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1 INTRODUCTION

The self-consistent field (SCF) concept is the keystone
of modern computational chemistry, encompassing both the
Hartree-Fock (HF) and density functional (DFT) theories. lts
vocabulary has become established as an essential part of the
language by which chemists communicate and it has had a pro-
found impact on our understanding of chemistry at the micro-
scopic level, whether organic or inorganic. Molecular orbitals
and orbital energies, Walsh and Tanabe-Sugano diagrams,
Woodward -Hoffmann rules, donor-acceptor models, even the
assertion that benzene has m-electrons, all stem directly from
the portrait of electronic structure that SCF theory paints.
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Many branches of physics deal with systems of mutually
interacting particles. When the number of particles is very
small, it is usually possible to treat them exactly, or nearly so.
A simple pendulum, a hydrogen atom and an orbiting satellite
are examples of such systems. When the number of particles
is very large, statistical methods can be used and, in favorable
cases, the resulting treatments can also be nearly exact. A
cylinder of CO; gas, a liquid crystal, and a bacterial colony
are all complicated systems that yield to statistical modeling.
In between, however, lies a harder class of problems in which
there are numerous particle-particle interactions but for which
statistical arguments yield insufficient accuracy. It is in this
arena that SCF theories have frequently played a vital role.

The sun and its n attendant planets, interacting gravitation-
ally, constitute such a problem. If we assume a static sun at
the origin, the total energy E of the system can be written as

G L & GMm Gm;m;
Foa2mi =2 _sz—r, W

i

where M is the solar mass and m; and r; are the mass and
position of the ith planet. The terms in equation (1) correspond
to the kinetic energy of the planets, the sun-planet potential
energy, and the planet-planet potential energies, respectively.
The third term, however, couples the motions of the planets
and renders this a complicated mechanical system. Under-
standing the consequent planetary motions became a famous
pursuit in the history of celestial mechanics, one that attracted
the attention of generations of mathematical physicists includ-
ing Newton and Laplace. Many variants are possible, but there
are broadly three approaches to the treatment of this problem.

In a crude approach, after noting that the sun is much more
massive than the planets and that the sun-planet interactions
will therefore usually be much larger than the planet-planet
interactions, we ignore the third term completely. This dramat-
ically simplifies the problem because it decouples the planetary
motions and factorizes the problem into n completely indepen-
dent problems, each involving the motion of only one planet.
As Kepler discovered, and Newton proved, this affords an
elliptic orbit for each planet. One cannot, however, feel com-
pletely comfortable with this solution. By our cavalier removal
of the most difficult term in equation (1), it is quite conceiv-
able that we have lost some essential elements of the physics.
After all, the very existences of Neptune and Pluto were orig-
inally inferred from observed deviations from ellipticity in the
orbit of Uranus!

Alternatively, at the other extreme, we abandon all intuitive
simplifications and engage the services of a powerful computer
to solve (1) directly. Because of the complexity of the problem,
the only way to obtain the solution is via a dynamic simulation
using extremely small time steps. Provided the simulation is
performed with due care, this approach will probably generate
accurate planetary motions and may indicate the importance,
or otherwise, of the planet-planet interactions. However, the
inelegant numerical description that results will be very dif-
ficult to interpret and, in all likelihood, will yield very little
physical insight.

There is, however, a middle ground. Suspecting that, while
smaller than the sun-planet interactions, the planet-planet
interactions cannot be ignored completely, we could suggest
that the latter be treated in an approximate fashion by replacing
the difficult third term in (1) by something resembling the

second one. While it is clearly true that a given planet moves
under the influence of the sun, we could posit that it is also
justifiable to suppose that it moves under the average influence
of all of the other planets and write

n n
£ =L - 3 B
3 N r;
i i

This step greatly simplifies the original problem, for the
explicit planet-planet interactions have disappeared and have
been replaced by the average field v in which all the planets
move. Ideally, we would like all of the physics of the true
planet-planet interactions somehow to be embedded within
this field but this may be asking for more than can reasonably
be expected. We expect that a few of the finer details have
probably been lost between (1) and (2).

It is clear that this approximation, like the much cruder one
described earlier, factorizes the original problem into » inde-
pendent one-planet problems. Moreover, if we know the field
v, we can solve these problems to find the » planetary orbits
¥;(r). However, v must depend on the ;(r) and it appears
that we have created a chicken-and-egg paradox! Fortunately,
this difficulty can be resolved simply by stipulating that the
field generated from the orbits must also generate those orbits.
This requirement defines a self-consistent field method.

The analogies between a solar system and a molecular
system are not difficult to see. If the molecule has n electrons
with coordinates r;, the total energy of the electrons is found
by solving the Schrodinger Equation HY = EW where the
Hamiltonian! is given by

—¥ZVZ+ZV(r,>+ZZ|“” 3)
i J

i j>i

- Gmiv(Iri|) @)

and V(r) is the classical electrostatic potential due to the
nuclei. The similarity between (1) and (3) is clear and the task
of solving the Schrodinger Equation is analogous to solving
the planetary problem. In particular, it is the third term in (3)
that greatly complicates matters by coupling the motions of the
electrons. However, if we suppose that each electron moves
in the average field due to all of the others, we can decouple
the problem and solve self-consistently for the n one-electron
orbitals v;(r) using the much simpler Hamiltonian

VA Ve + Y ) )

What form of the average potential v should we use? This is
a critical question because we would like v to contain implic-
itly information about the complicated physics that underlies
the electron-electron interactions. Long ago,? Hohenberg and
Kohn proved the remarkable result that there exists a unique
form of the potential which, if used self-consistently, actu-
ally yields the exact Schrodinger energy E. In other words, if
this potential is used, the SCF methodology is no longer an
approximation. This is wonderful news but, unfortunately, this
‘ultimate’ potential is unknown. Consequently, SCF theorists
have had to devote many years of research to the construction
of approximate potentials and, at least for now, must remain
content with imperfect approximations to their elusive ideal.

