumbling. You open your
front door only to see a huge tidal wave heading right toward your house. You slam the door shut and
start running upstairs. The water breaks in and instantly floods the whole first floor. It starts coming
up to the second floor, so you run up to the attic. Before it reaches the attic, the water, thankfully,
stops rising.

Now imagine if you had a water-proof hatch going to your second floor. When you climbed through it,
you sealed the hatch and finished your cup of coffee with confidence. When the water rose up to the
second floor, the hatch prevented anything from coming in -- keeping all the water on the first floor.

The hatch can be thought of as a partition. Partitions are invisible hatches in the filesystem that keep
things from flooding over.

What could flood over? Disk space! Let!s say a friend of yours (never you, of course) accidentally
sign up for a mailing list that turns out to be spam. Now yo-- your friend -- has spam coming in every
5 minutes! Well the spam just keeps coming in and taking up more and more disk space on the com-
puter. Later on, after working on your research paper for the past four hours, decide to finally save it.
When you hit “save”, an error pops up saying “Out of Disk Space”! That!s because all that spam
hogged it. If you were to use partitions, you would not have run into that problem. That invisible
hatch would kick in and say “Hey! You stop right there! You!ve used up enough space, buddy, settle
down!”

Viewing Partitions
You can use a command called df to see the partitions on the computer. Here!s an example of how

df works:

joe$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda3 256665 157316 86096 65% /

/dev/sda1 101086 10982 84885 12% /boot

/dev/sda8 1035660 33508 949544 4% /home

/dev/sda5 3621020 614696 2822384 18% /usr

/dev/sda6 2063504 362340 1596344 19% /var

joe$

Viewing partitions with df
41

There are several columns to df.

1. Filesystem: These are the partitions. Sometimes they!re known as slices, too, because a parti-
tion slices up a hard drive into pieces. You can see they use /dev files because, as you learned
during the Tour, /dev files access hardware -- in this case, your hard drive.

2. Available Space: This shows you how much total space is available on the slice in Kilobytes.

3. Used Space: How much space has been used in Kilobytes.

4. Available: How much space you have left. (Simply Available minus Used.)

5. Used Percentage: Just a percentage representation of how much space is used.

6. Mounted On: The directory of the partition.

Since nobody reads in Kilobytes these days, you tell df to use a more readable format by specifying
the -h option (which stands for Human Readable).

joe$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 251M 154M 85M 65% /

/dev/sda1 99M 11M 83M 12% /boot

/dev/sda8 1012M 33M 928M 4% /home

/dev/sda5 3.5G 601M 2.7G 18% /usr

/dev/sda6 2.0G 354M 1.6G 19% /var

joe$

Using df with the -h option

Look a little easier to understand?

Another command that you can use to view partitions is called fdisk. but only archmages should
use it since it can break your hard drive if used the wrong way.

What Partitions Do
Like I mentioned before, partitions help disk space from overflowing to other directories. Take a look
at the /home partition in the df example. Right now, only 4% of the space is being used, but what if
someone saved a file that took all available 928 megabytes up? Then it would look like this:

42

joe$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 251M 154M 85M 65% /

/dev/sda1 99M 11M 83M 12% /boot

/dev/sda8 1012M 1012M 0M 100% /home

/dev/sda5 3.5G 601M 2.7G 18% /usr

/dev/sda6 2.0G 354M 1.6G 19% /var

joe$

A partition with no space left

As you can see, 100% of the space is used. Now whenever someone else tries saving a file, they will
get an error. But notice the other partitions still have free space. This ensures that other things on
the computer can still function properly even though /home is full. Going back to the flood example,
the /home room is full of water, but the waterproof hatch isn!t letting any water out to the other rooms.

There are other uses for partitions, as well, such as security, mounting, and quotas. One security ex-
ample is the ability to tell a partition that no commands that are located in the directory are allowed to
be executed. With mounting, you are able to effectively move a whole partition (such as /home) to a
new hard drive (for more space or if your hard drive dies, for example). And finally, with quotas, you!re
able to restrict the amount of disk space each user is able to take up.

You don!t need to use partitions when building your own Unix system -- but if you!re building a com-
puter for important work, it!s recommended that you do so.

43

Spells Learned in Chapter 4

Spell What it stands for What it does

df Disk Filesystems Shows the partitions and filesys-
tems of the computer

44

 Chapter Five
The Young Mage learns that not

everything in the Tower is free to use
because of both privacy and protection.

45

Earlier, I mentioned how some of the spells in /sbin have shields to keep
you from casting them. Actually, all spells, files, and directories have some
kind of shield on them! Also, not only can shields be used to prevent you
from casting spells, they can also be used to prevent you from reading files
and writing information to files.

Now you!ll learn how to read those shields and even place some on your
own files!

Before you begin learning about shields, I need to cover a few basic things. In the Tower of Nix, you

have your name (which you can find by casting whoami). This is also called your login name or us-
ername. When you create a file or directory in Unix, that name is now known as the owner of that file
or directory.

Next, all mages in the Tower belong to groups. You can belong to several groups or even just one
group -- but you always have to be in at least one. To see what groups you are in, you can cast the
groups spell.

joe$ groups

joe appserveradm appserverusr admin

joe$

Casting the groups spell

As you can see, I am a part of 4 groups: joe, appserveradm, appserverusr, and admin.

Like the name indicates, groups are used to group users together. When you are a part of a group,
you have access and premission to everything all the other members of the group have. It!s like be-
ing a part of the Tower!s swim team -- all members are allowed to use the pool after hours.

Finally, you need to know about 3 little letters: R, W, and X.

Letter What It Means What It Does

R Read Allows you to Read the file

W Write Allows you to create, edit, and de-
lete files

X Execute Turns the file into a spell and al-
lows you to cast it

Tip:

Shields are also
called permissions.

46

Now let!s get started with shields! First use cd to teleport to /bin. Once you!re there, cast ls -l.

-l is another spell modifier that will show you lots of details about the files -- including the shields.

joe$ ls -l

-rwxr-xr-x 1 root wheel 581636 Mar 20 18:39 bash

-r-xr-xr-x 1 root wheel 14380 Mar 20 18:38 cat

-r-xr-xr-x 1 root wheel 19108 Mar 21 17:48 cp

-r-xr-xr-x 1 root wheel 18964 Mar 21 17:49 mv

joe$

Casting ls -l

The -l option gives us nine columns of information. Let!s go over them (they aren!t that bad, don!t
worry).

