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ColabFold offers accelerated prediction of protein struc-
tures and complexes by combining the fast homology search 
of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold’s 
40−60-fold faster search and optimized model utilization 
enables prediction of close to 1,000 structures per day on a 
server with one graphics processing unit. Coupled with Google 
Colaboratory, ColabFold becomes a free and accessible plat-
form for protein folding. ColabFold is open-source software 
available at https://github.com/sokrypton/ColabFold and its 
novel environmental databases are available at https://colab-
fold.mmseqs.com.

Predicting the three-dimensional (3D) structure of a protein 
from its sequence alone remains an unsolved problem. However, 
by exploiting the information in multiple sequence align-
ments (MSAs) of related proteins as the raw input features for 
end-to-end training, AlphaFold2 (ref. 1) was able to predict the 
3D atomic coordinates of folded protein structures at a median 
global distance test total score (GDT_TS) of 92.4% in the latest 
round of the protein folding competition by the international 
community, CASP14 (Critical Assessment of protein Structure 
Prediction, round 14) (ref. 2). The accuracy of many of the pre-
dicted structures was within the error margin of experimental 
structure determination methods. Many ideas of AlphaFold2 were 
independently reproduced and implemented in RoseTTAFold 
(ref. 3). In addition to predictions for single chains, RoseTTAFold 
and, later, AlphaFold, were also shown to generalize to protein 
complexes. Evans et al.4 have since released AlphaFold-multimer, 
a refined version of AlphaFold2 for the prediction of protein 
complexes. Thus, two highly accurate open-source prediction 
methods for single chains and one for protein complexes are now 
publicly available.

To leverage the power of these methods, researchers require 
powerful computing capabilities. First, to build diverse MSAs, large 
collections of protein sequences from public reference5 and environ-
mental1,6 databases are searched using the most sensitive homology 
detection methods, HMMer7 and HHblits8, both of which use pro-
file hidden Markov models (HMMs). These environmental data-
bases contain billions of proteins extracted from metagenomic and 
transcriptomic experiments, which often complement databases 
dominated by isolated genomes. Due to their large size, searches can 
take up to hours for a single protein while requiring more than 2 TB 
of storage space alone. Second, to execute the deep neural networks, 
graphics processing units (GPUs) with a large amount of GPU RAM 
(random access memory) are required even for relatively common 

protein sizes of ~1,000 residues. For these, however, the MSA gen-
eration dominates the overall run time.

To enable researchers without these resources to use AlphaFold2, 
independent solutions based on Google Colaboratory were devel-
oped. Colaboratory is a proprietary version of Jupyter Notebook 
hosted by Google. It is accessible for free to logged-in users and 
includes access to powerful GPUs. Concurrently, Tunyasuvunakool 
et al.9 developed an AlphaFold2 Jupyter Notebook for Google 
Colaboratory (referred to as AlphaFold-Colab), for which the 
input MSA is built by searching with HMMer against the UniProt 
Reference Clusters (UniRef90) and an eightfold-reduced environ-
mental database. This results in less accurate predictions while still 
requiring long search times.

Here, we present ColabFold, a fast and easy-to-use software for 
the prediction of protein structures and homo- and heteromer com-
plexes, for use as a Jupyter Notebook inside Google Colaboratory, on 
researchers’ local computers as a notebook or through a command 
line interface. ColabFold speeds up single predictions by replacing 
AlphaFold2’s homology search with the 40–60-fold faster MMseqs2 
(Many-against-Many sequence searching) (refs. 10,11), and speeds up 
batch predictions by ~90-fold by avoiding recompilation and add-
ing an early stop criterion. We show that ColabFold outperforms 
AlphaFold-Colab and matches AlphaFold2 on CASP14 targets  
and also matches AlphaFold-multimer on the ClusPro4,12 dataset in 
prediction quality.

ColabFold (Fig. 1) consists of three parts. The first is an 
MMseqs2-based homology search server to build diverse MSAs and 
to find templates. The server efficiently aligns input sequence(s) 
against the databanks UniRef100, PDB70 and an environmental 
sequence set. The second part is a Python library that communi-
cates with the MMseqs2 search server, prepares the input features 
for structure inference (single chains or complexes), and visualizes 
the results. This library also implements a command line interface. 
The last part consists of the Jupyter notebooks for basic, advanced 
and batch use (Methods 2.1.1) using the Python library.

In ColabFold we replace the sensitive search methods HMMer 
and HHblits by MMseqs2. We optimized the MSA generation by 
MMseqs2 to have the following three properties: MSA generation 
should be fast; the MSA has to capture diversity well; and it has to be 
small enough to run on computers with limited RAM. Reducing the 
memory requirement is especially helpful in Google Colaboratory, 
where the provided system is selected from a pool with widely dif-
fering capabilities. While the first requirement is achieved through 
the fast MMseqs2 prefilter, for the second and third requirements  
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we developed a search workflow to maximize sensitivity (Methods 
2.2.1) and a new filter that samples the sequence space evenly 
(Methods 2.2.2 and Supplementary Fig. 1). Prediction qual-
ity depends on the input MSA, however, often an MSA with only 
a few (~30) sufficiently diverse sequences is enough to produce 
high-quality predictions (see fig. 5a in ref. 1).

Additionally, we combined the Big Fantastic Database (BFD) and 
the MGnify database, which are used in AlphaFold2 by HHblits and 
HMMer, respectively, into a combined redundancy-reduced version 
that we refer to as BFD/MGnify (Methods 2.3.1). The environmen-
tal search database presented an opportunity to improve structure 
predictions of non-bacterial sequences given that, for example, 
eukaryotic protein diversity is not well represented in the databases 
BFD and MGnify. Limitations in assembly and gene calling due to 
complex intron and exon structures result in underrepresentation 
in reference databases. We therefore extended BFD/MGnify with 
additional metagenomic protein catalogs containing eukaryotic pro-
teins13–15, phage catalogs16,17 and an updated version of MetaClust18. 
We refer to this database as ColabFoldDB (Methods 2.3.2). In 
Supplementary Fig. 2 we show that ColabFoldDB, in comparison 
with BFD/MGnify, produces more diverse MSAs for domains in the 
protein families database (Pfam)19 with <30 members.