Every approximate potential that is devised defines a new
SCF method and, over the years, very many have been pro-
posed. Some were introduced at the dawn of the quantum

HO —
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mechanics revolution, others more recently. Some have been
devised by physicists, others by chemists. Some are most con-
veniently discussed in terms of the electron orbitals, others in
terms of the spin densities, still others in terms of the total
electron density. Our aim, however, is to offer a presentation
of these various methods that is as unified as possible, in order
to emphasize particularly the features that they all share.

Hartree-Fock theory and density functional theory are both
SCF models and share many conceptual and computational
features. Yet they are all too rarely presented together. This
can be traced to the fact that, historically, they have not
been studied by the same people and this dichotomy has been
detrimental to the development of both. Fortunately, late in the
20th century, the two schools have recognized their common
heritage and fruitfully liaised.

Our presentation will be largely operational. There is a
wealth of more detailed material to which the reader should
turn for more information. The classic primers by Szabo and
Ostlund® and Parr and Yang* are excellent; the former for
its treatment of HF and the correlation models that proceed
from it, the latter as a thought-provoking introduction to DFT.
Beyond these lie more advanced treatises such as that by
Dreizler and Gross.’

2 THE ENERGY EXPRESSION IN QUANTUM
CHEMISTRY

It is conceptually useful to partition the total electronic
energy E of a chemical system as

E=Er+Ev+E+Ex+Ec )

and computer programs that find approximate solutions to
chemical Schridinger equations usually calculate these pieces
independently. The terms in equation (5) are as follows: the
first, ET, is the kinetic energy of the electrons; the second,
Ev, is the Coulomb energy of the electrons due to their
attraction to the nuclei; the third, Ej, is the Coulomb energy
that the electrons would have in their own field if they
moved independently (which they don’t) and if each electron
repelled itself (which it doesn’t); the remaining contribution,
Exc = Ex + Ec¢, corrects for these two false assumptions.

It is worth commenting further on Exc. Like planets,
electrons perturb one another when they approach closely
and, as a consequence, their motions cannot possibly be
independent. Moreover, unlike planets, electrons with the same
spin avoid one another particularly keenly and, because of the
Pauli Exclusion Principle, are never found at the same point
in space. The non-independence of motion arising from the
Pauli Principle is known as Fermi correlation. The consequent
stabilization, along with a correction for the self-repulsions
of the electrons, is known as the exchange energy Ex, and
is the major part of Exc. A smaller component, Ec, arises
primarily from correlation between the motions of electrons
with different spins.

It should be noted carefully that the five terms in (5) are of
entirely different magnitudes. E1, Ey, and Ej constitute most
of E, Ex is a much smaller term, and E¢ is a very small
correction. In a Ne atom, for example, E1, Ev, Ej, Ex, and
Ec are +129, 312, +66, 12, and 0.4 au.

The next three sections contain brief descriptions of some
of the important or popular formulae that have been used

to estimate the terms in (5), emphasizing the relationships
between them. It is important to recognize that the expres-
sions for Ey and E; are common to all quantum chemical
methods. Thus, it is the formulae used for Et, Ex, and Ec
that distinguish the various SCF methods from one another.

Figure 1 depicts some of the methodological developers of
mainstream quantum chemistry. It is clear that four interrelated
families of methods have emerged. They are distinguished by
their use of the orbitals v; and density p to find Et and Exc.
Specifically, we have:

1. Hartree-Fock-based theories, wherein E1 and Exc both
come from the ;.

2. Adiabatic connection theories, wherein E1 comes from the
Y; and Exc from the i; and p.

3. Kohn-Sham theories, wherein E1 comes from the v; and
Exc from p.

4. Pure density functional theories, wherein Et and Exc both
come from p.

Figure 1 shows the marriage of Hartree’s ideas with pure
DFT to yield Kohn-Sham theory®’ and the later marriage of
Fock’s ideas with this to yield adiabatic connection theory® to
have been pivotal points in the evolution of modern quantum
chemical thought.

3 ORBITAL FUNCTIONALS

A functional is a mathematical device that maps objects
onto numbers. In the context of quantum chemistry, an orbital
functional is a well-defined procedure that takes the orbitals
of a system and returns an energy.

3.1 The Hartree Kinetic Functional

In 1928, Hartree introduced® the SCF philosophy te the
embryonic field of quantum chemistry. He proposed a model in
which the ith electron in an atom moves completely indepen-
dently of the others in an orbital v;(r). Within this uncorrelated
picture, the total kinetic energy is simply the sum of the kinetic
energies of the individual electrons which, as Schrodinger had
shown, is given by

EY® = _% Z / Y (V2 (r)dr ©

The early applications of Hartree’s independent-electron
model were confined to atoms but, by 1930, Lennard-Jones,
Mulliken, and Hund had shown that the model can be readily
extended to molecules by allowing the ;(r) to delocalize
over several atoms. This marked the birth of molecular orbital
theory. It should be emphasized that equation (6) does not
yield the exact kinetic energy (except in one-electron systems)
because, in reality, the electrons do not move independently
of one another. Their motions are correlated and, because they
try to avoid one another, EX?® < Et. Nonetheless, H28 turns
out to be a surprisingly good approximation.

3.2 The Self-interaction-correction Functional

Although his original work did not make explicit reference
to exchange energy, Hartree’s treatment rigorously excludes
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Figure 1 The evolution and classification of quantum chemical methods

spurious self-interactions of the electrons. If couched in terms
of the partition in equation (5), this exclusion becomes the

exchange functional
2 2
Z// Vi (r)Y; (1'2) £, dry 7
vy — 1o

The major weakness of SIC is that it is not invariant to unitary
transformations of the ; (r).

