The Data Science Blog:

Machine Learning, Deep Learning, Data Science

An Intuitive Explanation of Convolutional Neural Networks

Posted on August 11, 2016 by ujjwalkarn
Available at http://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

What are Convolutional Neural Networks and why are they important?

Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks
(https:/ /ujjwalkarn.me/2016/08/09/ quick-intro-neural-networks/) that have proven very
effective in areas such as image recognition and classification. ConvNets have been successful in
identifying faces, objects and traffic signs apart from powering vision in robots and self driving cars.

]

4
:

J
—Q’fug’
==

>
8
r Y
s B : e s
a soccer player is kicking a soccer ball a street sign on a pole in front of a building a couple of g.raffe standlng next to each
other

Figure 1: Source [1 (http://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html)]

In Figure 1 above, a ConvNet is able to recognize scenes and the system is able to suggest relevant
captions (“a soccer player is kicking a soccer ball”) while Figure 2 shows an example of ConvNets
being used for recognizing everyday objects, humans and animals. Lately, ConvNets have been
effective in several Natural Language Processing tasks (such as sentence classification) as well.

Figure 2: Source [2 (https://arxiv.org/pdf/1506.01497v3.pdf)]

ConvNets, therefore, are an important tool for most machine learning practitioners today. However,
understanding ConvNets and learning to use them for the first time can sometimes be an
intimidating experience. The primary purpose of this blog post is to develop an understanding of
how Convolutional Neural Networks work on images.

If you are new to neural networks in general, I would recommend reading this short tutorial on Multi
Layer Perceptrons (https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/) to get an
idea about how they work, before proceeding. Multi Layer Perceptrons are referred to as “Fully
Connected Layers” in this post.

The LeNet Architecture (1990s)

LeNet was one of the very first convolutional neural networks which helped propel the field of Deep
Learning. This pioneering work by Yann LeCun was named LeNet5
(http:/ /yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf) after many previous successful iterations
since the year 1988 [3 (https://medium.com/towards-data-science/neural-network-architectures-
156e5bad51ba)]. At that time the LeNet architecture was used mainly for character recognition tasks
such as reading zip codes, digits, etc.

Below, we will develop an intuition of how the LeNet architecture learns to recognize images. There
have been several new architectures proposed in the recent years which are improvements over the
LeNet, but they all use the main concepts from the LeNet and are relatively easier to understand if
you have a clear understanding of the former.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
rﬁi ”
— L |
L D F e e 4

Figure 3: A simple ConvNet. Source [5 (https://www.clarifai.com/technology)]

The Convolutional Neural Network in Figure 3 is similar in architecture to the original LeNet and
classifies an input image into four categories: dog, cat, boat or bird (the original LeNet was used
mainly for character recognition tasks). As evident from the figure above, on receiving a boat image
as input, the network correctly assigns the highest probability for boat (0.94) among all
four categories. The sum of all probabilities in the output layer should be one (explained later in this

post).
There are four main operations in the ConvNet shown in Figure 3 above:

1. Convolution

2. Non Linearity (ReLU)

3. Pooling or Sub Sampling

4. Classification (Fully Connected Layer)

These operations are the basic building blocks of every Convolutional Neural Network, so
understanding how these work is an important step to developing a sound understanding of
ConvNets. We will try to understand the intuition behind each of these operations below.

An Image is a matrix of pixel values

Essentially, every image can be represented as a matrix of pixel values.

Figure 4: Every image is a matrix of pixel values. Source [6
(https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-
neural-networks-f40359318721)]

Channel (https:/ /en.wikipedia.org/wiki/Channel_(digital_image)) is a conventional term used to
refer to a certain component of an image. An image from a standard digital camera will have three
channels — red, green and blue — you can imagine those as three 2d-matrices stacked over each other
(one for each color), each having pixel values in the range 0 to 255.

A grayscale (https://en.wikipedia.org/wiki/Grayscale) image, on the other hand, has just one
channel. For the purpose of this post, we will only consider grayscale images, so we will have a single
2d matrix representing an image. The value of each pixel in the matrix will range from 0 to 255 —
zero indicating black and 255 indicating white.

