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The development of accurate and transferable machine learning (ML) potentials for predicting molec-
ular energetics is a challenging task. The process of data generation to train such ML potentials is
a task neither well understood nor researched in detail. In this work, we present a fully automated
approach for the generation of datasets with the intent of training universal ML potentials. It is based
on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagree-
ment between an ensemble of ML potentials to infer the reliability of the ensemble’s prediction.
QBC allows the presented AL algorithm to automatically sample regions of chemical space where
the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of
ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in
deciding what new training data to use. AL also reduces the training set size to a fraction of the data
required when using naive random sampling techniques. To provide validation of our AL approach,
we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available
on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials
outperform the original random sampled ANI-1 potential with only 10% of the data, while the final
active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to
only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI
potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 bench-
mark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for
single molecules or materials, while remaining applicable to the general class of organic molecules
composed of the elements CHNO. Published by AIP Publishing. https://doi.org/10.1063/1.5023802

I. INTRODUCTION

The development of accurate force fields1–3 for the effi-
cient simulation of large and small molecular systems has
been a cornerstone of modern computational chemistry. The
popularity of force fields is driven by low computational cost
relative to more accurate and transferable quantum mechanical
(QM) methods, such as density functional theory4 (DFT) or
post-Hartree-Fock5–7 methods. However, parametrizing uni-
versal force fields—applicable to any chemical system in
any chemical environment—has remained an elusive goal due
to the restrictive functional form and tedious atom typing
of classical force fields. For this reason, a “zoo” of force
fields has been developed over the last 30 years with appli-
cations in various regions of chemistry and physics, such
as materials, proteins, carbohydrates, and small drug-like
molecules.8–11 Drawing a line between where these system-
specific force fields work and where they fail is a challenging
task.

In recent years, machine learning (ML) methods have
been successfully applied in many areas of chemistry and
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physics research.12–19 Specifically, ML approaches for the pre-
diction of interatomic potential energy surfaces (referred to as
ML potentials) have exhibited chemical accuracy compared
to QM models at roughly the computational cost of clas-
sical force fields.20–31 ML potentials promise to bridge the
speed vs. accuracy gap between force fields and QM methods.
Many recent studies rely on a philosophy of parametrization
to one chemical system at a time,22,25 single component bulk
systems27,28 or many equilibrium structures, i.e., QM7 and
QM9 datasets.32,33 While parametrization to one system at a
time can achieve high accuracy with relatively small amounts
of QM, it has the downside that one must generate addi-
tional QM data and train a new ML model for every new
chemical system. Using this approach in any study requires
extra parametrization time due to the non-universality of the
potentials. Additionally, parametrization to only equilibrium
geometries does not attempt to describe the range of confor-
mations visited in atomistic simulations. For these reasons,
single system and equilibrium dataset ML potentials do not
aim to build an extensible and transferable (universal) ML
potential.

Our work on the ANAKIN-ME (ANI) method for devel-
oping the ANI-1 potential34 is one example of a universal ML
atomistic potential for organic molecules. The methodology
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is built upon the concept of an atomic environment descrip-
tor first developed by Behler and Parrinello35 and refined to
perform significantly better on large and diverse datasets of
organic molecules. A key aspect of the ANI methodology was
the focus on dataset diversity, which promotes the learning of
low level interactions (by utilizing localized descriptors) for
better transferability. For training the ANI-1 model, we cal-
culated over 22 × 106 structural conformations from 57 000
distinct small organic molecules using DFT.36 The ANI-1
dataset was built through an exhaustive sampling of molecules
containing between one and eight C, N, and O atoms from the
GDB-11 database, with H atoms added to saturate the con-
figurations. The ANI-1 dataset is built on a philosophy of
dataset construction that samples small molecule conforma-
tional and configurational space at the same time. The ANI-1
potential was shown to be chemically accurate for systems of
50 atoms and more, demonstrating extensibility and transfer-
ability to much larger molecules than those in the training set.
This phenomenon, whereby an ML model is trained on small
systems (which could be thought of as fragments of large sys-
tems), then demonstrated to be extensible to large systems has
also been confirmed in other recent studies.29,37,38 Other recent
work had success in developing universal ML property predic-
tors for organic based chemical systems away from their local
minima.29

When it comes to developing or optimizing ML model
training datasets, human intuition currently drives the exper-
iment design. The resulting datasets tend to be clustered,
sparse, and incomplete; recent work finds that people tend
to favor inclusion of “successful” experiments and tend to
forget “failed” experiments.39 The comprehensive incorpora-
tion of all data is the strength of ML approaches to artificial
intelligence (AI). With sufficient data, an AI-driven machine
can more effectively choose the next step in experiments or
simulations than humans, speeding up the optimization of a
given dataset, while also reducing the overall amount of data
required. As robotics transforms chemical synthesis,40 manu-
facturing, and transportation, constituting a modern industrial
revolution,41,42 achieving the analogous revolution in com-
putational methods will require AI and, in particular, the
emulation of scientific intuition, reasoning, and decision mak-
ing. Such an ambitious program will not be accomplished all
at once and will instead require incremental progress as AI
algorithms are developed.