SIC _
EX

3.3 The Fock Exchange Functional

In 1930, Fock pointed out!® that the Hartree wavefunction
violates the Pauli Exclusion Principle because it is not properly

antisymmetric. He showed that this deficiency can be remedied
by antisymmetrizing the wavefunction but that electrons of
the same spin now avoid one another, a phenomenon called
Fermi correlation or exchange. Fock showed that this treatment
corresponds to the exchange functional

_%ZXJ://I/Ii(l'l)‘/’j(rl)wi(m)wf(m) dr;dr, (8)

EBO =
[r; — 1y

The SIC, which arises automatically when antisymmetric
wavefunctions are used, is embedded in F30 but additional
terms ensure that F30 is invariant to unitary transformations
of the ¥;(r).
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3.4 Orbital Correlation Functionals

Each of the variéus Mogller-Plesset, coupled-cluster, and
configuration interaction methods (all of which yield estimates
of the correlation energy E¢ and are described in other articles)
can be viewed as an orbital correlation functional.

4 DENSITY FUNCTIONALS BASED ON THE
UNIFORM ELECTRON GAS

In 1965, Hohenberg and Kohn proved? that each of the con-
tributions to the total energy in equation (5) can be expressed
as a functional of the total electron density

P(r) = pu(r) + pp(r)
=3y + > i) ©

iea ief

where the sums are over alpha (spin-up) orbitals and beta (spin-
down) orbitals, respectively. This is easy to see for Ev and Ej
(see following section), but it is surprising that it is also true
of Et, Ex, and Ec. However, their proof was non-constructive
and we therefore do not know what these functionals are. As
a result, the most pressing problem in DFT is the construction
of approximate but accurate functionals for Et, Ex, and Ec in
atomic and molecular systems.

4.1 The Uniform Electron Gas

Consider the idealized system of n electrons within a
cubical box of volume V throughout which there is uniformly
distributed positive charge sufficient to render the system
neutral. The uniform electron gas (UEG) of density p = n/V
is obtained as the limit of this system as n, V — oo. Although
the UEG bears some resemblance to the ‘electron sea’ in
metals, its chief virtue is its simplicity. Despite being a
many-electron system, it is completely defined by a single
variable - its density o — and it is relatively easy to study. It is
often called ‘jellium’. A detailed discussion of the properties
of jellium can be found in Appendix E of Ref. 4.

4.2 The Thomas-Fermi Kinetic Functional

Soon after the 1926 Schrodinger paper, Thomas!! and
Fermi'? derived a kinetic energy formula based on jellium.
The derivation, which requires only the wavefunctions of a
particle in a box (see Section 9), shows that the exact alpha
kinetic energy of jellium is

EIF? - (6 22/3 / 33 (r)dr (10)

When applied to atoms and molecules, TF27 yields energies
that are roughly 10% smaller than those from H28. The
derivation of TF27 marked the birth of density functional
theory for it was the first occasion on which it had been shown
that a non-electrostatic energy term can be expressed directly
in terms of the density, without mentioning the wavefunction.

4.3 The Dirac Exchange Functional

Following Thomas and Fermi, Dirac showed!? that the
alpha exchange energy of jellium is

D30 373\ 4/3
EyY =—3 (E) / (r)ydr (11)

When applied to atoms and molecules, D30 yields energies
that are roughly 10% smaller than those of F30. Unlike
F30, D30 only partly removes the spurious electronic self-
interactions.

4.4 The Vosko—Wilk—Nusair Correlation Functional

In 1980, Ceperley and Alder used Monte Carlo methods
to find the correlation energy of jellium numerically.!* Vosko,
Wilk, and Nusair then fitted their results to obtain’’ the EZWN
correlation functional. Its somewhat complicated form is given
in Appendix E of Ref. 4. Unfortunately, although (almost)
exact for jellium, VWN is found to overestimate correlation
energies by roughly a factor of two when applied to atoms
and molecules. One can infer from this that jellium is a
more successful reference system for exchange than correlation
energy.

5 OTHER DENSITY FUNCTIONALS

5.1 The Nuclear-attraction Functional

The electrostatic (or Coulomb) energy of the electrons due
to the nuclei can be found classically. If the ath nucleus in the
system is fixed at R, and has nuclear charge Z,, then we have

Z / er(r) (12)

(Il

where m is the total number of nuclei. Because it is exact,
all SCF methods use this formula. If the density p(r) can be
written as a sum of Gaussian or exponential functions centered
at points throughout the system, the integrals in equation (12)
can be found in closed form.

5.2 The Electron-repulsion Functional

The true Coulomb energy of the electrons in their own field
is extremely difficult to calculate. However, if we assume that
they move independently and that each electron experiences
the field due to all electrons, including itself, we are led to the

classical formula
// p(ry)p(r2) dr; drs (13)
[r; — 12|

Although inexact, equation (13) is a reasonable approxima-
tion and is used in almost all SCF methods; it is expected that
the functional used for Exc will correct most of the error in Ej.
As before, if the density can be written as a sum of Gaussian
or exponential functions, the integrals in equation (13) can be
found in closed form.

5.3 The ‘Pairs’ Correlation Functional

The early work of Hylleraas on the ground states of the
helium-like ions (H™, He, Li™, ...) revealed that the correla-
tion energy of an electron pair is roughly 42 mHartree irre-
spective of the spatial extent of the pair. In contrast, because
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of antisymmetry, the correlation energy of a pair of same-
spin electrons is at least an order of magnitude smaller. (The
correlation energy of the triplet 1s*2s* excited state of the
helium atom, for example, is roughly 1 mHartree.) These rules
of thumb have subsequently been found to be roughly true for
electrons in a variety of molecules and this simple observation
immediately suggests the ‘Pairs’ functional

ERin — 0,084 / % dr (14)

This functional yields 42 mHartree for systems such as the
ground-state He atom or H, molecule but vanishes for systems
such as the triplet He atom or the H atom.

5.4 The Wigner Correlation Functional

In 1938, following a careful analysis of the behavior of
correlation energies at low densities, Wigner proposed a func-
tional that reduces to the Pairs form at high densities but which
yields somewhat smaller energies for smaller densities. His
original form!® can be generalized to

was _ Pu (1) pp(r) 1
EY® = 4a/ o (l+dp‘1/3(r)> ar (15

Various values for a and d have been explored. One
choice!” is ¢ = 0.04918 and d = 0.349.