To compare the accuracy of predicted structures we 
compared AlphaFold2 (default settings with templates), 
AlphaFold-Colab (no templates), ColabFold-RoseTTAFold-BFD/
MGnify, ColabFold-AlphaFold2-BFD/MGnify and ColabFold- 
AlphaFold2-ColabFoldDB on template modeling scores (TM- 
scores) for all targets from the CASP14 competition (Fig. 2a). 
All three ColabFold modes were executed without templates. We 
show the targets split by free modeling on the left and the remain-
ing ones on the right, given that we used the free-modeling targets 
for optimization of search workflow parameters. ColabFold is on 
average fivefold faster for single predictions than AlphaFold2 and 
AlphaFold-Colab, when taking both MSA generation (Fig. 2b) and 
model inference into account.

The mean TM-scores for the free-modeling targets are 0.826, 
0.818, 0.79, 0.744 and 0.62 for ColabFold-AlphaFold2-BFD/
MGnify, ColabFold-AlphaFold2-ColabFoldDB, AlphaFold2, 
AlphaFold-Colab and ColabFold-RoseTTAFold-BFD/MGnify, 
respectively. Over all CASP14 targets (excluding AlphaFold-Colab 
because it cannot be used as a standalone) the TM-scores are 0.887, 
0.886, 0.888 and 0.754 for the respective methods. The predic-
tion of target T1084 can be improved from a TM-score of 0.457 to 
0.872 by ColabFold if MMseqs2’s compositional filter is disabled 
(Supplementary Fig. 3). Supplementary Table 1 lists the additional 
targets for which ColabFold differed significantly from AlphaFold2.

AlphaFold2 was initially released without the capability to 
model protein complexes. However, we found that by combining 
two sequences with a glycine linker20 it could often successfully 
model complexes. Shortly afterwards, Baek21 found that increasing 
the model's internal parameter, residue-index (the method that was 
used in RoseTTAFold), could also be done in AlphaFold2.

For high-quality predictions it was shown that sequences should 
be provided in paired form to AlphaFold2 (ref. 22). We implemented 
a similar pairing procedure (Methods 2.4.2) and show the predic-
tion capabilities of ColabFold for complexes in Fig. 2c. ColabFold 
achieves the highest accuracy in the prediction of complexes on the 
ClusPro4,12 dataset with the AlphaFold-multimer model, however, 
some targets performed better using the residue-index mode.

Supplementary Fig. 4a,b show two examples of ColabFold’s pre-
diction capabilities for complexes. Supplementary Fig. 4a shows a 
homo-six-mer and Supplementary Fig. 4b shows a d-methionine 
transport system composed of three different proteins. The 
inter-chain predicted alignment error (inter-PAE) provided by 
AlphaFold2 helps to rank the complexes. Plots of PAE and com-
plex conformation are given to help users judge the prediction 
quality of a complex. An example for heteromer complex predic-
tion is shown in Supplementary Fig. 4c with its PAE plot. ColabFold 
complexes were successfully used to aid in the determination of the 
structure of the 120 MDa human nucleopore complex on cryogenic  
electron microscopy23.

ColabFold exposes many internal parameters of AlphaFold2 
such as the recycle count (default 3), which controls the number of 
times the prediction is repeatedly fed through the model. For dif-
ficult targets as well as for designed proteins without known homo-
logs, additional recycling iterations can result in a high-quality 
prediction (Supplementary Fig. 5). Rerunning the CASP14 bench-
mark with a recycle count of 12 resulted in an improvement of tar-
gets with little MSA information, resulting in an increased average 
TM-score of 0.898 (Supplementary Fig. 6).

For high-throughput structure prediction, we introduced several 
features in ColabFold. First, MSA generation can be executed in 
batch mode independently from model batch-inference. Second, we 
compile only one of the five AlphaFold2 models and reuse weights. 
Third, we avoid recompilation for sequences of similar length. 
Fourth, we implement early stop criteria, to avoid additional recycles 
or models if a sufficiently accurate structure was already found. And 
last, we developed the command line tool colabfold_batch to 
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Fig. 1 | Schematic diagram of ColabFold. a,b, ColabFold has a web and 
a command line interface (a) that send FASTA input sequence(s) to an 
MMseqs2 server (b) searching two databases, UniRef100 and a database 
of environmental sequences, with three profile-search iterations each. 
The second database is searched using a sequence profile generated from 
the UniRef100 search as input. The server generates two MSAs in A3M 
format containing all detected sequences. c, For predictions of single 
structures (i) we filter both A3Ms using a diversity-aware filter and return 
this to be provided as the MSA input feature to the AlphaFold2 models. For 
predictions of complexes (ii) we pair the top hits within the same species 
to resolve the inter-chain contacts and additionally add two unpaired MSAs 
(same as i) to guide the structure prediction. Single chain predictions 
are ranked by pLDDT and complexes by predicted TM-score. d, To help 
researchers judge the prediction quality we visualize MSA depth and 
diversity and show the AlphaFold2 confidence measures (pLDDT and PAE).
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predict structures on local machines. All together, we show that the 
Methanocaldococcus jannaschii proteome of 1,762 proteins shorter 
than 1,000 amino acids can be predicted in 48 h with early stopping 
at a pLDDT (predicted local distance difference test; a per-residue 
confidence metric) of ≥85 on one Nvidia Titan RTX (Fig. 2d), while 
sacrificing little or no prediction accuracy (Methods 2.7.4). The 
average pLDDTs of AlphaFold2 and ColabFold Stop ≥ 85 were 89.75 
and 88.78 in a subsampled set of 50 proteins.

ColabFold builds beyond the initial offerings of Alphafold2 
by improving its sequence search, providing tools for modeling 
homo- and heteromer complexes, exposing advanced functionality, 
expanding the environmental databases and enabling large-scale 
batch prediction of protein structures, at an approximately 90-fold 
speed-up over AlphaFold2.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Executing ColabFold. ColabFold is available as a set of Jupyter notebooks that can 
be used on Google Colaboratory or on users’ local machines, as well as an easily 
installable command line application.

ColabFold notebooks. ColabFold has four main Jupyter notebooks24. The first is 
AlphaFold2_mmseqs2 for basic use, which supports protein structure prediction 
using MSAs generated by MMseqs2 (version edb822), custom MSA upload, use 
of template information, relaxing of the predicted structures using amber force 
fields25, and prediction of complexes. The second, AlphaFold2_advanced, for 
advanced users, additionally supports MSA generation using HMMer (same as 
AlphaFold-Colab), the sampling of diverse structures by iterating through a series 
of random seeds (num_samples), and control of AlphaFold2 model internal 
parameters, such as changing the number of recycles (max_recycle), the 
number of ensembles (num_ensemble), and the is_training option. The 
use of the is_training option enables dropout during inference. This activates 
the stochastic part of the model and can result in different predictions. Thus by 
iterating through different seeds, one can sample different structures predictions 
from the uncertainty of the model26 or the ambiguity of co-evolution constraints 
derived from the input MSA. The third main type of Jupyter notebook is 
AlphaFold2_batch, for batch prediction of multiple sequences or MSAs. The batch 
notebook saves time by avoiding recompilation of the AlphaFold2 models (section 
2.5.2) for each individual input sequence. The fourth type is RoseTTAFold, for 
basic use of RoseTTAFold, and which supports protein structure prediction using 
MSAs generated by MMseqs2, and custom MSAs, and sidechain prediction using 
SCWRL4 (ref. 27). The RoseTTAFold notebook also has an option to use a slower 
but more accurate PyRosetta28 folding protocol for structure prediction, using 
constraints predicted by RoseTTAFold’s neural network.