In this work, we present a fully automated approach of
dataset generation for training universal ML potentials. It
is based on the concept of active learning (AL) which has
been successfully applied to develop single system ML poten-
tials37,43–46 and in other areas47,48 of chemical sciences. We
develop a two-component technique for training universal
ML potentials. The first component is a dataset reduction
algorithm for eliminating redundancy in an existing train-
ing set. The second is an active learning algorithm based
on the Query by Committee49 (QBC) approach for select-
ing new training data. For a complete and rigorous validation
of universal potentials, we also develop the COmprehensive
Machine-learning Potential (COMP6) benchmark suite for
organic molecules and bio-molecules. The COMP6 bench-
mark samples the chemical space (for molecules containing

C, H, N, and O) of molecules larger than those included in the
training set, as well as non-covalent interactions via the S66x8
benchmark.50 The COMP6 benchmark is publicly available on
GitHub [https://github.com/isayev/COMP6]. Using the active
learning scheme, a potential can be trained to the accu-
racy of ANI-1 using 90% less data, even while sampling
from smaller molecules. After further exploration of chemical
space, our potential (dubbed ANI-1x) strongly out-performs
ANI-1, while being trained on a dataset that is only 25% of the
size.

II. METHODS

In the context of this work, the goal of active learning is
to infer an accurate predictor from labeled training data. These
labeled data are input-output pairs (X, y), where the output y
represents the correct answer to a question associated with the
input X. In the problem of ML potential training, the label y
may be the “yes”/“no” answer to whether the potential cor-
rectly describes a molecule X. As part of the active learning
process, this question may be answered empirically for a given
substance. The Query by Committee (QBC) approach uses the
disagreement between models trained to similar data to exper-
imentally infer the correctness of an ensemble’s prediction.
This is by the following reasoning: if an ensemble of predictors
has a high variance, then some models in the ensemble must
have a relatively high error from the ground truth. Therefore,
selection of compounds that have a high variance of ensem-
ble predictions in search of new molecules and conformation
can be employed to sample high error regions’ chemical space
automatically, minimizing the need for redundant QM calcu-
lations. Several studies provided empirical evidence that this
method of sampling indeed improves the overall fitness of ML
potentials for single systems.37,51 In this work, we apply this
concept in a massive search of chemical space to develop a
superior training set for universal ML ANI34 potentials. These
ANI potentials are applicable to organic molecules contain-
ing C, H, N, and O. With minimal modification, the same
approach could be used for other areas of chemical sciences,
e.g., materials.

A. Sample selection via Query by Committee

We show how, in a rigorous statistical way, one can
obtain a priori information about what new samples should
be included in subsequent generations of an ML potential
training set. The a priori information is obtained by the
QBC49 algorithm. QBC measures the disagreement between
students (models) of a committee (ensemble); then, the algo-
rithm selects new examples where the students disagree by
a preset inclusion criterion. Finally, new reference data for
selected examples are obtained and included in the next com-
mittee training iteration. As a test of agreement, we choose
to include new data point i only for test cases which generate
a value ρi greater than an inclusion criterion ρ̂, where ρi is
defined as

ρi =
σi
√

Ni
. (1)

In Eq. (1), σi is the standard deviation of predictions from an
ensemble (see Sec. II E for details) of ANI potentials and N i is

https://github.com/isayev/COMP6
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the number of atoms in the given test system. The square root
is applied to N i since the potentials are atomistic, and the total
energy error is assumed to be a random distribution, centered
around zero, per atom. That is, cancellation of error on a per
atom basis can lead to artificially low per atom errors (and
standard deviations in this case) on larger molecules when a
square root is not applied. This is necessary when using a single
value of ρ̂ to test across molecules with varying numbers of
atoms as is done in this work.

Figure 1 provides an example of how the inclusion cri-
terion ρ̂ is determined. In this 2-dimensional density plot,
εi =

���MAX
({

EANI
T

}ens

i
− EREF

T ,i

) ���/
√

Ni, where N i is the num-
ber of atoms in the i-th molecule. Therefore, εi is the largest
per atom prediction error of any model in the ensemble of ANI
models for test molecule i. The test data used in this example
is the GDB07to09 test set which is described in Sec. II C. The
ANI model used to determine ρ̂ in this example is the ANI
model which initialized the AL process (Sec. II B). The value
ρ̂ is determined from the choice of what value of ε is consid-
ered too large and what percentage of epsilon over that should
be considered as fail cases. Therefore, ρ̂ = 0.23 was empiri-
cally selected as it is the value which allows selection of 98%
of all εi > 1.5 kcal/mol.