5.5 The von Weizsacker Kinetic Functional

It has long been recognized that the electron densities in
atoms and molecules are actually far from uniform and that
reference systems more sophisticated than jellium are required.
The original work along these lines by von Weizsacker was
based on the ‘almost uniform gas’ obtained by adding small
density ripples to jellium. The resulting system is characterized
by both its density p and the mean value of its density gradient
|[Vp| and introduces a general route to the improvement of
density functionals that are based on jellium.

It is convenient to discuss functionals that depend on
density gradients in terms of

oy 1920
M)

(16)

which is a dimensionless variable often called the reduced
density gradient. It should be noted that x(r) takes small values
in bonding regions, larger values in core regions and very large
values in the Rydberg regions of molecules. Functionals that
depend on both p(r) and x(r) are known as ‘gradient-corrected
density functionals’.

Von Weizsacker'® found that the kinetic energy of the
‘almost uniform gas’ is given by

1
EVY = EIF 4 3 / P 3x2 dr (17)

and this is the original gradient-corrected density functional. It
was shown subsequently that von Weizsacker’s derivation was
flawed and that his correction was too large by a factor of nine.
If the modified functional is applied to atoms and molecules,
it yields kinetic energies that are typically within 1% of those
from H28. Encouraged by this, subsequent workers found the
x* and x® corrections!®2? but, unfortunately, such terms grow

so rapidly in the Rydberg regions of atoms and molecules that
the x® (and higher) corrections are infinite!

5.6 The Sham-Kleinman Exchange Functional

Following the success of the von Weizsacker approach
in improving the Thomas-Fermi kinetic functional, Sham
showed in 1971 that an analogous correction to the Dirac
exchange functional can be derived.?! Kleinman later demons-
trated?? that the Sham derivation was flawed and that his
correction was too small by exactly 10/7. It is now agreed
that the correct second-order alpha exchange functional is

5
E§(K71 = E)]%:w - (367’[)5/3 /pi/g’xé (18)

SK71 is the prototype gradient-corrected exchange func-
tional. Like TF27, D30, and W35, it is an ab initio functional,
i.e., it can be derived entirely from first principles. This distin-
guishes it from its more popular successors (see below) which
contain semiempirical parameters. When applied to atoms and
molecules, SK71 yields energies that are typically 3% smaller
than those from F30.

Several workers have explored higher-order (e.g., x*) cor-
rections to the Dirac functional and have shown that these
can be found using generalizations of the von Weizsacker
method. However, the x* correction is not found to yield useful
improvements over SK71 and, for the same reasons as those
described above, the corrections become infinite beyond this.

Although SK71 yields considerably better exchange ener-
gies than D30, it can be improved further by increasing the
prefactor in equation (18) by roughly a factor of two and this
was originally studied by Herman et al.>® Nonetheless, neither
SK71 nor its various modified forms has been employed signif-
icantly because their potentials are unbounded in the Rydberg
regions of molecules and this has been held by some workers
to be a serious liability.

5.7 The Becke 88 Exchange Functional

During the 1980s, there were numerous attempts to con-
struct a gradient-corrected exchange functional that yields
accurate exchange energies for atoms. Recognizing that the
divergent behavior of SK71 in Rydberg regions can be traced
to the fact that its integrand grows too fast with x, several
workers sought to ‘damp’ the x> for large x. The most suc-
cessful attempt of this type was due to Becke, who showed?*
in 1988 that a form for the damping factor can be deduced
by stipulating that the functional yield the correct exchange
energy density in the Rydberg regions. The simplest reasonable
functional of the required form is

2
EBSS _ D30 _ b/ a3 Ke dr 19)
X X Py 1 + 6Bxq Siﬂh_l-xa (

and Becke determined the semiempirical parameter b =
0.0042 by fitting to the F30 exchange energies of the inert
gas atoms, He to Rn. We note that this value is close to
that suggested by Herman et al. When applied to atoms and
molecules, B88 yields exchange energies that agree very
well with those from F30. The B88 functional is remarkably
effective and has been widely adopted by the quantum
chemistry community.
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5.8 A Simpler Exchange Functional

Given the success of Becke’s functional, it is reasonable
to ask whether a ‘damped x? behavior’ can be achieved more
neatly than it is in B88. Although x* grows too rapidly, it is
also found that x itself grows too slowly. In 1996, an obvious
compromise between these two extremes

EQS = DO _ ), / 33312 dr (20

was proposed? and the semiempirical parameter y = 1/137
was determined by fitting to the F30 exchange energy of
the Ar atom. Despite its simplicity and the fact that (like
SK71) its potential diverges in Rydberg regions, G96 yields
similar results to B88. It is surprising that such a simple
functional works so well and raises important questions about
the properties that an exchange functional must possess in
order to be useful for chemical purposes.

5.9 The Lee-Yang-Parr Correlation Functional

The development of correlation functionals has proceeded
much more slowly than that of exchange functionals. As we
noted earlier, the functional (VWN) that is exact for jellium
yields molecular correlation energies that are very much too
large and it is thus a poor starting point for a gradient-corrected
functional.

In 1988, Lee, Yang, and Parr abandoned?® jellium in favor
of the He atom, the simplest system with a non-vanishing
correlation energy. Their approach was based on earlier work
by Colle and Salvetti*’ and was later simplified by Miehlich
et al.?® The expressions for the spin-compensated (o, = 0p)
and spin-polarized (p, # pg) versions of the functional E(LjYP
are complicated and can be found in Ref. 28. The functional
contains four parameters and these were derived from data on
the He atom. When applied to atoms and molecules, the LYP
functional yields very much better correlation energies than
VWN and, despite possessing some theoretical deficiencies, it
has become an important ingredient in many DFT procedures.

5.10 The Perdew-Wang GGA91 Functionals

Although B88 and LYP perform quite well in typical
atomic and molecular calculations, both functionals fail to
show certain scaling and limiting features that the unknown
exact exchange-correlation functional is known to possess.??
With these in mind, Perdew et al. developed an interesting
correlation functional and a slightly modified version of B88
that corrects some of its theoretical weaknesses. Both are quite
complicated and are given in Ref. 30. A number of studies
indicate that the new functionals are broadly comparable to
B88 and LYP.

