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Abstract. An understanding of molecular interactions is essential for insight into biological
systems at the molecular scale. Among the various components of molecular interactions,
electrostatics are of special importance because of their long-range nature and their influence
on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids,
carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions
are essential for understanding the solvation properties of biomolecules and the effects of
solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics,
therefore, are of central importance to understanding biomolecular structure and modeling
interactions within and among biological molecules. This review discusses the solvation of
biomolecules with a computational biophysics view toward describing the phenomenon. While
our main focus lies on the computational aspect of the models, we provide an overview of the
basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and
non-polar behavior) in order to provide a background to understand the different types of
solvation models.
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1. Introduction and overview

An understanding of molecular interactions is essential for insight into biological systems at the

molecular scale (Baker, 2004, 2005a, b ; Baker et al., 2006 ; Davis &McCammon, 1990 ; Dong et al.,

2008 ; Draper et al., 2005 ; Feig & Brooks, 2004 ; Feig et al., 2008 ; Fogolari et al. 2002 ; Gilson

& Honig, 1987 ; Honig & Nicholls, 1995 ; McLaughlin, 1989 ; Prabhu & Sharp, 2006 ; Schutz &

Warshel, 2001 ; Sheinerman et al., 2000 ; Simonson, 2001, 2003 ; Warshel & Papazyan, 1998).

Molecular interactions determine the structure, dynamics, and binding of biomolecules, and

therefore play a central role in how cells develop, operate, communicate, and control their

activities. Such interactions include several components (Leach, 2001 ; Schlick, 2002) : contribu-

tions from linear, angular, and torsional forces in covalent bonds and non-bonded van der

Waals and electrostatic forces (Stone, 1996). Among the various components of molecular in-

teractions, electrostatics are of special importance because of their long-range nature and their

influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids,

carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are

essential to understand the solvation properties of biomolecules and the effects of solvation upon

biomolecular folding, binding, enzyme catalysis, and dynamics. Therefore, electrostatics are of

central importance to understanding biomolecular structure and modeling interactions within

and among biological molecules.

This paper discusses the solvation of biomolecules, and focuses on electrostatics from a

computational perspective. We provide a brief overview of various biomolecular solvation

models based on their level of detail. Advantages and caveats of different solvation models are

discussed. Non-polar contributions to the solvation are also considered for the models.
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While our main focus lies on the computational aspect of the models, we summarize the basic

elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-

polar behavior) in order to provide a background to understand the solvation models. Examples

such as titration state prediction and biomolecular recognition are provided to exhibit the ap-

plication of solvation models. This review concludes with a short summary, and the directions of

future research are stated as concluding remarks.

2. Characteristics of biomolecular solvation by water

Water solvation influences all aspects of biology, ranging from cellular function (Parsegian &

Rau, 1984) to biomolecular interactions (Auffinger & Hashem, 2007; Prabhu & Sharp, 2006), to

biopolymer stability (Ben-Naim, 1997) and the solvation of simple solutes (Dill et al., 2005). In

general, an interaction between solute and solvent is of great importance to understand the

solvation. For biomolecular solvation where water is a major solvent, water is not only a passive

medium but also actively exhibits unique nature that greatly influences the solvation of biomo-

lecules. To understand this ubiquitous role of water, it is important to appreciate some of its

most basic properties.

Solvent and ion interactions influence nearly all aspects of biomolecular structure and func-

tion. As a result, it is impossible to provide a comprehensive review of biomolecular solvation.

Instead, we focus on those aspects of solvation most amenable to computational treatment.

While this discussion includes acid/base chemistry and biomolecular titration state prediction, it

exclude several other interesting areas including the role of solvent and ions in catalysis

(Bombarda & Ullmann, 2010 ; Di Cera, 2006 ; Garcia-Viloca et al., 2004 ; Martick et al., 2008 ;

Niu et al., 2009 ; Page et al., 2006 ; Rhodes et al., 2006 ; Warshel & Dryga, 2011 ; Wells & Di Cera,

1992), spectroscopic probes of biomolecular electrostatics (Ensign & Webb, 2011 ; Hu & Webb,

2000 ; Stafford et al., 2000 ; Webb et al., 2011), solvent influences on biomolecular dynamics and

flexibility (Bone, 2008 ; Fenimore et al., 2004 ; Lubchenko et al., 2005 ; Lucent et al., 2007), and

cosolute influences on biomolecular stability (Drozdov et al., 2004 ; England et al., 2008 ; Harries

& Rosgen, 2008 ; Rösgen et al., 2005, 2007 ; Tran et al., 2008).

2.1 Water structure

Water is a unique, small molecule with all three constituent atoms capable of forming hydrogen

bonds. As a result, water molecules can cluster together in various arrangements, driven by their

cooperative tendency to maximize the number of hydrogen bonds formed. Ab initio calculations

suggest that a water hexamer (H2O)6 has several stable configurations of comparable energies

that include cage, cyclic, chair, boat, and prismatic conformations (Moore Plummer & Chen,

1987 ; Xantheas et al., 2002 ; Xantheas & Dunning, 1994). Neutron and X-ray scattering have

been used to characterize the average structure of bulk water. The radial distribution functions of

OO, OH, and HH derived from these measurements provide valuable insight into local water

structures (Root et al., 1986 ; Soper, 2000 ; Soper & Phillips, 1986 ; Sorenson et al., 2000). As an

illustration, Fig. 1 shows the oxygen radial distribution function (RDF) around K+, denoting that

the first peak of oxygen RDF around K+ is at an average separation of y2.8 Å between the

closest water pair. The first peak extends to a minimum at y3.3 Å, indicating approximately

4.5 water molecules in the nearest coordination shell. The local structure of water has been

rationalized as a ‘dynamic ’ mixture of two states : one corresponds to a rigid ice-like structure,
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Ice Ih, a hexagonal crystal form of ordinary ice (Fletcher, 1970) with four nearest neighbors at

2.8 Å ; another corresponds to a denser ice-like structure, Ice II, a rhombohedral crystalline form

with four water molecules at 2.8 Å plus another at 3.3 Å. Data from isochoric temperature

differential experiments near the maximum-density-temperature peak, where the same densities

can be achieved at two nearby temperatures, support the two-state theory (Bosio et al., 1983 ;

Robinson et al., 1999 ; Sciortino et al., 1990). Within this framework, properties such as the

anomalous temperature dependence of the density can be interpreted as the dynamic compe-

tition between the two types of hydrogen-bonding networks in response to changes in tem-

perature (Schmid et al., 2001).

2.2 Bulk water polarization

One of the fundamental properties of water is its role as an excellent solvent for polar molecules.

Some aspects of this favorable polar molecular solvation can be understood from the very

macroscopic continuum perspective of water bulk polarization. Water molecules have a dipole

moment that varies between 1.8 Debye (D) in vacuum (Clough et al., 1973) to estimates of nearly

3 D in bulk water (Ren & Ponder, 2003 ; Silvestrelli & Parrinello, 1999). In a liquid environment,

the molecular dipole moment of water will reorient in response to the application of an external

field or the introduction of a solute charge distribution. The resulting reorientation creates a

polarization (or dipole) density or so-called ‘dielectric response ’ (Bottcher, 1952 ; Hansen &

McDonald, 2000 ; Jackson, 1975) (see Figs 1 and 2). From the perspective of continuum elec-

trostatics, this dielectric behavior is modeled as a linear relationship between the local field

and electric displacement field because of local polarization—the coefficient of this relationship

is the ‘dielectric coefficient, ’ or permittivity. Dielectric coefficients of pure solvent depend on a

variety of molecular properties of the solvent, including structure, density, permanent charge

distribution, and molecular polarizability. Dielectric coefficients range from values as small

Fig. 1. Water structure and average dipole moment around a K+ ion. The radial distribution function

(RDF) of O_ K+ and water dipole moment were computed from molecular dynamic simulations of K+

in water using a polarizable potential (Grossfield et al., 2003 ; Ren & Ponder, 2003). Note that the average

dipole moment of the water in the first solvation shell is roughly similar to that of bulk water.
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as 1 for a vacuum, to values of 2–4 for non-polar solvents (alkanes), 10–20 for weakly polar

molecules such as ammonia and ethanol, to approximately 80 for water at room temperature, and

even larger values for some polar liquids such as formamide (105).

2.3 Electronic and nuclear water polarization

In addition to the bulk polarization of solvent, the charge distributions of solvent and solute

molecules interact via mutual polarization, i.e., the reorganization of their electronic charge dis-

tributions. The reorganization of electrons is much faster than the overall reorientation and

redistribution of solvent molecules (Nicol, 1974). It has been estimated that electronic solvation

(as opposed to reorganization solvation) could account for as much as half of the overall elec-

trostatic solvation free energy (Cukier & Zhang, 1997). Processes such as photoexcitation and

electron and proton transfers occur on timescales between or close to those of electronic and

nuclear responses (Cramer & Truhlar, 2001). Theoretical frameworks have been devised to sep-

arate the solvent electronic and nuclear response either adiabatically or non-adiabatically (Marcus

& Sutin, 1985 ; Moser et al., 1992). In theoretical studies, continuum or molecular mechanics

(MM) solvent often supplements quantum mechanical treatment of the solutes (reactants).

2.4 Non-polar solvation by water

Another important aspect of solvation involves the mechanism of solvent interactions with

uncharged solutes. This type of solvation phenomenon has many names including hydrophobic,

Fig. 2. The reorientation and polarization response of water upon the insertion of a cation (K+) into the

bulk water. The yellow vector on each water molecule represents the net induced dipole moment because of

the electric field of the ion and other water molecules. The white vector is the permanent (gas-phase) dipole

moments (1.8 Debye) of the water molecule. The average dipole moment of a water molecule in liquid is

2.6–3.0 D according to various theoretical calculations. The snapshot is taken from molecular dynamics

simulations of K+ in water using the AMOEBA potential (Ren & Ponder, 2003).
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apolar, and non-polar ; we refer to it as non-polar solvation in this review. Non-polar solvation

has been extensively studied and modeled, and there are many good references available for

interested readers to explore, the following citations are only a few (Ben-Naim, 2006 ; Hummer

et al. 1999, 2000 ; Pratt, 2002 ; Pratt & Chandler 1977, 1980 ; Pratt & Pohorille, 2002). This section

focuses on the basic properties of non-polar solvation important for the general aspects of

biomolecule–solvent interactions.

Water’s small size and flexibility in forming infinite hydrogen-bonding networks around

solutes contribute to the hydrophobic effect that is widely appreciated in biology. Nuclear

magnetic resonance (NMR) (Mizuno et al., 1995), high-performance liquid chromatography

(HPLC) (Silveston & Kronberg, 1989), and neutron scattering (Soper, 2000; Soper & Phillips,

1986) experiments suggested that water structure is different around a hydrophobic solute.

Atomic and Monte Carlo simulations also support such structural change in water molecules,

depending on surrounding environment (Lynden-Bell & Rasaiah, 1997 ; Madan & Sharp, 1996).

Efforts to understand hydration based on water structure and entropy changes date back several

decades (Frank & Evans, 1945). Sophisticated theories have been evolved to delineate the en-

tropy and enthalpy contributions to solvation, the influence of dispersion and electrostatics, the

effect of solute-length scale, temperatures, and other external factors to understand solvation

phenomenon (Chandler, 2005 ; Garde et al., 1996 ; Hummer et al., 2000 ; Schmid et al., 2001).

Advancements in molecular simulations have and will continue to help further our understand-

ing of the role of solvation in biomolecular structure and dynamics.

Pioneering work by Pratt and Chandler (Pratt, 2002 ; Pratt & Chandler, 1977, 1980 ; Pratt &

Pohorille, 1992, 2002) identified some of the fundamental determinants of non-polar solvation.

Not surprisingly, a major contribution to the energetics of solvating an uncharged molecule is the

energy required to create a cavity in the solvent. This cavity-creation term describes the work

involved with accommodating within the solvent : purely strong solute–solvent repulsive inter-

actions. Later work by Hummer et al. (Hummer et al., 1996) translated this model in an infor-

mation theory context by noting that the energetics of cavity creation are intrinsically encoded in

the density fluctuations of the solvent. The energetics of cavity creation in water is strongly

dependent on both the size and the shape of the non-polar solute with a crossover in energetics

and solvent density near the solute interface when the solute size approaches nanometer-length

scales (Ashbaugh, 2009 ; Ashbaugh & Pratt, 2006 ; Ben-Amotz, 2005 ; Berne et al., 2009 ;

Choudhury & Pettitt, 2007 ; Ewell et al., 2008 ; Hummer & Garde, 1998 ; Li et al., 2006 ; Lum et al.,

1999 ; MacCallum et al., 2007 ; Rajamani et al., 2005). Another important aspect of non-polar

solvation is the attractive nature between the solute and the solvent. For non-polar solvation,

these attractive interactions are (by definition) not because of the electrostatics of static charge

distributions on the solute and solvent, but are generally associated with weak dispersion inter-

actions between solvent and solute originated from the fluctuation of induced dipoles within

solvent and solute molecules (Boström & Ninham, 2005 ; Curutchet et al., 2006 ; Floris & Tomasi,

1989 ; Floris et al., 1991 ; Gallicchio et al., 2000 ; Levy et al., 2003 ; Pratt & Chandler, 1980). If

sufficiently weak, such attractive non-polar interactions are generally assumed not to affect the

density of solvent around the solute, but instead simply change the energetics of solvation for

a solvent density distribution determined by repulsive solvent–solute interactions. Note that

non-polar solvation cannot be easily decoupled from the polar solvation process : strong at-

tractive solute–solvent interactions can significantly affect local solvent densities and change

the non-polar properties of the solvation process (Dzubiella & Hansen, 2004 ; Dzubiella et al.,

2006a, b). Therefore, while the decomposition of solute–solvent interactions into polar and
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non-polar components is a useful conceptual device, the actual solvation process is much more

complicated (Cramer & Truhlar, 1999, 2008).

Many biological phenomena are associated with non-polar solvation, ranging from protein

folding to protein–protein to the fundamental structure and energetics of lipid bilayers and

assemblies (Thirumalai & Hyeon, 2005 ; Yeagle, 2004 ; Zhou et al., 2004). A full discussion of the

influence of non-polar solvation on the numerous aspects of biomolecular structure, function,

and energetics would fill several reviews. Therefore, interested readers are referred to the

excellent discussion of the topic provided by Pratt & Pohorille (2002).

2.5 Site-specific binding and recognition

The discussion above has largely focused on the bulk properties of solvent and its non-specific

interaction with solutes. However, a solvent such as water can also play a ligand-like role and

interact with solutes in a decidedly non-bulk and site-specific manner. Perhaps the most familiar

example of such site-bound solvent molecules are the crystallographic waters present at the

surface (Kuhn et al., 1992 ; Merzel & Smith, 2002 ; Smolin & Winter, 2004) and in cavities

(Damjanović et al., 2005a, b 2007 ; Imai et al., 2005, 2007a) of many higher-resolution X-ray

structures. While the physical and functional properties of such waters can be a subject of debate

(Nayal & Di Cera, 1996), they are illustrative of the ways in which water can play structural as

well as bulk roles in biomolecules. Nucleic acids provide another good illustration of how water

can interact with biomolecular surfaces in a non-bulk-like and often sequence-specific manner

(Arai et al., 2005 ; Auffinger & Hashem, 2007 ; Auffinger & Westhof, 2000a,b ; 2001 ; Bastos et al.,

2004 ; Bonvin et al., 1998 ; Fuxreiter et al., 2005 ; Mikulecky & Feig, 2006 ; Rhodes et al., 2006 ;

Yonetani et al., 2008), such as the zig-zag spine of hydration in the minor grove of B-DNA (Drew

et al., 1982). Structurally or specifically bound water can also play an important role in protein

structure and function, including allosteric regulation (Bone, 2006 ; Guinto & Di Cera, 1996 ;

Krem & Di Cera, 1998 ; Royer et al., 1996) and stability/flexibility (Fischer & Verma, 1999).

Finally, water can play a very important role in molecular recognition; ranging from the binding

of small molecules and peptides (Barillari et al., 2007 ; Hamelberg & McCammon, 2004; Kuhn

et al., 1992 ; Petrone & Garcia, 2004 ; Samsonov et al., 2008 ; Thilagavathi & Mancera, 2010 ;

van Dijk & Bonvin, 2006 ; Villacanas et al., 2009), to protein–protein complexes (Ikura et al.,

2004), to protein–nucleic acid binding (Billeter, 1996 ; Fried et al., 2002; LiCata & Allewell, 1997),

and water itself in the form of ice-binding and anti-freeze proteins (Doxey et al., 2006 ; Jorov et al.,

2004 ; Liu et al., 2005 ; Yang & Sharp, 2004). Such specific characteristics of the solvent obviously

need detailed molecular descriptions of the solvent, as described later in this review.