ColabFold command line interface. We initially focused on making ColabFold 
as widely available as possible through our Notebooks running in Google 
Colaboratory. To meet the demand for a version that runs on local users’ machines, 
we released ‘LocalColabFold’. LocalColabFold can take command line arguments 
to specify an input FASTA file, an output directory, and various options to tweak 
structure predictions. LocalColabFold runs on a wide range of operating systems, 
such as Windows 10 or later (using Windows Subsystem for Linux 2), macOS 
and Linux. The structure inference and energy minimization are accelerated if a 
CUDA 11.1 or later compatible GPU is present. LocalColabFold is available as free 
open-source software at https://github.com/YoshitakaMo/localcolabfold

Recognizing the limitations of Google Colaboratory, we provide the 
colabfold_batch command line tool through the colabfold python 
package. This enables the computing of tasks on the user’s own computer that 
would have been too large for Google Colab, for example, predicting an entire 
proteome (Methods 2.7.4). It can be installed using Python's pip package 
manager following the instructions at https://github.com/sokrypton/ColabFold. 
It can be used as colabfold_batch input_file_or_directory 
output_directory, supporting FASTA, A3M and CSV files as input.

Faster MSA generation with MMseqs2. Generating MSAs for AlphaFold2 
and RoseTTAFold is a time-consuming task. To improve their run time while 
maintaining a high prediction accuracy, we implemented optimized workflows 
using MMseqs2.

MSA generation by MMseqs2. ColabFold sends the query sequence to an MMseqs2 
server11. It searches the sequence(s) with three iterations against the consensus 
sequences of the UniRef30, a clustered version of the UniRef100 (ref. 29). We accept 
hits with an E-value lower than 0.1. For each hit we realign its respective UniRef100 
cluster member using the profile generated by the last iterative search, filter them 
(Methods 2.2.2) and add these to the MSA. This expanding search results in a 
speed-up of ~10-fold given that only 29.3 million cluster consensus sequences are 
searched instead of all 277.5 million UniRef100 sequences. Additionally, it has the 
advantage of being more sensitive given that the cluster consensus sequences are used. 
We use the UniRef30 sequence profile to perform an iterative search against the BFD/
MGnify or ColabFoldDB using the same parameters, filters and expansion strategy.

New diversity aware filter. To limit the number of hits in the final MSA we use 
the HHblits (v3.3.0) diversity filtering algorithm8 implemented in MMseqs2 
in multiple stages. In the first stage, during UniRef cluster expansion, we filter 
each individual UniRef30 cluster before adding the cluster members to the 
MSA, such that no cluster pair has a higher maximum sequence identity than 
95% (--max-seq-id 0.95). In the second stage, after realignment we 
enable only the --qsc 0.8 threshold and disable all other thresholds (--qid 
0 --diff 0 --max-seq-id 1.0). Additionally, the qsc filtering is 
used only if at least 100 hits are found (--filter-min-enable 100). 
In the last stage, during MSA construction we filter again with the following 
parameters: --filter-min-enable 1000 --diff 3000 --qid 
0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95. Here, 
we extended the HHblits filtering algorithm to filter within a given sequence 
identity bucket such that it cannot eliminate redundancy across filter buckets. Our 

filter keeps the 3,000 most diverse sequences in the identity buckets [0.0–0.2], 
(0.2–0.4], (0.4–0.6], (0.6–0.8] and (0.8–1.0]. In buckets containing less than 1,000 
hits we disable the filtering.

New MMseqs2 pre-computed index to support expanding cluster members. MMseqs2 
was initially built to perform fast many-against-many sequence searches. Mirdita 
et al.11 improved it to also support fast single-against-many searches. This type 
of search requires the database to be indexed and stored in memory. mmseqs 
createindex indexes the sequences and stores all time-consuming-to-compute 
data structures used for MMseqs2 searches to disk. We load the index into the 
operating systems cache using vmtouch (https://github.com/hoytech/vmtouch) to 
enable calls to the different MMseqs2 modules to become nearly overhead free.  
We extended the index to store, in addition to the already present cluster consensus 
sequences, all member sequences and the pairwise alignments of the cluster 
representatives to the cluster members. With these resident in cache, we eliminate 
the overhead of the remaining module calls.

ColabFold databases. AlphaFold2 requires more than 2 TB of storage space for 
its databases, which is a significant hurdle for many researchers. We optimized its 
databases and additionally created another large environmental sequence database.

Reducing the size of BFD/MGnify. To keep all required sequences and data 
structures in memory we needed to reduce the size of the environmental databases 
BFD and MGnify, given that both databases together would have required ~517 GB 
RAM for headers and sequences alone.

BFD is a clustered protein database consisting of ~2.2 billion proteins organized 
in 64 million clusters. MGnify (2019_05) contains ~300 million environmental 
proteins. We merged both databases by searching the MGnify sequences against 
the BFD cluster-representative sequences using MMseqs2. Each MGnify sequence 
with a sequence identity of >30% and a local alignment that covers at least 90% of 
its length is assigned to the respective BFD cluster. All unassigned sequences are 
clustered at 30% sequence identity and 90% coverage (--min-seq-id 0.3 
-c 0.3 --cov-mode 1 -s 3) and merged with the BFD clusters, resulting 
in 182 million clusters. To reduce the size of the database we filtered each cluster, 
keeping only the 10 most diverse sequences using mmseqs filterresult 
--diff 10. This reduced the total number of sequences from 2.5 billion to 
513 million, thus requiring only 84 GB RAM for headers and sequences.

