
Stochastic Dynamics, Brownian Dynamics and Diffusion

Stochastic Dynamics

To this point, we have only discussed molecular dynamics (MD) as a method for simulating
biomolecular dynamics. We saw that this method was based on solving the Newtonian
equation of motion

m
d2

dt2
ri = − ∂

∂ri

V (r1, ..., rN)

where the positions of atom 1 to N are given by ri, and the potential function V (r1, ..., rN)
is an appropriate force field that describes the interaction of the atoms within our system.
MD simulations are sometimes called deterministic simulations, since for the same initial
conditions (positions and velocities), the system will follow exactly the same trajectory.

Although this formulation is correct and useful, if we are interested in large systems (many
atoms) or long times, it can be too expensive to use. Also, although we are simulating the
dynamics of the entire set of atoms, there may be only a select group that we are interested
in. This could be part of a biomolecule, such as a binding domain or active site, or it could
be the center of mass of the biomolecule itself, such as in the case of transport. Suppose we
can identify a set of coordinates q1, ..., qM that we are interested in (these do not need to be
Cartesian coordinates, but could be some alternative description). We can then write down
a Langevin equation to describe the system

µi
d2

dt2
qj = − ∂

∂qj

W (q1, ..., qM)− γi
d

dt
qj + σjξj(t)

The l.h.s. of this equation is the “acceleration” of our coordinate qj. The terms on the
r.h.s. represent an effective potential W (q1, ..., qM) that describes the interactions of the q′is,
a velocity dependent frictional term with coefficient γj, and a stochastic or fluctuating force
term ξj(t) with coupling coefficients σj. This stochastic force term has particular properties
which we will discuss later, but it is included to capture the thermal motion of the rest of
the system on the coordinates that we are interested in.

We can perform simulations by solving this Langevin equation, and the amount of com-
putational time that we save can be significant. This is called Stochastic Dynamics. A
common method of dividing the system is to just consider the motion of the biomolecule
and ignore the solvent (water) dynamics. This can cut the number of atoms in a simulation
system by a factor of 2 or more, and may allow the system to explore its conformational
space much faster. We will not be performing any stochastic dynamics simulations, but will
instead take this simplification one step further.

Einstein Diffusion Equation

Let us consider a system of particles that do not interact with each other. We can write
down the general Langevin equation that describes their motion

mr̈ = −γṙ + σξ(t)
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If we are dealing with biomolecules in water, we have a low Reynold’s number and can apply
the limit of strong friction

|γṙ| � |mr̈|
so that our Langevin equation simply becomes

γṙ = σξ(t).

To this point we have not discussed the properties of the stochastic term ξ(t), which are

〈ξi(t)〉 = 0

〈ξi(t1)ξj(t2)〉 = δijδ(t2 − t1)

Using our skills from stochastic calculus, we find that our simplified Langevin equation
corresponds to a Fokker-Planck equation, or in this case the Einstein Diffusion equation

∂

∂t
p(r, t|r0, t0) =

σ2

2γ2
∇2p(r, t|r0t0)

where we have assumed that the coefficients σ and γ are spatially homogeneous. If we were
to calculate the mean square displacement of a given particle

〈(r(t)− r(t0))
2〉 =

∫
d3r(r(t)− r(t0))

2p(r, t|r0, t0)

we would get (using Greens’ theorem)

〈(r(t)− r(t0))
2〉 = 6

σ2

2γ2
t

where we identify the diffusion coefficient as

D =
σ2

2γ2
.

Smoluchowski Diffusion Equation

The Einstein diffusion equation described the distribution of a system of non-interacting
particles with no external forces. We are more interested in the case of Brownian particles
in the presence of a force field F (r), which is described by the equation

mr̈ = −γṙ + F (r) + σξ(t).

If we again apply the limit of strong friction we get

γṙ = F (r) + σξ(t)

which corresponds to a Fokker-Planck equation of the form

∂

∂t
p(r, t|r0, t0) =

(
∇2 σ2

2γ2
−∇ · F (r)

γ

)
p(r, t|r0, t0)
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which we can write as the Smoluchowski Diffusion equation

∂

∂t
p(r, t|r0, t0) = ∇ ·

(
∇D − F (r)

γ

)
p(r, t|r0, t0).

If we integrate this equation of a volume V , we will get the number of particles within
this volume

N =
∫

V
d3rp(r, t|r0, t0).

Taking the partial time derivative of each side and using the Smoluchowski diffusion equation
we find

∂tN =
∫

V
d3r∇ ·

(
∇D − F (r)

γ

)
p(r, t|r0, t0).

Applying Gauss’ theorem gives us

∂tN =
∫

∂V
da ·

(
∇D − F (r)

γ

)
p(r, t|r0, t0).

Since particle are not being created or destroyed within this volume, this integral must must
represent the particle flux over the boundary ∂V

j(r) =

(
∇D − F (r)

γ

)
p(r, t|r0, t0).

If the force term is time independent (as we have written it), and if it can be related to a
scalar potential (i.e. F (r) = −∇V (r)), we can expect that the probability distribution p(r, t)
must be the Boltzmann distribution exp[−V (r)/kT ]. Also, if the flux or current vanishes at
the boundary (the number of particles is constant), we see that(

∇D − F (r)

γ

)
e−βV (r) = 0

where we have introduced β = 1/kT . If we apply the derivative term we get

e−βV (r)

(
DβF (r) +∇D − F (r)

γ

)
= 0

which implies

∇D = F (r)

(
1

γ
−Dβ

)
.

This is the Fluctuation-Dissipation theorem. If the diffusion constant is spatially homo-
geneous, and using the fact that D = σ2/2γ2, we get

σ2 = 2kTγ.

This equation implies that the amplitude of the fluctuation forces σ are balanced by the
frictional coefficient γ in a temperature dependent fashion.
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Ermak-McCammon Equation

Let’s return to our Langevin equation for a system of particle in a force field

mr̈ = −γṙ + F (r) + σξ(t).

Instead of applying the limit of strong friction, we can average this equation over a time ∆t
that is much longer than the momentum relaxation time

∆t � mD

kT
.

In this average, the acceleration term does not contribute < mr̈ >∆t= 0, and the other terms
take on time averaged forms

〈γṙ〉 = γ
∆x

∆t

〈F (r)〉 = F

〈ξ(t)〉 =
1√
∆t

ξ̃

which gives us

γ
∆x

∆t
= F +

σ√
t
ξ̃.

If we rearrange this to solve to ∆x, we get

∆x =
∆t

γ
F +

σ
√

∆t

γ
ξ̃

and using the fact that 1/γ = D/kT and σ/γ =
√

2D, we find

∆x =
D∆t

kT
F +

√
2D∆tξ̃

or equivalently

∆x =
D∆t

kT
F + S

where the stochastic term S has the properties

〈S〉 = 0 〈S2〉 = 2D∆t.

This is the Ermak-McCammon equation and it will become the basis for our Brownian
dynamics simulations.

4