The Convolution Step

ConvNets derive their name from the “convolution” operator
(http:/ /en.wikipedia.org/wiki/Convolution). The primary purpose of Convolution in case of a
ConvNet is to extract features from the input image. Convolution preserves the spatial relationship
between pixels by learning image features using small squares of input data. We will not go into the
mathematical details of Convolution here, but will try to understand how it works over images.

As we discussed above, every image can be considered as a matrix of pixel values. Consider a 5 x 5
image whose pixel values are only 0 and 1 (note that for a grayscale image, pixel values range from 0
to 255, the green matrix below is a special case where pixel values are only 0 and 1):

(=2 = I = T = I
ook |k
[I = I N TS SN
Olr| k| k| O
OO0 | = | 0|0

Also, consider another 3 x 3 matrix as shown below:

0

0|1

Then, the Convolution of the 5 x 5 image and the 3 x 3 matrix can be computed as shown in the
animation in Figure 5 below:

1/1(1(0|0
01,110 4(3|4
0,/0/1/1]|1 2
ojof1[1]0
oO(1(1|0]|0
Image Convolved
Feature

Figure 5: The Convolution operation. The output matrix is called Convolved Feature or Feature Map.
Source [7 (http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution)]

Take a moment to understand how the computation above is being done. We slide the orange matrix
over our original image (green) by 1 pixel (also called ‘stride’) and for every position, we compute
element wise multiplication (between the two matrices) and add the multiplication outputs to get the
final integer which forms a single element of the output matrix (pink). Note that the 3x3 matrix
“sees” only a part of the input image in each stride.

In CNN terminology, the 3x3 matrix is called a ‘filter’ or ‘kernel’ or ‘feature detector’ and the matrix
formed by sliding the filter over the image and computing the dot product is called the ‘Convolved
Feature’ or ‘Activation Map’ or the ‘Feature Map’. It is important to note that filters acts as feature
detectors from the original input image.

It is evident from the animation above that different values of the filter matrix will produce different
Feature Maps for the same input image. As an example, consider the following input image:

—_—

In the table below, we can see the effects of convolution of the above image with different filters. As
shown, we can perform operations such as Edge Detection, Sharpen and Blur just by changing the
numeric values of our filter matrix before the convolution operation [8
(https:/ /en.wikipedia.org/ wiki/Kernel_(image_processing))] — this means that different filters can
detect different features from an image, for example edges, curves etc. More such examples are
available in Section 8.2.4 here (http:/ / docs.gimp.org/en/ plug-in-convmatrix.html).

Operation Filter Convolved
Image

(==)

Identity l:

o = O

| — |

|

_ O

o o o
|

- O

Le——e—

0 1 0
Edge detection 1 -4 1
0 1
[—1 —1 —1]
-1 8 -1
-1 -1 -1
[0 -1 0]
Sharpen -1 5 -1
| 0 -1 0]
Box bl 1 e
ox blur I
(normalized) 9
1 11
1 2 1
Gaussian blur 1
(f— 6 2 4 2
approximation,
P 121

Another good way to understand the Convolution operation is by looking at the animation in Figure
6 below:

Figure 6: The Convolution Operation. Source [9
(http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpri2/)]

A filter (with red outline) slides over the input image (convolution operation) to produce a feature
map. The convolution of another filter (with the green outline), over the same image gives a different
feature map as shown. It is important to note that the Convolution operation captures the local
dependencies in the original image. Also notice how these two different filters generate different
feature maps from the same original image. Remember that the image and the two filters above are
just numeric matrices as we have discussed above.

In practice, a CNN learns the values of these filters on its own during the training process (although
we still need to specify parameters such as number of filters, filter size, architecture of the network
etc. before the training process). The more number of filters we have, the more image features get
extracted and the better our network becomes at recognizing patterns in unseen images.

The size of the Feature Map (Convolved Feature) is controlled by three parameters [4
(http:/ / cs231n.github.io/ convolutional-networks/)] that we need to decide before the convolution
step is performed:

o Depth: Depth corresponds to the number of filters we use for the convolution operation. In the
network shown in Figure 7, we are performing convolution of the original boat image using
three distinct filters, thus producing three different feature maps as shown. You can think of these
three feature maps as stacked 2d matrices, so, the “depth’ of the feature map would be three.