6 ATOMIC RESULTS

Many examples of calculations utilizing SCF methods are
contained in this Encyclopedia. In this section, rather than
attempt a review of the performance of SCF in chemical
problems, we simply sample results obtained by applying
various functionals to a few small atoms. While certainly
not comprehensive, such comparisons lead easily to simple
conclusions.

In each case, we have applied the functional to the HF/6-
311+4G density of the atom and performed quadrature, if
necessary, using the SG-1 grid. The results obtained are given
below.

H28 may be taken as the benchmark for kinetic energies.
TF27 is typically 10% smaller than H28 for atoms and thereby
introduces absolute errors that are 10% of the total energies.
Such errors are too large to lead to chemically useful models.
W35, which is correct to second order in x, is usually within
1% of H28; it overestimates in small atoms and underestimates
in larger ones. W35 has large absolute errors but these come
from core, not valence, electrons.

F30 is often taken to define exchange energies. D30 under-
estimates by roughly 10% but, because |Ex| <« |Et|, the abso-
lute D30 errors are usually very much smaller than those of
TF27. SK71, which is correct to second order in x, systemati-
cally underestimates F30 by around 3%. B88 and G96, which
were fitted to inert gas F30 values, give very good agreement
with F30. Interestingly, GGA91, which is a tweaked version
of B88, is generally rather worse than it.

For reference, Table 1 includes exact E¢ values.3! The MP2
functional systematically underestimates because the basis set
used is deficient in functions of high angular momentum. Pairs
does not perform very well because it accounts for correlation
within electron pairs but not between them. W38 (with the
parameters from Section 5.4) is the simplest functional that
yields semiquantitatively correct energies. Both VWN and
GGAO9I predict non-zero E¢ values in the one-electron H atom
and VWN overestimates true Ec values by a factor of two.
Both LYP and GGA91 energies are usually in good agreement
with the exact values.

Finally, we note that the GGA91 exchange and correlation
errors often partially cancel.

7 QUANTUM CHEMICAL ENERGY PROCEDURES

In Section 2, we partitioned the electronic energy E into
several terms using equation (5). In Section 5, we gave for-
mulae for two of these, Ey and Ej, in equations (12) and (13)
and, in Sections 3, 4, and 5, we discussed a variety of function-
als that estimate the three remaining terms, Et, Ex, and Ec.
We are thus now in a position to ‘mix and match’ in various
ways. We are free to combine

any kinetic functional, e.g., H28, TF27, W35, ...

with any exchange functional, e.g., SIC, F30, D30, SK71, B88,
G986, ...

and any correlation functional, e.g., MP2, VWN, LYP, ...

and thereby create a well-defined quantum chemical energy
procedure. For computational and historical reasons, we may
categorize these into four interrelated families (see also
Figure 1).

Family Et Exc

Orbital functional
Orbital & density
functionals

Density functional
Density functional

1 Orbital functional
Orbital functional

3 Orbital functional
4 Density functional
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Table 1 Er, Ex and Ec Energies (Hartrees) of Atoms According to Various Functionals

Functional H He N Ne Ar
Kinetic

H28 +0.500 +2.862 +14.573 +54.401 +128.55 +526.82
TEF27 +0.459 +2.561 +13.129 +49.477 +117.77 +489.95
w35 +0.515 +2.879 +14.647 +54.385 +127.84 +524.22
Exchange

F30 —0.312 —1.025 —2.666 —6.604 —12.099 —30.183
D30 —0.268 —0.883 —2.312 —5.898 —11.026 —27.861
SK71 —0.305 —1.006 —2.580 —6.400 —11.769 —29.292
B88 -0.310 —1.025 —2.657 —6.594 —12.130 —30.152
GGA91 —0.307 —1.016 —2.644 —6.574 —12.107 —-30.122
G96 —-0.311 —1.028 —2.657 —6.595 —12.136 —30.184
Correlation

Exact 0 —0.042 —0.094 —0.188 -0.392 -
MP2 0 —0.013 —0.038 —0.049 —0.152 -
Pairs 0 —0.042 —0.084 —0.111 —-0.210 —0.378
W38 0 —0.058 —0.110 —0.179 —0.360 —0.661
VWN —0.022 —0.113 —0.225 —0.429 —0.746 —1.431
LYP 0 —0.044 —0.095 —-0.192 —0.383 —0.751
GGA91 —0.007 —0.046 —0.094 —0.192 —0.389 —0.769

We discuss some of the important representatives of each of
these four families below.

7.1 Post-Hartree-Fock Theories

Family 1 derives both E1 and Exc from the orbitals. The
archetype is Hartree-Fock (HF) theory

ENF = EN2 4 By + By + ER° (21)

itself, which uses the H28 and F30 orbital functionals. Beyond
this lies the wide array of ‘post-Hartree-Fock’ theories includ-
ing MP2, MP3, MP4, CCSD, QCISD, full CI, etc. which are
beyond the scope of this article but are discussed elsewhere.

7.2 Pure Density Functional Theories

Family 4 derives both Et and Exc from the density. The
archetypes are Thomas-Fermi theory

E™ =EI"™ + Ev+E 22)

which Parr and Yang call ‘an exquisitely simple model’* and
Thomas-Fermi-Dirac theory

ETFD — E$F27 +EV + EJ +E§3O (23)

Although very elegant, simple theories like TF and TFD
are qualitative models at best. Teller has proven, for example,
that TF can never bind a molecule with respect to dissociated
atoms. Unfortunately, even the more sophisticated members of
this family, such as

EWBLYP — EW35 +Ey+ E] + EB88 + ELYP (24)
T X C

are not accurate enough to be chemically useful. The key to
this problem is that the existing kinetic density functionals
yield large absolute errors. It was this realization that eventu-
ally led to proposals to introduce the H28 orbital functional
into density functional theory.