3. Modeling ionic solutions

Ions play an essential role in biomolecular solvation and have a dramatic influence on the stability

and function of a wide range of protein (Arakawa & Timasheff, 1984 ; Baldwin, 1996 ; Boström

et al., 2003a, 2005b, Chen et al., 2007b; Friedman, 2000 ; Lund et al., 2008a ; Ninham & Yaminsky,

1997 ; Pegram & Record, 2008 ; Shimizu et al., 2006 ; Vrbka et al., 2006), membrane (Aroti et al.,

2004, 2007 ; Berkowitz & Vácha, 2012 ; Boström et al., 2003b; Chen et al., 2007b ; Clarke &

Lüpfert, 1999 ; Gurau et al., 2004 ; Petrache et al., 2006 ; Sachs & Woolf, 2003), and nucleic acid

structures (Anderson & Record, 1990, 1995 ; Auffinger & Hashem, 2007 ; Ballin et al., 2004 ;

Chen et al., 2009a, b ; Draper, 2008 ; Draper et al., 2005 ; Garcı́a-Garcı́a & Draper, 2003 ;
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Gavryushov, 2009 ; Grilley et al., 2006, 2007 ; Leipply & Draper, 2000 ; Misra & Draper, 2000,

2001 ; Ni et al., 1999 ; Olmsted et al., 1991 ; Record et al., 1995, 1978 ; Tikhomirova & Chalikian,

2004). Several excellent reviews have been written on this subject (Anderson & Record, 1990,

1995 ; Draper, 2008; Draper et al., 2005 ; Ni et al., 1999 ; Record et al., 1978) ; we provide only a

broad overview here.

3.1 Non-specific screening

One of the simplest aspects of ionic behavior is the non-specific ‘mean field ’ screening embo-

died in Debye–Hückel or Poisson–Boltzmann (PB) treatments of ionic solutions (Baker, 2004 ;

Gilson & Honig, 1988 ; Grochowski & Trylska, 2008; Lamm, 2003 ; Lamm & Pack, 2010). Such

treatments assume ideal ion behavior where each ion experiences the average influence of its

surrounding ionic environment. Therefore, this ‘mean field ’ assumption implies no ion–ion

correlations or fluctuations, effects that have been shown to be important in systems with high

ion charge density (Angelini et al., 2003, 2006 ; Ben-Yaakov et al., 2009, 2011 ; Butler et al., 2003 ;

Holm et al., 2001 ; Jho et al., 2008 ; Kanduč et al., 2008 ; Podgornik & Dobnikar, 2001 ; Todd et al.,

2008 ; Todd & Rau, 2008), as discussed later in this review. Additionally, these models assume no

specific ion–ion, ion–solvent or ion–solute interactions ; with a few exceptions (Baer & Mundy,

2011 ; Boström & Ninham, 2004 ; Boström et al., 2003a, b ; Jancovici, 2006 ; Parsons et al., 2011),

ions are typically treated as inert hard spheres with generic solute interactions based only on

charge and steric repulsion. While the assumption of ideality makes such theories very con-

venient to implement and use, such assumptions are rarely valid in actual biomolecular systems

(Anderson & Record, 1995 ; Collins, 1995 ; Marcus, 2006 ; Overman & Lohman, 1994 ; Record

et al., 1978). Nevertheless, these models are very popular and have been successfully used to

describe some aspects of ionic effects on biomolecular systems—particularly in highly dilute and

low-charge density settings.

3.2 Site-specific binding

Unlike the non-specific aspects of ionic behavior discussed above, many ions interact with

protein and nucleic acids in a site-specific manner. About one-third of all proteins contain metal

ions as integral components (Chaturvedi & Shrivastava, 2005 ; Waldron & Robinson, 2009).

These metalloproteins—as well as other proteins that transiently bind ions—recognize and as-

sociate with only specific types of ions. This specificity allows them to discriminate and bind

particular ion species, even in a solution of other ions of similar properties (e.g. charge and size).

Specific interactions between ions and biomolecules can be critical for maintaining structure and

are often directly involved in function as well. There are several examples where specific ion

binding plays a key role in biomolecular structure. These include RNA tertiary structure stability

(Adams et al., 2004 ; Auffinger & Hashem, 2007 ; Cate et al., 1996; Conn et al., 2002 ; Draper, 2008 ;

Draper et al., 2005 ; Grilley et al., 2006, 2007 ; Leipply & Draper, 2000) as well as several protein

assembly and stability examples (Calimet & Simonson, 2006 ; Ding & Dokholyan, 2008 ; Li et al.,

2008 ; Wong & Pollack, 2010). Additionally, the functions of many proteins are affected by

specific ion binding. For example, thrombin, a key enzyme in blood coagulation, is allosterically

activated by Na+ (Guinto & Di Cera, 1996 ; Wells & Di Cera, 1992) ; the NikR DNA-binding

protein is activated by Ni2+ binding (Benanti & Chivers, 2007 ; Bradley et al., 2008 ; Carrington

et al., 2003 ; Chivers & Sauer, 2000) ; and calmodulin undergoes significant conformational
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transitions in response to calcium binding (Bertini et al., 2004 ; Evans et al., 2011 ; Mori et al.,

2004). Many other systems are also regulated by ion binding (Benanti & Chivers, 2007 ;

Carrington et al. 2003 ; Chivers & Sauer, 2000 ; Gohara & Di Cera 2011 ; Hedstrom et al. 1992 ;

Niu et al. 2009 ; Page et al. 2006 ; Reyes-Caballero et al. 2011 ; Shults et al. 2003).

The definition of site-specific binding can be broadened somewhat to also include the

specific recognition and binding of particular ions to more generic structural features of

nucleic acids (Auffinger & Hashem, 2007) and lipid bilayers. For example, different species of

ions are known to compete for binding to the DNA minor groove, leading to a preferential

accumulation of particular cation species in this region of DNA molecules (Auffinger &

Westhof, 2001; Marincola et al., 2004 ; Savelyev & Papoian, 2006 ; Tikhomirova & Chalikian,

2004). Such specificity is also observed around other nucleic acid structures, including RNA

(Chen & Honig, 1997 ; Chen et al., 2009a, b ; Garcı́a-Garcı́a & Draper, 2003 ; Grilley et al.,

2007 ; Misra & Draper, 1999, 2000, 2001, 2002 ; Misra et al., 2003 ; Savelyev & Papoian, 2006 ;

Soto et al., 2007). Ion specificity for particular regions of nucleic acid and protein structure can

also manifest itself in effects on protein-DNA recognition (Kozlov & Lohman, 1998 ; Mauro

& Koudelka, 2004 ; Overman & Lohman, 1994 ; Record et al., 1978), although such effects can

often arise from a wide range of interaction types (Overman & Lohman, 1994 ; Record et al.,

1978, 1995 ; Zhang et al., 1999). In a similar manner, the differential interface-perturbing

behavior of monovalent cations on membrane surface properties and membrane curvature

is associated with their different hydration tendencies that will modulate the extent and

stability of the hydrogen-bond network along the charged membrane surface (Kraayenhof,

1996).

3.3 Ion–water interactions

Many species-specific ion effects are governed, in part, by ion–water interactions. Studies of such

preferential hydration are far too numerous to include in a single review; indeed, many excellent

manuscripts and texts have been written on the basic physical chemistry of these interactions

(Kielland, 1937 ; Nightingale, 1959 ; Robinson & Stokes, 2002) as well as their biophysical im-

plications (Courtenay et al., 2001 ; Record et al., 1978, 1995 ; Timasheff, 1998, 2002). Ions are

known to significantly perturb the structure of water (Ansell et al., 2006 ; Hribar et al., 2002 ; Zangi

et al., 2007) and the strength of their interaction with water can significantly influence their

affinity for interfaces (Collins, 1995 ; Pegram & Record, 2006, 2007). One of the most famous

observations of this behavior is the Hofmeister effect (Baldwin, 1996 ; Hofmeister, 1888), which

ranks ions based on their ability to precipitate or destabilize protein structures (Baldwin, 1996 ;

Collins, 1995 ; Timasheff, 1992), or partition to aqueous interfaces (Chen et al., 2007b; Pegram &

Record, 2006, 2007, 2008). Hofmeister-like behavior also correlates with specific tendencies to

enter the Stern layer and to bind the surface for charge neutralization. Roughly speaking,

the Hofmeister effect can be described as a rank of ions (given valence) to adsorb in directly

proportional to their unhydrated size. Hofmeister effects are particularly prevalent when local ion

concentrations are high and play a role in a wide range of biological processes, including protein

folding (Baldwin, 1996 ; Timasheff, 1992), protein–DNA interactions (Hong et al., 2004 ; Kozlov

& Lohman, 1998 ; Shimizu, 2004a, b ; Shimizu & Smith, 2004 ; Shimizu et al., 2006 ; Timasheff,

2002), nucleic acid stability (Pegram et al., 2010 ; Pincus et al., 2008), and biomembrane behavior

(Aroti et al., 2004, 2007 ; Boström & Ninham, 2005 ; Boström et al., 2003b; Clarke & Lüpfert,

1999 ; Fukuma et al., 2007 ; Leontidis et al., 2007 ; Sachs & Woolf, 2003 ; Vácha et al., 2009).
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While there are a number of theories for the detailed physical basis of the Hofmeister effect

(Baldwin, 1996; Boström & Ninham, 2004 ; Boström et al., 2003a, b ; Parsegian et al., 2000 ;

Parsons et al., 2010, 2011 ; Pegram & Record, 2008 ; Shimizu et al., 2006 ; Tang & Bloomfield,

2002 ; Zhou, 2005), there is not yet broad consensus on the best way to model this phenomenon

in computational treatments of biomolecular electrostatics. Perhaps the most straightforward

model currently available uses dispersion effects to reproduce Hofmeister trends in continuum

models of ion behavior (Boström & Ninham, 2004 ; Boström et al., 2003a, b, 2005 ; Parsons et al.,

2011). While dispersion forces have been implicated in Hofmeister-like behavior (Boström &

Ninham, 2004, 2005 ; Boström et al. 2003a, b, 2005a, b ; Gurau et al., 2004 ; Ninham & Yaminsky,

1997 ; Parsons et al., 2010, 2011), they are unlikely to be the only contributing interaction (Lund

et al., 2008a, b ; Shimizu et al., 2006 ; Tobias & Hemminger, 2008). Therefore, it is unlikely that any

current continuum solvation model completely describes these types of preferential solvation

and Hofmeister effects.

4. Modeling biomolecular charge distributions

Generally, we are interested in the behavior of the solute molecules even though there is a

clear understanding that the role of solvent is indispensable. Here, we describe the classical

models for solutes that have been the dominant approaches in modeling and simulations of

macromolecules.

4.1 Electric moments and Coulombic interactions

The importance of Coulombic interactions in molecular energies and forces has been recognized

for a long time. Feynman discussed the importance of such interactions in 1939 (Feynman, 1939)

while Buckingham (Buckingham, 1967) began his 1967 seminal paper with the statement, ‘There

is now general agreement that the significant forces between atoms and molecules have an

electric origin. ’ Quantum mechanical forces that act among molecules are electrostatic in nature.

For example, repulsion results from electron overlap when atoms approach each other without

forming chemical bonds ; dispersive attraction can arise from interactions from instantaneous

fluctuation of charge distribution inside molecules. In classical mechanics, the non-covalent

interatomic interactions are partitioned into electrostatics as described by Coulomb’s law, van der

Waals exchange-repulsion and dispersion, as well as secondary contributions such as induction

and charge transfer (Stone, 1996). Although all major contributions need to be represented

effectively in modeling molecular interactions, a consistent and transferable treatment of elec-

trostatic interaction has been particularly challenging. The key issues include representation of

charge distribution, efficient and accurate description of long-range interactions, and solvent

effects.

The first molecular dynamics simulation of water was reported by Rahman and Stillinger in

1971 (Rahman, 1971). Four artificial point charges (¡0.19e) were placed 1 Å away from the

oxygen atom to model the electrostatic interaction between water molecules. The use of effective

point charges to represent the charge distribution of atoms and molecules greatly reduces the

computational needs to study large molecules and condensed matters in comparison with

quantum mechanical methods where electrons are considered in detail. The application of

QM-derived point charges to investigate molecular systems dates back at least to the mid-1960s

(Bradley et al., 1964 ; Kimel, 1964 ; Lifson, 1968) with several important later contributions
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(Allinger, 1976). The electrostatic interaction is commonly modeled via partial charges

located at atomic centers ; for example, in the following force fields : AMBER (assisted

model building with energy refinement) (Case et al., 2005 ; Cornell et al., 1995), MMFF

(Merck molecular force field), OPLS (optimized potentials for liquid simulations) (Kaminski

et al., 2001), CHARMM (Chemistry at HARvard Macromolecular Mechanics) (MacKerell et al.,

1998).

The electrostatic potential (ESP) energy U for a system of point charges follows Coulomb’s

law:

U=
X
i

X
j>i

qi qj

rij
, (1)

where q denotes the charge value and r is the distance between charge locations. The ESP from

atomic partial charges can be systematically improved by using a multipole expansion to describe

the charge distribution (Buckingham, 1967). For an arbitrary charge distribution (e.g. an atom or

a molecule) described by charges qi (i=1, _, n), the ESP at a distance R away from the particle is

given by the sum:

V (R)=
X
i

qi

Rxr ij j, (2)

where the | | notation refers to Euclidean distance. For a distance R>r, a Cartesian–Taylor

expansion of the above equation leads to

V (R)=
X
i

qixm � r+ 1

2
H:r2x � � �

( )
1

R

� �
(3)

a multipole representation where the symbol r denotes the gradient operator. The first

term inside the bracket is the sum of charges of the particle or monopole moment. The

dipole moment of the charge distribution m is a vector with three components : ma=P
i qi ria, where a=x, y, z . The quadrupole moment tensor (H ) has nine components given by

Hab=
P

i qi riarib. A traceless form of the quadrupole tensor Hab=
P

i qi (
3
2
riaribx1

2
r 2i dab), in-

stead of the traced one, can be used in Equation (3), along with constant 1/2 before H:r2

replaced by 1/3 (Stone, 1996). A spherical form of multipole expansion can also be obtained

by a spherical harmonic expansion (Bottcher, 1952 ; Hirschfelder et al., 1954 ; Kirkwood, 1934 ;

Stone, 1996).

Molecular multipole moments can be more efficient than point charges for modeling mol-

ecular electrostatic interactions, even though the associated energy and derivatives are more

complex. In fact, early simulations of liquid and solid benzene adopted potentials that included a

point quadrupole at the center of the benzene molecule (Claessens et al., 1983 ; Jorgensen &

Swenson, 1985 ; Linse, 1984). It was suggested (Claessens et al., 1983) that the potential with a

point multipole was superior to the Lennard–Jones-only potential for crystal structure prediction

even though a recent study indicated that electrostatic interactions are not critical in predicting

crystal packing of non-polar molecules (Della Valle et al., 2008). Because of the assumption of

R>r in the Taylor expansion in Equation (3), however, the molecular multipole expansion is

problematic at the short distances that are often relevant in molecular simulation. The multipole

expansion may diverge within the sphere R, and lead to an inaccurate ESP. The solution to

overcome this issue is to distribute the multipole expansion to a collection of sites within the
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molecule, which effectively reduces the radius of the divergence sphere (Fowler & Buckingham,

1983, 1991 ; Price, 1985 ; Stone, 1981).

Buckingham and Fowler (Fowler & Buckingham, 1983) were the first to apply distributed

multipoles to the study of small molecule complexes. Atomic multipoles can be derived in

several ways, including the distributed multipole analysis (DMA) of an ab initio wavefunction

(Stone, 1981). The combination of a hard sphere potential with atomic multipoles (up to

quadrupole) was rather successful in reproducing experimental geometries including hydrogen-

bonding distance and angle for several molecular complexes. It has been noted that local

atomic charge distributions are usually not spherically symmetrical because of chemical bond-

ing and lone pairs, and thus higher-order electrostatic moments are necessary to describe such

features. Systematic study of the accuracy of point multipole models also has been described

(Williams, 1988). It was shown that the use of higher-order multipole moments significantly

improved the representation of molecular ESP in comparison with ab initio reference potential.

When only atomic charges were allowed, the relative root-mean-squared error in the ESP

around the molecules was of the order of 10%. With the addition of dipole and quadrupole

moments, the error was reduced by orders of magnitude to less than 0.1% (Williams, 1988).

Considering that higher-order moments decay faster than monopoles, the advantage of a dis-

tributed multipole expansion is to improve the short-range description outside the van der

Waals surface of a molecule, which is important for interactions such as hydrogen bonding

(Dykstra, 1993).