1 2 3 4 5 6,7,8 9

-rwxr-xr-x 1 root wheel 581636 Mar 20 18:39 bash

1. The Shield

2. Number of Links

3. The Owner of the file

4. What Group the file belongs to

5. The Size of the file in bytes

6. The Month the file was created

7. The Day the file was created

8. The Time the file was created

9. The name of the file

So there you have it -- all nine columns. Not so bad, right?

47

Let!s go over the first column a little bit more. I!m sure it looks really goofy, but in a few minutes, you!ll
understand everything about it!

First, let!s break it up into some sections like this:

- rwx rwx rwx

Breaking the shield up into sections

Now we!ve got four sections to look at. Ignore that first dash for now; I!ll tell you about it later. Take a
look at the other three sections. They each have three letters -- the same three I told you about a lit-
tle bit ago. Coincidence? I think not!

Now take another look:

- rwx rwx rwx

 User Group Everyone Else (other)

The sections are for the Owner (user) of the file, a Group, and Everyone Else (which we!ll call Other).
We call this group of three UGO: User, Group, Other.

Each section explains what shields are turned on for the owner, group, or other. If a letter is there,
that means that action is enabled. If it!s just a dash, that means the shield is preventing that action.

Let!s take a look at one of the files from /bin again:

-rwxr-xr-x 1 root wheel 581636 Mar 20 18:39 bash

The bash file from /bin

48

Like I said before, ignore that first dash and just take a look at the other part. In your head, break it
up into the three sections like I did above. So now you have:

- rwx r-x r-x

Finally, let!s put all the pieces together: The owner of the file is allowed to read the file, write to the
file, and cast (execute) the file as a spell. The group can only read and cast the file. The same goes
for Other. Who in the world is Other? Other is everyone else in the world who is not the owner and
who does not belong to the group.

See? It!s not so hard after all! Just remember to break it up into three pieces. Then if there is a dash,
the shield is preventing you from that action, but if the letter is there, you can do that action.

Finally, it!s time to learn what that mysterious dash at the beginning is all about. The dash tells you
what the file is. Is it just a plain file? Is it a directory? Take a look for yourself:

-rwxr-xr-x 1 root wheel 581636 Mar 20 18:39 bash

drwxr-xr-x 41 root wheel 1394 Jul 13 18:22 bin

Different types of files and directories

bash starts with just a plain dash. This means that it!s a normal, everyday file. However, bin shows

a d -- that means it!s a directory. So now you can cast ls -l along with ls -F to see if something
is a directory, too!

Placing Shields On Files
Now you!ll learn how to actually put shields on files. To do that, we use the chmod spell. chmod
stands for Change Mode, but you can actually think of it as Change Shield. The only requirement of
using chmod is that you have to be the owner of that file. We can!t just let everyone go around and
change the shields on anyone else!s files!

Go into your spell closet and cast ls -l on your shelf.

-rw-r--r-- 1 joe joe 25 Jul 15 20:35 shelf

Casting ls -l on the shelf

49

As you can see, the shields that are currently on the file say that the owner can read and write, and
the group and everyone else can read. Let!s make it so the group joe can write to the shelf as well:

joe$ chmod g+w shelf

joe$ ls -l

-rw-rw-r-- 1 joe joe 25 Jul 15 20:35 shelf

joe$

Casting chmod on the shelf

chmod looks like a really funny spell. You!ll notice that it takes two arguments. The second argument
is the name of the file we are changing the shields on. The first argument looks strange. g+w?
What!s that mean?

Remember UGO? User, Group, Other -- the three parts of the shield. That!s what the g means:

group. The plus sign means that you are adding to the shield, and w, like you learned before, means
write.

Now say it to yourself: group add write. And that!s exactly what you did! You added write to the
shield! Now anyone who belongs to the joe group can write to the shelf.

Taking away from the shield is just as easy:

joe$ chmod g-w shelf

joe$ ls -l

-rw-r--r-- 1 joe joe 25 Jul 15 20:35 shelf

joe$

Using chmod to take away from the shield

Instead of using the plus sign, you use the minus sign.

50

Here are a couple other examples:

joe$ chmod u+rwx shelf

Looks a little strange at first, but if you read it and say it silently to yourself, it all makes sense. To
User we are Adding Read, Write, and Execute. u+rwx.

joe$ chmod ugo+rx shelf

This second example is just as easy: ugo+rx. To User, Group, and Other, we are Adding Read
and Execute. This example could also be written as a+rx where a stands for All.

joe$ chmod u+x,g+rw,o-r shelf

Finally, the third example looks different than the others, but it!s still just as easy: u+x,g+rw,o+x.
To User we are Adding Execute, to Group we are Adding Read and Write, and to Other we are
Taking Away Read.

Using the Number Method to Place Shields on Files
Sometimes typing all of those letters can get tedious -- especially once you get the hang of using

chmod. There!s a faster way to use chmod that uses numbers.

To understand the numbers, first we have to convert r, w, and x to a number:

Letter R W X None

Number 4 2 1 0

If we wanted to put Read and Write on a shield, we add 4 and 2 to get 6. Execute and Read would
be 5. And all three would equal 7.

51

Next, you group three numbers together for a UGO combination. For example, if you wanted User to
have Read and Write, Group to have Read and Execute, and Other to have Read, it would be 654.
6 = rw, 5 = rx, and 4 = r.

Finally, to cast chmod with the numbers, you would do this:

joe$ chmod 654 shelf

joe$ ls -l

-rw-r-xr-- 1 joe joe 25 Jul 15 20:35 shelf

joe$

Casting chmod with numbers

And you can see that the shield changed to what we wanted!

Another difference between using letters and numbers with chmod is that with letters, you can use +
and - to add and subtract actions. With numbers, you can!t do that, you have to start over each time.

So right now, your shelf has Read and Execute for the group shield. If you wanted to add Write to it,
you would have to add up Read, Write, and Execute to get 7.

Also, there is no way to just change the Users shield and not the Group and Other when using the
numbers. You always have to cast chmod with the three numbers. If you don!t use the three groups,
something like this will happen:

joe$ chmod 4 shelf

joe$ ls -l

-------r-- 1 joe joe 25 Jul 15 20:35 shelf

joe$

Casting chmod with only one number

See how it erased everything but Read for Other? That!s because using a single 4 is just like using
004 -- if you don!t specify one of the three numbers, Unix will use a 0 instead. So there!s pros and
cons to using the letters and numbers. Use either method you feel most comfortable with!

52

What a lesson! Talk about some really obscure stuff! But don!t worry, Young Mage, the more you
work with shields and permissions, the more comfortable you!ll be with them.

