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Developments in the design of small peptides that mimic

proteins in complexity, recent advances in nanosecond

time-resolved spectroscopy methods to study peptides and the

development of modern, highly parallel simulation algorithms

have come together to give us a detailed picture of peptide

folding dynamics. Two newly implemented simulation

techniques, parallel replica dynamics and replica exchange

molecular dynamics, can now describe directly from simulations

the kinetics and thermodynamics of peptide formation,

respectively. Given these developments, the simulation

community now has the tools to verify and validate simulation

protocols and models (forcefields).
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Abbreviations
GB generalized Born

NOE nuclear Overhauser effect

PRD parallel replica dynamics

REMD replica exchange molecular dynamics

rmsd root mean square deviation

SA surface area

Introduction
Understanding the dynamics and mechanism of protein

folding continues to be one of the central problems in

molecular biology. Peptide folding simulations and

experiments characterize the dynamics and molecular

mechanisms of the early events of protein folding. Com-

putationally, peptides present a more tractable system

than proteins. Experimentally, peptides fold at very fast

rates, requiring probing on the nanosecond time resolu-

tion. Peptides offer a unique opportunity to bridge the

gap between theoretical and experimental understanding

of protein folding.

Peptides have many of the features and complexities

of proteins. In general, the competition between config-

urational entropy, hydrogen bond formation, solvation,

hydrophobic core formation and ion pair formation deter-

mines the folding rate and stability of proteins. This

competition plays an essential role throughout the fold-

ing process and determines the thermodynamic equili-

brium between folded and unfolded states. Modeling

this competition is a standing challenge in peptide fold-

ing simulations.

Three major developments have positioned the simulation

community to make significant advances toward under-

standing the mechanism of folding of peptides and small

proteins. Firstly, the design of small peptides that mimic

proteins in complexity, but are sufficiently small to allow

detailed simulation studies [1–4]. Secondly, the develop-

ment of fast (nanosecond) time-resolved spectroscopy

methods to study peptide folding dynamics on the same

timescale as computer simulations [5–8,9�,10��,11,12].

Thirdly, the development and implementation of simula-

tion algorithms have helped to overcome the limitations of

insufficient sampling [13,14]. Given these conditions, it

becomes particularly important to emphasize the valida-

tion of simulation techniques and forcefields, and the

verification of the simulation results.

In what follows, we briefly describe newly implemented,

highly parallel simulation techniques that allow the sam-

pling of the kinetics and thermodynamics of peptides

directly from molecular simulations. We describe how

these techniques have been used to study peptide sys-

tems. We divide the systems according to the timescales

that characterize the formation of basic structures. The

fastest events are described by loop closing (10 ns time-

scale), a-helix formation (200 ns timescale), b-hairpin

folding (1–10 ms timescale) and mini-protein folding

(1–10 ms timescale). Examples of systems that form on

these timescales and that have been studied in detail are

shown in Figure 1. Given the extent of the simulations

being conducted, we now have a good opportunity to

validate the simulation techniques and forcefields by

doing careful comparisons of the simulation and experi-

mental results. We briefly describe instances in which

these comparisons have been made.

New simulation methods
The central problems in molecular dynamics simulations

are adequate sampling, accurate forcefield parameters and

adequate timescales. These problems are also present in

folding simulations of peptides, but are more tractable than

for large protein systems and give us an opportunity to

explore the well-known problem of sampling in molecular
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dynamics. The first priority of computer simulations

should be to combine detailed experimental and theore-

tical studies of the structure, thermodynamic equilibrium

and folding kinetics for a large set of peptide systems, and

then validate the theoretical methods and verify the accu-

racy of the results. By doing this, we will be able to detect

deficiencies in forcefields, solvation models and water

models. In cases in which there is good correlation between

theory and experiment, we can then start the synergistic

interpretation of experimental data, whereby theoretical

models provide an atomic picture of the events that are

consistent with the observation.

New sampling techniques applied to protein simulations

have helped to overcome the sampling of the equilibrium

and kinetics of peptide folding. These methods make use

of embarrassingly parallel schemes to enhance sampling,

thus making efficient use of multiprocessor, low-cost

cluster machines. The four most widely used of these

techniques are umbrella sampling, multicanonical sam-

pling, replica exchange molecular dynamics (REMD) and

parallel replica dynamics (PRD). Brief descriptions and

applications of these methods are described next.