7.3 Kohn-Sham Density Functional Theories

Although it appears simple in the context of this chapter on
SCF, the idea to consider blends of the HF and density func-
tional theories was revolutionary. As Figure 1 shows, it origi-
nated with Slater in 1951 who proposed that the Hartree-Fock
energy expression (21) be simplified by replacing F30 with
D30 to yield

ES = EI 4 By + Ey + ER® (25)

which is called Hartree-Fock-Slater theory but whose sys-
tematic name is Hartree-Dirac theory. In one sense, it lies
half-way between the HF and TFD theories but, for many prop-
erties, it works better than either. The reason for its success is
not yet clear and remains controversial.

Finding that D30 systematically underestimates F30, Slater
also proposed that the last term in (25) be increased by roughly
10%. The resulting semiempirical model is called Xa theory
and was used widely for many years.

Kohn and Sham later proved that Slater’s intuitively moti-
vated suggestion can be justified theoretically and proce-
dures which combine the orbital-based Hartree kinetic func-
tional with density-based exchange-correlation functionals are
now called Kohn-Sham density functional theories. They are
shown as family 3 in Figure 1.

A particularly popular Kohn-Sham procedure is the local
spin density approximation, or LSDA, which is obtained by
adding the jellium correlation functional to HES theory to yield

ELSDA — E¥2S +Ev+E; +E230 + EXWN (26)

Comparing with equation (21), we see that the LSDA pro-
cedure may be viewed as a variant of Hartree-Fock theory
in which Fock exchange has been replaced by the exchange-
correlation energy of jellium. For a variety of chemical prop-
erties, it works better than HF or HFS theories but, because
VWN overcorrelates, the LSDA tends to overbind. The LSDA
is a truly ab initio theory that can be rigorously derived from
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the Schrédinger equation. It should not be forgotten, however,
that this theoretical model of chemistry results from choosing
jellium as the reference system. In principle, there is noth-
ing to prevent our choosing an alternauve (and, perhaps, more
suitable) reference.

Since the 1980s, a wide variety of Kohn-Sham procedures
with even better predictive power have been proposed. One
of the most popular of these, which uses the B88 and LYP
functionals, is the BLYP method

EBLYP EH28 +Ev+E; +EB88 +ELYP (27)

Once a number of careful computational studies had demon-
strated its usefulness, BLYP was quickly adopted by the
quantum chemical community and has subsequently enjoyed
widespread use. Typically, it predicts atomization energies,
ionization energies, electron affinities and proton affinities of
small ‘normal’ molecules to within roughly 20 kJ mol~! of
their exact (i.e., experimental) values. However, it tends to
underestimate barrier heights and can fail spectacularly in its
prediction of isomerization energies between very dissimilar
isomers.

7.4 Hybrid Density Functional Theories

Becke and others have also introduced ‘hybrid’ or ‘adiabatic
connection’ methods, in which a part of F30 is added to a
Kohn-Sham procedure. One of these is the popular B3LYP
method

EB3LYP EH28 +Ey+E+(— \C])ED}O +c EF3()

+ 2 AESE 4+ (1 — ) ELVN 4 ERYP (28)
where the coefficients ¢, ¢ and ¢3 were derived by fitting
experimental data. These methods cannot be derived rigorously
and, at least in their current incarnations, possess a decidedly
empirical flavour. Nonetheless, they are widely embraced
and their popularity derives from their ability to predict the
atomization energies of small ‘normal’ systems to within
roughly 10 kJ mol~! of their exact values. However, they are
still far from perfect and remain the focus of much current
research work. They are shown as family 2 in Figuare 1.

8 COMPUTATIONAL ASPECTS

8.1 The SCF Procedure

To this point, our discussion has focused exclusively on the
energy contributions that arise in an SCF context. However,
if we wish to obtain optimized molecular orbitals ¥;(r), our
goal is not just to compute, but to minimize, the energy. The
feature shared by all self-consistent field methods is that each
electron moves in an average potential due to all of the (other)
electrons. Thus, each occupies an orbital v;(r) governed by a
Schrédinger equation

Fy, = ey (29)

where F is called the Fock operator and ¢; is called the orbital
energy or orbital eigenvalue. The ideal F implicitly contains all
of the complex physics of electron-electron interactions but,
as noted earlier, this ultimate F is unknown. In HF theory, the

Fock operator is given by

p()
Ir

1
Fup = —EVZ + V() + / dr’ + 30 (30)

where 1730 is the potential due to the F30 exchange functional.
The relatlonshlp between equations (3) and (30) should be
clear: in HF theory, each electron is assumed to move in a
field that is the sum of the Coulomb potential and the F30
potential. The explicit form of vF°, which is often described
as a non-local potential, can be found in Ref. 3.

Kohn-Sham DFT may be seen as a generalization of HF
theory in which V¥ is replaced by the potential due to the
chosen Exc, ie.,

/
FKS:—1V2+V(1’)+/ p) dr’ + vxe(r) 31
2 r—r'|
However, what is the potential vxc associated with a
nominated density functional for Exc? According to the
Hohenberg-Kohn-Sham prescription,l’7 vxc is the functional
derivative of Exc with respect to the density p(r), i.e.,

e )d_et SExc(r)
3p(r)

The density functionals that we have considered are all of
the general form

(32)

Exc = / Flp. o' % p)dr (33)

where p* = dp/dx, etc. Standard variational calculus then
yields the result

0 d o d o
ch=.‘f"*‘f‘—“‘f‘v*‘ﬂ7 (34)

and, of course, only the first term of this survives for non-
gradient-corrected functionals.

To solve the SCF problem within a basis set 5;(r), we need
the Fock matrix elements

FXC = uleln) = [ n@mcmn@de GS)

to set up the secular equations. We then solve these equations
to find new MO coefficients, use these to construct a new
density, and iterate this process until convergence is achieved.