An alternative to multipole expansion is to use a number of charge sites, which should in

principle, offer a similar improvement to the accuracy of the molecular ESP. A great advantage

of using point charges is the simplicity of the energy and atomic gradient ; in contrast, the

gradient and torque on point multipoles require significantly more algebra. There have been

arguments that a point charge model is more efficient for a given level of accuracy, at least for

diatomic molecules such as HF and HCl (Brobjer & Murrell, 1982). There are also models that

replace multipole moments by distributed point charges (Sokalski et al., 1993). The extended

electron distribution (XED) force field adopts an explicit charge distribution around each atom,

which seems to give improvements in interaction energy, conformation, and electrostatic field

(Chessari et al., 2002; Vinter, 1996). Some versions of the AMBER force field place charges at

important lone-pair sites (Dixon & Kollman, 1997). Another recent example is the TIP5P

water model, which employs five charge sites. However, it was shown that the determination of

the exact locations of the lone pair charges was not trivial, and involved an extensive fitting

procedure to reproduce experimental density-temperature profiles (Mahoney & Jorgensen,

2000 ; Rick, 2001). Another concern is that charges located away from atomic centers may lead

to numerical instability in molecular dynamics or Monte Carlo simulations because of the

potential fusion of charge sites.

To evaluate the interaction between multipole moments, Applequist introduced a concise

polytensor scheme (Applequist, 1983, 1984, 1985, 1989 ; Dykstra, 1988). The multipole expan-

sion at site k is written as

Mi= qi , mix , mixmix ,Hixx ,Hixy , . . .
� �t

, (4)

where the superscript t indicates transpose. The interaction energy between two multipoles at

sites i and j is then given by the matrix formula :

Uij=Mt
i TijMj ,
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where T is the interaction matrix :
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The multipole moments here are defined in the same global frame. For example, Price

reported distributed multipoles for amides and peptides in predefined molecular axes

(Faerman & Price, 1990). Alternatively, it is possible to define the multipole moments for each

atom type in a local coordinate frame that is constructed with respect to covalently bonded

neighboring atoms. Within this scheme, the oxygen atom in the water molecule may use the

so-called bisector frame where the z-axis is the bisector of the HOH angle (Kong, 1997 ; Ren &

Ponder, 2003) ; the x-axis is perpendicular to z and also lies in the HOH plane ; and the y-axis is

determined via the right-hand rule. For chemical systems without such symmetry, a generic z-

then-x local frame can be used, in which one chemical bond to a neighboring atom is selected to

define the z-axis.

A rotation matrix converts local multipole moments into the global frame prior to

computation of the electrostatic interaction energies. Many algorithms require the evaluation

of the analytic electrostatic forces for each molecular configuration. For the atomic

charge model, the force is simply the negative derivative of Coulomb energy (1/r) with respect

to atomic coordinates. For an atomic multipole expansion, forces are derived in a similar

fashion by taking the derivative of the interaction matrix T and, using the relationships

T (n+1)=r(T n), and T 0=1=R. Expressions for the first few derivatives are available (Kong, 1997).

A further complication must be considered for dipole and higher-order moments. From a

physics point of view, a dipole moment placed in an external field will experience a torque

that favors rotation of the site (and its local frame defining neighbors). It is possible to

convert each torque into forces at frame-defining sites to permit standard molecular dynamics

integration schemes or optimization algorithms (Ren & Ponder, 2003). There is an alternative

approach to understand these extra forces mathematically. If the multipole moments defined

within their local frames are explicitly included in the energy expression with their rotation

matrix, which is a function of atomic coordinates, the product rule leads to these additional

forces (Kong, 1997). Besides the Cartesian poly-tensor approach explained above, the spherical

tensor formulations of the multipole interaction energy, force, and torque, are available (Price

et al., 1984).

Note that even with the better convergence of atomic multipole at short range, there are errors

associated with the point approximation of the charge distribution. At a distance where electron

density is penetrated, a negative (attractive) penetration effect is missing from the point multipole

potential energy (Stone, 1996). It has been suggested that the penetration effect could be

absorbed by the repulsive term or possibly by damping the Coulomb energy (Klopper et al.,

2000 ; van Duijnen & Swart, 1998). Wheatley & Mitchell (1994) proposed replacing the point

multipole with Gaussian multipoles to correctly model the penetration effect at short range.

Piquemal et al. (2003) used s-type Gaussian functions distributed at multi-sites to represent the

charge density. In the recent development of Quantum Mechanics Polarizable Force Field
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(QMPFF) (Donchev, 2006 ; Donchev et al., 2005), a model was developed that consists of

a nuclear charge and a negative electron cloud of exponential form located off the nuclear center.

These more sophisticated treatments are likely to provide greater flexibility and higher accuracy

for modeling electrostatics, within the limits of the ab initio data to which they are fit, although at

higher computational cost.

When formulating an MM potential, conventional wisdom is that intramolecular short-range

electrostatic interactions should be masked (scaled), based on the rationale that bond and angle

energy terms already include these interactions. However, details of the masking schemes vary

among different force fields. For example, charge interactions between the 1–2 (directly bonded)

and the 1–3 (separated by two bonds) atoms are almost universally omitted. The 1–4 (atoms

separated by three bonds) interaction is scaled down by 5/6 in Amber94, by 1/2 in OPLS-AA,

and is not modified in CHARMM. These scaling factors are determined empirically to best

reproduce conformational energy profile of flexible molecules.

Parameterization of realistic charge distributions, in the forms of point charges or higher-

order moments, is essential to the accuracy of electrostatic energetics. Although atomic charges

are not measurable physical quantities (physical observables), it is possible to derive meaningful

values from quantum mechanical calculations. A method such as Mulliken population analysis or

Bader’s Atoms-in-Molecules (AIM) theory partitions electron density into atomic contributions

(Bader, 1990). However, different partitioning schemes lead to substantially different atomic

charges. Momany first treated atom charges as adjustable parameters and derived values by

fitting to ab initio Electrostatic potential (ESP) (Momany, 1978). Unlike atomic charges, ESPs

are physical observables and are directly associated with intermolecular interactions. Cox &

Williams (1981) pointed out that ESPs from Mulliken charges generally had significant

errors. Variants of ESP fitting approaches include CHarges from Electrostatic Potentials

(CHELP), CHarges from Electrostatic Potentials using a Grid based method (CHELPG)

(Breneman & Wiberg, 1990), Merz-Kollman (MK), and Restrained Electrostatic Potential

(RESP) (Bayly et al., 1993). These methods differ mostly with respect to the choice of grid points

to which the ESP is fit, typically residing in a shell immediately outside the van der Waals surface.

Note that at very close distances, the ESP is not as relevant to molecular interactions because the

actual wavefunctions of molecules will overlap, leading to penetration and other effects. In

RESP, hyperbolic restraints are applied to heavy atoms to avoid artificially large charges obtained

for atoms buried inside the molecule during fitting. This type of approach works reasonably

well for small molecules, but is inherently limited for larger molecules. In the latter case, such

as proteins, model compounds (e.g. dipeptides) are used to derive charges for common

molecular fragments.

Various charge parameterization schemes have been compared for their ability to reproduce

molecular dipole moments and ESP (Bayly et al., 1993 ; Martin & Zipse, 2005 ; Masamura, 2000 ;

Wiberg & Rablen, 1993). Wiberg & Rablen (1993) suggested that atomic charges alone are

insufficient to accurately model the anisotropic molecular charge distribution and ESP near the

van der Waals surface. They concluded it is necessary to include at least atomic dipoles or even

higher-order terms. This is consistent with Williams ’ conclusion mentioned above (Williams,

1988). Sun (1998) showed that ESP charges were unable to provide quantitatively ion-spherand

interaction free energies, unless the region near oxygen was weighted higher than the rest, which

is another indication of an over simplification of the spherically symmetric atomic charge

approximation. A pitfall of ESP charges is that they may not respond consistently to structural

changes such as substituents, which is problematic for developing transferable force field
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parameters. Even determination of charges from quantum mechanics (QM) for water alone can

be a difficult task (Martin & Zipse, 2005).

Additional complications arise from the dependency of charge distributions on intramolecular

geometry and conformation. This short-range effect is of quantum mechanical origin and is not

directly related to through-space induction. Dinur & Hagler (1995) reported empirical formu-

lation that couples geometry to charge distribution. Palmo et al. (2006) showed that such a

coupling allows a classical water model to capture the expansion of the H-O-H angle moving

from gas phase to liquid. In most classical potentials, this conformation dependence is handled by

simultaneous fitting to multiple conformations of a flexible molecule (Reynolds et al., 1992a, b ;

Söderhjelm et al., 2007).

Because of their simplicity and efficiency, partial atomic charge models have been adopted by

the majority of common biomolecular force fields including AMBER, CHARMM, GROMOS,

and OPLS-AA. Since most of the force fields target the condensed-phase, charges derived from

gas-phase, QM calculations are not suitable and further adjustments must be made to account for

solvent and other environmental effects. AMBER force fields have traditionally fit charges to

ESPs calculated from the HF/6-31G* basis set. It has been argued that because the HF theory

overestimates molecular dipole moments, the amplified charges effectively capture the solute

polarization response in condense-phase. CHARMM first optimizes the charges to gas-phase

molecular interactions and subsequently scales the charges for the neutral polar molecules by

1.16. The OPLS force field adjusts the charges by fitting to neat liquid properties such as density

and heat of vaporizations. This process is tedious, but has the advantage of producing reliable

condensed-phase properties. We emphasize an important rule, which is not to mix charges from

different parameterization strategies (i.e. from different force fields) into a single calculation

because each method has its own systematic errors that are more likely to cancel when used

consistently. There is also interest in using semi-empirical methods such as AM1 to estimate

atomic charges quickly. This can be potentially useful for studying a large number of small

molecules. AM1-BCC and CM2 are two examples of such schemes (Jakalian et al., 2000, 2002 ;

Li et al., 1998a, b).

As discussed previously, electrostatic models beyond fixed atomic charges have also been

explored in recent years. In addition to the work that incorporates electronic polarization, dis-

tributed atomic multipoles have been applied to represent electrostatic interactions within MM

force field (Burnham & Xantheas, 2002 ; Freitag et al., 2000 ; Grossfield et al., 2003 ; Holt &

Karlström, 2008 ; Jiao et al., 2006, 2008, 2009 ; Kong, 1997 ; Ren & Ponder, 2002, 2003 ; Xantheas

et al., 2002). Similar to point charges, distributed multipole moments can be derived via popu-

lation analysis or an ESP fit. Although it is known that charges from Mulliken population analysis

do not produce an accurate ESP because the method is truncated at monopole order, its ex-

tension to DMA as proposed by Stone (Stone, 1981) permits systematic convergence of the ESP.

Alternatively, atomic multipoles can be obtained from Bader’s AIM theory, which partitions

electron density based on zero-flux surfaces (Bader, 1990). Popelier showed that AIM is slow to

converge compared to DMA and therefore requires higher-order moments (Popelier et al., 2001).

Convergence of AIM multipole expansion can be achieved by adding additional sites at bond

midpoints (Joubert & Popelier, 2002). To handle large basis sets in ab initio calculations, a recent

modification to DMA that uses a grid-based quadrature for partitioning the contributions to the

charge density from diffuse basis functions, was introduced (Stone, 2005). Other methods to

derive atomic multipoles include natural atomic orbitals (NAO) analysis (Reed et al., 1988) and a

recently developed method called LoProp (Gagliardi et al., 2004 ; Söderhjelm et al., 2007).
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4.2 Polarizability and other many-body effects

The Coulombic energy expression makes use of the assumption that the electrostatic energy is

pair-wise additive. In reality, a charge distribution changes under the influence of an electric

field produced by the surrounding environment, which can include contributions from solvent,

intramolecular sources or externally applied potential differences. For example, the molecular

dipole moment of a water molecule increases from 1.8 to 3.0 D when immersed in bath of water

(Ren & Ponder, 2003).

Different methods exist to incorporate the polarization effect in molecular mechanic

framework, by means of induced dipole, fluctuating charge or Drude oscillator. Stone (Stone,

1981, 2005 ; Stone & Alderton, 2002) also proposed a more sophisticated treatment. Fluctuating

charge and Drude oscillator-based methods are easier to implement within the existing fixed-

charge force field framework, while the induced dipole approach is a natural choice for

models based on atomic multipoles. Detailed discussion and comparison of the different treat-

ments of polarization can be found in the recent reviews (Cieplak et al., 2009 ; Halgren, 1992 ;

Lopes et al., 2009; Ponder & Case, 2003 ; Rick, 2001). Below, we offer a brief account for

polarizable force field development and fundamental methodology based on distributed induced

dipole model.

In very early studies of enzymatic reactions (Warshel, 1976) and prototype molecular dynamics

algorithms (Vesely, 1977), polarization effect was already considered explicitly. In early 1990s,

Gresh and co-workers developed THE SIBFA (sum of interactions between fragments ab initio

computed) potential, which treats the polarization, charge transfer effect, and other second-order

electrostatic interactions (Gresh, 1997). Karlström and co-workers have been devoting con-

siderable effect to incorporate induced-dipole based polarization models into classical force fields

(Åstrand et al., 1995; Brdarski et al., 2000 ; Holt & Karlström, 2009). Friesner and co-workers also

reported models that use both fluctuating charges and atomic induce dipole to account for

polarization (Kaminski et al., 2002 ; Stern et al., 2001). Patel et al. (Bauer & Patel, 2009; Bauer et al.,

2011 ; Patel & Brooks, 2004 ; Patel et al., 2004, 2009) take a fluctuating charge approach that is

based on the charge equilibration scheme (Rappe & Goddard, 1991). MacKerell and Roux base

their polarizable potentials on the Drude oscillator approach (Baker et al., 2010 ; Harder & Roux,

2008 ; Jiang et al., 2011 ; Lamoureux & Roux, 2006 ; Lopes et al., 2007 ; Roux et al., 2011 ; Yu et al.,

2010). Ren and Ponder have been developing classical force fields that combine the induced

dipole with permanent atomic multipoles to represent the electrostatic interactions (Jiao et al.,

2008 ; Kong, 1997 ; Ren & Ponder, 2002, 2003 ; Ren et al., 2011). Duan and AMBER community

are also continuing with their effort in polarizable force field development (Wang et al., 2011a,

2011b; 2006). Inclusion of polarization allows more rigorous parameterization and validation of

the force field against a wide range of molecular systems in different environment, from small

molecules to macromolecules, from gas-phase to condensed-phase properties. The advantages of

polarizable force fields have been demonstrated for water (Lamoureux et al., 2003 ; Ren &

Ponder, 2003 ; Stern et al., 2001), amides and other organic molecules (Brdarski et al., 2000 ;

Hagberg et al., 2005 ; Harder et al., 2008 ; Lopes et al., 2007 ; Ren et al., 2011; Wang et al., 2011a, b),

ions (Grossfield et al., 2003 ; Jiao et al., 2008 ; Patel et al., 2009 ; Wu et al., 2010 ; Yu et al., 2010),

membranes (Bauer et al., 2011), and ligand–protein complexes (Jiao et al., 2008 ; Roux et al., 2011).

Of equal importance is the development of efficient particle-mesh. Ewald has enabled accurate

treatment of long-range electrostatic interactions of partial charges or point multipoles in the

simulations of large biomolecules (Darden et al., 1993 ; Sagui et al., 2004). However, developing
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and parameterizing a consistent force field for biomolecular simulations are still daunting tasks

because of the extra complication in a more elaborated physical model. There is no consensus on

where the polarization effect would be the most important and what is the best way to treat the

polarization effect in classical simulations? As we push for more accurate physical potentials, it is

also important to keep in mind the limitation of other contributions in the potential energy

function such as partial atomic charge representation, van der Waals interactions, and empirical

valence functions.

At the molecular level, an induced dipole moment can be approximated through a linear

relation with the total field E:

mind=aE,

where a is the molecular polarizability of the molecule, which can be measured by experiment or

calculated from ab initio theory. Following Buckingham, we define the ground state electron

distribution of a molecule as its permanent charge distribution. When several molecules ap-

proach each other, each permanent charge distribution will produce an electric field on the

others. The induced dipole at each molecule resulting from the total permanent field produces an

induced field :

mi=ai

X
j?i

Eperm+
X
k?i

T 11
ik mk

 !
,

where T 11 is the dipole field operator (e.g. Applequist et al., 1972). Since the induced dipole

appears on both sides of the equation, it can be solved self-consistently by iteration or by direct

matrix inversion. The energy from the mutual induction is

U ind=
1

2
mindEperm:

Although induction always lowers the system energy, the factor 1=2 reflects the positive work

required to distort the molecular charge distribution.