And if you!re wondering about the Execute part of shields and when you!ll need to use it, don!t worry
about it right now. Adding the Execute action to a shield is only done by mages who create their own
spells. One day you!ll be creating your own, but for now, just understand that Execute can turn a file
into a spell!

Don!t forget to try the exercises!

53

Exercises for Chapter 5

1) Casting two"s

Go into your spell closet and cast

joe$ chmod 222 shelf

What do you think the shield will look like when you cast ls -l?

What happens when you try to cast cat on your shelf now?

2) Casting four"s

Go into your spell closet and cast

joe$ chmod 444 shelf

What do you think the shield will look like when you cast ls -l?

What happens if you cast nano on it and try to save your work?

3) Creating your own Shields

Go into your spell closet. Use chmod to make it so the shelf:

Has Read and Write on User and Group but nothing on Other
Has Read and Execute on User, Write on Group, and Execute on Other
Has Write and Execute on User, Nothing on Group, and Read and Execute on Other

54

Chapter 5 Advanced Lesson

By using ls -l, you!re able to see a lot of details about a file. One piece of information is what kind
of file the file is. We!ll be going over the different types in this advanced lesson.

Types of Files
Remember from earlier, that the first dash in the permission set specifies the type of file.

-rwxr-xr-x 1 root wheel 581636 Mar 20 18:39 bash

drwxr-xr-x 41 root wheel 1394 Jul 13 18:22 bin

Output of ls -l

Here, we see that the first entry, bash, has just a dash. Therefore, we know it!s just a plain file. The
second entry, however, has a d which stands for directory. There are a few other types besides just
plain file and directory.

Letter What it is

- Plain File

d Directory

l Link

p Pipe

b Block Device

c Character Device

Plain File
A Plain File is just that -- a plain file. It can hold any type of information: from music to binary to just
text. A file can also have the x action set on it which turns it into a spell.

Directory
According to Unix, a Directory is nothing more than a file -- but a special file. I know it sounds like a
catch-22, but it!s true. If a Directory is just a file, then what!s inside it? Special information about the
files contained in the directory. Simply speaking, a Directory is kind of like a phone book. When you
want access to a file, the shell will consult the Directory on how to reach the file. This is just another
way the Shell abstracts the user from the strangeness of Unix -- by making it seem like we!re in an
actual directory, but in fact, the Shell is just reading information from a file.

55

Link
A Link is a file that points to another file. When you move, you can leave a change-of-address so any
mail that goes to your old address gets forwarded to your new one. This is kind of like a link.

Here is an example of how a link looks to ls -l:

joe$ ls -l pico

lrwxrwxrwx 1 root root 9 Jul 22 08:51 pico -> /bin/nano

joe$

Example of a Link

There!s a couple things to notice about the Link:

• It has the l at the beginning of the permissions

• It has rwx for User, Group, and Other

• It shows an arrow that points to the real file

• Its size is the number of characters of the real file (/bin/nano is 9 characters which equals this
files size).

If you were to run the command pico, the Shell will instead run the command /bin/nano without
you knowing.

You can create links with the ln command. There are two types of links you can create, hard and
soft (or symbolic). A hard link is an exact clone of the file. It will not show the arrow like in the exam-
ple because the hard link thinks it!s a real file, not a pointer to another. A soft link is a separate file
whose only job is to point to the correct file (think forwarding address).

Here!s how you create a hard link:

joe$ ln file1 file2

joe$ ls -l file1 file2

-rw-r--r-- 2 joe joe 0 Jul 31 18:58 file1

-rw-r--r-- 2 joe joe 0 Jul 31 18:58 file2

joe$

Creating a hard link

56

See how both files think they!re separate, but they!re really exact twins.

Here!s how you create a soft link:

joe$ ln -s file1 file2

joe$ ls -l file1 file2

-rw-r--r-- 2 joe joe 0 Jul 31 19:01 file1

lrwxr-xr-x 1 joe joe 5 Jul 31 19:01 file2 -> file1

joe$

Creating a soft link

To create a soft link, you just use ln with the -s option. Notice how file2 has an arrow pointing to the
file it links to. Plus it has the l in the permissions set.

Why would you use one over the other? A hard link takes up no extra disk space but can!t span file-
systems (see Chapter 4 Advanced Lesson). Conversely, a soft link takes up a few bytes of memory,
but it can span filesystems.

Pipes
In mini-golf, some of the holes have a pipe the ball goes down to get to another part. Unix Pipes work
the same way -- they connect two programs together to share information.

Block Devices and Character Devices
Both of these are device files -- meaning they interact with hardware. The difference is that a Block
Device will read information in blocks while a Character Device reads information in a stream.

What does it mean by “reading in blocks”? Think about putting your hand under running water. If you
just let the water pour over your hand, that is like a Character Device and streams. However, if you
cup your hands until they are full and then let the water fall, that is a Block Device -- it reads a bunch
of stuff then lets it all go at once.

An example of a Block Device would be your hard drive and an example of a Character Device would
be a modem.

That covers just about everything with file types in Unix!

57

Spells Learned in Chapter 5

Spell What it stands for What it does

chmod [shield] [file] Change Mode Changes the Shield on a file

ln [file1] [file2] Link Links two files together

58

 Chapter Six
The Young Mage learns more details

about casting spells: Paths are revisited;
Controlling the flow of output; and a

cute calendar.
59

Casting Spells With Absolute Paths
During our tour of the Tower, you saw a lot of spells in the /bin, /usr/bin, and maybe even the

/usr/local/bin directories -- but how do you cast them? Up until now, you!ve just been typing in a
spell name and hitting enter and it magically works. Now you!ll learn how to cast any of the spells in
any directory.

First, try casting this:

joe$ ls -l /

Casting ls

You!ve cast similar things before. Nothing new here. But how about this:

joe$ /bin/ls -l /

Casting ls with an Absolute Path

It did the same thing! Except we used an absolute path with ls. How does that work? With some-
thing called the Path Variable.

A variable is something that holds information. It!s called variable because the contents can vary. A
bucket can be considered a variable because it can hold water along with almost anything else -- it!s
not stuck to one thing.

The Path Variable is a special variable that holds some paths for us. We can see what paths are
stored in the Path Variable like this:

joe$ echo $PATH

/bin:/sbin:/usr/bin:/usr/sbin

Viewing the Path variable

echo is a simple command that prints things out for us. Variables always start with a $ -- that!s the

way we know $PATH is a variable. Don!t get this $ confused with the one in the prompt, though.