The example from Fig. 1 shows that ρ̂ = 0.23 kcal/mol
selects 58% of all test data as fail cases. As evidence that
the chosen definition of εi allows for the statistical deter-
mination of poorly fit data, it is shown that before selecting
any data (i.e., for all ρi), 26% of the complete test set εi are
greater than 1.5. However, this is 44% when considering all
εi > 1.5 kcal/mol which correspond to ρi > ρ̂. This shows
that the determined ρ̂ leads to a selection of data with a greater
number of εi > 1.5 kcal/mol within its population. As further

FIG. 1. Example of choosing a value ρ̂ which captures 98% of all errors (ε)
over 1.5 kcal/mol on the GDB07to09 benchmark set using the initial (before
using active learning) ANI model ensemble. The value which accomplished
this is found to be ρ̂ = 0.23. This value of ρ̂ used in Query by Committee
results in the selection of 58% of all test data. Initially 26% of all ε are greater
than 1.5. 44% of ε corresponding to ρ > ρ̂ are greater than 1.5. Splitting
the dataset along ρ = ρ̂ results in a total energy RMSE of the ANI ensemble
prediction vs. reference DFT of 7.4 kcal/mol for all values ρ > ρ̂ and 1.5
kcal/mol for all values ρ ≤ ρ̂.

validation of the approach, the application of the concept is
shown to choose “bad” data by calculating the root mean
squared error (RMSE) of the potential energy (E) for the mean
prediction of the ensemble of ANI models vs. reference DFT
calculations. For all i molecular structures corresponding to
ρi > ρ̂, the E RMSE is 7.4 kcal/mol. On the other hand,
for all i molecular structures corresponding to ρi ≤ ρ̂, the
E RMSE is 1.5 kcal/mol. Therefore, in a statistical way, the
method chooses new data which are significantly higher in
error compared to GDB07to09 which are randomly generated
data.

With enough processing time on HPC resources, the
rate-limiting step of a QBC data selection cycle using ANI
potentials is the training of a new ensemble of ANI models.
Complete training of a single network takes 40 min per one
million data points on a single NVIDIA Tesla V100 GPU.
To reduce the number of models trained, QBC is used in
batches, searching configurational and conformational (chem-
ical) space for tens of thousands of new reference data points
that fail the agreement test. Finally, labels (reference potential
energies, EREF) are computed for all molecules in the selected
batch. This process may lead to some redundant data. How-
ever, the alternative, retraining a new model ensemble after
the addition of every new data point, will be impractically
slow.

B. Automatic chemical space sampling via
active learning

Figure 2 shows the overall workflow of the iterative AL
algorithm. The algorithm is initialized from an existing random
sampling generated dataset which may contain some amount
of redundant data. This initial dataset (ANI-1 in this work) is
then reduced through an iterative approach with the goal of
minimizing the overall dataset size, while not impacting pre-
dictive performance. The reduction algorithm is provided in
detail in Fig. 2(a). Figure 2(a) is initialized with a random sub-
sampled 2% of the original ANI-1 dataset. Then, iteratively,
the remaining data are tested, and 2% subsets of the fail cases
are added to the training set. Here, a fail case is defined as
|EANI − EDFT |/

√
N > 0.04 kcal/mol, where N is the number

of atoms in the molecule. The algorithm is terminated when
less than 5% of the data not yet added to the training set are
considered as fail cases. The remaining <5% high error data
are added to the final dataset. Hyper-parameters for the reduc-
tion algorithm can be tuned to further reduce redundancies in
the data, at the cost of more cycles, and therefore, longer run
time. The final reduced dataset is used to bootstrap the remain-
ing cycles of the active learning algorithm. If a dataset such
as ANI-1 is not available, this step can be replaced with the
generation of a small amount randomly sampled data across
many small, one to five C, N, O atoms, molecules. However,
this will lead to more active learning cycles before achieving
the desired result.

With the reduced dataset, the configurational search
[Fig. 2(b)] is initialized. The configurational search is car-
ried out by randomly sampling an external database of small
molecules [e.g., GDB-11,52,53 ChEMBL,54–56 algorithmically
generated dipeptides using RDKit (www.rdkit.org), automati-
cally generated dimers], embedding the molecule in 3D space

http://www.rdkit.org
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FIG. 2. Fully automated AL workflow for data generation. The algorithm contains 3 steps: (a) an existing dataset reduction, (b) a configurational search, and
(c) a conformational search.

with RDKit, and then optimizing the initial structure with the
UFF57 force field. See Sec. S1.2.3 of the supplementary mate-
rial for details on dimer generation. Next, ANI energies are
computed using an ensemble of five ANI models trained to
the current AL dataset (see Sec. II D for details on ensemble
prediction and training). Finally, ρi = σi/

√
N is computed.

Here, σi is the standard deviation of the ensemble’s energy
predictions for molecule i and N is the number of atoms in the
molecule. The test of whether to include the molecule corre-
sponding to a given ρi is ρi > ρ̂. The selection of ρ̂ is explained
in Sec. II A. All molecules that fail this test are included in the
new conformer sampling set. Any molecules added to the con-
former sampling set are geometry optimized with the correct
reference QM level of theory using tight SCF and optimization
convergence criteria.