While molecular polarization response is a physical observable, measurable from experiment

or computed from ab initio QM, polarization at the atomic level is modeled empirically by

inducing a dipole moment at each atom or charge flow between atoms. To model the molecular

dipole polarizability, distributed atomic models – both additive and non-additive (interactive) –

have been proposed. In an additive model, the molecular polarizability is the sum of individual

bond, atom, or group contributions (Dykstra, 2001). Anisotropic atomic polarizabilities in tensor

forms are used to produce anisotropic molecular response (Birge, 1980 ; Stout & Dykstra, 1995 ;

Stout & Dykstra, 1998). Applequist et al. (1972) devised a non-additive model in which atomic

response is relayed via neighboring atoms and, as a result, anisotropic molecular response can be

captured (Stout & Dykstra, 1995; Stout & Dykstra, 1998). Applequist further incorporated

monopole polarizability (atomic charge transfer) into the dipole polarizability model to handle

out-of-plane charge flow in the aromatic rings (Applequist, 1993). Thole proposed a damping

scheme to handle numerical problems in the interactive model associated with the polarizability

catastrophe at the short range (polarization energy approaches negative infinity) (Thole, 1981 ;

van Duijnen & Swart, 1998). Physically, the catastrophe is a consequence of point polarizability

approximation and the damping is effectively to replace the point charge with a distribution.

Thole’s approach has been adopted by several researchers in empirical force fields for classical
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simulations or QM/MM approaches (Åstrand et al., 1995 ; Bernardo et al., 1994 ; Brdarski et al.,

2000 ; Burnham & Xantheas, 2002 ; Engkvist et al., 1996 ; Grossfield et al., 2003 ; Holt &

Karlström, 2009 ; Jiao et al., 2006, 2008 ; Ren & Ponder, 2002, 2003 ; Van Duijnen & de Vries,

1996 ; Xantheas et al., 2002). The advantage of additive models is the computational simplicity,

whereas the interactive models require the solution of self-consistent mutual induction

equations. However, in the interactive polarizability model, the molecular response has explicit

dependence of molecular geometry, which is often lacking in the additive models. In addition to

the empirical models mentioned above, Stone proposed a more sophisticated distributed polar-

izability model based on perturbation theory which systematically treats polarization response in

monopole to higher-order moments (Stone, 1996).

Different methods exist to incorporate the polarization effect in molecular mechanic frame-

work, by means of induced dipole, fluctuating charge or Drude oscillator. The latter two are

easier to implement within the existing fixed-charge force field methodology, while the induced

dipole approach makes it a natural choice for models based on atomic multipoles. Detailed

discussion and comparison of the different treatments of polarization can be found in the recent

reviews (Halgren, 1992 ; Ponder & Case, 2003 ; Rick, 2001). Stone (Stone, 1981, 2005 ; Stone &

Alderton, 2002) proposed a more sophisticated treatment.

Efforts to develop classical force fields that explicitly treat the electronic polarization

effect are increasing. Ren and Ponder are developing a classical force field that combines

the induced dipole with permanent atomic multipoles to represent the electrostatic interactions

(Jiao et al., 2008 ; Kong, 1997 ; Ren & Ponder, 2002, 2003). Friesner and co-workers also

reported models that merge fluctuating charges and atomic induce dipole models together

(Kaminski et al., 2002 ; Stern et al., 2001). Patel et al. (Patel & Brooks, 2004 ; Patel et al., 2004)

take a fluctuating charge approach that is based on the charge equilibration scheme (Rappe &

Goddard, 1991). MacKerell and Roux base their polarizable potential on the Drude

oscillator approach (Lamoureux & Roux, 2006 ; Lopes et al., 2007). In principle, the inclusion

of polarization should provide a more realistic representation of electrostatic interactions

and better transferability of force field parameters. Ren and co-workers have shown that elec-

tronic polarizability needs to be considered in order to achieve reliable and accurate results

in small molecules binding to proteins (Jiao et al., 2008, 2009). Polarization allows more

rigorous parameterization and validation of the force field against a wide range of molecular

systems in different environment, from small molecules to macromolecules, from gas-phase

to condensed-phase properties. Of equal importance is the development of efficient particle-

mesh Ewald has enabled accurate treatment of long-range electrostatic interactions of

partial charges or point multipoles in the simulations of large biomolecules (Darden et al.,

1993 ; Sagui et al., 2004). However, developing and parameterizing a consistent force field for

biomolecular simulations are still daunting tasks because of the extra complication in a more

elaborated physical model. It is also important to keep in mind the limitation of other re-

presentations in the potential energy function such as van der Waals interactions and short-range

valence term.

4.3 Modeling biomolecular titration states

One of the most important aspects of biomolecular charge states is their sensitivity to pH and

other environmental influences. The presence of ionizable groups (side chains of acidic and basic

amino acids) in a protein affects the protein’s electrostatic properties and its solvation in aqueous
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media. The two types of ionizable groups in proteins are titratable and redox groups. Titratable

groups participate in acid–base (protonation/de-protonation) reactions to exchange (bind or

release) a proton. Redox groups participate in redox reactions to exchange (bind or release) an

electron. Therefore, these ionizable groups can acquire charge states that determine the stability,

solubility, and enzymatic properties of the proteins important in several biological processes

(e.g. enzymatic catalysis, respiration, etc.). In fact, several pH-dependent phenomena associated

with proteins have been attributed to the presence of titratable groups. To understand the

mechanisms of biological phenomena that depend on the ionization states of proteins, it is

important to predict accurately these ionization states and understand the factors that affect the

ionization behavior of proteins.

The ionization behavior and the corresponding charge state of an ionizable group can be

different when it is part of a protein compared to when it exists independently as part of its

model compound (side chain in a blocked peptide) in aqueous solutions. Several factors alter

the charge state of ionizable groups in a protein : electrostatic interactions between charges of

ionizable groups in the same protein, electrostatic interactions between charges on the ionizable

group and the partial charges on non-ionizable groups and backbone atoms, location of the

group in the protein, changes in the protein’s conformational state, pH of the solution, and

polarizability/polarity of the protein’s microenvironment.

The ionization behavior of an ionizable group (titratable or redox) can be characterized by the

proton/electron binding affinities of the titratable/redox group. The binding affinity of a group

can change depending on whether the group is part of a protein or is left free in solution. These

affinities can be quantified using ionization equilibrium constants. For instance, Equation (5) is

for an acid–base equilibrium (protonation/de-protonation) reaction, where AH denotes the acid,

Ax represents the conjugate base and H+ is the proton :

AH  !Ka
Ax+H+: (5)

Ka is the equilibrium constant, defined as Ka=[Ax][H+]/HA, where the terms in the numerator

and denominator are species activities, and Ka determines the strength for the dissociation of

the acid into its conjugate base and a proton. Taking negative logarithm on both sides of

Equation (5) yields

x log10 Ka=x log10
[Ax]

[HA]

� �
x log10 [H

+]: (6)

The free energy (DG) required to de-protonate one mole of an acid is given by the relation

DG=x2:303kBT log10
[Ax]

[HA]

� �
, (7)

where kB is the Boltzmann’s constant and T is the temperature of the solution. Rearranging

these equations gives

DG=2:303KBT (x log10 ka+ log10 [H
+]): (8)

Substituting xlog10ka and x log10 [H
+] with pKa and pH, respectively, we obtain the relation

between free energy and pKa

DG=2:303 kBT (pKaxpH): (9)
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The ionization state of a protein is characterized by the pKa values of all the ionizable groups

in the protein. We can write the relation between pKa (pKa,i) of a titratable group (i) in a protein

(p) and the change in free energy (DG
p
i ) required to protonate the titratable group, as shown

below:

DG
p
i =2:303 kBT (pHxpKa, i ): (10)

Similarly, the pKa (pKa,mi ) of the same titratable group (i) in a reference or model state (m) is related

to the change in free energy (DGm
i ) required to protonate the titratable group, as shown below:

DGm
i =2:303 kBT (pHxpKa,mi ): (11)

Subtracting these two relationships and rearranging gives

pKa, i=pKa,mix
DG

p
i xDGm

i

2:303 kBT
: (12)

Equation (12) provides the thermodynamic basis for understanding the differences between the

ionization behavior of a titratable group in a protein and that of the same group in its model

compound.

A common assumption in pKa calculations is that the contributions to the free energy of

charging a site in the protein or model compound from zero to unit charge (positive or negative)

are purely electrostatic in nature (Bashford & Karplus, 1990). These electrostatic contributions

include the solvation energy of the charge at the ionizable site (Born), the electrostatic interaction

between the charge and the partial charges of backbone atoms and other non-ionizable groups

(ic–p interactions), and the electrostatic interaction between the charge and charges on other

ionizable groups (ic–jc interactions).

Thus, the pKa of a titratable state becomes

pKa, i=pKa,mix
DG

p
i; Born+DG

p
i; icxp+DG

p
i; icxjcxDGm

i; BornxDGm
i; icxp

2:303 kBT
: (13)

To calculate the pKa,i value of the titratable group i, we need to know the values for pKa,mi and

for each free energy term in equation above. The pKa,mi value can be obtained experimentally ;

however, the free energy terms have to be computed using a suitable electrostatic solvation

model, as discussed in the subsequent sections. Note that the term DG
p
i: icxjc is pH-dependent,

which also implies the need to sample against the large space of biomolecular titration states to

accurately model the pKa value (Antosiewicz, 2008).

Significant efforts have been made to accurately measure (Baran et al., 2008 ; Castañeda et al.,

2009 ; Denisov et al., 2004 ; Fitzkee & Garcı́a-Moreno E, 2008 ; Harms et al., 2008, 2009 ; Isom

et al., 2008, 2010, 2011 ; Karp et al., 2007, 2010) and predict (Alexov et al., 2011 ; Antosiewicz et al.,

1996a, b, 2008 ; Bashford & Karplus, 1990 ; Bryce et al., 1998 ; Carstensen et al., 2011; Flanagan

et al., 1981 ; Georgescu et al., 2002 ; Karp et al., 2007 ; Khandogin & Brooks, 2006 ; Laurents et al.,

2003 ; Li et al., 2002, 2004, 2005 ; Mehler & Guarnieri, 1999 ; Mitra et al., 2011 ; Nielsen, 2007,

2009, 2011 ; Nielsen & McCammon, 2003 ; Nielsen & Vriend, 2001 ; Shan & Mehler, 2011 ; Tang

et al., 2007 ; Tynan-Connolly & Nielsen, 2006 ; Wallace & Shen, 2011 ; Witham et al., 2011) protein

titration states to understand the determinants of pKa values for the amino acids in the interior

and exterior of proteins. A recent special issue of Proteins (Alexov et al., 2011) provides an

excellent review of the state-of-the-art in the area of biomolecular titration state modeling.
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5. Modeling solvation with high detail : explicit models

5.1 Explicit water models

Water has long been recognized as an important part of biomolecular systems (Kauzmann,

1959). Early theoretical studies of proteins ignored the solvent because of the prohibitive

computational cost (McCammon et al., 1977). However, with the advancement of computer

technology and quest for realistic simulations, it is now common to represent the solvent ex-

plicitly with atomic models.

Numerous water models have been developed over the years beginning with Bernal and

Fowler’s attempt in 1933 (Bernal, 1933). A detailed review of nearly 50 water models was given

by Guillot in 2002 (Guillot, 2002). It would likely require another full-length review to discuss

the new models developed since. The water models introduced to date differ from each other in

electrostatic representation (number of charge sites, polarizability), internal geometry (angle and

flexibility), and the ways by which the parameters were derived.

TIP3P (Jorgensen et al., 1983) and Simple Point Charge (SPC) (Berendsen et al., 1981) are

two, three-site, fixed charge models commonly used in biomolecular simulations. The two

models have the same equilibrium OH bond lengths and very similar atomic charges but different

van der Waals parameters and equilibrium HOH angle values. While the TIP3P adopts a value of

104.52x for the HOH angle, SPC uses 109.47x ; the experimentally measured geometry of liquid

water at room temperature is 106x (Ichikawa et al., 1991). Both water models were derived

originally as rigid water models. A variant of SPC, SPC/E (Berendsen et al., 1987), was developed

to take into account the cost of bulk polarization ignored by SPC and other fixed-charge models.

Effectively, the correction makes the bulk potential energy of SPC/E model lower than

the others. This procedure has not been consistently applied to other liquids or biomolecular

systems.

The effort to improve TIP3P has led to four-site (Jorgensen et al., 1983), five-site (Mahoney &

Jorgensen, 2000), and even six-site (Nada, 2003) water models, with additional charge sites for

better electrostatic descriptions. An extensive reparameterization of TIP4P was made by fitting

to properties over a wide range of temperatures and using the Ewald treatment of electrostatics,

as opposed to the cut-off scheme used in earlier model development (Horn et al., 2004). TIP5P is

one of the best-performing fixed charge water models that reproduce a range of condensed-

phase structural, energetic, and dynamic properties including the temperature of maximum

density. The use of TIP5P in biomolecular simulations has been limited because of the cost

arising from the additional charge sites and concerns about compatible parameterization of

amino and nucleic acid residues with this water model.

Recent advancements in water models continue to focus on the electrostatic

representation, especially the electronic polarization effect. Water is a high-dielectric solvent

and is also very polarizable itself. Examples of water models that explicitly account for

polarization include a water model developed by Brodholt, Sampoli and Vallauri (BSV)

(Jedlovszky, 2001 ; Jedlovszky & Vallauri, 1999), Polarizable five-site model, based on triple zeta

basis set (POL5/TZ)(QZ) (Stern et al., 2001), Polarizable Point-Charge (PPC) (Svishchev et al.,

1996), transferable intermolecular potential, 4-position model/Fluctuation Charge (TIP4P/FQ)

(Rick, 2001), POL5 (Stern et al., 2001), Thole-Type Model, version 2 (TTM2) (Burnham &

Xantheas, 2002), Atomic Multipole Optimized Energetics for Biomolecular Applications

(AMOEBA) (Ren & Ponder, 2003), and SWM4-DP (Lamoureux et al., 2003). Parameterization

of these models relies on both quantum mechanical ab initio calculations and experimental
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bulk thermodynamic properties, although to different extents. Overall, these studies have

demonstrated that a polarizable water model is able to provide a better representation of elec-

trostatic response, and good transferability among different chemical environments.

5.2 Explicit ion models

When explicit water models are used, ions are also typically modeled in atomic detail. Theoretical

treatment of specific ion interactions is complicated as the strong electrostatic field around the

ions poses challenges to the standard physical water models. Nonetheless, computational studies

have offered valuable insights into the atomic details of ion solvation and the interaction of ions

with biomolecular solutes.

Specific ion binding to proteins or DNA is a dynamic competition between the biomolecular

and aqueous environments. Therefore, it is essential to accurately describe the hydration ther-

modynamics of single ions. However, this task is not straightforward as only the total solvation

free energies of a neutral salt can be measured directly from experiment. As a result, published

single ion solvation values differ widely when different parameterizations are employed (Patra &

Karttunen, 2004). Furthermore, ion behavior can be very sensitive to the force field, and subtle

differences in ion and solvent parameterization may lead to significant ion pairing and clustering

problems during simulation (Alejandre & Hansen, 2007 ; Auffinger et al., 2007 ; Chen & Pappu,

2007a, b ; Joung & Cheatham, 2008).

Recent studies using ab initio QM/MM models, quasi-chemical theory, and polarizable force

fields have demonstrated improved accuracy in explicit ion models. The ab initio QM/MM

approach has been reviewed extensively (Friesner, 2005 ; Friesner & Guallar, 2005; Hu & Yang,

2008 ; Kamerlin et al., 2009 ; Lin & Truhlar, 2007 ; Riccardi et al., 2006 ; Senn & Thiel, 2009). For

example, Rode and co-workers have characterized the dynamics and solvation properties of

solvated ions by treating the primary region of interest, the first hydration shell of the ions,

quantum mechanically and other region using MM (Azam et al., 2009 ; Rode et al., 2006).

Unfortunately, most QM/MM calculations are restricted to small systems or short trajectories

since quantum mechanical calculations are extremely expensive.

Aqvist has pioneered the work of applying free energy perturbation (FEP) approaches to

derive ion–water potential parameters that can reproduce the experimental solvation free ener-

gies of alkali and alkaline earth metal ions in water (Aaqvist, 1990). While there are still efforts to

push the limits of the additive non-polarizable force fields for ionic interactions (Joung &

Cheatham, 2008), it is generally accepted that polarizability and perhaps even quantum mech-

anical treatments are essential for accurate descriptions of ion behavior (Halgren & Damm, 2001)

in aqueous solutions (Chang & Dang, 2006 ; Grossfield et al., 2003 ; Lamoureux & Roux, 2006 ;

Stuart & Berne, 1996) and for more complex environments such as ion–protein interactions (Li

et al., 2008) and ion channels (Allen et al., 2000 ; Bucher et al., 2006 ; Illingworth & Domene, 2009 ;

Noskov et al., 2004 ; Roux et al., 2004 ; Warshel et al., 2007).