60

What echo returned looks kind of confusing at first. But if you break it up by the colon (:), it looks a
little familiar:

/bin /sbin /usr/bin /usr/sbin

Notice something? They!re paths! The Path Variable stores paths with colons between them. Yeah,
I know, big deal -- but here!s where it all comes together. Whenever you cast a spell, the Path Vari-
able will go through it!s list of Paths and see if the spell is inside that directory. So when you cast ls,
it kind of looks like this:

joe$ ls

hmm.. is that /bin/ls? Yep! I’ll use /bin/ls and you won’t notice!

That was a simple example. Here!s something more involved. There is a spell called cal that will
print a nice calendar to your screen (go on, try it, you know you want to!). Here!s what happens now:

joe$ cal

hmm.. is that /bin/cal? No, no cal there.

what about /sbin/cal? Nope. not there, either.

/usr/bin/cal? Yes! There it is, I’ll cast that one!

So with the Path Variable, these two spells are just the same:

joe$ cal

joe$ /usr/bin/cal

What happens when the Path Variable can!t find a match at all? It will go through it!s list of paths, see
that the spell is not located in any of those directories and tell you it can!t find a match:

61

joe$ oogabooga

-bash: oogabooga: command not found

What if you want to cast a spell that is not inside one of the directories Path knows about? Then you
have to specify the absolute path to the spell or else you will get a command not found error like
above.

joe$ /super/secret/directory/Fireball

Running the Fireball command which is not in the path

So there you have it, now you can look through all the bin directories and cast any spell you want.
Unfortunately, I can!t teach you about every single spell -- you!re going to have to learn about most of
them yourself. It!s not that hard, though. The archmages have created instruction books for almost
every spell in the Tower. Now you!ll learn how to read them!

Reading the Instructions for Spells
The archmages knew they would never have enough time to teach all the other mages every single
spell in the Tower, so they wrote instructions on how to do it. We call these instructions man pages or
manual pages.

In order to read the man page, you cast a spell called man like this:

joe$ man ls

Casting the man spell

Once you press enter, you!ll see a lot of text appear on your screen. If you look close enough, you!ll
see that man has actually used either the more or less program to show you the text.

62

A Manual Page

The man page will tell you everything you want to know about a spell: how to use it, what options are
available, and even similar and related spells! Unfortunately, man pages can be pretty dry and boring
-- but the information is there, so just bear with it!

Searching for Spells
If you!re not sure about the spelling of a spell, there!s an easy way to search for it using the apropos
spell. apropos takes a word as an argument and will print out all of the available spells related to that
word or with that word in it!s spelling.

joe$ apropos whoami

bpwhoami(1) - print the output of a bootparams

 whoami call

ldapwhoami(1) - LDAP who am i? tool

whoami(1) - display effective user id

zipgrep(1) - search files in a ZIP archive for

 lines matching a pattern

The apropos spell

63

Using Grep
Another important spell in Unix is called grep. grep should have
been called grab since that!s what it does -- grabs text. Remember the
shelf you made that stores all the spells you know in it? We!ll use it to

practice casting grep on it.

You know that with spells like cat, more, and less, you can view the
contents of the whole file. But what if you only wanted to see spells
that had the letter “d” in them? grep can do that for us!

joe$ cd /Users/joe/closet/spells

joe$ grep d shelf

mkdir

cd

joe$

Casting grep

As you can see, grep only printed out the spells with the letter “d” in them -- just like we wanted!

grep is a really easy spell to cast and it works even better with pipes.

Pipes: the Coffee Filters of Spells
Have you ever seen that vertical bar on your keyboard? The one above your enter key? This guy: | ?
Ever wonder what it was? It!s called a pipe. What good is it for? Lots! What does it have in common
with a coffee filter? Lots!

Everyone knows what a coffee filter is used for: it!s that thing you put in your coffee machine so only
the coffee gets to the pot and not the ground beans. Pipes do the same thing -- they only let things
you want through.

Say, for example, you cast

joe$ ls /bin

Casting a simple ls spell

Tip:

grep actually stands for

“Global Regular Expres-
sion Print” -- what a
mouthful!

64

You get a lot of spells returned. What if you didn!t want to see all of them? What if, just like the shelf
file, you only wanted to see the ones that had the letter “d” in it? We could use both, grep and a
pipe. Don!t believe me? Just watch:

joe$ ls /bin | grep d

Casting ls with a pipe and grep

Now you only see spells that have the letter “d” in them! How!s that work? Well, the | is our coffee
filter and the grep d part is telling the filter what is OK to let pass. The result is what you see in your
terminal. Pretty cool, huh?

Redirection
Sometimes when you cast a spell, the stuff it returns is really useful and you might even want to save
it for later. It would be really great if you could save it to a file and just use cat, more, or less on it
whenever you want. But how? With redirection.

Redirection is the traffic cop of Unix. It tells the spell output where to go -- like to a file. If there!s no
cop to redirect the output, it just goes to your screen.

Remember that cal spell I mentioned earlier that prints a calendar? If you didn!t try casting it, here!s
what it looks like:

joe$ cal

 July 2005

 S M Tu W Th F S

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

joe$

Casting the cal spell

What if you wanted to save that calendar to a file called july.txt? You could use redirection like this:

65

joe$ cal > july.txt

Saving the output of cal to july.txt

Notice the >. That!s the redirector. It looks like an arrow and that!s exactly how you can think of it,
too. It!s the traffic cop saying, “OK, all output go this way: -->”, and it gets placed inside the july.txt
file.

Now if you cast ls, you!ll see that a file called july.txt is really there, and even more, if you cast cat
on it, the month of July will show up on your screen!

You can even send text the other way, too. Let!s say you wanted to use grep to only show lines of
the calendar that have a number “8” somewhere in them. You could cast a spell like this:

joe$ grep 8 < july.txt

 3 4 5 6 7 8 9

17 18 19 20 21 22 23

24 25 26 27 28 29 30

joe$

Importing the july.txt file into grep

Now we!re feeding the contents of july.txt to the grep spell. Unfortunately, this is the exact same as
casting

joe$ grep 8 july.txt

Casting grep on july.txt

So feeding text into a command really doesn!t come in handy as much as sending text to a file. Oh
well, just more ways to cast spells!

Wildcards
In poker, a wild-card is a card that can be anything you want. Spells have wild-cards, too -- two in
fact. The spell wildcard are a star (*) and question mark (?).

66

The question mark means any one character. So if you wanted to see all spells in the /bin directory

that start with an l and have any one character, you would cast:

joe$ ls /bin/l?

/bin/ln /bin/ls

joe$

Casting ls with a ? wildcard

As you can see, we have two spells: ls and ln.