With the configurational search complete, a conforma-
tional search cycle [Fig. 2(c)] is initialized, whereby the con-
former sampling set (a set of equilibrium molecules generated
in the configuration sampling step) is used to generate a set of
new non-equilibrium molecules (X̂). The conformers in X̂ are
generated via one of the three techniques which are designed
to sample various regions of chemical space. These sampling
techniques are listed as follows:

• Diverse normal mode sampling (DNMS). A version
of normal mode sampling (NMS) as presented in our
previous work,36 but with diversity selection used to
reduce redundant data and a bias toward near equi-
librium structures. A detailed description of DNMS is
provided in Sec. S1.2.1 of the supplementary material.

• K random trajectory sampling (RTS). We run short
(4 ps) molecular dynamics simulations, with an ensem-
ble of ANI networks, starting with random velocities
equal to 300 K and heated slowly to 1000 K over the

simulation time. During the simulation, each step QBC
is used to check whether the current structure fails the
agreement test. Once the simulation reaches a confor-
mation that fails the test, dynamics is terminated, and
new QM properties (e.g. energies) are generated and
included in the next AL cycles training set. This is
repeated to generate multiple new samples. A detailed
description of RTS is provided in Sec. S1.2.2 of the
supplementary material.

• Molecular dynamics generated dimer sampling.
Dimers are generated by randomly placing and orient-
ing molecules from the conformer sampling set into a
box with periodic boundary conditions. A molecular
dynamics simulation for 5 ps is then carried out on the
box. Every 50 steps, the box is fragmented into only
dimer pairs within the desired cutoff radius. Each new
dimer pair is tested using the QBC approach, failed tests
are kept as new data, and QM properties are generated
for inclusion in the training set. A detailed description
of the dimer sampling approach used here is provided
in Sec. S1.2.3 of the supplementary material.

After new data are selected, labels are computed and included
in the training set, and a new ensemble of ANI potentials is
trained. The conformational search cycles are repeated until
the model stops improving within the COMP6 benchmarks
(see details in Sec. II C). Finally, the entire cycle is restarted
from the configurational sampling step. This process is carried
out to produce a total of 37 cycles including many config-
urational and conformational searching cycles. Throughout
this work, we will refer to various intermediate active learned
ANI models as AL1 through AL6. The AL6 potential is
the final potential reached in this work and is referred to as
the ANI-1x potential which is provided for free in a python

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-033891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-033891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-033891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-033891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-033891
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package integrated with the atomic simulation environment
(ASE) package58 [https://github.com/isayev/ASE ANI]. The
first row in Table I provides information about the final dataset
from this work, labeled as ANI-1x. Notably, the size of the
ANI-1x dataset, at 5.5 × 106 structures, is 25% the size of the
dataset used in training the original ANI-1 potential (22 M).

C. Development of the COMP6 benchmark suite

To validate that the active learning process generates an
ANI potential which outperforms the original ANI-1 potential
and that each cycle’s resulting AL ANI potentials consis-
tently outperforms previous versions of AL ANI potentials,
we develop the COmprehensive Machine-learning Potential
(COMP6) benchmark. COMP6 is a benchmark suite com-
posed of five rigorous benchmarks that cover broad regions
of organic and bio-chemical space (for molecules contain-
ing C, N, O, and H atoms) and a sixth one built from the
existing S66x850 noncovalent interaction benchmark. The five
new benchmark sets are referred to as GDB7to9, GDB10to13,
Tripeptides, DrugBank, and ANI-MD. See Table I for a
detailed description. The benchmarks range from a mean
molecule size of 17 atoms to 75 atoms, with the largest
molecule being 312 atoms. Following is a description of
the methods used to develop each benchmark. Energies and
forces for all non-equilibrium molecular conformations pre-
sented have been calculated using the ωB97x59 density func-
tional with the 6-31G(d) basis set60 as implemented in the
Gaussian 0961 electronic structure software. Hirshfeld charges
and molecular dipoles are also included in the benchmark.
An analysis of these properties will be carried out in future
work.

• S66x8 benchmark. This dataset is built from the
original S66x850 benchmark for comparing accuracy
between different methods in describing noncovalent
interactions common in biological molecules. S66x8 is
developed from 66 dimeric systems involving hydro-
gen bonding, pi-pi stacking, London interactions, and
mixed influence interactions. While the keen reader
might question the use of this benchmark without dis-
persion corrections, since dispersion corrections such
as the D362 correction by Grimme et al. are a posteriori

additions to the produced energy, then a comparison
without the correction is equivalent to a comparison
with the same dispersion corrections applied to both
models.

• ANI Molecular Dynamics (ANI-MD) benchmark.
Forces from the ANI-1x potential are applied to run
1 ns of vacuum molecular dynamics with a 0.25 fs time
step at 300 K using the Langevin thermostat on 14 well-
known drug molecules and two small proteins. System
sizes range from 20 to 312 atoms. A random subsample
of 128 frames from each 1 ns trajectory is selected, and
reference DFT single point calculations are performed
to obtain QM energies and forces.