ColabFoldDB. We built ColabFoldDB by expanding BFD/MGnify with metagenomic 
sequences from various environments. To update the database we searched 
the proteins from the SMAG (eukaryotes)14, MetaEuk (eukaryotes)13, TOPAZ 
(eukaryotes)15, MGV (DNA viruses)16, GPD (bacteriophages)17 and an updated 
version of MetaClust18 against the BFD/MGnify centroids using MMseqs2 and 
assigned each sequence to the respective cluster if they have a 30% sequence identity 
at a 90% sequence overlap (-c 0.9 --cov-mode 1 --min-seq-id 
0.3). All remaining sequences were clustered using MMseqs2 cluster -c 
0.9 --cov-mode 1 --min-seq-id 0.3 and appended to the database. 
We remove redundancy per cluster by keeping the most 10 diverse sequences 
using mmseqs filterresult --diff 10. The final database consists of 
209,335,865 million representative sequences and 738,695,580 members (see the Data 
Availability section for the input files). We provide the MMseqs2 search workflow 
used in the server (Methods 2.2.1) as a standalone script (colabfold_search).

Template information. AlphaFold2 searches with HHsearch through a clustered 
version of the PDB (PDB70, ref. 8) to find the 20 top ranked templates. To save 
time, we use MMseqs2 (ref. 10) to search against the PDB70 cluster representatives 
as a prefiltering step to find candidate templates. This search is also done as part 
of the MMseqs2 API call on our server. Only the top 20 target templates according 
to E-value are then aligned by HHsearch. The accepted templates are given to 
AlphaFold2 as input features. This alignment step is done in the ColabFold client 
and therefore it requires the subset of the PDB70 containing the respective HMMs. 
The PDB70 subset and the PDB mmCIF files are fetched from our server. For 
benchmarking, no templates are given to ColabFold.

Modeling protein complexes with ColabFold. ColabFold offers protein complex 
folding through the specialized AlphaFold-multimer model and through 
manipulation of the residue index3. Here, we show the steps that we took for 
ColabFold to produce accurate protein complex predictions.

Modeling of protein–protein complexes. We implemented two protein complex 
prediction modes in ColabFold. One is based on AlphaFold-multimer4 and the 
other is based on the manipulation of residue index in the original AlphaFold2 
model. Baek et al.3 show that RoseTTAFold is able to model complexes despite 
being trained only on single chains. This is done by providing a paired alignment 
and modifying the residue index. The residue index is used as an input to the 
models to compute positional embedding. In AlphaFold2 we find the same to be 
true, although surprisingly the paired alignment is often not needed (Fig. 2c).  
AlphaFold2 uses relative positional encoding with a cap at |J − K| ≥ ��, meaning 
that any pair of residues separated by 32 or more are given the same relative 
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positional encoding. By offsetting the residue index between two proteins to 
be > 32, AlphaFold2 treats them as separate polypeptide chains. ColabFold 
integrates this for modeling complexes.

For homo-oligomeric complexes (Supplementary Fig. 4a) the MSA is copied 
multiple times for each component. Interestingly, it was found that providing a 
separate MSA copy (padding by gap characters to extend to other copies) works 
significantly better than concatenating from left to right.

For hetero-oligomeric complexes (Supplementary Fig. 4b), a separate MSA is 
generated for each component. The MSA is paired according to the chosen pair_
mode (section 2.4.2). Given that pLDDT is useful only for assessing local structure 
confidence, we use the fine-tuned model parameters to return the PAE for each 
prediction. As illustrated in Supplementary Fig. 4c, the inter-PAE, the predicted 
TM-score or interface TM-score (both derived from PAE) can be used to rank and 
assess the confidence of the predicted protein–protein interaction.

MSA pairing for complex prediction. A paired MSA helps AlphaFold2 to predict 
complexes more accurately only if orthologous genes are paired with each other. 
We followed a similar strategy as Bryant et al.22 to pair sequences according to their 
taxonomic identifier. For the pairing we search each distinct sequence of a complex 
against the UniRef100 using the same procedure as described in section 2.2.1. We 
return only hits that cover all complex proteins within one species and pair only 
the best hit (smallest E-value) with an alignment that covers the query to at least 
50%. The pairing is implemented in the new MMseqs2 module pairaln.

For prokaryotic protein prediction we additionally implemented the protocol 
described in ref. 3 to pair sequences based on their distances in the genome as 
predicted from the UniProt accession numbers.

Taxonomic labels for MSA pairing. To pair MSAs for complex prediction, we 
retrieve for each found UniRef100 member sequence the taxonomic identifier 
from the NCBI (National Center for Biotechnology Information) Taxonomy 
database30. The taxonomic labels are extracted from the lowest common ancestor 
field (‘common taxon ID’) of each UniRef100 sequence from the uniref100.
xml (2021_03) file.

Speeding up AlphaFold2’s model evaluation. Our efforts in speeding up 
AlphaFold2’s MSA generation yielded large improvements in its run time. 
However, we discovered multiple opportunities within AlphaFold2 to speed up its 
model inference without sacrificing (or only sacrificing very little of) its accuracy.

Avoid recompiling AlphaFold2 models. The AlphaFold2 models are compiled using 
JAX31 to optimize the model for specific MSA or template input sizes. When no 
templates are provided, we compile once and, during inference, replace the weights 
from the other models, using the configuration of model 5. This saves 7 min of 
compile time. When templates are enabled, model 1 is compiled and weights from 
model 2 are used, model 3 is compiled and weights from models 4 and 5 are used. 
This saves 5 min of compile time. If the user changes the sequence or settings 
without changing the length or number of sequences in the MSA, the compiled 
models are reused without triggering recompilation.

Avoid recompiling during batch computation. To avoid AlphaFold2 model 
recompilation for every protein AlphaFold2 provides a function to add padding 
to the input MSA and templates called make_fixed_size. However, this 
is not exposed in AlphaFold2. We used the function in our batch notebook 
as well as in our command line tool colabfold_batch, to maximize GPU use 
and minimize the need for model recompilation. We sort the input queries 
by sequence length and process them in ascending order. We pad the input 
features by 10% (by default). All sequences that lie within the query length and 
an additional 10% margin are not required to be recompiled, resulting in a large 
speed-up for short proteins.

Recycle count. AlphaFold2 improves the predicted protein structure by recycling 
(by default) three times, meaning that the prediction is fed multiple times through 
the model. We exposed the recycle count as a customizable parameter given that 
additional recycles can often improve a model (Supplementary Fig. 6) at the cost of 
a longer run time. We also implemented an option to specify a tolerance threshold 
to stop early. For some designed proteins without known homologous sequences, 
this helped to fold the final protein (Supplementary Fig. 5).