Now what if you wanted to see all the spells that start with l no matter how many characters are in
it!s name? You could just keep using more and more question marks, but the easier way is to just
use the star. The star wildcard means any character and any number of characters.

joe$ ls /bin/l*

/bin/launchctl /bin/link /bin/ln /bin/ls

joe$

Casting ls with a * wildcard

And now we have many more results -- some with more than two characters in their name.

You can even use two stars to find the spells with l anywhere in their name.

joe$ ls /bin/*l*

/bin/kill /bin/launchctl /bin/link /bin/ln

/bin/ls /bin/sleep /bin/unlink

joe$

Casting ls with two wildcards

This is the exact same as casting

67

joe$ ls /bin | grep l

/bin/kill /bin/launchctl /bin/link /bin/ln

/bin/ls /bin/sleep /bin/unlink

joe$

Casting ls and using grep to find the l character

Unix has a lot of other wildcards, but they!re called Regular Expressions. Regular Expressions can
get really complicated and there are whole books devoted just to them!

That ends this lesson, Young Mage. You learned a lot about working on the command line: casting
more spells, grepping, redirecting, reading instructions, and wild-cards! It was a lot of information in a
short amount of time, so make sure you do the exercises for some practice!

68

Exercises for Chapter 6

1) ECHO Echo echo

There are lots of things you can do with the echo spell. Try these out:

joe$ echo “HI”

joe$ echo “HI” > hi.txt

Now notice you have a file called hi.txt. What!s inside it?

2) More variables

There are a lot of other variables that exist besides the path variable. You can find them by casting

joe$ env

env stands for Environment. All the variables in your environment affect how things get done -- just
like how the weather affects how you get things done in the real world.

How can you cast echo to show the contents of these variables? Here!s a hint: Remember

joe$ echo $PATH

69

3) More redirection

In Exercise 1, you created a file called hi.txt by casting echo and using a redirect. What happens to
the contents of hi.txt if you cast

joe$ echo “Hello, there!” > hi.txt

Now what happens if you cast

joe$ echo “How are you today?” >> hi.txt

What do the >> arrows do as opposed to the > ?

4) Learn a new spell

Read the man page for the wc spell. What does it do?

5) Double Pipes

You know that by casting

joe$ ls /bin | grep o

the output you see will be all the files in /bin that contain the letter o. Now what happens if you cast

joe$ ls /bin | grep o | wc

And why?

70

Chapter 6 Advanced Lesson
Unix gives you the ability to channel information through several different streams. These streams
are also known as file descriptors and they!re what you!ll learn about in this Advanced Lesson!

The Three Basic File Descriptors
Unix has the ability to support 10 file descriptors numbered 0 to 9, but you!ll only use the first three for
the majority of the time. The basic three are standard input, standard output, and standard error.
Some more information is shown in the table:

File Descriptor Short Name Descriptor Number

Standard Input STDIN 0

Standard Output STDOUT 1

Standard Error STDERR 2

Standard Output
Whenever a command prints something to your screen, STDOUT is being used. You may redirect
where the output goes by using pipes and redirectors.

joe$ echo “Hello” > newfile.txt

Redirecting STDOUT

You!ve seen this example in the previous lesson -- it!s just a simple redirect. But what you haven!t
seen yet is that there is an implied, hidden File Descriptor 1 embedded in the command:

joe$ echo “Hello” 1> newfile.txt

Redirecting STDOUT with the implied File Descriptor

If you take a look at the contents of newfile.txt, you!ll notice there!s nothing different about it than

without using the 1. When you use a simple > in Unix, it is just the same as 1>.

Standard Error
If a command responds with an error message, it!s using the STDERR channel. You may also redi-
rect STDERR, but an extra step is needed.

Try saving the error message of this command to a file:

71

joe$ ls doesnotexist > newfile.txt

ls: doesnotexist: No such file or directory

Attempting to redirect STDERR

If you look at the contents of newfile.txt, you!ll notice it!s empty -- it did not redirect the error
message. Why not? Because errors use File Descriptor 2. In order to properly save the error mes-
sage, you!ll need to do this:

joe$ ls doesnotexist 2> newfile.txt

Redirecting STDERR

Now if you look at the contents of newfile.txt, you!ll see the error message. Remember, when
using >, 1 is by default and anything else has to be explicity typed.

Standard Input
By default, anytime a file receives more information, it!s using File Descriptor 0. Just what do I mean
by “receives more information”? Receiving information can be in the form of adding text to a file,
reading command line arguments, or having information piped to a command.

The tricky part about STDIN is that it!s a part of almost every command. Using the previous STDERR
example, the error message is the STDERR of the ls command, but becomes the STDIN of
newfile.txt. Anything that accepts input is STDIN.

When using > to redirect output, you can think of the left side as STDOUT or STDERR and the right
side as STDIN. Of course, it!s vice versa with the < redirector -- the left is now STDIN and the right is
STDOUT or STDERR!

The same is true with pipes -- the left side is the STDOUT and the right side is STDIN. Using that
concept, we can prove that (if programmed correctly) any command that can take a file as an argu-
ment, can also take it!s input by STDIN. Here!s how we can prove it:

You know that you can use the wc command to count the number of lines, words, and characters in a
file like this:

72

joe$ wc file.txt

Using wc with a file as an argument

You can also pipe information to wc and it will still count the number of lines, words, and characters
just as if you would have specified a file.

joe$ cat file.txt | wc

Using cat to pipe output to wc5

As you can see, the same output is shown. This proves that (almost) any Unix command that can
accept a file as an argument can also have information piped to it for input. I say almost any com-
mand, because when programming Unix commands, you have to follow a standard set of rules to al-
low this. Most programs do, but there are the odd few that do not conform to this standard way of
Unix programming.

Combining File Descriptors
It!s also possible to combine file descriptors. You would do this if you wanted to save, both, the input
and output to a file. You can combine them like this:

joe$ cat newfile.txt > newerfile.txt 2>&1

Combining STDERR and STDOUT

What this does is redirect all STDERR to STDOUT. Since STDOUT is being redirected to
newerfile.txt, so does all of the error messages (if any exist). Yes, I know it looks goofy to have
the combination at the end of the command!

Disabling All Output
Sometimes you!ll want to run a command and just not see any output -- whether it be STDOUT or
STDERR. In that case, you can redirect everything to a special device file known as /dev/null:

73

5 Using cat in this form is known as a Useless Use of Cat and should be avoided. It!s used here for visual purpose only.

joe$ cat newfile.txt > /dev/null 2>&1

Redirecting all output to /dev/null

/dev/null is your own personal blackhole in Unix. Anything that goes to it just vanishes.