Feature Map having
depth of 3 (since 3
filters have been used)

Convolution
Operation

Jigure 7

o Stride: Stride is the number of pixels by which we slide our filter matrix over the input matrix.
When the stride is 1 then we move the filters one pixel at a time. When the stride is 2, then the
filters jump 2 pixels at a time as we slide them around. Having a larger stride will produce smaller
feature maps.

o Zero-padding: Sometimes, it is convenient to pad the input matrix with zeros around the border,
so that we can apply the filter to bordering elements of our input image matrix. A nice feature of
zero padding is that it allows us to control the size of the feature maps. Adding zero-padding is
also called wide convolution, and not using zero-padding would be a narrow convolution. This has
been explained clearly in [14 (http://www.wildml.com/2015/11/understanding-convolutional-
neural-networks-for-nlp/)].

Introducing Non Linearity (ReLU)

An additional operation called ReLU has been used after every Convolution operation in Figure
3 above. ReLU stands for Rectified Linear Unit and is a non-linear operation. Its output is given by:

10}
8f
6F

Output = Max(zero, Input)

4t

Figure 8: the ReLU operation

ReLU is an element wise operation (applied per pixel) and replaces all negative pixel values in the
feature map by zero. The purpose of ReLU is to introduce non-linearity in our ConvNet, since most of
the real-world data we would want our ConvNet to learn would be non-linear (Convolution is a
linear operation — element wise matrix multiplication and addition, so we account for non-linearity
by introducing a non-linear function like ReLU).

The ReLU operation can be understood clearly from Figure 9 below. It shows the ReLU operation
applied to one of the feature maps obtained in Figure 6 above. The output feature map here is also
referred to as the ‘Rectified’ feature map.

Input Feature Map Rectified Feature Map

e

W
|

AR

- s il
B >

1
white ='positive values Only non-negative value§

Figure 9: ReLLU operation. Source [10
(http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf)]

Other non linear functions such as tanh or sigmoid can also be used instead of ReLU, but ReLU has
been found to perform better in most situations.

The Pooling Step

Spatial Pooling (also called subsampling or downsampling) reduces the dimensionality of each
feature map but retains the most important information. Spatial Pooling can be of different types:
Max, Average, Sum etc.

In case of Max Pooling, we define a spatial neighborhood (for example, a 2x2 window) and take
the largest element from the rectified feature map within that window. Instead of taking the largest
element we could also take the average (Average Pooling) or sum of all elements in that window. In
practice, Max Pooling has been shown to work better.

Figure 10 shows an example of Max Pooling operation on a Rectified Feature map (obtained after
convolution + ReLU operation) by using a 2x2 window.

Max(1,1,5,6)=6

A L_’1\\ 2| 4
< / 4 max pool with 2x2 filters Bl 5]
d stride 2
\5\/6/ Z | 8 and stride
3 | 2 B 3 =
1 | 2 B
y

Rectified Feature Map

Figure 10: Max Pooling. Source [4 (http://cs231n.github.io/convolutional-networks/)]

We slide our 2 x 2 window by 2 cells (also called ‘stride’) and take the maximum value in each region.
As shown in Figure 10, this reduces the dimensionality of our feature map.

In the network shown in Figure 11, pooling operation is applied separately to each feature map
(notice that, due to this, we get three output maps from three input maps).

Pooling applied

Convolution separately on each
using 3 filters feature map
+ RelU
1
)
Rectified
Input Image Feature Maps
(g
THrheew :]
LS . ==

Figure 11: Pooling applied to Rectified Feature Maps

Figure 12 shows the effect of Pooling on the Rectified Feature Map we received after the ReLU
operation in Figure 9 above.

Pooling

Sum

Only non-negative valy

Rectified Feature Map

Figure 12: Pooling. Source [10 (http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf)]

The function of Pooling is to progressively reduce the spatial size of the input representation [4
(http:/ / cs231n.github.io/ convolutional-networks/)]. In particular, pooling

o makes the input representations (feature dimension) smaller and more manageable

o reduces the number of parameters and computations in the network, therefore, controlling
overfitting (https:/ /en.wikipedia.org / wiki/Overfitting) [4
(http:/ / cs231n.github.io/ convolutional-networks /)]

o makes the network invariant to small transformations, distortions and translations in the input
image (a small distortion in input will not change the output of Pooling — since we take the
maximum / average value in a local neighborhood).

o helps us arrive at an almost scale invariant representation of our image (the exact term is
“equivariant”). This is very powerful since we can detect objects in an image no matter where
they are located (read [18 (https://github.com/rasbt/python-machine-learning-

book /blob/master/faq/ difference-deep-and-normal-learning.md) and [19
(https:/ / www.quora.com / How-is-a-convolutional-neural-network-able-to-learn-invariant-
features)] for details).