Speed-up of predictions through early stop. AlphaFold2 computes five models 
through multiple recycles. We noted that for prediction of high certainty (pLDDT 
>85), all five models would often produce structures of very similar confidence, for 
some even without or with less than three recycles. To speed up the computation 
we added a parameter to define an early stop criterion that halts additional model 
inferences and stops recycling if a given pLDDT or (interface) predicted TM-score 
threshold is reached.

Advanced features. In our investigation of AlphaFold2’s internal parameters we 
realized that we could expose many of the internal parameters that might be useful 
to researchers trying to explore AlphaFold2’s full potential.

Sampling of diverse structures. To reduce memory requirements, only a subset 
of the MSA is used as input to the model. Alphafold2, depending on model 
configuration, subsamples the MSA to a maximum of 512 cluster centers and 1,024 
extra sequences. Changing the random seed can result in different cluster centers 
and thus different structure predictions. ColabFold provides an option to iterate 
through a series of random seeds, resulting in structure diversity. Further structure 
diversity can be generated by using the original or fine-tuned (use_ptm) model 
parameters and/or enabling is_training to activate the stochastic (dropout) 
part of the model. Enabling the latter can be used to sample an ensemble of models 
for the uncertain parts of the structure prediction.

Custom MSAs. ColabFold enables researchers to upload their own MSAs. Any kind 
of alignment tool can be used to generate the MSA. The uploaded MSA can be 
provided in aligned FASTA, A3M, STOCKHOLM or Clustal format. We convert 
the respective MSA format into A3M format using the reformat.pl script from 
the HH-suite8.

Lightweight 2D structure renderer. For visualization, we developed a matplotlib32 
compatible module for displaying the 3D ribbon diagram of a protein structure 
or complex. The ribbon can be colored by residue index (N to C terminus) 
or by a predicted confidence metric (such as pLDDT). For complexes, each 
protein can be colored by chain ID. Instead of using a 3D renderer, we instead 
use a 2D line plotting based technique. The lines that make up the ribbon are 
plotted in the order in which they appear along the z-axis. Furthermore, we 
add shade to the lines according to the z-axis. This creates the illusion of a 
3D rendered graphic. The advantage over a 3D renderer is that the images are 
very lightweight, can be used in animations and saved as vector graphics for 
lossless inclusion in documents. Given that the 2D renderer is not interactive, 
we additionally included a 3D visualization option using py3Dmol33 in the 
ColabFold notebooks.

Benchmarking ColabFold. We show with multiple datasets that ColabFold does 
not sacrifice accuracy for its much faster run times.

Benchmark with CASP14 targets. We compared AlphaFold-Colab and AlphaFold2 
(commit b88f8da) against ColabFold using all CASP14 (ref. 2) targets. 
ColabFold-AlphaFold2 (commit 2b49880) used UniRef30 (2021_03) (ref. 34)  
and the BFD/MGnify or ColabFoldDB. ColabFold-RoseTTAFold (commit 
ae2b519) was executed with papermill (https://github.com/nteract/papermill) 
using the PyRosetta protocol28. ColabFold-RoseTTAFold-BFD/MGnify and 
ColabFold-AlphaFold2-BFD/MGnify used the same MSAs. AlphaFold-Colab 
used the UniRef90 (2021_03), MGnify (2019_05) and the small BFD. AlphaFold2 
used the full_dbs preset and default databases downloaded with the 
download_all_data.sh script. The 65 targets contain 91 domains, among 
these are 20 free-modeling targets with 28 domains. We compared the predictions 
against the experimental structures using TMalign (downloaded on 24 February 
2021) (ref. 35).

Measuring run times for CASP14 benchmark. To provide more accurate run times 
we split the MSA generation and model inference measurements. MSA generation 
was repeated five times and the MSA generation times were averaged.

ColabFold was executed using colabfold_batch. The MMseqs2 server 
that computes MSAs for ColabFold has 2 × 14 core Intel E5-2680v4 central 
processing units (CPUs) and 768 GB RAM. Each generated MSA was processed by 
a single CPU core. Run times were computed from server logs.

AlphaFold2 MSA generation run times were measured by running AlphaFold2 
without models (providing an empty string to the --model_names parameter) 
on the same 2 × 14 core Intel E5-2680v4 CPUs and 768 GB RAM system. The 
AlphaFold2 databases were stored on a software-RAID5 as implemented in Linux 
(mdadm) composed of six Samsung 970 EVO Plus 1 TB NVMe drives. Run times 
for AlphaFold2 were taken from the features entry of the timings.json 
file. For a fair comparison, AlphaFold2 was modified to allow HMMer and HHblits 
to access one CPU core.

All ColabFold and AlphaFold2 model inference run-time measurements were 
done on systems with 2 × 16 core Intel Gold 6242 CPUs with 192 GB RAM and 4x 
Nvidia Quadro RTX5000 GPUs. Only one GPU was used in each run.

ColabFold-RoseTTAFold-BFD/MGnify and ColabFold-AlphaFold2-BFD/
MGnify used the same MSAs, and run times are shown only once.

AlphaFold-Colab was executed in the browser using a Google Colab Pro 
account. The times for the homology search were taken from the notebook output 
cell ‘Search against genetic databases’. The JackHMMer search uses eight threads.

Complex benchmark. We compare predictions of 17 ClusPro4,12 targets to their 
native structures using DockQ (commit 3735c16) (ref. 36). We used colabfold_
batch (commit 45ad0e9) with BFD/MGnify in residue index manipulation 
and AlphaFold-multimer mode to predict structures. We use MSA pairing as 
described in section 2.4.2 and also add unpaired sequences. Models are ranked 
by predicted interface TM-score as returned by AlphaFold-multimer. The DockQ 
AlphaFold-multimer reference numbers were provided by R. Evans.
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Proteome benchmark. We predict the proteome of M. jannaschii. Of the 1,787 
proteins, we exclude the 25 proteins longer than 1,000 residues, leaving 1,762 
proteins of 268 amino acids in average length. With the colabfold_search 
wrapper to MMseqs2 we search against the ColabFoldDB (section 2.3.2) in 
113 min on a system with an AMD EPYC 7402P 24-core CPU (no hyperthreading) 
and 512 GB RAM. MMseqs2 had a maximum resident set size of 308 GB during 
the search. We then predict the structures on a single Nvidia Titan RTX with 
24 GB RAM in 46 h using only MSAs (no templates). For each query we stop early 
if any recycle iteration reaches a pLDDT of at least 85. Early stopping results in a 
speed-up of 3.7-fold compared with the default and 4.8-fold compared with always 
recompiling. AlphaFold2 (reduced_dbs) was run with the reduced_dbs preset and 
no template information was used. We changed the AlphaFold2 source code to 
utilize all CPU cores during the homology search.