• GDB7to9 benchmark. The GDB-11 subsets contain-
ing 7 to 9 heavy atoms (C, N, and O) are subsampled
and randomly embedded in 3D space using RDKit
[www.rdkit.org]. A total of 1500 molecule SMILES
[opensmiles.org] strings are selected: 500 per 7, 8,
and 9 heavy-atom sets. The resulting structures are
optimized with tight convergence criteria, and nor-
mal modes/force constants are computed using the
reference DFT model. Finally, diverse normal mode
sampling (DNMS) is carried out to generate non-
equilibrium conformations.

• GDB10to13 benchmark. Subsamples of 500 SMILES
strings each from the 10 and 11 heavy-atom subsets
of GDB-1152,53 and 1000 SMILES strings from the 12
and 13 heavy-atom subsets of the GDB-1363 database
are randomly selected. DNMS is utilized to generate
random non-equilibrium conformations.

• Tripeptide benchmark. 248 random tripeptides contain-
ing H, C, N, and O are generated using FASTA strings
and randomly embedded in 3D space using RDKit. As
with GDB7to9, the molecules are optimized, and nor-
mal modes are computed. DNMS is utilized to generate
random non-equilibrium conformations.

• DrugBank benchmark. This benchmark is developed
through a subsampling of the DrugBank64 database
of real drug molecules. 837 SMILES strings con-
taining C, N, and O are randomly selected. Like the
GDB7to9 benchmark, the molecules are embedded in
3D space, structurally optimized, and normal modes

TABLE I. Description of the final active learning generated training dataset (ANI-1x) and all six COMP6 bench-
mark datasets. Mean relative energy range is the average range of relative energies for each set of conformers.
Energy prediction range is the real prediction range in the benchmark; this is the range that the ANI model predicts
energies in, i.e. energies with all per atom shifts removed. All energies are given in kcal/mol.

Molecule Configurations Atoms/molecule Mean relative Energy prediction
Purpose Dataset source (conformations) mean (std. dev.) energy range range

Training ANI-1x ANI-1 + AL 63 865 (5 496 771) 15 (5) 97.6 6 400

Testing

S66x8 S66x8 66 (528) 20 (7) 6.00 2 800
ANI-MD PDB 14 (1 791) 75 (72) 35.0 31 000
GDB7to9 GDB-11 1500 (36 000) 17 (3) 78.0 1 900
GDB10to13 GDB-13 2996 (47 670) 25 (4) 214.0 2 300
Tripeptides RDKit 248 (1 984) 53 (7) 102.0 4 200
DrugBank DrugBank 837 (13 379) 44 (20) 167.0 14 000

https://github.com/isayev/ASE_ANI
http://www.rdkit.org
http://opensmiles.org/
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are computed. DNMS is utilized to generate random
non-equilibrium conformations.

D. Error metrics for validation on the COMP6
benchmark suite

This work uses three error metrics for comparing different
versions of ANI potentials: potential energy (E), conformer
energy difference (∆E), and atomic force component errors
(F).

• Potential energy (E) error is a comparison of EM1
i , the

potential energies produced by model M1 for molecule
i, to EM2

i , the potential energies produced by model M2
for molecule i.

• The conformer energy difference (∆E) error is calcu-
lated per set of conformers. In the benchmark dataset,
K sets of conformers are supplied, one per molecular
configuration. For a given set of conformers k, the con-
former energy difference between conformers i and j
where for a given model M is obtained by comput-
ing ∆EM,k

ij = EM,k
i − EM,k

j . Finally, error is calculated

between ∆EM1,k
ij and ∆EM2,k

ij for all k, i, and j > i + 1
for models M1 and M2.

• The atomic force (F) error metric is a comparison
between the individual components (x, y, z) of each
atom’s force vector for all conformations included in
the given benchmark.

Comparisons are given in mean absolute error (MAE), and
root mean squared error (RMSE) throughout this article. The
comparison of MAE along with RMSE can give informa-
tion about outliers in a model’s predictions. For example, two
models can have the same MAE for a prediction on a given
benchmark, while the RMSE can be much higher for one
than the other. For this reason, it is good practice to provide
both MAE and RMSE when comparing two methods on some
benchmark.

E. Property prediction with an ensemble of ANI models

For energy and force predictions, we use the mean
prediction of an ensemble of ANI potentials. The concept
of using an ensemble mean for ML model prediction is
common practice in the ML community. Recently, it has
been adopted in the area of ML molecular property pre-
diction.31,37,65 All potentials used to generate results in this
work utilize the mean prediction for an ensemble of L = 5
ANI potentials trained to a 5-fold cross validation split of
the training dataset. The potential energy (E) is represented
by

E =
1
L

L∑
i=1

Ei,

where Ei is the potential energy prediction from each of an
ensemble’s L ANI models. Since the models are indepen-
dent, atomic forces for the ensemble can be derived as the
component-wise mean of the forces from the L individual ANI
models. The use of an ensemble as described above decreases
ANI vs. DFT E RMSE by 0.67 kcal/mol, ∆E RMSE by 0.68
kcal/mol, and F RMSE by 2.1 kcal/mol × Å�1 over the entire

COMP6 benchmark, with an error reduction of 17%, 19%, and
28%, respectively.