The simplest parallel sampling method is to run many

uncoupled copies of the same system with different initial

conditions. This has been used effectively by Ferrara et al.
[15��] to study the relaxation behavior, transition rates and

equilibrium properties of a peptides and b peptides. The

same method was used to study the folding/unfolding of

two de novo b-sheet-forming peptides [16–18] and a helical

peptide [19]. The massive parallelism inherent in this

method has been useful in projects such as Foldin-

g@Home [20], which uses the excess compute cycles of

weakly coupled private computers. This simple parallel

simulation method is most successful for systems with

implicit solvent, the use of which increases the slowest

relaxation rates by factors of 100–1000 [15��]. With expli-

cit solvent, most single simulations are short compared to

the system relaxation time and are strongly influenced by

the initial conditions, with one exception described below

[21�].

A more sophisticated method invented to increase the

range of simulated rates is the PRD method [22]. In this

method, independent simulations are started from the

same conformational basin. When one of these simula-

tions exits a basin, all the other simulations are restarted

from the new basin position. In the ideal case that barrier

crossing is fast and waiting times are exponential, this

method yields a linear increase in the rates of conforma-

tional transitions [14]. This method has been applied to

study the folding of the C-terminal b hairpin of protein G

(GB1) [23��]; however, this method is suspect when

applied to proteins because of the difficulty of identifying

when a barrier-crossing event has occurred [24�].

One of the oldest methods to enhance the calculation of

static properties is umbrella sampling. In the umbrella

sampling method, one or more separate simulations are

carried out with modified potential functions. These

Figure 1
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Examples of the structures and free energy or thermodynamic profiles

involved in the three elementary steps of secondary structure formation,

which occur on different timescales. (a) Formation of an end-to-end

contact (loop closing), which forms on a 10 ns timescale [8]. The curve

on the right-hand side shows the free energy profile as a function of the

end-to-end distance [44�]. This energy profile does not deviate much

from a quadratic shape, expected for a random chain. (b) a-Helix

formation, with a 200 ns timescale [5]. The right-hand side shows a

profile of the fraction of helical amino acids as a function of temperature

[45��]. (c) b-Hairpin formation, with a characteristic folding timescale of
1–10 ms [6]. The right-hand side shows the rugged free energy landscape

as a function of temperature and a principal component that best

describes the system fluctuations [34�,65].
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separate simulations are then combined and the resulting

phase space distribution is corrected to determine what it

would have been if the sampling had been done with the

original potential. In the context of protein folding, this

method has been most extensively used by Brooks and

co-workers ([25,26�]; for recent reviews, see [27,28]).

A less obvious method of umbrella sampling is to use a

biasing potential that is solely a function of the potential

energy. Determining this bias self-consistently, so that

all potential energies are equally sampled, allows the

system to do a random walk in potential energy space

and easily surmount large enthalpic barriers. This is the

multicanonical method created by Berg and Neuhaus

[29]. This method was applied to peptides by

Hansmann and Okamoto [30], and recently by Alves

and Hansmann [31], and by Kamiya et al. [32]. Although

widely used, the determination of the biasing function is

difficult, especially for systems with explicit solvent.

The multicanonical method and its variants are limited

by the need to self-consistently determine a biasing

function. The need to determine these factors can be

eliminated through a clever trick invented indepen-

dently on several occasions (for a review, see [33]). This

method is commonly referred to as simulated tempering

or replica exchange. The parallel version of this algo-

rithm was adapted for use with molecular dynamics as

REMD [13]. REMD has many advantages. It is parti-

cularly easy to implement and requires no expensive

fitting to be done; it produces information over a range

of temperatures and is easily adapted for use with

implicit or explicit solvent. Relaxation times with this

method are typically decreased by factors of 20 or more

for peptides at room temperature [34�].

Other sampling techniques are being developed and

applied to peptide systems [35–39].

We now go on to describe simulations and open issues

concerning model systems that represent the basic ele-

ments of structure formed during peptide and small protein

folding. Simulations of these disordered systems are used

to determine the timescales of loop closing (10 ns time-

scale), and formation of a-helical peptides (200 ns time-

scale), b hairpins and mini-proteins (1–10 ms timescale).