AlphaFold2 (reduced_dbs, v2.1.1), ColabFold (commit f5d0cec) default 
and ColabFold Stop ≥ 85 have an average pLDDT of 90.68, 90.22 and 89.33, 
respectively, for 50 randomly sampled proteins. These are the same proteins that 
were used to extrapolate the run time of AlphaFold2. Over all predictions, the 
pLDDTs for the M. jannaschii proteome downloaded from the AlphaFoldDB, 
ColabFold default and ColabFold Stop ≥ 85 are 89.75, 89.38 and 88.77, respectively.

Software used for analysis. Benchmark data analysis and visualization were done 
with R/4.1.1, ggplot/3.3.5, cowplot/1.1.1 and lubridate/1.7.10. ColabFold-generated 
plots were made using matplotlib/3.1.3. TM-score analysis was done with 
TMalign/2021/02/24 and DockQ/3735c16.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
ColabFold databases are freely (CC-BY-SA 4.0) available at https://colabfold.
mmseqs.com. MSAs and structures produced during benchmarking: https://
wwwuser.gwdg.de/~compbiol/colabfold/manuscript. Input databases used 
for building ColabFold databases: UniRef30, https://uniclust.mmseqs.com; 
BFD, https://bfd.mmseqs.com; MGnify, http://ftp.ebi.ac.uk/pub/databases/
metagenomics/peptide_database/2019_05; PDB70, https://wwwuser.gwdg.
de/~compbiol/data/hhsuite/databases/hhsuite_dbs; MetaEuk, https://wwwuser.
gwdg.de/~compbiol/metaeuk/2019_11/MetaEuk_preds_Tara_vs_euk_profiles_
uniqs.fas.gz; SMAG, https://www.genoscope.cns.fr/tara/localdata/data/SMAGs-v1/
SMAGs_v1_concat.faa.tar.gz; TOPAZ, https://osf.io/gm564; MGV, https://portal.
nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_proteins.faa; and GPD, http://
ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/
GPD_proteome.faa.gz. Further datasets used for benchmarking ColabFold: 
PFAM (Pfam-A.seed.gz and Pfam-A.full.gz), http://ftp.ebi.ac.uk/pub/databases/
Pfam/releases/Pfam34.0; and M. jannaschii proteome, https://uniprot.org/
proteomes/UP000000805 and https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/
UP000000805_243232_METJA_v1.tar. Source data are provided with this paper.

Code availability
ColabFold is free open-source software (MIT) and available at https://github.
com/sokrypton/ColabFold. A locally installable version is available at https://
github.com/YoshitakaMo/localcolabfold. The ColabFold development version 
shown in this manuscript is available at https://github.com/konstin/ColabFold. 
The ColabFold server components are free open-source software (GPLv3) and 
are available at https://github.com/soedinglab/mmseqs2-app. MMseqs2 is free 
open-source software (GPLv3) and is available at https://mmseqs.com.
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*QH�#6QH/ @ J�FBM; T`Qi2BM 7QH/BM; �++2bbB#H2 iQ �HH
JBHQi JB`/Bi�1,∗- EQMbi�MiBM a+?Ƀix22- uQb?Bi�F� JQ`Br�FB3,4- GBK >2Q5-
a2`;2v Pp+?BMMBFQp6,7,∗ �M/ J�`iBM ai2BM2;;2`2,8,∗
R Zm�MiBi�iBp2 �M/ *QKTmi�iBQM�H "BQHQ;v- J�t SH�M+F AMbiBimi2 7Q` JmHiB/Bb+BTHBM�`v a+B2M+2b- :ƺiiBM;2M-
:2`K�MvX k a+?QQH Q7 "BQHQ;B+�H a+B2M+2b- a2QmH L�iBQM�H lMBp2`bBiv- a2QmH- aQmi? EQ`2�X j .2T�`iK2Mi Q7
"BQi2+?MQHQ;v- :`�/m�i2 a+?QQH Q7 �;`B+mHim`�H �M/ GB72 a+B2M+2b- h?2 lMBp2`bBiv Q7 hQFvQ- hQFvQ- C�T�MX
9 *QHH�#Q`�iBp2 _2b2�`+? AMbiBimi2 7Q` AMMQp�iBp2 JB+`Q#BQHQ;v- h?2 lMBp2`bBiv Q7 hQFvQ- hQFvQ- C�T�MX
8 .2T�`iK2Mi Q7 "BQ+?2KBbi`v �M/ JQH2+mH�` "BQHQ;v- JB+?B;�M ai�i2 lMBp2`bBiv- 1�bi G�MbBM;- JA 933k9-
la�X e C>.a6 S`Q;`�K- >�`p�`/ lMBp2`bBiv- *�K#`B/;2- J� ykRj3- la�X d 6�a .BpBbBQM Q7 a+B2M+2- >�`p�`/
lMBp2`bBiv- *�K#`B/;2- J� ykRj3- la�X 3 �`iB}+B�H AMi2HHB;2M+2 AMbiBimi2- a2QmH L�iBQM�H lMBp2`bBiv- a2QmH-
aQmi? EQ`2�  h?2b2 �mi?Q`b +QMi`B#mi2/ 2[m�HHv �M/ �`2 Q`/2`2/ �HT?�#2iB+�HHvX
*QMi�+i, KBHQiXKB`/Bi�!KTBM�iXKT;X/2- bQ!7�bX?�`p�`/X2/m- K�`iBMXbi2BM2;;2`!bMmX�+XF`