III. RESULTS AND DISCUSSIONS

The supplementary material provided with this work
contains various tables detailing the results obtained on the
COMP6 benchmark by the ANI potentials discussed in this
work. Tables S1–S7 of the supplementary material provide an
analysis of the ∆E, E, and F errors obtained for six subse-
quent active learned ANI potentials, AL1 through AL6, and
the original ANI-1 potential. Note that the publicly released
ANI-1x potential is the AL6 ANI potential. Tables S8–S10
of the supplementary material provide an analysis of the indi-
vidual ANI-MD trajectory results for the ANI-1x potential.
Table S9 of the supplementary material provides per atom
energy errors for the ANI-1x potential vs. DFT and shows
that the mean energy prediction RMSE per atom for all tra-
jectories is 0.05 kcal/mol per atom. This level of accuracy
is on par with single molecule or bulk metal ML potentials
as described in recent work by Behler.25 Table S11 of the
supplementary material provides details on the ANI mod-
els introduced in this work. Finally, Tables S12–S17 of the
supplementary material provide errors for COMP6 consid-
ering conformers within select energy ranges for the ANI-
1x potential. These tables show much lower errors for con-
formations which are thermally accessible to room temper-
ature molecular dynamics simulations. As shown in Table
S17 of the supplementary material, thermally accessible con-
formations (within 50 kcal/mol) have an E MAE/RMSE
of 0.064/0.105 kcal/mol per atom and ∆E MAE/RMSE of
0.049/0.070 kcal/mol per atom over the complete COMP6
benchmark.

Figure 3 provides evidence of the ANI-1x force prediction
capabilities. Also, most tables in the supplementary material
further establish the accuracy of ANI potential force predic-
tion on the COMP6 benchmark suite. By construction, ANI
potentials provide analytic and energy-conservative forces, a
requirement for molecular dynamics simulations. It is note-
worthy that force training, which can be computationally
expensive, is not required to achieve these force prediction
results. The forces compared in the DFT correlation density
plots in Fig. 3 are from all trajectories combined in the COMP6
ANI-MD benchmark. We compare the same figures for ANI-
1x (left), DFTB (center), and PM6 (right). DFTB and PM6
are included as a baseline for the comparison. The ANI-MD
benchmark is a rigorous test case for any ML potential’s force
prediction because the molecules supplied in the dataset range
from 20 to 312 atoms, with an average size of 75 atoms. A
breakdown of the errors for each trajectory in the ANI-MD
benchmark is supplied in Tables S8–S10 of the supplementary
material.

The closest comparison in the literature can be found in
recent work on a system specific ML potential for an ala-
nine tripeptide where a force RMSE of 3.4 kcal/mol × Å�1

was achieved with test data from a 350 K MD trajectory.37

The force error from this work was obtained by training
directly to energies and analytic forces from fragments of the
molecule being tested. In the case of the ANI-1x potential,
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FIG. 3. Force correlation plots comparing ANI-1x, DFTB (3ob-3-1 parameter set for bio-molecules), and PM6 to DFT reference calculations are provided from
left to right, respectively, for the complete ANI-MD benchmark. Molecules in the ANI-MD benchmark are composed of a mean of 75 atoms with the largest
being Trp-cage (1L2Y), a 20-residue (312-atom) protein. DFTB and PM6 are provided as a baseline of comparison. Mean absolute errors (MAEs) and root mean
squared errors (RMSEs) are provided in the bottom right of each figure. The color bar scale is the same for all figures allowing a proper density comparison.

which was used to predict the forces for the creation of the
ANI-MD benchmark, a MAE/RMSE of 2.7/4.2 kcal/mol×Å�1

is obtained vs. a posteriori DFT calculations on 128 ran-
dom frames from each of the 14 molecules’ 1 ns molecu-
lar dynamics trajectories. More impressive, F MAE/RMSE
for the neutralized 20-residue Trp-cage (1L2Y) and 10-
residue chignolin (1UAO) proteins are 3.1/4.6 kcal/mol ×Å�1

and 3.3/4.7 kcal/mol×Å�1, respectively. ANI-1x also exhibits
a force MAE/RMSE of 2.3/3.3 kcal/mol × Å�1 within
the energy range of 50 kcal/mol on the tripeptide bench-
mark (non-equilibrium conformations from 248 randomly
generated tripeptides) from COMP6 (see Table S14 of the
supplementary material). 50 kcal/mol is roughly the acces-
sible energy range of 350 K molecular dynamics simula-
tions. Finally, considering the ANI-1x potential was utilized
to generate 1 ns of stable 300 K molecular dynamics tra-
jectories (for building the ANI-MD benchmark) shows the
applicability of ANI predicted forces in molecular dynam-
ics simulation. All the previously mentioned results from the
ANI-1x potential were obtained without the need of direct
force training.