Story so far
1st 1st 2nd 2nd
Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

1
1

dog (0.01)

cat (0.04)
boat (0.94)
bird (0.02)

Figure 13

So far we have seen how Convolution, ReLU and Pooling work. It is important to understand that
these layers are the basic building blocks of any CNN. As shown in Figure 13, we have two sets of
Convolution, ReLU & Pooling layers — the 2nd Convolution layer performs convolution on the output
of the first Pooling Layer using six filters to produce a total of six feature maps. ReLU is then applied
individually on all of these six feature maps. We then perform Max Pooling operation separately on
each of the six rectified feature maps.

Together these layers extract the useful features from the images, introduce non-linearity in our
network and reduce feature dimension while aiming to make the features somewhat equivariant to
scale and translation [18 (https:/ / github.com/rasbt/ python-machine-learning-
book /blob/master/ faq/ difference-deep-and-normal-learning.md)].

The output of the 2nd Pooling Layer acts as an input to the Fully Connected Layer, which we will
discuss in the next section.

Fully Connected Layer

The Fully Connected layer is a traditional Multi Layer Perceptron that uses a softmax activation
function in the output layer (other classifiers like SVM can also be used, but will stick to softmax in
this post). The term “Fully Connected” implies that every neuron in the previous layer is connected to

every neuron on the next layer I recommend reading this post
(https:/ /ujjwalkarn.me/2016/08 /09 / quick-intro-neural-networks/) if you are unfamiliar with Multi
Layer Perceptrons.

The output from the convolutional and pooling layers represent high-level features of the input
image. The purpose of the Fully Connected layer is to use these features for classifying the input
image into various classes based on the training dataset. For example, the image classification task we
set out to perform has four possible outputs as shown in Figure 14 below (note that Figure 14 does
not show connections between the nodes in the fully connected layer)

Connections and weights
not shown here

- - - . dog (0.01)
cat (0.04) 4 possible outputs
boat (0.94)
bird (0.02)

Figure 14: Fully Connected Layer -each node is connected to every other node in the adjacent layer

Apart from classification, adding a fully-connected layer is also a (usually) cheap way of learning
non-linear combinations of these features. Most of the features from convolutional and pooling layers
may be good for the classification task, but combinations of those features might be even better [11
(https:/ / stats.stackexchange.com / questions /182102 / what-do-the-fully-connected-layers-do-in-
cnns/182122#182122)].

The sum of output probabilities from the Fully Connected Layer is 1. This is ensured by using the
Softmax (http:/ /cs231n.github.io/linear-classify / #softmax) as the activation function in the output
layer of the Fully Connected Layer. The Softmax function takes a vector of arbitrary real-valued
scores and squashes it to a vector of values between zero and one that sum to one.

Putting it all together — Training using Backpropagation

As discussed above, the Convolution + Pooling layers act as Feature Extractors from the input image
while Fully Connected layer acts as a classifier.

Note that in Figure 15 below, since the input image is a boat, the target probability is 1 for Boat class
and 0 for other three classes, i.e.

o Input Image = Boat
o Target Vector = [0, 0, 1, 0]

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

+ RelU + RelU Connected Connected
1)
Dog (0)
Cat (0)
Boat (1)
r—r< Bird (0)
l-—I—<
Eiotal l: %1 target — output)2
Feature Extraction from Image Classification

Figure 15: Training the ConvNet

The overall training process of the Convolution Network may be summarized as below:

o Stepl: We initialize all filters and parameters / weights with random values

o Step2: The network takes a training image as input, goes through the forward propagation step
(convolution, ReLU and pooling operations along with forward propagation in the Fully

Connected layer) and finds the output probabilities for each class.
o Lets say the output probabilities for the boat image above are [0.2, 0.4, 0.1, 0.3]

o Since weights are randomly assigned for the first training example, output probabilities are

also random.