That just about covers everything with File Descriptors and Redirecting!

74

Spells Learned in Chapter 6

Spell What it stands for What it does

echo Echo Prints something to the Terminal

grep [text] [file] Grep Grabs text you asked for

cal Calendar Prints a nice calendar out for you

wc Word Count Counts words for you

75

 Chapter Seven
The Young Mage learns that the Tower

is actually full of other Mages and
workers; a peek into the Towers registration.

76

As you saw during the tour, the Tower has a dormitory located at /home. You aren!t alone here;
many other people can be working in the Tower at the same time! You!ll learn more about working
with multiple mages in this lesson.

Finding Other Mages

First, to see if anyone else is in the Tower with you, cast who. This will show you a list of everyone
currently in the Tower, plus some other information.

joe$ who

joe console Jul 20 18:29

joe ttyp1 Jul 21 16:01

joe$

Casting the who spell

The who output for me shows that I!m logged into the Tower twice:
once for my main computer and once for my terminal. Being in the
Tower multiple times is not something unusual -- all mages can mul-
tiply themselves and perform multi-tasking.

Next, let!s take a look at the central listing of everyone who!s regis-
tered in the Tower. This registry is the file /etc/passwd. You can
view your registration by casting grep:

joe$ grep joe /etc/passwd

joe:x:1000:100:Joe Topjian:/home/joe:/bin/bash

joe$

Viewing your /etc/passwd information

Tip:

Unfortunately, Mac OSX
doesn!t use /etc/passwd
or /etc/group for normal
accounts, but you can still
read it with less and fol-
low along!

77

Just like the Path variable, there!s a lot of information joined by colons. Let!s break it up and go
through each field.

1 2 3 4 5 6 7

joe x 1000 100 Joe Topjian /home/joe /bin/bash

1. Username (the same as what whoami) shows

2. Your password used to go here, but that was in the old days of the
Tower. Now it!s located in /etc/shadow and only the archmages can
read it.

3. User Identification (UserID or uid). Unix thinks of everything as a num-
ber, so it takes your username and makes a unique number that only
you have. Just like that number on your Drivers License -- no one else
has that number.

4. Group Identification (GroupID or gid). Unix does the same thing for
groups, too. Even though you can belong to more than one group, the
first group you are in is shown in this forth column.

5. The GECOS field. It can store anything you want. It!s
usually used for the persons full name or a description
of what the account is for.

6. Dorm location

7. Shell6

All mages are able to read the /etc/passwd file to see who else is registered in this Tower. Take a

look at it, if you want! Some of the accounts have weird names like nobody and www and mail.
These are called system accounts. System accounts are the janitors and maintenance people of the
Tower -- they take care of everything going on in the background. You!ll learn more about them in
Chapter 8.

There is another registry, just like /etc/passwd, used for groups. It!s located at /etc/group. The
entries there look like this:

wheel:x:103:root,joe

An entry in /etc/group

78

6 For a discussion of shells, see the advanced lesson in Chapter 3

Tip:

GECOS is actually an
old term from the Gen-
eral Electric company
way back in the 1970!s.

1 2 3 4

wheel x 103 root,joe

1. Name of the group

2. Group password (rarely used)

3. Group Identification (GroupID or gid). This is the same
number as what you!ll find in /etc/passwd. In fact, Unix

will reference the number found in /etc/passwd to this
file in order to get the name that the groups spell reports!

4. Extra members of the group (optional). Each extra member
is seperated by a comma.

Ownership
Remember when you first learned about ls -l and you saw how it displayed the owner and group
that belonged to the file? There is actually a way to change the ownership and group for files and di-
rectories! When you change the owner and group of a file, there has to be a valid entry for the per-
son or group you want to change it to in the /etc/passwd and /etc/group files. Unfortunately,
this spell can only be cast by archmages. Though if you!re curious, the spell is called chown (change
ownership).

Passwords
As mentioned above, there is a file called /etc/shadow that contains all the passwords for each mage
in the Tower. Only archmages are able to read this file. And even if you were an archmage, you still
couldn!t understand what the password was. That!s because they!re encrypted. A /etc/shadow entry
looks something like this:

joe:1XGpds6rh$WqOLe0a0TyGf9QdgN0x3C1:12846:0:99999:7:::

An /etc/shadow entry

We won!t go into much detail about this file -- just take a look at the first two fields. The first one is the
username, just like in /etc/passwd. The second field is where the encrypted password is. It!s just
a long string of gibberish.

If you ever need to change your password in Unix, you can do so by casting the passwd spell. When
you cast it, it will ask you for your current password, then ask you to type in your new one twice. It
looks like this:

79

joe$ passwd

Changing password for joe

(current) UNIX password: (output is not displayed)

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

joe$

Changing your password with passwd

Of course your password is never shown on the screen for security reasons!

That!s all there is for this lesson, Mage. Not so hard today, was it? In that case, you won!t have any
problems doing the exercises!

80

Exercises for Chapter 7

1) Groups

Using the groups spell, you can find out what groups you belong to. Grep all of those groups from

/etc/group to see if you can tell if anyone else belongs to those groups, too!

2) passwd and shadow

What are the permissions on the /etc/passwd file that let you read it? Can you write to it? What
about the /etc/shadow file -- why can!t you read it?

81

Chapter 7 Advanced Lesson
Throughout the book, I!ve mentioned the concept of an archmage quite a few times. Who and what
are the archmages? Well, you!ll find out in this lesson!

Yet Another Root
The first slash in the filesystem is known as root. Root is also the name of a user in the Unix system.
Root has the ability to do anything -- he!s the most powerful user in the system. You can!t lock Root
out of any files or directories, nor can you prevent him from running any commands. Root can do
everything and anything in the Unix system -- get it?

By the way, where!s Roots home directory? It!s not /home/root, it!s just /root -- there!s another
root for you!

How To Become Root
Although you can just log in to your Unix system as root, there!s another way to use the root account -

by switching to root while you!re logged in. You can do this by using the su command. su stands for
Switch User or Superuser or Substitute User -- take your pick. When you run su, you!ll be prompted
for the root password. If you have not been given this password, then you obviously don!t have per-
mission to use the root account!

joe$ su

Password: (output is not displayed)

root#

Using su to become root

Notice how your prompt has now changed. Normally root is denoted by a # at the end of the prompt.
You can also run su with a dash at the end. If you do so, you!ll inherit all of Roots specific environ-
ment variables (including the Path) -- but if you don!t, you!ll just keep your own variables. The choice
is yours!