Several groups have performed molecular dynamics simulations using polarizable force fields

to study ion behavior or to determine ion solvation energies. For example, Dang and co-workers

used many-body polarizable potential models in molecular dynamics simulations to study the

solvation behavior of Li+, Na+, Clx, and Fx in water clusters (Dang, 1992 ; Dang et al., 1991) and

the significant role that polarization plays in ion binding to the liquid/vapor interface (Chang &

Dang, 2006 ; Dang & Chang, 2001). A protein Langevin dipole model, developed by Aqvist and

Warshel (Aqvist & Warshel, 1989) has been used to calculate the solvation energy of a Na+ ion
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inside the Gramicidin A channel and in water, and similar methods have been applied to model

the polarization effect in the KcsA channel (Burykin et al., 2003 ; Luzhkov & Åqvist, 2000).

Additionally, a polarizable molecular mechanic model based on induced dipole approach was

successfully applied to study the absolute solvation free energies for K+, Na+, and Clx

(Grossfield et al., 2003), as well as Mg2+ and Ca2+ (Jiao et al., 2006). Using a Drude oscillator

model for polarizability, Roux and co-workers have developed a polarizable potential function

for the hydration of alkali halide salts (Lamoureux & Roux, 2006 ; Whitfield et al., 2007), which

gives results consistent with ab initio calculations. In addition, the fluctuating charge method of

polarization has been applied to ionic systems (Bryce et al., 1998 ; Ribeiro, 1999) and has been

used to extend classical force fields to include polarization effects (Patel & Brooks, 2004 ; Patel

et al., 2004 ; Warren & Patel, 2007). Despite all these efforts, modeling explicit ions remains a

considerable challenge, owing to the complex, dynamic, and subtle nature of ions, and it is

expected that the future direction will be focused on using ab initio treatment and polarizable

force fields.

6. Modeling solvation with intermediate detail : integral equation and

density functional theories

6.1 Solvent distributions from integral equations

As discussed above, modeling explicit solvent effects via computer simulation techniques can be

costly since the resulting systems involve a large number of particles with long-range interactions

and demand substantial computational resources. An alternative route to solvation is provided by

integral equation theories (IETs), which simplify the all-atom description of explicit solvation

into a probabilistic treatment of distributions between solute and solvent. As a result of this

simplification, these methods generally require less computational expense than explicit solvent

methods, but offer more detail than the continuum models discussed below (Attard, 2002 ;

Hansen & McDonald, 2000 ; Hirata, 2003). Because of this compromise, IETs can be efficient

and powerful tools to predict the three-dimensional (3D) spatial organization of the solvent

density around large molecular solutes of irregular shape as well as related thermodynamic

solvation quantities (Beglov & Roux, 1997 ; Chandler et al., 1986 ; Du et al., 2000 ; Harano et al.,

2001 ; Imai et al., 2001 ; Kovalenko & Hirata, 1998, 1999, 2000a, b, c). A particularly popular set

of integral equations are the interaction site models (Chandler, 1978 ; Hirata, 2003 ; Rossky et al.,

1983) that specifically model the probability distribution of specific atomic sites on the solvent

around atomic sites on the solute. The 1D-RISM (reference interaction site model) theory pro-

vides site–site radial distribution functions coming from an angular average over the orientation

of both solute and solvent molecules (see Fig. 3). This approach has been successfully applied to

small molecules in general (Chuev & Fedorov, 2004 ; Du et al., 2000, 2008 ; Freedman & Truong,

2004 ; Frolov et al., 2000, 2011 ; Imai et al., 2007a, b ; Kiyota et al., 2009, 2011 ; Kovalenko &

Hirata, 1998, 1999, 2000a, b, c ; Maruyama et al., 2010; Miyata & Hirata, 2008 ; Nishiyama et al.,

2009 ; Stumpe et al., 2011 ; Woelki et al., 2008 ; Yoshida et al., 2006). Unlike the 1D model, 3D-

RISM keeps the orientational dependence of solute molecules, which is necessary to properly

describe solvation properties of large molecular solutes. This more accurate 3D integral equation

demands a higher computational cost when compared with the 1D theories (Perkyns & Pettitt,

1992). It provides not only an accurate site–site radial pair correlation functions but also the

correct dielectric properties of polar liquids, which is a key element to properly describe
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the solvent effects on solutes. Integral equations specify formulae for the total and direct

solvent correlation functions. Once solved, these quantities can be used to calculate the

solvation chemical potential (Imai et al., 2004 ; Kovalenko & Hirata, 1999), the potential of

mean force for solutes degrees of freedom (Kovalenko & Hirata, 1999, 2000b, c), solvation

coordination numbers (Kovalenko & Hirata, 1998) and hydration shells (Imai et al., 2007a),

hydrophobic effects (Howard et al., 2008 ; Kovalenko & Hirata, 2000a), as well as many other

quantities.

Despite the successes achieved by IETs in predicting solvation properties, there remain de-

ficiencies that need to be corrected. A serious problem associated with these approaches is that,

when they fail to yield physically reasonable predictions, there are no straightforward, systematic

methods to improve IET predictive accuracy. A useful avenue to remedy this situation has been

to construct thermodynamically consistent integral equation theories for interaction site fluids in

which the optimal closure approximation is determined by first principles (Marucho et al., 2008 ;

Marucho & Pettitt, 2007). The re-analysis of the interaction-site formalism has also led to the

development of more sophisticated (diagrammatically proper) integral equations eliminating

diagrams that are not present in the exact theory (Marucho et al., 2008 ; Marucho & Pettitt, 2007).

Another challenge for IETs lies in the inclusion of solute flexibility ; however, some progress has

been made in this area. IETs can be properly combined with other methodologies such as Monte

Carlo simulations which project solvent degrees of freedom onto the solute at the level of site–

site pair correlation functions (Freedman & Truong, 2004 ; Kinoshita et al., 1999 ; Kovalenko &

Hirata, 2000b, c). Alternatively, dynamical solute processes in solution can be treated by in-

corporating the IETs into a generalized Langevin equation, which describes the time evolution

of solvent densities (Chong & Hirata, 1998).
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Fig. 3. This figure represents the solute–solvent site–site pair correlation functions guv(r) as a function of the

separation distance r predicted by 1D-RISM for N-methyl acetamide immersed in water at infinite dilution.

For instance, gNO(r) is the pair correlation function for a nitrogen atom inN-methyl acetamide molecule and

an oxygen atom in water molecule.
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6.2 Ion distributions from integral equations and density functional theories

Like solvent, ion distributions can also be modeled by IETs ; for example, by the DRISM

introduced in section above, which has been shown to account for changes in the water structure

caused by the addition of salts near a protein and associated changes in the solvation free energy

from the evaluation of site–site total and direct correlation functions (Imai et al., 2000 ; Perkyns &

Pettitt, 1994, 1995, 1996). While more computationally efficient, the 1D RISM theory suffers

from its inability to model the solvent inaccessibility of buried solute atoms accurately.

There have been several efforts to correct this problem (Imai et al., 2000) ; however, the 3D

RISM theory described above is somewhat more computationally expensive but free from this

problem and provides more accurate predictions of ionic behavior (Imai et al., 2004 ; Yonetani

et al., 2008).

Classical density functional theory (DFT) (Chandler et al., 1986) provides another powerful

tool for describing ionic behaviors through ion distributions. This approach is based on the

simple thermodynamic principle that the system reaches the equilibrium as its grand canonical

potential reaches minimum. In particular, for a fluid subject to an arbitrary potential Vext(r, V),

the grand canonical free energy can be written as a functional of the one-particle density. This free

energy functional is minimized at the thermodynamic equilibrium density. Thus, its knowledge of

this functional and the equilibrium density characterize the fluid completely. However, this

functional is not known for most complex systems and, instead, is approximated in various ways.

Different approaches and approximations based on DFT have been proposed to evaluate

the excess free energy and the density profile depending on the complexity and features of

the system. For example, Gao and co-workers (Wang et al., 2004) use the weighted-density

approximation to describe the structure and thermodynamics properties of small ions around a

polyelectrolyte immersed in a continuum media, observing the charge inversion phenomena

of DNA at moderate concentrated solution. Ramirez & Borgis (2005) use the homogeneous

reference fluid approximation to develop a general approach that includes the microscopic

structure of the solvent, the dipolar saturation effects, and the non-local character of the

dielectric constant in the calculation of the average solvent structure solvation properties of

molecular solutes of irregular shape. Eisenberg and co-workers (Gillespie et al., 2002) combine a

1D drift–diffusion (Poisson–Nernst–Planck or, PNP) transport system and DFT to model ion

transport in biological ion channels. These examples show the theoretical versatility of DFT for

describing ionic solvation in complex systems. However, the same energy functional may not be

accurate for all applications and systematic improvements of the functional are not generally

possible, instead requiring ad hoc corrections.

7. Modeling solvation with low detail : continuum approximations

While models of higher resolution can ideally provide better accuracy and quantitative predic-

tions, their computational cost often precludes use in many biomolecular applications. Instead,

it is often essential to reduce computational costs by accounting solvent and ion effects in an

implicit or continuum manner (Baker, 2004 ; 2005a, b ; Baker et al., 2006 ; Cramer & Truhlar,

1999 ; Marenich et al., 2008 ; Onufriev et al., 2002). Implicit solvent methods have been very

successful with a multitude of applications in computational chemistry and biology. However,

these models are highly approximate and often empirical ; as such, there are several caveats that

potential users should keep in mind. First, most implicit solvent models uncouple polar and
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non-polar interactions, even though such a separation can be problematic and unphysical

(Cerutti et al., 2007 ; Chen et al., 2010, 2011a, b ; Dzubiella & Hansen, 2004 ; Dzubiella et al., 2006a,

b). Additionally, as discussed in more detail below, implicit models for non-polar and polar

solvation are—by their very nature—approximate with several sources of ambiguity in the

choice of model parameters and geometries (Swanson et al., 2005, 2007 ; Teixeira et al., 2005 ;

Tjong & Zhou, 2008). However, despite these caveats, implicit solvent models are very popular

and valuable for a variety of biophysical studies.

While continuum models of solvent polarization have had many successes, they provide an

incomplete description of water behavior—particularly at small-length scales and in the presence

of strong electrostatic fields. In particular, continuum models are limited by their assumption of

linear and local solvent polarization in response to electrostatic perturbations (Beglov &

Roux, 1996, 1997 ; Hansen & McDonald, 2000; Roux, 1999). The continuum dielectric as-

sumption of local response implicitly neglects the role of detailed solvent–solvent interactions

(e.g. hydrogen bonds, steric clashes, etc.) and solvent molecular shape (Mobley et al., 2008) in

dielectric behavior. The continuum assumption of linear response ignores the finite density,

dipole moment, and polarizability of solvent by neglecting the non-linear phenomena of

electrostriction and dielectric saturation. Finally, the polarization of molecular solvents is also

closely linked to variations in local density (Ashbaugh & Truskett, 2001 ; Beglov & Roux, 1996,

1997 ; Dzubiella & Hansen, 2004 ; Dzubiella et al., 2006a, b ; Paliwal et al., 2006) ; e.g. the presence

of cavities or other solutes. In particular, the introduction of a cavity or uncharged solute into

a polar solvent such as water can create significant interfacial polarization, often resulting in a

positive potential inside the cavity (Ashbaugh, 2009 ; Cerutti et al., 2007 ; Harder & Roux, 2008 ;

Martin et al., 2011).

7.1 The Poisson equation for polar solvation

The Poisson equation is a fundamental equation of continuum electrostatics (Bottcher, 1952 ;

Jackson, 1975). It is a linear second-order partial differential equation

xr � (e(~rr )rw(~rr ))=r(~rr ) for~rr 2 V,

which expresses the ESP w terms of a dielectric coefficient e and a charge distribution r for all

points r in some domain V. This differential equation must be combined with additional con-

straints on the potential in order to provide well-posed solutions. These constraints usually take

the form of boundary conditions specifying the value of the potential or its derivatives on

the boundary hV of the domain. The most common boundary conditions for biomolecular

electrostatics problems are the simple Dirichlet condition which constrains the potential to an

asymptotic approximation on the boundary of the domain.

The biomolecular structure and chemistry are introduced into the Poisson equation through

the dielectric and charge coefficients. The charge distribution is often represented by a sum of

atomic monopoles or higher-order multipoles as described in the ‘Modeling biomolecular charge

distributions ’ section. The dielectric coefficient is generally a sharply varying function that as-

sumes bulk solvent values outside of the biomolecular surface and other values inside the bio-

molecule. The value of the dielectric coefficient determines the polarization response of the

material when subject to an electric field ; more easily polarizable materials have higher dielectric

values. While the bulk values of the dielectric are straightforward to determine, based on the

properties of the homogeneous solvent, the dielectric values inside the biomolecule are much
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more difficult to interpret and have been subject to much debate and analysis (Roux, 1999 ;

Schutz & Warshel, 2001 ; Sham et al., 1998 ; Simonson, 1999, 2001, 2003, 2008 ; Teixeira et al.,

2005 ; Tjong & Zhou, 2008). In particular, the choice of internal dielectric coefficient values is

usually very dependent on the specific application. If the only polarization response of the

biomolecular interior results from electronic reorganization, then the most appropriate value of

the biomolecular dielectric coefficient should be between 2 and 4 (Landau et al., 1982). Such low

dielectric models are appropriate for simulations and calculations such as MM/PBSA (MM/PB

surface area) where the molecular flexibility of the molecule is modeled explicitly through con-

formational sampling. Higher values of the internal biomolecular dielectric are intended to mimic

additional relaxation properties, including orientational changes in molecular dipoles, side-chain

rearrangement, and even penetration of water into the biomolecular interior. Values from 4 to 20

have been regularly used in a variety of biomolecular applications with lower values generally

being successful for protein–ligand interactions (Kollman et al., 2000 ; Massova & Kollman,

2000), moderate values of 10–12 necessary for protein–protein binding energies (Elcock

et al., 2001), and values 20 or higher needed for titration state and pKa predictions (Chimenti et al.,

2011 ; Schutz & Warshel, 2001).

In addition to the variety of dielectric coefficient values, there are also many choices

available for the functional form and shape of the biomolecule-solvent dielectric boundary

(see Fig. 4) (Chen et al., 2010, 2011b; Grant & Pickup, 1995 ; Grant et al., 2001 ; Im, 1998 ; Tjong

& Zhou, 2008). The results of most biomolecular solvation and electrostatics calculations are

very sensitive to the definition of this boundary, so it is not surprising that the optimal choice of

biomolecular parameters and dielectric value are dependent on the particular dielectric boundary

of choice (Nina et al., 1999 ; Swanson et al., 2007). As with the dielectric value, the choice of a

particular boundary geometry is dependent on many factors, including the specific problem

under consideration, the original geometry definitions used to optimize the parameters desired

for the given calculation. The most popular biomolecular dielectric interface definition is the

molecular surface (Connolly, 1983, 1985) which was used to parameterize the PARSE parameter

set for biomolecular solvation calculations (Sitkoff et al., 1994a, b). Zhou and co-workers

have suggested the use of van der Waals surface as an alternative to the molecular surface for

several different applications (Dong et al., 2003 ; Tjong & Zhou, 2008). Both the molecular

and van der Waals surfaces can introduce significant conformational sensitivity that can be

problematic for applications that explicitly sample different conformational states. As a result, a

number of smoother surfaces have also been introduced, including Gaussian (Grant et al., 2001 ;

(a) (b) (c)

Fig. 4. Images of the varying definitions for the biomolecular surface of fasciculin-2 (PDB ID: 1FAS)

with ESP shown ranging from x5 kT/e (dark red) to +5 kT/e (dark blue). (A) van der Waals surface.

(B) Solvent-excluded, molecular, or Connolly surface. (C) Solvent-accessible surface.
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Grant & Pickup, 1995) and spline-based representations (Im, 1998 ; Schnieders et al., 2007).