o Step3: Calculate the total error at the output layer (summation over all 4 classes)
o Total Error =), % (target probability — output probability) 2

o Step4: Use Backpropagation to calculate the gradients of the error with respect to all weights in the
network and use gradient descent to update all filter values / weights and parameter values to

minimize the output error.
o The weights are adjusted in proportion to their contribution to the total error.

o When the same image is input again, output probabilities might now be [0.1, 0.1, 0.7, 0.1],

which is closer to the target vector [0, 0, 1, 0].

o This means that the network has learnt to classify this particular image correctly by

adjusting its weights / filters such that the output error is reduced.

o Parameters like number of filters, filter sizes, architecture of the network etc. have all been
fixed before Step 1 and do not change during training process — only the values of the filter

matrix and connection weights get updated.

o Step5: Repeat steps 2-4 with all images in the training set.

The above steps train the ConvNet — this essentially means that all the weights and parameters of

the ConvNet have now been optimized to correctly classify images from the training set.

When a new (unseen) image is input into the ConvNet, the network would go through the forward
propagation step and output a probability for each class (for a new image, the output probabilities are
calculated using the weights which have been optimized to correctly classify all the previous training
examples). If our training set is large enough, the network will (hopefully) generalize well to new
images and classify them into correct categories.

Note 1: The steps above have been oversimplified and mathematical details have been avoided to
provide intuition into the training process. See [4 (http://cs231n.github.io/convolutional-
networks/)] and [12 (http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-
networks/)] for a mathematical formulation and thorough understanding.

Note 2: In the example above we used two sets of alternating Convolution and Pooling layers. Please
note however, that these operations can be repeated any number of times in a single ConvNet. In fact,
some of the best performing ConvNets today have tens of Convolution and Pooling layers! Also, it is
not necessary to have a Pooling layer after every Convolutional Layer. As can be seen in the Figure 16
below, we can have multiple Convolution + ReLU operations in succession before having a Pooling
operation. Also notice how each layer of the ConvNet is visualized in the Figure 16 below.

RELU RELU RELU RELU RELU RELU

CO¢NV lCClNVl CONV lcowvl CO¢NV lowl

:
=

AT B

airplane
ship

horse

=]
—
=
=
=
=
=
=

LA EETETYR AN

VL VRV R PR

YW

Figure 16: Source [4 (http://cs231n.github.io/convolutional-networks/)]

Visualizing Convolutional Neural Networks

In general, the more convolution steps we have, the more complicated features our network will be
able to learn to recognize. For example, in Image Classification a ConvNet may learn to detect edges
from raw pixels in the first layer, then use the edges to detect simple shapes in the second layer, and
then use these shapes to deter higher-level features, such as facial shapes in higher layers [14
(http:/ /www.wildml.com/2015/11 /understanding-convolutional-neural-networks-for-nlp/)]. ~ This
is demonstrated in Figure 17 below — these features were learnt using a Convolutional Deep Belief
Network (http:/ /web.eecs.umich.edu/~honglak /icml09-

ConvolutionalDeepBeliefNetworks.pdf) and the figure is included here just for demonstrating the
idea (this is only an example: real life convolution filters may detect objects that have no meaning to
humans).

Layer 2

Layer 1

Figure 17: Learned features from a Convolutional Deep Belief Network. Source [21
(http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf)]

Adam Harley (http:/ /scs.ryerson.ca/~aharley/) created amazing visualizations of a Convolutional
Neural Network trained on the MNIST Database of handwritten digits [13
(http:/ /scs.ryerson.ca/ ~aharley/vis/harley_vis_isvcl5.pdf)]. I highly recommend playing around
with it (http://scs.ryerson.ca/~aharley/vis/conv/flat.html) to understand details of how a CNN
works.

We will see below how the network works for an input ‘8’. Note that the visualization in Figure 18
does not show the ReLU operation separately.

Output
Layer

FC
Layer 2

FC

Pooling
Layer 2

= Convolution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer

Figure 18: Visualizing a ConvNet trained on handwritten digits. Source [13
(http://scs.ryerson.ca/~aharley/vis/conv/flat.html)]

The input image contains 1024 pixels (32 x 32 image) and the first Convolution layer (Convolution
Layer 1) is formed by convolution of six unique 5 x 5 (stride 1) filters with the input image. As seen,
using six different filters produces a feature map of depth six.