8.2 The Coulomb Problem

Thus far, we have said little about the calculation of the
Coulombic energies Ey and Ey defined in equations (12) and
(13). However, they should not be overlooked for it is found in
practice that, for medium and large molecules, Ej is the most
expensive term in equation (5). This may seem surprising,
given that equation (13) appears to be relatively simple, and
raises the important issue of computational scaling.

Suppose that we wish to calculate the electronic energy
of a large chemical system. The evaluation of the Hartree
kinetic functional and most of the functionals in Sections 4
and 5 involves only a complicated integration over all space.
In contrast, the evaluation of

2
szfw S‘l)—w;z(l oy (36)
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involves a double sum of integrals over all space. Physically,
the double sum reminds us that Ey involves all pairs of orbitals
and also suggests that the cost of its computation is O(n?), i.e.,
it scales quadratically with n. Thus, if we double the size of
our molecule, Ey will involve four times as many interactions
and, judging by (36), will take four times as long to calculate.
If the orbitals ; are built from Gaussian basis functions, the
double integrals are not hard®? but O(n%) of them are needed.
This is the heart of the Coulomb problem.

For many years, finding an efficient passage through ‘the
integral bottleneck’ was one of the major concerns of quan-
tum chemists. Indeed, until the advances by Pople et al. in the
late 1960s, this was the single greatest obstacle impeding the
progress of the field. Fortunately, the approaches to molecular
integrals have continued to improve ever since that time and
very efficient algorithms with highly tuned computer imple-
mentations now exist. Nevertheless, although such techniques
work well for small systems, their costs still scale quadratically
and, for larger systems, rise impractically quickly.

It was realized long ago that the Coulomb interactions
between distant parts of a system need not necessarily be
treated in the same way as those between adjacent parts.
However, it was not clear how to use this fact to enhance
the efficiency of Coulomb algorithms. In 1987, Greengard and
Rokhlin invented the Fast Multipole Method,®® an ingenious
algorithm for computing Ey in only O(n) work by partitioning
the six-dimensional integration space into a ‘well-separated’
and a ‘not well-separated’ region. The latter is handled in the
usual way but the former (which is much larger) is integrated
by manipulation of the multipole expansion

1 1 & k .
~='Z<2) Pk(r' "2) (37
r2 r i

"0

where rj; = |r; — r2|. Originally, the FMM could be applied
only if the ¥ were point charges but, later, the method was
generalized to treat arbitrary localized charge distributions.34

The FMM was the original member of the family of ‘linear
methods’ or ‘O(n) methods’ for solving the Coulomb problem.
Once it had been discovered that such algorithms exist, it was
clear that one should try to determine the most efficient of the
O(n) methods and there has been a considerable research effort
along these lines. The answer, however, is not yet known.

In the KWIK algorithm,3 the Coulomb function itself is
partitioned by the identity

1 fOn) n - fir2)

2 ri2 12

(38)

1]

where the function f decays rapidly and f(0) = 1. This splits
1/r into a singular short-range function and a non-singular
long-range function and thus breaks Ej into a short-range part
and a long-range part. The short-range energy involves only
neighboring charge distributions; the long-range energy can
be found using Fourier transforms or related techniques. It has
been shown that the ‘optimal’ separator function f(r) is a
Parabolic Cylinder function.

8.3 The Grid Problem

Evaluation of most of the functionals in Sections 4 and 5
leads to integrals of the form

E=/f(,0(l‘).X(l'))dr (39)

In certain very special cases, such integrals can be found in
closed form. However, in general, the integrand is so com-
plicated that the integrals have to be computed approximately
using quadrature on a three-dimensional grid of Ngig points
placed in and around the system, i.e.,

Nygria

E=~ Y wif(p(r), x(r) (40)

i=1

This is one of the least attractive features of current DFT
theories and we note that it does not arise in HF theory because
both the H28 and F30 functionals can be evaluated in closed
form.

Much work has been done on the construction of efficient
grids for such calculations and the recent contributions of
Becke, Handy, te Velde, Treutler and Knowles?® are notewor-
thy. Most modern grids follow Becke’s suggestion to partition
the difficult molecular integral in equation (39) into a sum
of atomic integrals using a ‘fuzzy’ Voronoi decomposition.’
Each atomic integral is then evaluated by introducing a local
spherical polar system centered on the nucleus and using
quadrature rules to integrate the radial and angular variables.
A wide variety of quadrature schemes have been proposed.

For the same reasons that it was beneficial to introduce
‘standard basis sets’ (e.g., STO-3G, cc-pVTZ, etc.) into quan-
tum chemistry, it is also valuable to employ ‘standard grids’
in DFT. The SG-1 grid*® was one of the first of these to be
introduced and is constructed as follows:

Radial quadrature is accomplished by an N-point Handy-
Euler-Maclaurin rule with N = 50, i.e.,

o) N
/ rPGrydr ~ Y aG(r) @n
0 k=1
25R3(N + 1) k*R
= — - 42
ST NTI—T FT W1 —kp (42)

where R is the appropriate Slater atomic radius. The first ten
such radii are:

Nucleus H He Li Be B

R (Bohr) 1.0000 0.5882  3.0769  2.0513 1.5385
Nucleus C N O F Ne
R (Bohr) 1.2308 1.0256  0.8791 0.7692  0.6838

Angular quadrature is accomplished by an M-point Lebedev
rule where M = 6, 38, 86 or 194.

Relatively few angular points (e.g., 6) are used in the core
region (i.e., where ry < R).

Relatively many angular points (e.g., 194) are used in valence
regions (i.e., where ry ~ R).

By construction, Lebedev quadrature rules exactly integrate all
spherical harmonics up to a certain degree on the surface
of a sphere. The 6, 38, 86 and 194 point rules are exact
for all spherical harmonics up to 3rd, 9th, 15th and 23rd
degree, respectively.
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Typically, each atom supports about 2500 grid points and the
SG-1 grid introduces errors of roughly 0.1 kJ mol~! per atom
in the system. Although errors of this magnitude are tolerable
for some purposes, it is frequently desirable to use larger, more
accurate, grids.