These surfaces require a distinct set of parameters for accurate calculations, as described

(Grant et al., 2001, 2007 ; Grant & Pickup, 1995) for Gaussian interfaces and by others

(Nina et al., 1999 ; Swanson et al., 2007) for spline-based representations. Finally, new generations

of molecular surface definitions that are designed to minimize noise from topological artifacts

(Bajaj, 2003 ; Zhang et al., 2006) and to provide a clear physical basis for coupling to non-polar

representations (Chen et al., 2010, 2011b ; Dzubiella & Hansen, 2004 ; Dzubiella et al., 2006a, b)

are appearing. In particular, new surfaces based on geometric flow (Chen et al., 2001, 2010)

provide a self-consistent description of the biomolecular interface that is compatible with

the continuum polar and non-polar energy functions. While these new surfaces appear very

promising, they will require parameterization before they can be used optimally in biophysical

calculations.

The linear and local nature of the dielectric coefficient introduce two major assumptions

into the model (Beglov & Roux, 1996, 1997). Linear response implies a proportional increase

in system polarization for all strengths of electric field. This approximation clearly breaks

down near highly charged interfaces (e.g. nucleic acids or strongly charged proteins) where

dielectric saturation and electrostriction processes can become important. Several models

have been developed to provide for non-linear response, generally in the form of a Langevin

response function (Azuara et al., 2008 ; Papazyan & Warshel, 1997, 1998). The second major

approximation is the local nature of the dielectric constant which implies that local changes in the

electric field have only local influences on polarization. However, the molecular nature of water

and its associated network of hydrogen bonding and extended structure at interfaces clearly

indicate that this approximation is incorrect, particularly at very small (molecular) length scales.

Non-local features have also been introduced into the Poisson equation, but incur increased

computational expense (Bardhan, 2011 ; Basilevsky & Parsons, 1998 ; Rottler & Krayenhoff,

2009).

7.2 The PB equation for polar solvation

The Poisson equation only includes the influence of solvent on the electrostatic properties of

a solute. However, as discussed in earlier sections of this review, mobile ions also play a very

important role on biomolecular electrostatics and solvation. The PB model was developed to

address the need to include simple effects from low valency ions in dilute solutions (Baker, 2004,

2005a, b ; Baker et al., 2006 ; Davis & McCammon, 1990; Dong et al., 2008 ; Grochowski &

Trylska, 2008 ; Honig & Nicholls, 1995 ; Honig et al., 1986 ; Sharp & Honig, 1990a, b). One of the

best reviews of the model and its caveats was written by Fixman (Fixman, 1979). The PB model

essentially relates the local ESP to the average mobile charge densities. Several important ap-

proximations are associated with the PB model (Baker, 2004 ; Beglov & Roux, 1996, 1997 ;

Fixman, 1979 ; Holm et al., 2001).

The first approximation, similar to the Poisson equation, is that system solution can be

described a continuum, including the dielectric response described above as well as an

average density of point-like ions. This density model precludes the treatment of site-specific

ion–solute interactions as well as other phenomena that involve details of ionic shape.

The PB model cannot explain differences between ion species in solution and thereby prevents

effective analysis of specific ion species and the associated phenomena described earlier in this

review.
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The second approximation models the distribution of ions in terms of single-species average

distribution functions. In other words, ions interact with each other only through their average

densities rather than through the steric, Coulombic, and solvent-mediated correlations that occur

in real electrolyte systems. As a consequence, the PB model cannot capture a number of

phenomena (Chen & Weeks, 2006 ; Savelyev & Papoian, 2007 ; Tan & Chen, 2005), including

charge inversion (Besteman et al., 2004, 2005 ; Goel et al., 2008 ; Kim & Sung, 2005 ; Luan &

Aksimentiev, 2010 ; Martin-Molina et al., 2009 ; Nguyen et al., 2000 ; Qiao & Aluru, 2004 ; Taheri-

Araghi & Ha, 2005 ; Wen & Tang, 2004) and like-charge attraction (Angelini et al., 2003 ; Kim

et al., 2008 ; Mukherjee, 2004 ; Netz & Naji, 2004 ; Pietronave et al., 2008 ; Podgornik & Dobnikar,

2001 ; Qiu et al., 2010 ; Todd et al., 2008 ; Zelko et al., 2010) that can be important for highly

charged systems. Such systems include solutes such as DNA, charged biomembrane interfaces,

and solutions with even moderate concentrations of di- or multi-valent ions. Ionic correlations

and fluctuation corrections have been considered in previous studies. Based on the Kirkwood

hierarchy (Kirkwood, 1934), a fluctuation potential and an excluded-volume factor have been

added to the potential of mean force to represent the effect of ion correlations (Burley et al.,

1974 ; Carnie & Torrie, 2007 ; Grochowski & Trylska, 2008). The fluctuation potential is asso-

ciated with the energy for charging ions and implicitly takes into account the inter-ion Coulomb

correlations. This modification provides improved predictions for ion distribution and mean

ESP profile with multivalent ions, as compared with the conventional PB model (Carnie &

Torrie, 2007). However, since the fluctuation potential itself is coupled to the ESP, the 3D

numerical solution becomes computationally very expensive and is impractical for applications

such as nucleic acid structures (Gavryushov, 2008). Other approaches such as the density

functional and integral equation methods were discussed earlier ; however, the computational

complexity for these approaches is still problematic for many applications.

Another important approximation involves the assumption of infinitesimal ion size which

can produce arbitrarily large ion concentrations near highly charged solutes. Borukhov et al.

(1997) developed a simple analytical approach to include the finite ion size in the original PB

model. The modified formula was developed for asymmetric and symmetric electrolytes and

matched with the original PB equation when an ionic concentration is low. The size effect was

introduced as additional correction terms in the entropic contribution of the total free energy.

Such corrections were employed by considering the lattice gas formalism, where each lattice site

is occupied at most by one ion; the standard PB model corresponds to one with unlimited

number of ions in each lattice site. A similar approach based on the lattice gas formalism was

used in other studies (Borukhov et al., 2000 ; Chaudhry et al., 2011 ; Coalson et al., 1995 ; Coalson

& Duncan, 1992) to incorporate the finite size effect. This size-modified PB model showed

appreciable improvements in predictions for ion-binding properties of monovalent counterions,

especially at high-salt concentration, which involves the saturation effect for ion binding.

However, the consideration of the finite ion size still cannot capture the binding of the divalent

and multivalent ions, which may be because of the absence of ion–ion correlations (Chu et al.,

2007).

Despite the caveats and approximations described above, the PB model is simple and captures

enough basic solvation behavior to be a popular choice for describing many biomolecular sys-

tems. While there are many more interesting ways to drive the PB equation (Holm et al., 2001),

the simplest method starts with the Poisson equation, repeated here :

xr � (e(~rr )rw(~rr ))=r(~rr ):
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In the Poisson discussion above, we considered only a single contribution to the charge density

r(~rr ) due to the solute. For the PB equation, the charge distribution is assumed to consist of two

separate contributions : the solute charges rs(~rr ) and the mobile ions in an aqueous medium

rm(~rr ). The charge distribution of the solute was discussed previously ; for a simple monopole

approximation, the charges Qi located at each solute atom’s position ri can be modeled via a delta

function:

rs(~rr )=
X
i

Qid(~rrx~rri ):

For a mean-field approximation, the charge distribution associated with the mobile ions can be

described by a Boltzmann distribution. For m ion species with charges qj, bulk concentration cbj
and steric potential Vj (~rr ) (a potential to describe non-polar interactions with the solute), the

charge for the mobile ions is

rm(~rr )=
Xm
j

cbj qjexp
xqjw(~rr )

kBT
x

Vj (~rr )

kBT

� �
,

where kB is the Boltzmann’s constant and T is the system temperature. Substituting the two

charge distributions into the Poisson equation, one obtains the full PB equation:

xr � (e(~rr )rw(~rr ))=
XN
i

Qid(~rrx~rri )+
Xm
j

cbj qjexp
xqjw(~rr )

kBT
x

Vj (~rr )

kBT

� �
:

Note that the full PB equation is a non-linear second-order elliptic differential equation, which

cannot be solved analytically for most realistic biomolecular geometries.

A simplification to the full PB equation can be made if the exponential term is approximated

by the linear term in its Taylor series expansion. This assumption, which is made in addition to

those described above, requires jqjw(~rr )=kBT j � 1. Also assuming identical steric contributions

for all ions, the full PB equation becomes the linearized PB equation :

xr � (e(~rr )rQ(~rr ))+e(~rr )k2(~rr )w(~rr )=
XN
i

Qid(~rrx~rri ),

where k(~rr ) is a modified inverse Debye–Hückel length represented by

k ~rrð Þ= exp x
V (~rr )

kBT

� �
2I 2e2c

kBT e(~rr )

� �1=2

,

where I=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j c
b
j q

2
j =2e

2
c

q
is the ionic strength and ec is the electron charge. The Debye–Hückel

length is considered as a length scale below which mobile ions experience the ESP of the solute

and interact with it.

Using the potential obtained by solving the PB equation, the electrostatic free energy can be

obtained via a variety of integral formulations (Chen et al., 2010, 2011b; Gilson, 1995 ; Holm et al.,

2001 ; Micu et al., 1997 ; Sharp & Honig, 1990a). These free energy expressions arise both from

physical considerations as well as from a purely mathematical standpoint. Statistical physics can

derive the PB equation and its associated free energy from a saddle-point approximation of a

more complicated description of the electrolyte system (Holm et al., 2001). Functional mini-

mization of the resulting free energy gives rise directly to the PB equation. It is also possible
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to differentiate these integral formulations of the electrostatic energy with respect to atomic

position in order to obtain the electrostatic (i.e. polar) solvation mean force on each atom

(Gilson et al., 1993 ; Im, 1998 ; Wagoner & Baker, 2004, 2006).

While the PB equation may be solved analytically for very simple cases (e.g. flat plate with a

single symmetrical electrolytes), analytical solutions of the PB equation are not available for

biomolecules with realistic shapes and charge distributions. Therefore, a numerical method is a

necessary tool for biomolecular electrostatics. After Warwicker and Watson (Warwicker &

Watson, 1982) first introduced numerical methods to solve the PB equation at the active site of

an enzyme, many different numerical methods have been developed and are being modified.

Most numerical methods for the PB equation depend on the discretization of computational

domain/space (i.e. a distribution of points and their connections), which is critical to both

accuracy and efficiency. These methods include finite differences (Baker et al., 2001b; Davis &

McCammon, 1989 ; Holst & Saied, 1993, 1995 ; Nicholls & Honig, 1991), finite elements (Baker

et al., 2000, 2001a ; Cortis & Friesner, 1997a, b ; Dyshlovenko, 2002 ; Holst et al., 2000), and

boundary elements (Bajaj et al., 2011 ; Bordner & Huber, 2003 ; Boschitsch & Fenley, 2004 ; Juffer

et al., 1991 ; Zauhar & Morgan, 1988).

Because of their simpler spatial discretization of the computational domain, finite differences

have been the most popular numerical methods for the PB equation in bimolecular electrostatics.

Finite difference-based PB solvers include APBS (Baker et al., 2001b), matched interface and

boundary (MIB) (Chen et al., 2001 ; Yu & Wei, 2007 ; Yu et al., 2007a, b ; Zhou & Wei, 2006),

DelPhi (Klapper et al., 1986 ; Rocchia et al., 2002), MEAD (Bashford, 1997), UHBD (Madura et al.,

1995), ZAP (Grant et al., 2001), the PBEQ (Im, 1998) module in CHARMM (Brooks et al., 2009),

and the PB solver in AMBER (Luo et al., 2002). The APBS solver provides scalable electrostatics

by uniquely combing standard finite difference focusing techniques (Gilson & Honig, 1987) and

the Bank–Holst algorithm (Bank & Holst, 2003) into a parallel focusing method that allows

solution of the PB equation for molecules of arbitrary size. A new MIB method (Chen et al.,

2001 ; Geng & Wei, 2001 ; Xia et al., 2011 ; Yu et al., 2007a, b ; Zhou & Wei, 2006) implemented

the analytical molecular surface in their interface method for solving the PB equation. This

method was the first biomolecular PB solver enforcing the continuity conditions of both the

ESP and its flux at the molecular surface. Wei et al. (Yu &Wei, 2007 ; Yu et al., 2007a, b) extended

their work to further develop MIB-based PB solvers called MIBPB-II and MIBPB-III in order to

accommodate geometric and charge singularities, respectively.

Finite-element methods provide more flexibility than finite differences by permitting adaptive

mesh refinement in regions of high error. The local nature of this refinement, together with

robust multilevel solvers (Holst, 2001), provides unique multiscale capabilities. Significant finite-

element work related to the PB equation was performed by Holst and co-workers (Baker et al.,

2000, 2001a, b ; Holst, 2001 ; Holst & Saied, 1993, 1995 ; Holst et al., 2000). More recently, Chen

et al. (2007a) have provided the first complete convergence result for a numerical discretization

technique for the non-linear PB (NLPB) equation with delta distribution sources and introduced

the first convergent adaptive method for the PB equation. Finite-element solutions are currently

available through the FEtk solver (http://www.fetk.org/) with a biomolecular electrostatics

interface provided APBS (http://www.poissonboltzmann.org/).

Boundary element methods (BEM) use Green’s theorem to reformulate the linear PB equa-

tion as boundary integral equations (Allison, 2001 ; Altman et al., 2009 ; Bajaj et al., 2011 ;

Bharadwaj et al., 1995 ; Boschitsch & Fenley, 2004; Boschitsch et al., 2002; Juffer et al., 1991 ; Lu

et al., 2010 ; Yoon & Lenhoff, 1990 ; Zauhar, 1995 ; Zauhar & Morgan, 1985, 1988 ; Zhou, 1993).
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Unlike finite differences and finite elements, the unknowns and domain discretization are only on

a 2D surface rather than a 3D volume. For the NLPB equation, 3D volume integrals are involved

in the integral equations, which reduce the efficiency of the methods, but still require a smaller

number of unknowns than finite difference or finite-element methods. BEMs assume a discon-

tinuous dielectric function at the molecular interface with the solvent ; as such, they are suitable

for a relatively narrow range of dielectric formulations. Advantages of BEM include (i) the

reduction of the unknowns, (ii) exact treatment of boundary conditions at infinity, and

(iii) explicit treatment of the physical interface conditions (continuity in potential and jump in

its normal derivative). However, Green’s functions are not available for the NLPB equation

and the BEM may not be efficient because of numerous boundary integral operations and

singular boundary integrals that can affect the accuracy and/or stability. Recently, a hybrid finite

difference BEM approach was introduced to improve computational efficiency (Boschitsch &

Fenley, 2004). This approach is based on the separation of ESP into a linear component

satisfying the linear PB equation and is solved using a fast BEM and a correction term accounting

for non-linear effects and optionally, the presence of an ion-exclusion layer.

A completely different approach to solution of the linearized PB equation has been suggested

by Mascagni and co-workers (Mascagni & Simonov, 2004 ; Simonov et al., 2007). Their technique

uses Monte Carlo methods that simulate random walks in the problem domain to solve the

linear PB equation. This random walk approach is sufficiently flexible to work with complicated

biomolecular geometries and can be used to calculate the molecular electrostatic properties for a

series of salt concentration values simultaneously.

7.3 Simpler models for polar solvation

In addition to the PB model, simpler models have also been developed based on continuum

electrostatics principles. These simple models include distance-dependent dielectric functions,

analytic continuum methods (Schaefer & Karplus, 1996), the so-called Effective Energy

Function (EEF) approach (Lazaridis & Karplus, 1999) and the improved ABSINTH model

(Vitalis & Pappu, 2009) and generalized Born (GB) models. The GB model is one of the most

popular models and was developed by Still et al. in 1990 (Still et al., 1990) and subsequently

revised by several others (Anandakrishnan et al., 2011 ; Bashford & Case, 2000 ; Brown & Case,

2006 ; Chen, 2010 ; Chen et al., 2006 ; Clark et al., 2009 ; Dominy & Brooks, 1999 ; Feig & Brooks,

2004 ; Feig et al., 2004, 2008 ; Gallicchio et al., 2002, 2009; Grant et al., 2007 ; Grycuk, 2003 ; Im

et al., 2003b; Jorgensen et al., 2004 ; Labute, 2008 ; Lee et al., 2002 ; Onufriev et al., 2000, 2002 ;

Osapay et al., 1996 ; Tjong & Zhou, 2007b; Tsui & Case, 2000 ; Xu et al., 2011 ; Zhu et al., 2005).

The GB model describes the solvent as a continuum medium, similar to the PB model, but

provides a faster calculation of solvation energies and forces. The model is an approximation to

the Poisson equation energy ; it models a solute particle as a sphere whose internal dielectric

permittivity coefficient is different from that of the external solvent. Specifically, it uses the

analytical solvation energy resulting from the solution of the Poisson equation for a simple

sphere (Born, 1920).