Loop-closing kinetics
A fundamental timescale in peptide dynamics is the time

it takes to form an intermolecular contact. Lapidus et al.
[40] measured the viscosity and temperature dependence

of cysteine-tryptophan quenching in C(AGQ)kW pep-

tides (k ¼ 1–6; denoted CWk) to isolate the diffusion-

limited and reaction-limited quenching rates. They found

that their measurements could be well fit by a model of a

stiff polymer with a few adjustable parameters. The

diffusion-limited quenching time is found to be on the

order of 10 ns, increasing monotonically with peptide

length. Two studies of (SG)k (k ¼ 1–4) peptides show

some discrepancy in the length dependence of the

quenching rate using different probes. Although the

measured quenching rate is also on the order of 10 ns,

Bieri et al. [41] found the measured rate increases mono-

tonically with peptide length, whereas Hudgins et al. [42]

found a marked turnover in the rate. This short timescale

for diffusion-limited quenching is accessible to molecular

dynamics simulations. Yeh and Hummer [21�] found that

the measured quenching rates were consistent with the

simulations [8,43].

Diffusion-limited quenching times are typically found to

be 10–100 times slower than times calculated from simple

polymer models, which are often parameterized as a

reduced effective diffusion coefficient. Determining

the extent to which the small effective diffusion coeffi-

cient reflects the timescale of the end-to-end dynamics is

complicated by the approximations required to compute

mean contact times. Lapidus et al. [40] emphasized that a

single reaction coordinate model with an adjustable effec-

tive diffusion coefficient captures both the timescale of

the end-to-end distance relaxation and the mean contact

time of Langevin simulations of CWk peptides. Alterna-

tively, all-atom simulations of CW3 were analyzed using

bounds on the mean contact times for a general Gaussian

chain [44�]. The main source of the slow dynamics is

probably the nonlocal interactions along the chain or the

coupling to solvation kinetics [40,44�].

a-Helix formation
Peptides consisting of a single a helix present a unique

opportunity to compare theory with experiment — their

small size is amenable to extensive sampling by simula-

tion and their fast folding time is feasible to simulate

[19,31,45��,46,47��,48–50].

Recent REMD simulations of the helix-coil transition

have revealed the importance of backbone shielding

by sidechains during a-helix formation [45��]. Garcı́a

and Sanbonmatsu simulated the thermodynamics of two

21 amino acid peptides: Ala-21 and the Fs peptide [where

Fs stands for ‘folded short’ peptide with sequence

Ac-A5(AAARA)3A-methyl amide]. In the Fs peptide

simulation, the arginine sidechain was observed to des-

olvate the backbone carbonyls while the helical content

simultaneously increased. The correlation between back-

bone shielding and higher helical stability was suggested

previously by Vila et al. [46].

In these simulations, sampling was sufficient to achieve

similar melting curves and helical content profiles for

both folding and unfolding simulations, as well as for

simulations with distinct initial conditions. Sampling

quality for a helices has also been addressed recently

by Smith et al. [47��], who revealed that different sam-

pling measures have different convergence times.
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Whereas the rmsd and intermolecular interaction energy

stabilize quickly (�3 ns), the number of hydrogen bonds

and number of clusters require significantly more time to

equilibrate (30–50 ns).

b-Hairpin folding
b-Hairpin systems are an equally important building

block of proteins as a helices and provide an opportunity

to verify forcefields that might be favorable for a-helical

systems. The GB1 peptide is probably the most widely

studied b-hairpin peptide [15��,23��,34�,50–52,53��,
54–56]. The structure, dynamics [1] and kinetics of fold-

ing [6] of this peptide have been studied experimentally.

At least 40% of the peptide was shown to adopt b-hairpin

structure and the peptide folds/unfolds in 6 ms. REMD

simulations by Garcı́a and Sanbonmatsu [34�] have

explored the free energy landscape of GB1 over a wide

range of temperatures. In this calculation, the replicas

were simulated in explicit solvent for 3.5 ns/replica, using

the Parm94 (AMBER94) forcefield. They found that the

b hairpin is the most stable state (40% of the configura-

tions at 300K), in addition to a significant population of a
helix (15% at 300K). Using the energy landscape theory

[57], the folding rate for this peptide was estimated to be

1–7 ms. In the energy landscape theory, it is assumed that

folding dynamics can be properly described as a diffusion

process of an ensemble of protein configurations over a

low-dimensional free-energy surface, which may be con-

structed using different order parameters. Garcı́a and

Sanbonmatsu used the free energy profile shown in

Figure 1c, at 300K, and estimated the diffusion coeffi-

cient in the peptide configuration space from constant

temperature molecular dynamics simulations. In this

calculation, only the order of magnitude (1 ms) is credible.