amTTH2K2Mi�`v 6B;m`2 RX �M2+/Qi�H 2t�KTH2 Q7 BKT`Qp2/ T`2/B+iBQM i?`Qm;? Ja� }Hi2`BM;X Ja� +Qp2`�;2
UH27iV �M/ TG..hb Q7 T`2/B+i2/ *QH�#6QH/ KQ/2Hb U`B;?iV 7Q` *�aSR9 i�`;2i hRyj3 rBi? irQ /Bz2`2Mi }Hi2`BM; b2iiBM;b,
hQT, aBM;H2 Ja� }Hi2`BM; bi2T rBi? >>#HBib }Hi2`BM; �H;Q`Bi?K �M/ @@/B77 jyyy b2iiBM;X JB//H2, wQQK2/ BM pB2r Q7
}`bi Ryy b2[m2M+2b BM iQTX "QiiQK, h?`22 bi2T Ja� }Hi2`BM; �b /2b+`B#2/ BM K2i?Q/bX
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amTTH2K2Mi�`v 6B;m`2 kX *QKT�`BbQM Q7 1M`B+?K2Mi BM S6�J *QKT�`BbQM Q7 ?QKQHQ;v b2�`+? ?Bib 7QmM/ 7`QK
b2H2+i2/ S6�J b2[m2M+2b �;�BMbi "6.fJ:MB7v �M/ *QH�#6QH/."X q2 b2H2+i k9jN S6�J j9Xy 2Mi`B2b i?�i ?�p2 H2bb i?�M
jy b2[m2M+2b BM i?2B` S7�K@�X7mHH 2Mi`vX AM 2�+? Q7 i?2b2 S6�J 7�KBHB2b r2 b2H2+i 7`QK i?2 S7�K@�Xb22/ i?2 HQM;2bi
b2[m2M+2X q2 b2�`+? i?Bb b2[m2M+2 rBi? i?2 *QH�#6QH/ JJb2[bk rQ`F~Qr �;�BMbi i?2 "6.fJ:MB7v �M/ *QH�#6QH/."X
6`QK i?2 Ja�b r2 +mi i?2 S6�J /QK�BMb �M/ MQi2 ?Qr K�Mv b2[m2M+2b +Qp2` i?2 /QK�BM #v �i H2�bi d8WX



j

Ja� L2z Ja� Ob2[
h�`;2i �HT?�6QH/k *QH�#6QH/ �HT?�6QH/ *QH�#6QH/
hRyjj@.R RX3 kXk 8 e
hRy9y@.R 9Xd 8X8 j3 d9
hRy9j@.R RXd 8Xe 8 8d
hRye9@.R kXR kXj N Rj

amTTH2K2Mi�`v h�#H2 RX AM@/2Ti? �M�HvbBb Q7 *�aSR9 i�`;2ib i?�i *QH�#6QH/ T`2/B+i2/ #2ii2` i?�M
�HT?�6QH/kX h?2 H�`;2bi BKT`Qp2K2Mib r2`2 Q#b2`p2/ BM 7Qm` i�`;2ib, URV hRye9@.R Bb P_63 7`QK a�_a@*Qo@k- Uk@9V
hRyjj@.R- hRy9y@.R- hRy9j@.R �`2 bBM;H2 /QK�BMb 7`QK � H�`;2 _L� TQHvK2`�b2 Q7 i?2 +`�bb@HBF2 T?�;2X �HH Q7 i?2b2
i�`;2i b2[m2M+2b �`2 7`QK i?2 *�aSR9@6J +�i2;Q`v �M/ H�+F ?QKQHQ;v 2p2M BM H�`;2 K2i�;2MQKB+ /�i�#�b2b HBF2 "6.
Q` J:MB7vX q2 +QKT�`2/ i?2 Ja�b #v +QKTmiBM; i?2 L2z mbBM; ??K�F2 7`QK i?2 >>@bmBi2X L2z Bb �M 2Mi`QTv K2�bm`2
7Q` KmHiBTH2 b2[m2M+2b �HB;MK2Mib- i?2 H�`;2` i?2 L2z i?2 KQ`2 /Bp2`b2 i?2 Ja�X >B;?2` L2z p�Hm2b +Q``2H�i2 rBi? #2ii2`
�HT?�6QH/k T`2/B+iBQMb Ub22 CmKT2` 2i �HX- L�im`2- kykR- 6B;X 8�VX h?2 JJb2[bk b2�`+? Q7 *QH�#6QH/ ;2M2`�i2b 7Q`
�HH i�`;2ib ?B;?2` L2z p�Hm2b �M/ i?2`27Q`2 #2ii2` T`2/B+iBQMbX AM i�`;2i hRyjj � bBM;H2 �//BiBQM�H b2[m2M+2 Bb 2MQm;?
iQ BM+`2�b2 i?2 hJ@b+Q`2 7`QK yXj93 U�HT?�6QH/kV iQ yX3ky U*QH�#6QH/@�HT?�6QH/k@"6.fJ:MB7vVX .m`BM; *�aSR9 i?2
�HT?�6QH/ i2�K b2�`+?2/ i?2 _L� TQHvK2`�b2 i�`;2ib �b � bBM;H2 b2[m2M+2 BMbi2�/ Q7 b2T�`�i2 /QK�BMb- r?B+? `2bmHi2/
BM Km+? H�`;2` Ja�b Ub22 CmKT2` 2i �HX- S`Qi2BMb- kykR- 6B;X jV- r?BH2 7Q` Qm` #2M+?K�`F r2 b2�`+?2/ 2�+? /QK�BM
b2T�`�i2HvX
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FM-targets CASP14 Other targets
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T1070-D2
T1094-D2
T1037-D1
T1061-D3
T1070-D4
T1096-D1
T1061-D1
T1049-D1
T1041-D1
T1074-D1
T1090-D1
T1038-D1
T1038-D2
T1039-D1
T1094-D1
T1031-D1
T1096-D2
T1042-D1
T1061-D2
T1070-D3
T1070-D1
T1027-D1
T1040-D1
T1047s1-D1
T1029-D1
T1064-D1
T1033-D1
T1043-D1
T1076-D1
T1052-D2
T1089-D1
T1053-D1
T1050-D1
T1046s2-D1
T1024-D1
T1036s1-D1
T1052-D3
T1079-D1
T1100-D2
T1050-D2
T1056-D1
T1065s2-D1
T1024-D2
T1068-D1
T1045s1-D1
T1091-D4
T1091-D1
T1028-D1
T1034-D1
T1050-D3
T1058-D2
T1057-D1
T1046s1-D1
T1060s3-D1
T1078-D1
T1047s2-D1
T1052-D1
T1092-D2
T1065s1-D1
T1091-D2
T1087-D1
T1026-D1
T1025-D1
T1101-D1
T1045s2-D1
T1095-D1
T1101-D2
T1082-D1
T1058-D1
T1047s2-D2
T1053-D2
T1060s2-D1
T1067-D1
T1093-D2
T1093-D3
T1054-D1
T1091-D3
T1035-D1
T1084-D1
T1055-D1
T1099-D1
T1030-D2
T1092-D1
T1093-D1
T1083-D1
T1030-D1
T1100-D1
T1048-D1
T1088-D1
T1098-D1
T1073-D1
T1080-D1
T1032-D1
T1047s2-D3
T1098-D2
T1062-D1