Figure 4 provides a plot of E RMSE achieved on COMP6
vs. dataset size for various active learned datasets and the orig-
inal ANI-1 dataset. With only 2 × 106 data points, the active
learned ANI potentials already outperform the original ANI-1
potential across the entire COMP6 benchmark. Once the active
learned ANI potential reaches 5.5 × 106 data points, it five
times outperforms ANI-1 and is approaching chemical accu-
racy from the reference DFT calculations. In the new COMP6
benchmark, diversity selection in the normal mode sampling
helps ensure a more uniform sampling of energy states within
the energy range being fit to and tested within. Therefore, gen-
eral errors on COMP6 vs. the ANI-1 potential’s original results
are expected to be much higher on this complex benchmark
than the results published on the less rigorous test sets from
the original ANI-1 work. Table I provides the average energy
ranges for each benchmark in COMP6 and the final training
set (ANI-1x), as well as the energy prediction (atomization
energy) range.

Most benchmarks in COMP6 (all but the ANI-MD bench-
mark) were used during the active learning process to validate

the improvement in accuracy and universality of new active
learned ANI models. Figure 5 provides the learning curves for
six intermediate active learned ANI potentials on each bench-
mark in COMP6. Table S11 of the supplementary material
provides information of the chemical space sampled in each
of these datasets. The horizontal dashed lines in Fig. 5 rep-
resent the original ANI-1 ensemble predictions on each of
the benchmarks for the property corresponding to its color.
AL1 is the ANI potential used to initialize the active learn-
ing process. It was trained to a reduced [Fig. 2(a)] version of
the one through six heavy atom subsets of the ANI-1 dataset.
AL2 through AL6 are successive versions of the active learned
ANI potentials. More details for each active learning cycle

FIG. 4. Comparison of potential energy (E) RMSE obtained on the entire
COMP6 benchmark vs. training set size (total molecular conformation
included in the training set). The x-axis represents the progression of the
active learning process. Plot points are obtained by ANI potentials (blue)
trained to various versions of the active learned dataset and an ANI potential
(red) trained on the original ANI-1 dataset.
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FIG. 5. Individual COMP6 benchmark learning curves for successive versions of the active learned potentials. RMSE is provided for three properties: potential
energy (E), conformer energy differences (∆E), and force components (F). The error bars on the solid lines represent one standard deviation of each of the five
ANI models in the ensemble used to make the mean prediction. The horizontal dashed lines represent the mean prediction of ANI-1.

shown in Fig. 5 is provided in Table S11 of the supplementary
material. During the active learning process, small molecules
(one to six C, N, and O atoms) were initially sampled, with
the size of the molecules sampled gradually increased as the
active learning process continued. AL3 is where the AL models
begin to statistically match or outperform the original ANI-1
model in most metrics. It is notable that AL3 accomplished
this feat, while only having sampled 1.8 × 106 conformations
from molecules with up to 7-heavy atoms from GDB-11. This
shows that the active learning techniques employed in this
work sample chemical space far better than random sampling
techniques. Especially considering the ANI-1 dataset includes
22 × 106 conformations from larger, up to 8-heavy atom,
molecules.

Eventually, between the AL4 and AL5 steps, amino acids,
generated dipeptides, generated small molecule dimers, and
small ChEMBL molecules were added to the sampling set.
This is apparent from the large drop in error between AL4 and
AL5 for the DrugBank, Tripeptides, and S66x8 benchmarks.
Active learning sampling was also driven into the GDB-11’s
9-heavy atom subset for sampling during the production of
AL6. Tables S2–S7 of the supplementary material provide all
data shown in Fig. 5 along with Table S1 of the supplementary
material which describes the obtained errors across all bench-
marks combined. The latest ANI potential, ANI-1x (shown
as AL6), achieves remarkable property prediction on the com-
plete benchmark with errors (MAE/RMSE) of 1.9/3.4 kcal/mol
(E), 1.8/3.0 kcal/mol (∆E), and 3.1/5.3 kcal/mol × Å�1 (F)
within the full energy range of the benchmark.

In general, as each ANI potential’s fitness improves in
Fig. 5, the standard deviation (shown as vertical error bars)
of each property prediction for a given ensemble decreases as

well. This is a sign that each model in the ensemble is obtain-
ing enough chemical interaction information through active
learning that the models begin agreeing on their predictions
for these larger systems. By the final iteration of the active
learning cycles, an active learned dataset of 5.5 M data points
is used in training the ANI-1x potential. The ANI-1x potential
outperforms the ANI-1 potential on all properties across all
benchmarks. Furthermore, the ANI-1x dataset is 25% the size
of the original ANI-1 dataset which contains a total of 22 M
data points.