You can also change into other users using the su command -- of course, you need to be root first.
To do that, just specify a dash and the name of a user as an argument.

root# su - merrit

merrit$

Using su to change to a different user

82

Some newer Unix systems (like Ubuntu and Mac OS X) that have moved away from the su command

to a different root-enabling command called sudo. sudo allows you to run a single command as root
instead of switching completely to root. This way, owners and administrators on the system can re-
strict certain root-only commands to certain people.

joe$ sudo root_only_command

Password: (output is not displayed)

Using sudo to run root commands

The Wheel Group
Some Unix systems have a special group called wheel. Only the group members of wheel may su to
root and use the root capabilities.

Root"s UID
Root has a UID of 0 -- this is the same across every Unix system. You can effectively duplicate the
root account just by setting the UID of any other account to 0 in /etc/passwd. Keep an eye out for
this, though, as it!s something regularly done by malicious people.

And that!s about it for the Root account!

83

Spells Learned in Chapter 7

Spell What it stands for What it does

who Who Shows all mages currently in the
Tower

passwd Password Changes your password

chown Change Owner Changes the owner of a file

su Switch User Switches you to another account

sudo Superuser Do Allows you to run root commands

84

 Chapter Eight
A closer look at the inner workings

of the Tower; how to put spells on
hold; the unfortunate demise of deranged

spells.

85

In the previous lesson, you heard about something called a system account. You!ll learn all about
those and much more in this lesson!

Daemons (not demons!)
If mages did all the work in the Tower to keep it running normally every day, there would be no time to
get anything else done! Being the thoughtful people mages are, they decided to create little helpers.
These helpers are called daemons. Each daemon has a job to do and they only do that job. That!s it!
Daemons just sit in the tower and wait until they have to do their job.

What kind of work do the daemons do? Lot!s! Anything from delivering your mail to serving web
pages to cleaning up memory a messy mage left laying around -- they do it all. The Tower would
never run as smooth as it does without them.

But just like all the mages in the Tower, the daemons need to be registered in /etc/passwd. That!s
what all those system accounts are -- they!re the daemon registrations.

Can you see daemons working? Sure! Let!s find out how!

Processes
Whenever you cast a spell, you create something called a process. Makes sense, though, right? A
process is an action -- just like casting a spell is an action! You can see all the processes you are
running by casting the ps spell (which stands for process).

joe$ ps

 PID TT STAT TIME COMMAND

 610 p2 S 0:00.05 -bash

joe$

Casting the ps spell

Let!s look at the different columns.

The PID column is for the Process ID. Remember in the last lesson I said Unix likes to convert every-
thing to numbers? This is another example. All processes in Unix get a unique number.

The TT column displays a location for your terminal. Nothing important to worry about.

The STAT column stands for state. It shows the state of the process. The TIME column shows how
much processing time Unix has used on the process. Again, neither of these are important right now.

Finally, the COMMAND field shows you the name of the command. In this case, ps shows only one
process: bash7.

86

7 Bash is explained in Chapter 3!s Advanced lesson

One process is pretty boring, I know. Let!s add the a option to ps. a stands for All. It will show us all
the spells currently being cast in the Tower -- even other mages! spells!

joe$ ps -a

 PID TT STAT TIME COMMAND

 609 p2 Ss 0:00.02 login -pf joe

 610 p2 S 0:00.10 -bash

 660 p2 R+ 0:00.01 ps -a

joe$

Casting the ps -a spell

That looks a little more interesting! Now we see two more processes. The first, login, is the very
first spell that was cast when we originally got to our terminal. It was the magic spell that teleported
us into the Tower.

The second new process we see is the ps -a spell that we just cast!

Finally, let!s see how we can take a peek at the daemons. To do that, we!ll use ps with both the a

and x option. x tells the spell that we want to see all the activity in the Tower -- even the stuff the
daemons are working on.

So the spell looks like this:

joe$ ps -ax

Casting ps with the a and x options

The output is way to long to print in the book, so you will just have to see for yourself!

I bet you had no idea all that stuff was going on in the Tower, did you? See all the work daemons do
for us!

Now there!s one last option we can use with ps so we can see the names of the daemons -- the u op-
tion:

87

joe$ ps -aux

Casting ps with the a, u, and x options

There!s another spell you can cast to take a look at all the work daemons are doing. This spell will
even give you some stats on the Tower (like memory and CPU usage), too! Not only that, but it will
constantly update the screen so you can watch the daemons move around! This spell is called top
and when you cast it, it looks like this:

Casting the top spell

To exit the top spell, press q.

Casting Lots of Spells
Wouldn!t it be great if you could cast more than one spell in a terminal? Well, you can! There are two
ways, actually.

The first is known as casting a spell in the background. It!s really simple to do. You just add a & at
the end of any spell, and it goes in the background. Try it out:

88

joe$ top &

[1] 678

joe$

Casting top in the background

The number in the brackets ([1]) is known as your job number. The second number is the Process
ID or pid. Try casing another spell in the background. This time, use nano.

joe$ nano &

[2] 684

joe$

Casting nano in the background

Notice how your job number went up? The job number shows you how many jobs (or spells) you cur-
rently have running. You can use the jobs spell to see a list of all of your currently running jobs:

joe$ jobs

[1]- Stopped top

[2]+ Stopped nano

joe$

Using jobs to see your currently running spells

The plus sign (+) means that job was the last one you placed in the background. The minus sign
 (-) means it was the second to last one. Third and on get no symbol.

OK, now that you have some spells running in the background, how do you get them back? Well,
technically you would be bringing the spells into the foreground. So we use the fg spell -- which
stands for foreground. You cast fg with the job number you want to be brought forth.

89

joe$ fg 1

Bringing job number 1 into the foreground

And now top will pop up in your terminal! You can press q to exit top. Now cast jobs again to see
what!s left:

joe$ jobs

[2]+ Stopped nano

joe$

Casting jobs

As you can see, nano is left. So go ahead and bring it to the foreground.

joe$ fg 2

Bringing nano into the foreground

To exit nano, just type ctrl+x.

The second way to cast multiple spells is to put a spell into the background while it!s running. You
can do that by pressing ctrl+z inside any program. Go ahead and cast top again. Now when it!s
running, press ctrl+z and you will exit out but you!ll notice this on your screen:

[1]+ Stopped top

The result of pressing ctrl+z inside a spell

90

Like we just covered, this means that top is now in the background with a job number of 1 and you
can bring it to the foreground with

joe$ fg 1

Bringing top to the foreground again

So there are your two ways to free up your terminal to cast more than one spell. When would you
normally use this? Sometimes a spell will take a really long time to run, so you can cast it with the &
at the end right away to free up your terminal. Other times you will need to switch to a new program
so you can use ctrl+z. But normally, you can just open up a new terminal -- there is no limit to them
anymore (there used to be back in the old days)!