TM
-s

co
re

AlphaFold2
ColabFold-AlphaFold2-BFD/MGnify
ColabFold-AlphaFold2-BFD/MGnify No-Comp-Bias

amTTH2K2Mi�`v 6B;m`2 jX .Bb�#HBM; +QKTQbBiBQM@#B�b �M/ K�bFBM; BM JJb2[bk `2bmHi BM #2ii2` �++m`�+v
7Q` bQK2 *�aSR9 i�`;2ib q2 im`M2/ Qz irQ JJb2[bk K2+?�MBbKb 7Q` 7�Hb2 TQbBiBp2 bmTT`2bbBQM U@@+QKT@#B�b@+Q``
y @@K�bF@T`Q7BH2 yV �M/ `2`�M Qm` *�aSR9 #2M+?K�`FX h�`;2i hRy39@.R U?B;?HB;?i2/V �+?B2p2b MQr � hJ@b+Q`2 Q7
yX3NRkRy BMbi2�/ Q7 yX98e89y BM /27�mHi b2�`+? KQ/2X
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amTTH2K2Mi�`v 6B;m`2 9X �M2+/Qi�H 2t�KTH2b b?Qr+�bBM; i?2 +�T�#BHBiB2b Q7 �/p�M+2/ *QH�#6QH/ 72�im`2bX U�V a2iiBM;
i?2 ?QKQ@QHB;QK2` b2iiBM; iQ e- �HHQrb KQ/2HBM; Q7 i?2 ?QKQ@e@K2` bi`m+im`2 Q7 9@Pt�HQ+`QiQM�i2 h�miQK2`�b2X *QHQ`2/
#v +?�BM UiQTV- TG..h UT`2/B+i2/ GQ+�H .Bbi�M+2 .Bz2`2M+2 h2bi- #QiiQKVX h?2 BMi2` S�1 US`2/B+i2/ �HB;M2/ 1``Q`V
#2ir22M +?�BMb Bb p2`v HQr BM/B+�iBM; � +QM}/2Mi T`2/B+iBQMX U#V S`QpB/BM; i?`22 /Bz2`2Mi T`Qi2BMb rBi? k,R,k ?QKQ@
QHB;QK2` b2iiBM; �HHQrb KQ/2HBM; � ?2i2`Q@+QKTH2t rBi? KBbK�i+?BM; bvKK2i`B2b Q7 i?2 .@K2i?BQMBM2 i`�MbTQ`i bvbi2KX
U+V PMHv QM2 Q7 i?2 }p2 KQ/2Hb T`2/B+i2/ 7Q` *�aSR9 i�`;2i >Rye8 ?�b � ?B;? �;`22K2Mi rBi? Bib M�iBp2 bi`m+im`2 /m`BM;
mMT�B`2/ +QKTH2t T`2/B+iBQMX �Hi?Qm;? i?2 TG..h b+Q`2b �`2 M2�`Hv B/2MiB+�H Ub?QrM BM i?2 KB//H2 rBi? +QHQ`2/ +?�BMbV-
i?2 BMi2`@S�1 U#QiiQKV Bb bB;MB}+�MiHv HQr2` UK2�MBM; KQ`2 +QM}/2MiV 7Q` i?2 +Q``2+iHv T`2/B+i2/ +QKTH2t U`�MF R pb
`�MF kVX h?Bb /2KQMbi`�i2b i?2 miBHBiv Q7 S�1 U�M/ i?2 /2`Bp2/ ThJb+Q`2V BM `�MFBM; +QKTH2t2bX



e

amTTH2K2Mi�`v 6B;m`2 8X 1t�KTH2 Q7 �//BiBQM�H `2+v+H2 bi2Tb BKT`QpBM; T`2/B+iBQM P++�bBQM�HHv- BM+`2�bBM;
i?2 MmK#2` Q7 `2+v+H2b +�M ?2HT }M/ � r2HH T`2/B+i2/ bi`m+im`2X 6Q` i?Bb /2@MQpQ /2bB;M2/ i`�MbK2K#`�M2 T`Qi2BM
UoQ`Q#B2p� 2i �HX a+B2M+2- jdRUe8jRV- kykRV- R8 `2+v+H2 Bi2`�iBQMb r2`2 M22/2/ iQ T`Q/m+2 bi`m+im`2 rBi? ?B;? TG..hX
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FM-targets CASP14 Other targets
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T1070-D2
T1094-D2
T1037-D1
T1061-D3
T1070-D4
T1096-D1
T1061-D1
T1049-D1
T1041-D1
T1074-D1
T1090-D1
T1038-D1
T1038-D2
T1039-D1
T1094-D1
T1031-D1
T1096-D2
T1042-D1
T1061-D2
T1070-D3
T1070-D1
T1027-D1
T1040-D1
T1047s1-D1
T1029-D1
T1064-D1
T1033-D1
T1043-D1
T1076-D1
T1052-D2
T1089-D1
T1053-D1
T1050-D1
T1046s2-D1
T1024-D1
T1036s1-D1
T1052-D3
T1079-D1
T1100-D2
T1050-D2
T1056-D1
T1065s2-D1
T1024-D2
T1068-D1
T1045s1-D1
T1091-D4
T1091-D1
T1028-D1
T1034-D1
T1050-D3
T1058-D2
T1057-D1
T1046s1-D1
T1060s3-D1
T1078-D1
T1047s2-D1
T1052-D1
T1092-D2
T1065s1-D1
T1091-D2
T1087-D1
T1026-D1
T1025-D1
T1101-D1
T1045s2-D1
T1095-D1
T1101-D2
T1082-D1
T1058-D1
T1047s2-D2
T1053-D2
T1060s2-D1
T1067-D1
T1093-D2
T1093-D3
T1054-D1
T1091-D3
T1035-D1
T1084-D1
T1055-D1
T1099-D1
T1030-D2
T1092-D1
T1093-D1
T1083-D1
T1030-D1
T1100-D1
T1073-D1
T1080-D1
T1032-D1
T1047s2-D3

TM
-s

co
re

ColabFold-AlphaFold2-BFD/MGnify 3 recycles
ColabFold-AlphaFold2-BFD/MGnify 12 recycles

amTTH2K2Mi�`v 6B;m`2 eX AM+`2�bBM; �HT?�6QH/k `2+v+H2b 7`QK j iQ Rk `2bmHib BM #2ii2` �++m`�+v 7Q` bQK2
*�aSR9 i�`;2ib q2 BM+`2�b2/ i?2 MmK#2` Q7 `2+v+H2b 2t2+mi2/ #v *QH�#6QH/@�HT?�6QH/k 7`QK j iQ Rk U@@MmK@`2+v+H2
RkV �M/ `2`�M Qm` *�aSR9 #2M+?K�`FX