Convolutional Layer 1 is followed by Pooling Layer 1 that does 2 x 2 max pooling (with stride 2)
separately over the six feature maps in Convolution Layer 1. You can move your mouse pointer over
any pixel in the Pooling Layer and observe the 2 x 2 grid it forms in the previous Convolution Layer
(demonstrated in Figure 19). You'll notice that the pixel having the maximum value (the brightest
one) in the 2 x 2 grid makes it to the Pooling layer.

Pooling

Convolution

Figure 19: Visualizing the Pooling Operation. Source [13
(http://scs.ryerson.ca/~aharley/vis/conv/flat.html)]

Pooling Layer 1 is followed by sixteen 5 x 5 (stride 1) convolutional filters that perform the
convolution operation. This is followed by Pooling Layer 2 that does 2 x 2 max pooling (with stride
2). These two layers use the same concepts as described above.

We then have three fully-connected (FC) layers. There are:

o 120 neurons in the first FC layer
o 100 neurons in the second FC layer
o 10 neurons in the third FC layer corresponding to the 10 digits — also called the Output layer

Notice how in Figure 20, each of the 10 nodes in the output layer are connected to all 100 nodes in the
2nd Fully Connected layer (hence the name Fully Connected).

Also, note how the only bright node in the Output Layer corresponds to ‘8" — this means that the
network correctly classifies our handwritten digit (brighter node denotes that the output from
it is higher, i.e. 8 has the highest probability among all other digits).

Output Layer

FC Layer 2

ame N ER En e R __ B AN EEs n [11 1} n n » n B AN EEE Ee L1} L1} n FC Layefl

Figure 20: Visualizing the Filly Connected Layers. Source [13
(http://scs.ryerson.ca/~aharley/vis/conv/flat.html)]

The 3d version of the same visualization is available from
(http:/ /scs.ryerson.ca/ ~aharley/vis/conv/).

Other ConvNet Architectures

Convolutional Neural Networks have been around since early 1990s. We discussed the LeNet
above which was one of the very first convolutional neural networks. Some other influential
architectures are listed below [3 (https://medium.com/towards-data-science/neural-network-
architectures-156e5bad51ba)] [4 (http:/ /cs231n.github.io/ convolutional-networks/)].

o LeNet (1990s): Already covered in this article.

o 1990s to 2012: In the years from late 1990s to early 2010s convolutional neural network were in
incubation. As more and more data and computing power became available, tasks that
convolutional neural networks could tackle became more and more interesting.

o AlexNet (2012) - In 2012, Alex Krizhevsky (and others) released AlexNet
(https:/ / papers.nips.cc/ paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf) which was a deeper and much wider version of the LeNet and won by a large
margin the difficult ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. It was
a significant breakthrough with respect to the previous approaches and the current widespread
application of CNNs can be attributed to this work.

o ZF Net (2013) — The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and
Rob Fergus. It became known as the ZFNet (http:/ /arxiv.org/abs/1311.2901) (short for Zeiler &
Fergus Net). It was an improvement on AlexNet by tweaking the architecture hyperparameters.

o GoogLeNet (2014) — The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al.
(http:/ /arxiv.org/abs/1409.4842) from Google. Its main contribution was the development of an
Inception Module that dramatically reduced the number of parameters in the network (4M,
compared to AlexNet with 60M).

o VGGNet (2014) - The runner-up in ILSVRC 2014 was the network that became known as the
VGGNet (http:/ /www.robots.ox.ac.uk/ ~vgg/research/very_deep/). Its main contribution was in
showing that the depth of the network (number of layers) is a critical component for good
performance.

o ResNets (2015) — Residual Network (http:/ /arxiv.org/abs/1512.03385) developed by Kaiming He
(and others) was the winner of ILSVRC 2015. ResNets are currently by far state of the art

Convolutional Neural Network models and are the default choice for using ConvNets in practice
(as of May 2016).

o DenseNet (August 2016) — Recently published by Gao Huang (and others), the Densely
Connected Convolutional Network (http://arxiv.org/abs/1608.06993) has each layer directly
connected to every other layer in a feed-forward fashion. The DenseNet has been shown to obtain
significant improvements over previous state-of-the-art architectures on five highly competitive
object recognition benchmark tasks. Check out the Torch implementation here
(https:/ / github.com /liuzhuang13/DenseNet).