Killing Processes
Sometimes a spell will to awry and you will need to kill it. I know it sounds mean, but sometimes it
just has to be done!

To kill a disgruntled spell, you cast kill and use the Process ID as an argument. For example, if the
spell with Process id 699 went bad, you could kill it like this:

joe$ kill 699

Killing a spell

There are cases when a spell has gone so crazy that even using a normal kill won!t put it out of it!s
misery. In that case, we have to use a greater killing force. This is known as kill -9. You cast it
like this:

joe$ kill -9 699

Using kill -9 on a spell

And if that doesn!t do anything, then you!re in some trouble and you should contact an archmage!

There are several other numbers you can use as options with kill -- not just 9. To learn about them,
read the kill man page.

91

Exercises for Chapter 8

1) Spells that end right away

What happens if you were to cast this spell and why?

joe$ ls /bin &

93

Spells Learned in Chapter 8

Spell What it stands for What it does

ps Process Status Shows information about running processes

jobs Jobs Shows current jobs in the background

fg Foreground Brings a job to the foreground

kill Kill Kills a process

94

 Epilogue
The Young Mage has completed

the basic training; A farewell.

95

Congratulations, Young Mage, you!ve reached the end of the basic training! You!ve definitely learned
a lot about the Unix Spellcraft since your training began and you should be very proud for finishing!
As a gift for completing, the Archmages of the Tower have decided to raise your rank to a standard
Mage! Congratulations!

But your journey is far from over! There are several topics you can learn from here -- such as creat-
ing your own spells, managing your own Tower, and communicating with other Towers.

If you choose to learn about creating your own spells, you!ll be known as a Spellcrafter. Spellcrafters
use a variety of languages to create their spells such as Python, Perl, C, and C++. The Unix Spell-
craft provides an amazing environment to create your own spells and all Mages are encouraged to
learn, at least, the basics of spellcrafting.

Managing your own Tower is an art known as System Administration. There are several aspects to
System Administration such as building and maintaining your own Towers, keeping your Tower se-
cure, and making sure the data stored in the Tower is properly backed up.

Finally, communicating with other Towers is an art known as Networking. You!ll learn all about sock-
ets and ports and a numerous amount of daemons. During your training of the Networking art, you!ll
run into a few different factions of Mages such as the White Mages and Black Mages -- and you!ll
eventually have to join one yourself!

As you can see, you have several different choices to pick from! Also, don!t think that you!re confined
to just picking one choice -- if you can!t make up your mind, pick all three!

Good luck with your learning, and above all else, don!t forget to have fun!

96

 Appendix A
A complete list of all spells learned.

97

Spell What it stands for What it does

cal Calendar Prints a nice calendar out for you

cat [file1] ([file2]).. Concatenate Sends the output of one or more files to the screen

cd [path] Change Directory Takes you to the specified path

chmod [shield] [file] Change Mode Changes the Shield on a file

chown Change Owner Changes the owner of a file

cp [src] [copy] Copy Creates a copy of a file or directory

df Disk Filesystems Shows the partitions and filesystems of the computer

echo Echo Prints something to the Terminal

fg Foreground Brings a job to the foreground

file [file] File Prints the type of file

grep [text] [file] Grep Grabs text you asked for

jobs Jobs Shows current jobs in the background

kill Kill Kills a process

less [file] Less Allows you to read a file with many pages easily

ln [file1] [file2] Link Links two files together

ls List Prints the contents of the directory

mkdir [name] Make Directory Makes a directory with the specified name

more [file] More Allows you to read a file with many pages easily

mv [src] [dst] Move Moves a file or directory to a new location

nano Nano One of several text-editors

passwd Password Changes your password

pico Pico Another text-editor

ps Process Status Shows information about running processes

pwd Present Working Directory Prints the absolute path of the directory you are in

rm [file] Remove Removes a file

rmdir Remove Directory Removes an empty directory

su Switch User Switches you to another account

sudo Superuser Do Allows you to run root commands

touch [name] touch Creates a blank file

wc Word Count Counts words for you

who Who Shows all mages currently in the Tower

whoami Who Am I? Prints your username

98

 Appendix B
A quick guide to building your own Tower

99

If you would like to build your own Tower of Nix, you!ve got plenty of options to choose from. Unfortu-
nately, for beginners, this isn!t exactly a good thing. I!ll try to explain as easily as I can the different
paths you can take.

Mac OS X
When Apple released OS X, it instantly became the most advanced and user-friendly Unix-based op-
erating system. If you!re a Mac user, chances are you!re already using OS X (as opposed to OS 9),
so you already have a Unix-based computer to use. You can find the Unix terminal under the Utilities
folder of Applications. Just open that up and you!re all set!

BSD
If you would like to try out the BSD family of operating systems, you have a few choices. The two
easiest choices would be PC-BSD or a Live FreeBSD CD8. If you would like to rough it out and start
from scratch, you!re more than welcome to try FreeBSD, OpenBSD, or NetBSD from a clean install. A
word of warning, though -- they!re not very friendly to absolute beginners. I would recommend finding
a good walk-through or book.

Linux
There are several Linux distributions to choose from and many of them are beginner-friendly. My
choice would be to go with Ubuntu -- a newer distribution of Linux that!s incredibly easy to use. You
have two choices with Ubuntu: a full install and a Live CD. I would recommend starting with a Live
CD.

If you would rather not go with Ubuntu, you are more than welcome to try another distribution such as
Fedora, Mandriva, Debian, SuSE, Slackware, or Gentoo. Please be aware that some of these are
more difficult to install than others and you should consult the installation instructions.

Resources
OS X: http://apple.com/macosx
PC-BSD: http://pcbsd.org
FreeBSD Live CD: http://livecd.sourceforge.net
FreeBSD: http://freebsd.org
OpenBSD: http://openbsd.org
NetBSD: http://netbsd.org
Ubuntu: http://ubuntulinux.org
Fedora: http://fedora.redhat.com
Mandriva: http://www.mandriva.com/
Debian: http://debian.org
SuSE: http://www.novell.com/linux/suse/
Slackware: http://slackware.com
Gentoo: http://gentoo.org

100

8 A Live CD is a CD you can boot your computer up with and will provide you with a full BSD or Linux installation. When
you are done, simply reboot your computer!