9 DERIVATION OF THE THOMAS-FERMI
KINETIC FUNCTIONAL

Most density functionals derive from arguments that are
complicated, dubious or both. The elegant derivation of TF27
is an exception, however, and is worthy of close examination.
Consider a cube with sidelength L and volume V and place
the origin at one corner of the cube. The Schridinger equation
for the state m of a single electron confined within the cube is

L2 + @ + & ¥ 43)
4 2 L2 —¢
2 \ax2 9y? 82 v

and the wavefunction and energy of state m = (m,, my, m;)
are therefore given by

L (TMGXN L TMYN L (TLT

Ym = sin ( 2 ) n ( 7 ) sin ( 7 ) (44)
mm? 2 2 2 2

T (m”™ = m; +my +m;) (45)

These states can be depicted diagrammatically as lattice
points in (m,, my, m;) space. Thus, the number of states with
energy less than &, is given approximately by the volume of
an octant of a sphere of radius m. If we place n non-interacting
alpha electrons into the cube, they will fill the lowest n states
and mpay. the largest occupied m value, will therefore satisfy

1 ( 4mm 6n\ /3
N N —”) (46)
8 3 T

The total energy of non-interacting electrons is given by the
sum of their individual energies and, obviously, this energy is
entirely kinetic. Thus, the total kinetic energy is

> tm 47)

|m| <mmax

This can be approximated by an integral over an octant of
a sphere of radius mip,y, i.€.,

1 Mmax 2,2
Er~ — / Am? T m dm
8 Jo 212

wm 3 amf nN\S3
_ max __ > /3 (" 3
o2~ 10 (L3) L (48)

and, in terms of the mean alpha density p, = n/V, this
becomes

3
Er ~ 567 07V (49)
Finally, we make the local density approximation, i.e.,

suppose that this formula is valid in an infinitesimal volume
dV and then integrate over all such volume elements to obtain

3
Er = m((mz)z/3 / o (rydr (50)

It is unfortunate that this beautiful functional is not accurate
enough to be chemically useful and is therefore rarely used.
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Abbreviations

B3LYP = Becke’s 3-parameter hybrid functional using the
nonlocal correlation functional due to Lee, Yang, and Parr;
BP = nonlocal exchange correlation functional due to Becke
and Perdew; DF = Dirac-Fock; DIIS = direct inversion of
iterative subspace; KS = Kohn-Sham; LDA = local density
approximation; LSDA = local spin density approximation;
(R)ECP = (relativistic) effective core potential; TM = transi-
tion metal.

1 INTRODUCTION

The past two decades have witnessed an ever growing inter-
est of experimentalists and theoreticians alike in molecules and
ions containing transition metal (TM) atoms. The reasons for
this are obvious, since TM atoms are found ubiquitously in
many important areas of chemistry. Among the most promi-
nent fields dominated by interactions involving TMs are the
following. The combination of TMs with organic reagents has
created a whole, well matured field, i.e., organometallic che-
mistry. TM-containing molecules also play a crucial role in
many aspects of biochemistry and are very often responsible
for the specific functionality of a particular biomolecule. TM
clusters mediate catalytic surface processes in many reactions.

And, last but certainly not least, TMs are the active sites in
almost all molecules relevant in catalytic processes and are
thus one of the cornerstones in this highly significant field of
present research.

The characters, or equivalently, the electronic structures of
TM compounds relevant in these areas are just as diverse.
They range from electronically saturated, closed shell TM
complexes, where the metal is usually surrounded by enough
ligands so that the 18-electron rule is obeyed, up to species
with many unpaired electrons, giving rise to a plethora of pos-
sible electronic states. Indeed, much of the activity displayed
by TM compounds is due to this flexibility in the electronic
structure (i.e., varying occupation) of the nd, (n + 1)s and, to
some extent, (n + 1)p shells of the central metal atom, charac-
terized by unpaired and hence chemically very important elec-
trons. Intimately interwoven with this diversity of electronic
scenarios available for the various ‘flavors’ of TM compounds
are the difficulties of finding a quantum chemical strategy with
a satisfactory ‘price/performance ratio’, i.e., one that can pro-
vide meaningful results with acceptable computational effort.
Difficulties arise already when closed shell TM compounds
are to be described (see Transition Metal Chemistry).! The
real challenge, however, is met in open shell species. The
mixing of the large number of low-lying atomic electronic
states derived from different occupations of the valence nd
and (n + 1)s orbitals to achieve the optimal bonding together
with the relative sizes of the valence s and d orbitals leads to
large differential (dynamic and static) correlation effects (see
Electron Correlation) which are very difficult to account for.
Efficient standard MO-based schemes, such as second-order
perturbation theory (MP2), usually fail, as pointed out rather
clearly by Taylor: ‘Transition metal chemistry, in particular,
is a graveyard for UHF-based MP methods’.2 One possible
way out is to use very sophisticated and demanding correlated
methods such as multi-reference configuration interaction and
variants thereof. Unfortunately, this brute force approach is
inevitably limited to small systems by computing resources
and cannot be applied routinely to molecules containing more
than two or three heavy atoms® (see Transition Metals: App-
lications).

However, there is one class of methods which has recently
gained substantial impact in the study of closed and open shell
TM compounds, viz. schemes based on approximate density
functional theory (DFT). For example, even very simple forms
of DFT give a surprisingly good qualitative description of the
notoriously difficult Cr, 'S, ground state potential.* This
contribution will focus on the scope and the limitations of
the burgeoning field of DFT applications to TM problems
and is organized as follows. First, we will highlight very
briefly some of the central theoretical aspects of DFT and
give an explanation why this approach has matured in only a
few years from an exotic method used almost exclusively by
solid state physicists to a valuable player in the computational
chemistry arena, and why it has proven so useful for the inves-
tigation of TM compounds in particular. In this context, we
will also discuss some of the conceptual weaknesses of DFT
and how to cope with them. The main body of this article
will, however, be devoted to demonstrating the value of DFT-
based methods for investigating TM compounds chiefly against
the background of organometallic chemistry. We will review
examples of DFT calculations for obtaining atomic excitation