Analytical solutions to electrostatic problems associated with various simple dielectric

boundary conditions are discussed in many textbooks (Bottcher, 1952 ; Jackson, 1975). A simple

electrostatic model of a biomolecule in solution is a cavity with a charge distribution embedded

in a high-dielectric continuum medium. The problem can be further simplified by considering a

spherical cavity within which electrostatic interactions are calculated explicitly. By Gauss ’ Law,
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the ESP outside the sphere is given by the usual Coulomb formula. However, since electric

charges within the cavity polarize the high-dielectric medium, the total electric potential inside

the cavity includes this effect as well as the direct Coulomb interactions between charges within

the cavity. The electric potential associated with the polarization is called the ‘ reaction field (RF) ’

potential and can be represented by a summation of Legendre polynomials (Kirkwood, 1934) or

by the Coulomb potential associated with image charges outside the cavity.

The image charge approach is usually formulated when the dielectric constant of medium is

much larger than that of the cavity, the RF potential inside the cavity is approximately (Deng &

Cai, 2007; Friedman, 1975)

WRF(r )=
XN
i=1

qi k
einjrxr i kj

,

qi k=
einxeo
ein+eo

R

ri
qi ,

r i k= R=r ið Þ2r i ,

where qk is the image charge that will interact with the solute and rk is the location of the image

charge outside the cavity. The total energy of the system, including both the gas-phase interac-

tion energy of source charges and the RF energy, becomes (Wang & Hermans, 1995) :

U=
1

2

XN
i=1

XN
j=1

qiqj

einjr ixr j j
+

1

2

XN
i=1

XN
j=1

qiqj k
einjr ixr j kj

,

where the sums implicitly exclude self-interactions for i=j. The first term of this energy ex-

pression indicates the direct electrostatic interactions between source charges in the cavity,

whereas the second term includes the RF effect through the interactions between the source

charges and image charges. Note that the second term includes not only the interaction between

each source charge with the image charges of other source charges but also that between each

source charge with its own image charge. By placing solute molecules in a spherical water droplet,

Wang & Hermans (1995) adapted the Friedman’s image charge method in molecular dynamic

simulations to account for the dielectric effect outside the simulated sphere. Deng & Cai (2007)

showed that Friedman’s formula is the zeroth-order term in the Kirkwood series expansion with

respect to ein/eo. It is also noted that Friedman’s approximation is inconsistent with Born for-

mula when all the charges are located at the center of the spherical cavity. Based on the work by

Neumann (Neumann, 1883), a multiple image of charge method was proposed whereby the

single image charge is replaced by a charge distribution extending from the image charge position

to infinity in the radial direction (Lindell, 1992 ; Norris, 1995). An efficient fast multipole algor-

ithm was developed to take advantage of the accuracy of the multiple image method while

making it computational tractable for simulation purposes (Cai et al., 2007 ; Deng & Cai, 2007).

The Legendre polynomial solution of the spherical system was given by Kirkwood in 1934

(Kirkwood, 1934). For a system with a set of point charges qk in a spherical cavity of radius a, the

RF potential at r inside the sphere is given by

V (r )=
1

ein

XO
l=0

(l+1)(einxeo)

(n+1)eo+nein

r l

a2l+1

XN
k=1

qkr
l
kPl (cos h):
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In the equation above, the dielectric constants inside the spherical cavity is ein. The terms qkrk
l

(l=0, 1, 2, _) are the multipole moments of the charge distribution inside the sphere. The

expansion reduces to the Born (Born, 1920) or Onsager (Onsager, 1936) approximation in the

special case of a single ion or dipole buried at the center of the spherical cavity.

With growing interests in sophisticated electrostatic models involving point multipoles and

electronic polarization, the Kirkwood’s RF theory has been extended beyond partial charges.

Orttung generalized the Kirkwood–Westheimer model (Kirkwood, 1938) for different shapes,

charges, and polarizabilities (Orttung, 1978). Warshel developed a multiscale model to describe

the interactions among explicit solute (point charge), immediate solvation shell (point dipole) and

the surrounding continuum (RF) (Warshel, 1979). Felder and Applequist introduced inducible

dipoles to represent the solute electrostatics and derived the corresponding RF expressions for

spherical and ellipsoidal cavities (Felder & Applequist, 1981). Kong and Ponder obtained the RF

energy and force for arbitrary point multipole distributions located off the center of the spherical

cavity (Kong, 1997). Nymand and Linse developed a RF model for solutes of point charges,

dipoles and polarizabilities (Nymand & Linse, 2000). Recently, Schnieders and Ponder in-

troduced generalized Kirkwood (GK) model to eliminate the partial charge restriction inherent

to GB analytic continuum electrostatics (Schnieders & Ponder, 2007). GK defines a self-

consistent RF for solutes modeled by polarizable atomic multipoles, which are not only more

accurate and transferable than partial charges but also more expensive. Davis developed an

inducible multipole solvation model that exhibits an exact series representation of the external

electrostatic field for a collection of dielectric cavities with centrosymetric internal charge dis-

tributions and arbitrary external charge distributions (Davis, 1994). Fenley et al. (2008) derived

a closed-form analytical approximation to the Poisson equation for an arbitrary distribution

of point charges and a spherical dielectric boundary. Their simple, parameter-free formula was

obtained from the Kirkwood solution by an approximate summation method and presents

continuous ESP everywhere in space.

The GB model can be thought of as a good analytical approximation to the analytical models

described above. In particular, it uses the analytical solvation energy resulting from the solution

of the Poisson equation for a simple sphere and needs a much lower computational cost, com-

pared to solving the PB equation. Using the GB model, the electrostatic solvation-free energy

can be approximated by a modified form of the analytical solvation energy for a sphere (Still et al.,

1990) :

Gel ffi x
1

2
1x

1

esol

� �X
i , j

QiQj

f GB
ij

,

where f GB
ij denotes the effective Born radii (when i=j) and the effective interaction distance

(when i 6¼ j), respectively. The most common form given by Still et al. (1990) is

f GB
ij = r 2ij+RiRjexp x

r 2ij

4RiRj

� �� �1=2
,

where Ri are the effective radii of the atoms and rij are the distance between atoms i and j. It is

essential to calculate the effective radii of the atoms efficiently and accurately. A previous study

(Onufriev et al., 2002) demonstrated that the GB model can provide comparable results to the

Poisson equation when one uses perfect GB radii that reproduce the atoms ’ self-energies as

obtained from the Poisson equation. This observation implies that an accurate estimation of the
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radii is critical for reliability of the GB model. Many studies have been performed to improve the

GB model not only with general corrections (Mongan et al., 2007) but also with revised for-

mulations aiming at biomacromolecules such as proteins and nucleic acids (Dominy & Brooks,

1999 ; Onufriev et al., 2000 ; Sigalov et al., 2006) and biological membranes (Im et al., 2003a ;

Tanizaki & Feig, 2005). The GB model has also been extended to provide approximations to the

full NLPB equation because of its computational benefit (Tjong & Zhou, 2007a, 2007b).

7.4 Continuum models for non-polar solvation

The low-detail continuum polar solvation models above are generally decoupled from the non-

polar energetics of the system. Therefore, non-polar contributions must be added into the

system to complement the polar energetics. The importance of non-polar solvation is well

known, but has often been treated with a very simple approximation that assumes non-polar

energy is proportional to solvent-accessible area (Chothia, 1974 ; Massova & Kollman, 2000 ;

Sharp et al., 1991a, b ; Wesson & Eisenberg, 1992)

Gnon-polar(~xx ) ffi cA(~xx ):

This approximation is motivated by the solvation area of linear alkanes in water. Here c is a

microscopic solvent surface tension parameter (not a macroscopic surface tension of solvent)

which can be chosen to reproduce the solvation free energy of non-polar molecules (Sharp et al.,

1991a, 1991b ; Simonson & Brunger, 1994 ; Sitkoff et al., 1994b), including model side chain

analogs (Wesson & Eisenberg, 1992 ; Wimley et al., 1996). The surface tension parameter can be

modeled as a single universal value used for all atoms or different values may be assigned for each

atom type. While the simplest description has been successful, it has several caveats, including

the difficulty of rationalizing surface tension parameter values (Chothia, 1974 ; Eisenberg &

McLachlan, 1986 ; Sharp et al., 1991a, 1991b; Sitkoff et al., 1994b) as well as inaccurate descrip-

tions of detailed aspects of non-polar solvation energies (Gallicchio & Levy, 2004), peptide

conformations (Su & Gallicchio, 2004), and non-polar solvation forces (Wagoner & Baker,

2006).

Recent work (Gallicchio et al., 2000 ; Gallicchio & Levy, 2004 ; Levy et al., 2003 ; Wagoner &

Baker, 2006) has built upon a significant amount of existing research into non-polar effects

(Ashbaugh, 2009 ; Ashbaugh & Pratt, 2006 ; Ben-Naim, 2006 ; Chandler, 2005 ; Gu et al., 2004 ;

Huang & Chandler, 2002 ; Huang et al., 2001 ; Hummer, 1999 ; Hummer & Garde, 1998 ;

Hummer et al., 1996, 2000 ; Pitera & van Gunsteren, 2001 ; Pratt, 2002; Pratt & Chandler, 1977 ;

Pratt & Pohorille, 1992, 2002 ; Rajamani et al., 2005 ; Tan et al., 2007) to develop computationally

efficient, but more energetically complete, models for non-polar solvation energy that include

important attractive van der Waals interactions between solvent and solute (Gallicchio & Levy,

2004 ; Gallicchio et al., 2000, 2002 ; Wagoner & Baker, 2006) and repulsive solvent-accessible

volume terms (Wagoner & Baker, 2006). For example, Wagoner and Baker proposed a non-polar

solvation model based on the free energy functional (Wagoner & Baker, 2006) :

Gnon-polar(~xx ) ffi cA(~xx )+pV (~xx )+�rr
XN
i=1

Z
V

uatti (~xxi ,~yy)h(~xx,~yy) d~yy,

where p is a solvent hydrodynamic pressure parameter, V is a solvent accessible volume, and �rr

is the bulk solvent density. Here V denotes the solvent accessible region outside the solute,
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uatti (~xxi ,~yy ) is the attractive component of the non-polar interaction potential (for atom i) between

a solute in conformation ~xx and solvent at position~yy, and h(~xx,~yy ) is a characteristic function

defined as a product of per-atom characteristic functions hi. This model showed very good

agreement with explicit solvent results, which suggests that the addition of appropriate disper-

sion and volume terms is essential to describe atomic scale non-polar forces.

Recent studies on the solvation of atomistic and nanoscale solutes reveal that a coupling exists

between the hydrophobic, dispersion, and electrostatic contributions to the solvation-free en-

ergy. The fact that the effective location of the solvent–solute interface can rely on the local

electrostatic and dispersive (Huang & Chandler, 2002) potentials suggests that such polar and

non-polar components should be coupled in implicit solvent models. For example, Ashbaugh &

Paulaitis (1998) pointed out that a correct balance between non-polar and polar (or electrostatic)

contributions is critical in their study of amphiphiles. To take into account polar–non-polar

coupling, Dzubiella et al. (2006a, b) proposed a theoretical formalism based on the minimization

of the Gibbs-free energy of the solvent with respect to a solvent volume exclusion function.

Unlike existing implicit solvent approaches, the solvent–solute interface is an output of the

model. Therefore, the coupling is indeed implemented by the geometrical description of capillary

interfaces. The formalism captures the sensitivity of hydration to the particular form of the

solute–solvent interactions in agreement with recent computer simulations. More recently, as

discussed above, Wei, Baker, and Chen have combined the non-polar free energy functional

introduced above with the PB polar solvation free energy functional for a self-consistent de-

scription of solvation and biomolecular surfaces (Chen et al., 2010, 2011b).

8. Hybrid models : the best of both worlds?

In a hybrid approach, physical models of different resolutions are used to treat different regions

of the molecular system. The region of interest is often modeled with a high level of detail, using

techniques such as QM or explicit solvent, while the remainder of the system is treated at lower

levels of resolution. Such models are intrinsically multiresolution and therefore include a wide

range of multiscale simulation methodologies that have been recently developed. This section

will focus on a few key hybrid methodologies that are either commonly used or particularly

interesting as a complete review of this broad field of multiscale modeling is infeasible.

8.1 Quasi-chemical theory

Many solute–solvent interactions, typically short-ranged and structurally specific, can be char-

acterized as chemical associations. Therefore, it is feasible to identify an inner shell around the

solute that will accommodate strongly associating solvent molecules, and an outer shell that

corresponds to the rest of the system, so that these regions can be treated with high-detail and

low-detail models, respectively (Pratt & Laviolette, 1998 ; Pratt et al., 2001). Quasi-chemical

theory provides a framework for such decomposition. The solvation free energy of Li+, Na+,

K+, Zn2+, and other alkaline divalent metal cations in water have been successfully predicted on

the basis of quasi-chemical theory and ab initiomolecular dynamics and provided good agreement

with experiment (Asthagiri et al., 2004 ; Rempe et al., 2004). The quasi-chemical method can

provide a level of accuracy comparable to that reported in QM, but it is far less expensive than

the standard QM/MM method. However, this method still has several limitations, including

difficulty treating strongly disordered solvation shells and heterogeneous environments.
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8.2 Implicit–explicit solvation models

Over the years, a number of generalized RF methods have been implemented in molecular

simulations based on the continuum Kirkwood expansion (Tironi et al., 1995) with a variety of

applications in explicit solvent molecular simulation methodology (Alper & Levy, 1993 ; Baker

et al., 1999 ; Beglov & Roux, 1994 ; Brooks, 1985, 1987 ; Hünenberger & Gunsteren, 1998 ; Lau

et al., 1994 ; Schreiber & Steinhauser, 1992a, b ; Steinbach & Brooks, 1994 ; Tironi et al., 1995).

However, such RF methods also have a natural application to hybrid models. One such example

is the general solvent boundary potential (GSBP), where a sphere contains an explicit solvent

region while reaction influence of the surrounding environment is represented by a continuum

model (Im et al., 2001). The generalized solvent boundary model has been applied to the

calculation of protein–ligand binding free energy (Banavali et al., 2002 ; Deng & Roux, 2008) and

recently extended to QM/MM settings (Schaefer et al., 2005).

Lee et al. (2004) developed a hybrid solvation scheme to incorporate a continuum RF via GB

theory and use a generalized sum-over-spheres boundary, where water molecules are constrained

with respect to their closet solute atom location. The hybrid method was first tested on single

ion and protein L simulations ; and the results achieved similar equilibrium and dynamical

observables as the conventional explicit solvent simulations except for some deviations near the

boundaries. The hybrid solvent model combined with replica exchange molecular dynamics has

been used to study the free energy of formation of ion pairs using model peptides. This work

suggested that the structure of salt bridge in explicit solvent can be reproduced by the hybrid

solvent approach, but not by GB alone (Okur et al., 2006, 2008).

An important long-standing difficulty of mixed resolution solvent models is structural artifacts

near the explicit–implicit solvent boundary. A promising approach to solve this challenging

problem is the smoothly decoupled particle interface (SDPI) described recently by Wagoner and

Pande (Wagoner & Pande, 2011), which introduces a third, buffering shell between an inner

region of explicit solvent and an outer continuum solvent. The function of the buffering shell is

to transition smoothly the explicit particle density between that of the innermost region to zero

at the interface with the outer continuum.

8.3 Particle-based continuum models

An interesting particle-based macroscopic solvent model, which represents electronic and

oriental polarization of water molecules by an ensemble of polarizable pseudo-particles (PPP)

(Basdevant et al., 2004, 2006) in a framework that bears some similarity to the polarizable

Langevin dipoles of Warshel (Papazyan & Warshel, 1997, 1998) has recently been proposed. In

this approach, the solute electric field induces dipoles at the centers of the solvent PPPs which, in

turn, interact with the solute charge distribution. However, the solvent PPPs only interact with

each other through the van der Waals interactions. The theoretical foundation is built upon on

Marcus ’ functional for solvation free energy (Marcus, 1956). The functional is minimized to the

equilibrium condition following the Coulomb field approximation and a localized, off-lattice

Langevin dipole approach (Florián & Warshel, 1997) in which the solvent–solvent polarization is

ignored (HaDuong et al., 2002). This novel approach has the potential to bridge the gap between

implicit and explicit solvent-based solvent methods. The PPP is computationally more efficient

than explicit solvent methods as it produces the macroscopic dielectric response instantaneously.

However, unlike implicit solvent methods, it aims to directly capture non-polar influences

via solvent–solute van der Waals interactions without resorting to additional approximations.
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While this method shows lower computational cost than explicit models and can be extended to

coarse-grained solutes (Basdevant et al., 2007 ; Ha-Duong et al., 2009), the parameterization of the

model is complicated, involving empirically scaling the van der Waals radius based on the Born

energy of ions and charges of solute atoms to match Kirkwood solvation energy of a spherical

cavity.