There has been recent discussion in the literature (Herr
et al.66) questioning the validity of using data generated from
a single sampling technique to successfully extrapolate to out-
of-sample data. We believe such a critique is well placed and
has a particular impact when defining system-specific poten-
tials or other models of limited scope. In the present work, we
combined several sampling techniques, attempting to cover all
relevant regions of conformational and configurational (chem-
ical) space. We test model performance on a separate and very
diverse set of systems, showing not only accuracy, but exten-
sibility to molecules and conformations much larger than the
training set. Accuracies on benchmarks generated with dif-
ferent sampling techniques are comparably accurate: On the
ANI-MD benchmark (mean energy range of 35 kcal/mol), we
achieve force MAE of 2.49 kcal/mol × Å�1 (Table S10 of the
supplementary material). On the overall COMP6 benchmark
restricted to the energy range of 50 kcal/mol, we achieve a
force MAE of 2.48 kcal/mol × Å�1 (Table S12 of the sup-
plementary material). The fact that MD-sampled test points
show quite similar error to the mostly DNM-sampled bench-
mark is evidence that the active learning procedure with hybrid
sampling methods produces a model that is robust.
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IV. CONCLUSIONS

In pursuit of automated dataset generation for the devel-
opment of universal machine learned potentials, we introduce
automatic active learning techniques for sampling sparsely
explored regions of chemical space. The algorithm begins
with the reduction of an existing dataset to remove redun-
dant data without loss of accuracy. New conformations of
molecules are generated through normal mode sampling,
molecular dynamics sampling, and random dimer sampling.
Periodically the algorithm samples new molecular configu-
rations from a variety of sources to diversify its exploration
of chemical space. The result is a new potential (ANI-1x)
developed though successive generations of the active learn-
ing process. The ANI-1x potential is packaged in a user-
friendly Python library, which is publicly available on GitHub
[https://github.com/isayev/ASE ANI]. We also introduce the
COMP6 benchmark for monitoring the progress of active
learning cycles and for comparison to future universal poten-
tials. The ANI-1x potential achieves errors (MAE/RMSE)
of 1.6/3.0 kcal/mol (E), 1.4/2.3 kcal/mol (∆E), and 2.7/4.5
kcal/mol×Å�1 (F) when testing on points within 100 kcal/mol
of the energy minima for the complete COMP6 benchmark.

The COMP6 benchmark suite consists of six diverse
benchmark test sets. The COMP6 benchmark suite is
made publicly available for comparing future ML potentials
[https://github.com/isayev/COMP6]. As provided, properties
are calculated using the ωB97x density functional with the
6-31G(d) basis set; however, it could be recomputed using the
desired quantum level of theory. For complete transparency,
we provide the exact error metrics used to measure accuracy
on the COMP6 benchmark suite. It is our hope that the COMP6
benchmark will provide the universal ML potential develop-
ment community with a rigorous benchmark for comparison
of ML potential methods on organic molecules in the extrap-
olative regime. The COMP6 benchmark suite constitutes a
first benchmark of its kind for the comparison of univer-
sal ML potentials in this rapidly changing and ever-growing
field.

The ANI-1x potential was trained to less than 100 confor-
mations per molecular configuration in its training set, com-
pared to 400 for the ANI-1 dataset. The accuracy of the ANI-1x
potential is on par with the best single molecule or mate-
rial ML potentials, while most single molecule parametrized
ML potentials require many hundreds to thousands of con-
formations to parametrize a single system. This further val-
idates the configurational and conformational big data sam-
pling philosophy introduced in the original ANI-1 work. Since
the mean molecule size in the ANI-1x active learning train-
ing set is only 15 total atoms (8 heavy atoms), the gen-
eration of more accurate post-Hartree-Fock datasets is now
feasible.

The high-level of universal accuracy achieved by the
ANI-1x potential can be attributed to the capacity of neural
networks to learn low level interactions from properly devel-
oped descriptors. We hypothesize the use of spatially localized
descriptors (i.e., the atomic environment vector34 with modi-
fied angular symmetry function) within the cutoff to contribute
greatly to this ability. This contrasts with descriptor sets that

represent the entire chemical environment at once, and thus,
interactions must be inferred through the entire set of non-local
descriptors by the ML model.

Given the prospects of high-throughput experiments,
robotic synthesis, and intelligent software, we are currently
witnessing a transformation of science into a more data-driven
automated discovery. The envisioned chemical AI imitates
human decision making by transferring responsibility to an
objective machine learning system. If successful overall, the
approach will revolutionize the way computational methods
are developed. As one possible building block to construct
such AI, we introduced a fully automated workflow to select
and calculate QM training data for accurate, transferable, and
extensible ML potentials. These techniques can aid in the gen-
eration of universal potentials for a wide variety of current and
future ML models.

SUPPLEMENTARY MATERIAL

See supplementary material for complete technical details
about training of ensemble of neural networks (Sec. S1.1)
and sampling methods (Sec. S1.2). Tables S1–S10 list indi-
vidual and complete COMP6 benchmarks. Table S11 lists
details about ANI potential at various AL cycles. Tables S12–
S17 list COMP6 benchmarks for ANI-1x within select energy
ranges.
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