Conclusion

In this post, I have tried to explain the main concepts behind Convolutional Neural Networks in
simple terms. There are several details I have oversimplified / skipped, but hopefully this post gave
you some intuition around how they work.

This post was originally inspired from Understanding Convolutional Neural Networks for NLP
(http:/ /www.wildml.com/2015/11 /understanding-convolutional-neural-networks-for-nlp /) by
Denny Britz (which I would recommend reading) and a number of explanations here are based on
that post. For a more thorough understanding of some of these concepts, I would encourage you to
go through the notes (http://cs231n.github.io/) from Stanford’s course on ConvNets
(http:/ /cs231n.stanford.edu/) as well as other excellent resources mentioned under References
below. If you face any issues understanding any of the above concepts or have questions /
suggestions, feel free to leave a comment below.

All images and animations used in this post belong to their respective authors as listed in References
section below.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. karpathy/neuraltalk2 (https://github.com/karpathy/neuraltalk2): Efficient Image Captioning

code in Torch, Examples (http:/ / cs.stanford.edu/people/karpathy /neuraltalk2 /demo.html)

. Shaoqing Ren, et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks”, 2015, arXiv:1506.01497 (http:/ /arxiv.org/pdf/1506.01497v3.pdf)

. Neural Network Architectures (https:/ /medium.com/towards-data-science /neural-network-

architectures-156e5bad51ba), Eugenio Culurciello’s blog

. C5231n Convolutional Neural Networks for Visual Recognition, Stanford University

(http:/ / cs231n.github.io/ convolutional-networks/)
Clarifai / Technology (https:/ / www.clarifai.com/technology)

. Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks

(https:/ / medium.com / @ageitgey / machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721# .2gfx5zcw?3)

Feature extraction using convolution, Stanford University

(http:/ / deeplearning.stanford.edu/wiki/index.php /Feature_extraction_using_convolution)

. Wikipedia article on Kernel (image processing)

(https:/ /en.wikipedia.org/wiki/Kernel_(image_processing))

. Deep Learning Methods for Vision, CVPR 2012 Tutorial

(http:/ / cs.nyu.edu/ ~fergus/ tutorials / deep_learning_cvpr12)

Neural Networks by Rob Fergus, Machine Learning Summer School 2015

(http:/ / mlss.tuebingen.mpg.de/2015/slides/ fergus/Fergus_1.pdf)

What do the fully connected layers do in CNNs?

(http:/ /stats.stackexchange.com/a/182122/53914)

Convolutional Neural Networks, Andrew Gibiansky

(http:/ /andrew.gibiansky.com /blog / machine-learning/ convolutional-neural-networks/)

A. W. Harley, “An Interactive Node-Link Visualization of Convolutional Neural Networks,”
in ISVC, pages 867-877, 2015 (link at http:/ /scs.ryerson.ca/~aharley/vis/harley_vis_isvcl5.pdf).
Demo (http:/ /scs.ryerson.ca/~aharley/vis/conv/flathtml)

Understanding Convolutional Neural Networks for NLP

(http:/ /www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp /)
Backpropagation in Convolutional Neural Networks

(http:/ /andrew.gibiansky.com /blog / machine-learning/ convolutional-neural-networks/)

A Beginner’s Guide To Understanding Convolutional Neural Networks

(https:/ / adeshpande3.github.io /adeshpande3.github.io / A-Beginner's-Guide-To-Understanding-
Convolutional-Neural-Networks-Part-2 /)

Vincent Dumoulin, ef al, “A guide to convolution arithmetic for deep learning”, 2015,
arXiv:1603.07285 (http:/ / arxiv.org/pdf/1603.07285v1.pdf)

What is the difference between deep learning and usual machine learning?

(https:/ / github.com/rasbt/ python-machine-learning-book /blob / master / faq/ difference-deep-
and-normal-learning.md)

19. How is a convolutional neural network able to learn invariant features?
(https:/ /www.quora.com / How-is-a-convolutional-neural-network-able-to-learn-invariant-
features)

20. A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
(http:/ /journal.frontiersin.org/ article /10.3389 / frobt.2015.00036 / full)

21. Honglak Lee, et al, “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of
Hierarchical Representations” (link at http:/ /web.eecs.umich.edu/~honglak /icm109-
ConvolutionalDeepBeliefNetworks.pdf)