9. Outlook and future directions

Despite the underlying assumptions and inconsistencies, researchers are dedicated to develop

and refine implicit models to be more accurate. Therefore, further research efforts based on

implicit solvent models should continue to focus on modifications to overcome such limitations

without significantly reducing the computational efficiencies of these models.

Additionally, there is increasing effort to incorporate explicit polarization into the general

classical mechanics in different forms such as point dipole induction and Drude oscillators to

improve the electrostatic representation of biomolecules. Adoption of such polarizable poten-

tials in routine studies remains limited, mostly because of concerns about the computational

expense. Advances in computing power and efficient simulation algorithms; however, will con-

tinue to reveal shortcomings of oversimplified fixed-charge potentials and remind us of the

missing physics. Additionally, development of advanced classical electrostatic model beyond

simple polarization is ongoing. In addition to polarization effect, the local charge-transfer (CT)

and penetration effects are demonstrated to play important role for short-range molecular in-

teractions in water (Kumar et al., 2010), aromatics (Tafipolsky & Engels, 2011), and high-valence

ions (Cisneros et al., 2008 ; Wu et al., 2010). Incorporation of such effects significantly improves

the accuracy in modeling the structural and energetic details of these molecular clusters.

Empirical, additive terms for CT (Hagberg et al., 2005 ; Kumar et al., 2010) and penetration effects

(Cisneros et al., 2008 ; Tafipolsky & Engels, 2011) have been shown to be rather effective.

Because of their short-range nature, these interactions can be treated with local cut-offs and incur

negligible additional computational cost relative to polarizable electrostatics treated with particle-

mesh Ewald summation.

Advancements in the electrostatic representation of biomolecules and their solvent environ-

ment have led to successful applications including small molecule solvation, pKas and protein–

ligand-binding affinity prediction (Jiao et al., 2006, 2008, 2009 ; Ren et al., 2011 ; Shi et al., 2011 ;

Yang et al., 2011). Computational sampling can, however, be the next bottleneck in achieving

more accurate thermodynamic quantities in complex molecular systems. Advancements in stat-

istical mechanics theories are as important. Although approaches such as FEP (Grossfield et al.,

2003 ; Jorgensen, 1985 ; Postma et al., 1982 ; Torrie & Valleau, 1974) and application of Bennett’s

acceptance ratio (BAR) (Charles H, 1976 ; Jiao et al., 2008) may require little additional work

beyond what is required for molecular dynamics, methods such as thermodynamic integration,

lambda dynamics (Kong & Brooks Iii, 1996), meta-dynamics (Barducci et al., 2011 ; Laio &

Parrinello, 2002), and the orthogonal space random walk (OSRW) strategy are more time con-

suming to implement for polarizable atomic multipole descriptions of electrostatics (Zheng et al.,

2008, 2009). Tenable, but non-trivial, complications arise with the latter methods because of their

dependency on the derivative of the potential energy with respect to the state variable l. For

example, to the best of our knowledge, a soft-core method to smoothly decouple atomic mul-

tipolar interactions with respect to l has yet to be described. Given the power of metadynamics-

based methods to enhance molecular dynamics sampling and reconstruct the free energy surface
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along a few collective variables (Barducci et al., 2011), there is great motivation for force field

experts to work closely with developers of the leading statistical mechanics algorithms in the

future.
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GARCÍA, A. (2005a). Molecular dynamics study of water

penetration in staphylococcal nuclease. Proteins 60,

433–449.

DAMJANOVIC, A., GARCIAMORENOE, B., LATTMAN, E. &

GARCIA, A. (2005b). Molecular dynamics study of

hydration of the protein interior. Computer Physics

Communications 169, 126–129.
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HOLT, A. & KARLSTRÖM, G. (2009). Improvement of the

NEMO potential by inclusion of intramolecular polar-

ization. International Journal of Quantum Chemistry 109,

1255–1266.

HONG, J., CAPP, M. W., ANDERSON, C. F., SAECKER, R. M.,

FELITSKY, D. J., ANDERSON, M. W. & RECORD, M. T. JR.

(2004). Preferential interactions of glycine betaine and

of urea with DNA: implications for DNA hydration

and for effects of these solutes on DNA stability.

Biochemistry 43, 14744–14758.

HONIG, B. & NICHOLLS, A. (1995). Classical electrostatics

in biology and chemistry. Science 268, 1144–1149.

HONIG, B. H., HUBBELL, W. L. & FLEWELLING, R. F. (1986).

Electrostatic interactions in membranes and proteins.

Annual Review of Biophysics and Biophysical Chemistry 15,

163–193.

HORN, H. W., SWOPE, W. C., PITERA, J. W., MADURA, J. D.,

DICK, T. J., HURA, G. L. & HEAD-GORDON, T. (2004).

Development of an improved four-site water model for

biomolecular simulations : TIP4P-Ew. Journal of Chemical

Physics 120, 9665–9678.

HOWARD, J. J., PERKYNS, J. S., CHOUDHURY, N. & PETTITT,

B. M. (2008). An integral equation study of the hydro-

phobic interaction between graphene plates. Journal of

Chemical Theory and Computation 4, 1928–1939.

HRIBAR, B., SOUTHALL, N. T., VLACHY, V. & DILL, K. A.

(2002). How ions affect the structure of water. Journal of

the American Chemical Society 124,12302–12311.

HU, H. & YANG, W. (2008). Free energies of chemical re-

actions in solution and in enzymes with ab initio quan-

tum mechanics/molecular mechanics methods. Annual

Review of Physical Chemistry 59, 573–601.

HU, W. & WEBB, L. (2000). Direct measurement of the

membrane dipole field in bicelles using vibrational stark

effect spectroscopy. Journal of Physical Chemistry Letters 2,

1925–1930.

HUANG, D., GEISSLER, P. & CHANDLER, D. (2001). Scaling

of hydrophobic solvation free energies#. Journal of

Physical Chemistry B 105, 6704–6709.

HUANG, D. M. & CHANDLER, D. (2002). The hydrophobic

effect and the influence of solute-solvent attractions.

Journal of Physical Chemistry B 106, 2047–2053.

HUMMER, G. (1999). Hydrophobic force field as a mol-

ecular alternative to surface-area models. Journal of the

American Chemical Society 121, 6299–6305.

HUMMER, G. & GARDE, S. (1998). Cavity expulsion and

weak dewetting of hydrophobic solutes in water. Physical

Review Letters 80(19), 4193–4196.

HUMMER, G., GARDE, S., GARCÍA, A. E., POHORILLE, A. &
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YIN, D. & KARPLUS, M. (1998). All-atom empirical

potential for molecular modeling and dynamics studies

of proteins#. Journal of Physical Chemistry B 102,

3586–3616.

MADAN, B. & SHARP, K. (2001). Heat capacity changes ac-

companying hydrophobic and ionic solvation: a Monte-

Carlo and random network model study. Bhupinder

Madan and Kim Sharp: 1996, volume 100. Journal of

Physical Chemistry B, 105, 2256.

MADURA, J. D., BRIGGS, J. M., WADE, R. C., DAVIS, M. E.,

LUTY, B. A., ILIN, A., ANTOSIEWICZ, J., GILSON, M. K.,

BAGHERI, B., SCOTT, L. R. & MCCAMMON, J. A. (1995).

Electrostatics and diffusion of molecules in solution –

simulations with the University of Houston Brownian

Dynamics program. Computer Physics Communications 91,

57–95.

MAHONEY, M. W. & JORGENSEN, W. L. (2000). A five-site

model for liquid water and the reproduction of the

density anomaly by rigid, nonpolarizable potential

functions. Journal of Chemical Physics 112, 8910–8910.

MARCUS, R. A. (1956). Electrostatic Free Energy and

Other Properties of States Having Nonequilibrium

Polarization. Journal of Chemical Physics 24, 979–989.

MARCUS, R. A. & SUTIN, N. (1985). Electron transfers in

chemistry and biology. Biochimica et Biophysica Acta 811,

265–322.

MARCUS, Y. (2006). Ionic volumes in solution. Biophysical

Chemistry 124, 200–207.

MARENICH, A. V., CRAMER, C. J. & TRUHLAR, D. G. (2008).

Perspective on foundations of solvation modeling: the

electrostatic contribution to the free energy of solvation.

Journal of Chemical Theory and Computation 4, 877–887.

MARINCOLA, F. C., DENISOV, V. P. & HALLE, B. (2004).

Competitive Na+ and Rb+ binding in the minor

groove of DNA. Journal of the American Chemical Society

126, 6739–6750.

MARTICK, M., LEE, T.-S., YORK, D. M. & SCOTT, W. G.

(2008). Solvent structure and hammerhead ribozyme

catalysis. Chemistry and Biology 15, 332–342.

MARTIN-MOLINA, A., CALERO, C., FARAUDO, J., QUESADA-

PEREZ, M., TRAVESSET, A. & HIDALGO-ALVAREZ, R.

(2009). The hydrophobic effect as a driving force for

charge inversion in colloids. Soft Matter.

MARTIN, D., FRIESEN, A. & MATYUSHOV, D. (2011). Electric

field inside a ‘‘Rossky cavity ’’’ in uniformly polarized

water. Journal of Chemical Physics 135, 084514.

MARTIN, F. & ZIPSE, H. (2005). Charge distribution in the

water molecule : a comparison of methods. Journal of

Computational Chemistry 26, 97–105.

MARUCHO, M., KELLEY, C. T. & PETTITT, B. M. (2008).

Solutions of the optimized closure integral equation

theory: heteronuclear polyatomic fluids. Journal of

Chemical Theory and Computation 4, 385–396.

MARUCHO, M. & PETTITT, B. M. (2007). Optimized theory

for simple and molecular fluids. Journal of Chemical Physics

126, 124107.

MARUYAMA, Y., YOSHIDA, N. & HIRATA, F. (2010).

Revisiting the salt-induced conformational change of

DNA with 3D-RISM theory. Journal of Physical Chemistry

B 114, 6464–6471.

MASAMURA, M. (2000). Error of atomic charges derived

from electrostatic potential. Structural Chemistry 11,

41–45.

MASCAGNI, M. & SIMONOV, N. (2004). Monte Carlo meth-

ods for calculating some physical properties of large

molecules. SIAM Journal on Scientific Computing 26, 339.

MASSOVA, I. & KOLLMAN, P. A. (2000). Combined mol-

ecular mechanical and continuum solvent approach

(MM-PBSA/GBSA) to predict ligand binding.

Perspectives in Drug Discovery and Design 18, 113–135.

MAURO, S. A. & KOUDELKA, G. B. (2004). Monovalent

cations regulate DNA sequence recognition by 434 re-

pressor. Journal of Molecular Biology 340, 445–457.

MCCAMMON, J. A., GELIN, B. R. & KARPLUS, M. (1977).

Dynamics of folded proteins. Nature 267, 585–590.

MCLAUGHLIN, S. (1989). The electrostatic properties of

membranes. Annual Review of Biophysics and Biophysical

Chemistry 18, 113–136.

MEHLER, E. & GUARNIERI, F. (1999). A self-consistent,

microenvironment modulated screened Coulomb po-

tential approximation to calculate pH-dependent elec-

trostatic effects in proteins. Biophysical Journal 77, 3–22.

MERZEL, F. & SMITH, J. C. (2002). Is the first hydration

shell of lysozyme of higher density than bulk water?

Proceedings of the National Academy of Sciences of the United

States of America 99, 5378–5383.

MICU, A. M., BAGHERI, B., ILIN, A. V., SCOTT, L. R. &

PETTITT, B. M. (1997). Numerical considerations in the

computation of the electrostatic free energy of interac-

tion within the Poisson–Boltzmann theory. Journal of

Computational Physics 136, 263–271.

MIKULECKY, P. J. & FEIG, A. L. (2006). Heat capacity

changes associated with nucleic acid folding. Biopolymers

82, 38–58.

MISRA, V. K. & DRAPER, D. E. (1999). The interpretation

of Mg(2+) binding isotherms for nucleic acids using

Poisson–Boltzmann theory. Journal of Molecular Biology

294, 1135–1147.

MISRA, V. K. & DRAPER, D. E. (2000). Mg(2+) binding to

tRNA revisited: the nonlinear Poisson–Boltzmann

model. Journal of Molecular Biology 299, 813–825.

Biomolecular electrostatics and solvation 481



MISRA, V. K. & DRAPER, D. E. (2001). A thermodynamic

framework for Mg2+ binding to RNA. Proceedings of the

National Academy of Sciences of the United States of America

98, 12456–12461.

MISRA, V. K. & DRAPER, D. E. (2002). The linkage between

magnesium binding and RNA folding. Journal of

Molecular Biology 317, 507–521.

MISRA, V. K., SHIMAN, R. & DRAPER, D. E. (2003). A

thermodynamic framework for the magnesium-depen-

dent folding of RNA. Biopolymers 69, 118–136.

MITRA, R., ZHANG, Z. & ALEXOV, E. (2011). In silico

modeling of pH-optimum of protein-protein binding.

Proteins 79, 925–936.

MIYATA, T. & HIRATA, F. (2008). Combination of molecu-

lar dynamics method and 3D-RISM theory for con-

formational sampling of large flexible molecules in

solution. Journal of Computational Chemistry 29, 871–882.

MIZUNO, K., ODA, K., MAEDA, S., SHINDO, Y. & OKUMURA,

A. (1995). 1H-NMR study on water structure in halo-

genoalcohol–water mixtures. Journal of Physical Chemistry

99, 3056–3059.

MOBLEY, D. L., BARBER, A. E., FENNELL, C. J. & DILL,

K. A. (2008). Charge asymmetries in hydration of polar

solutes. Journal of Physical Chemistry B 112, 2405–2414.

MOMANY, F. A. (1978). Determination of partial atomic

charges from ab initiomolecular electrostatic potentials –

application to formamide, methanol, and formic acid.

Journal of Physical Chemistry 82, 592–601.

MONGAN, J., SIMMERLING, C., MCCAMMON, A., CASE, D. &

ONUFRIEV, A. (2007). Generalized Born model with a

simple, robust molecular volume correction. Journal of

Chemical Theory and Computation 3, 156–169.

MOORE PLUMMER, P. & CHEN, T. S. (1987). Investigation of

structure and stability of small clusters : molecular dy-

namics studies of water pentamers. Journal of Chemical

Physics 86, 7149.

MORI, M., ERICKSON, M. & YUE, D. (2004). Functional

stoichiometry and local enrichment of calmodulin in-

teracting with Ca2+ channels. Science 304, 432–435.

MOSER, C. C., KESKE, J. M., WARNCKE, K., FARID, R. S. &

DUTTON, P. S. (1992). Nature of biological electron-

transfer. Nature 355, 796–802.

MUKHERJEE, A. K. (2004). The attraction between like-

charged macroions—the crucial roles of macroion ge-

ometry and charge distribution. Journal of Physics :

Condensed Matter 16, 2907–2930.

NADA, H. (2003). An intermolecular potential model for

the simulation of ice and water near the melting point : a

six-site model of H2O. Journal of Chemical Physics 118,

7401.

NAYAL, M. & DI CERA, E. (1996). Valence screening of

water in protein crystals reveals potential Na+binding

sites. Journal of Molecular Biology 256, 228–234.

NETZ, R. R. & NAJI, A. (2004). Attraction of like-charged

macroions in the strong-coupling limit. European Physical

Journal E: Soft Matter and Biological Physics 13, 43–59.

NEUMANN, C. (1883). Hydrodynamische Untersuchungen : Nebst

Einem Anhange über die Probleme der Elektrostatik und der

Magnetischen Induction. Leipzig : B. G. Teubner.

NGUYEN, T. T., GROSBERG, A. Y. & SHLOVSKII, B. I. (2000).

Screening of a charged particle by multivalent counter-

ions in salty water : strong charge inversion. Journal of

Chemical Physics 113, 1110–1125.

NI, H., ANDERSON, C. F. & RECORD, M. T. (1999).

Quantifying the thermodynamic consequences of cation

(M2+, M+) accumulation and Anion (Xx) Exclusion

in mixed salt solutions of polyanionic DNA using

Monte Carlo and Poisson–Boltzmann calculations of

Ion-polyion preferential interaction coefficients. Journal

of Physical Chemistry B 103, 3489–3504.

NICHOLLS, A. & HONIG, B. (1991). A rapid finite difference

algorithm, utilizing successive over-relaxation to

solve the Poisson–Boltzmann equation. Journal of

Computational Chemistry 12, 435–445.

NICOL, M. F. (1974). Solvent effects on electronic spectra.

Applied Spectroscopy Reviews 8, 183–227.

NIELSEN, J., GUNNER, M. R. & BERTRAND GARCÍA-MORENO,
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