Zhou et al. [52] conducted a similar study, but using the

OPLS forcefield and Ewald summations to treat the

electrostatics. They also found the b hairpin to be the

most stable state, but the a-helical state is not signifi-

cantly populated. We believe that these short (3.5 ns/

replica) REMD simulations [34�,52] are not sufficient to

reproduce equilibrium distributions for this hairpin.

Zagrovic et al. [23��] simulated the GB1 hairpin with the

PRD approach, using the OPLS forcefield and Still’s

generalized Born/surface area (GB/SA) implicit solvent

model [58] at 300K. The simulation was carried out for a

total of �38 ms ‘folding time’ and resulted in eight

trajectories reaching the folded state (0.3%). Many tra-

jectories sampled a semihelical intermediate. The upper

bound for the folding time, directly calculated from the

simulations, was estimated to be 4.7 ms, in agreement

with the measured time of 0.9–6 ms. Jang et al. [50]

studied the same peptide, using the CHARMM19 force-

field and a GB solvation model [59] in relatively short

(15 ns) molecular dynamics simulations. They found that

b hairpins are formed quickly, but that the a-helical

conformations have a much lower energy (11 kcal/mol)

than the b hairpin.

Interestingly, Zhou and Berne [53��] conducted another

REMD study of the GB1 peptide, but this time using the

GB/SA implicit solvent model of Ghosh et al. [60]. This

calculation should have revealed very similar equilibrium

behavior as the calculations by Zagrovic et al. [23��].
Nevertheless, Zhou and Berne found that GB1 does

not form a b hairpin, but rather a structure with exposed

hydrophobic sidechains and buried charged groups [53��].
They conclude that the GB/SA implicit solvent models

need to improve the treatment of electrostatic interac-

tions and properly screen ion pair formation. We assume

that surface area (SA) implicit solvent treatment models

have the same problems [61], which are sometimes solved

by neutralizing charged groups [15��]. These results are

not conclusive because most implementations of the GB

and GB/SA models are different from Still’s [58], and

therefore are difficult to compare [59,60]. For example, a

study of the free energy surfaces of the mini-protein

betanova obtained with explicit solvent, GB and GB/

SA approximations by Bursulaya and Brooks [26�] shows

that the three models are similar.

Mini-proteins
Mini-proteins are short peptides that have either more

than one hairpin, or a mixture of b and a structures. In

some instances, there is a small hydrophobic core. Exam-

ples of these are the BBA5 mini-protein [10��], betanova

[1] and the WW peptide [7]. A combined theoretical and

experimental study of the folding kinetics of BBA5 was

conducted by Snow et al. [10��]. Multiple molecular

dynamics simulations totaling 700 ms were performed

to directly determine the folding rate of this mini-pro-

tein. The measured and calculated folding rates (1–7 ms)

were in very good agreement. Calculations on other

mini-proteins have been recently performed by Jang

et al. [50], Bursulaya and Brooks [26�], and Ferrara and

Caflisch [16].

Comparison of simulation and
experimental results
In the literature reporting computer simulations, one

often finds a statement such as ‘the simulation results

are in agreement with the experimental results’. This

kind of statement has sometimes been used loosely or

without much consideration. Even a qualitative or an

incidental agreement is taken to strengthen and support

the validity of the methodology or calculations. In reality,

however, such an agreement can be a result of lack of

sampling, an important concern for peptide simulations.

One of the issues that arise when comparing simulation

results with experimental measurements is the relevant

temperature at which the comparison has to be made.

Daura et al. [62��] have done a detailed conformational
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study on a b-hexapeptide in methanol and address such a

concern. Peter et al. [63] have shown that a more accurate

comparison with measured nuclear Overhauser effects

(NOEs) and J-couplings can be made by explicitly

calculating relaxation rates from molecular dynamics

simulations and relating them to NOESY (NOE spectro-

scopy) and ROESY (rotating frame NOESY) intensities

directly. Especially for small peptide systems, the time-

scales of both internal and overall rotational motions are

accessible to molecular dynamics simulations, and should

enable the direct calculation of relaxation rates. Generally,

the interproton distances inferred from NOE intensities

are directly compared with the average distances calcu-

lated from the simulations. Such a treatment neglects the

effects due to internal dynamics and spin diffusion.

Feenstra et al. [64��] calculated the NMR cross-relaxation

rates (NOE intensities) in three different ways for a nine-

residue peptide from the protein HPr. Interestingly, it was

found that, regardless of the methodology chosen, the

correlations between experimental and theoretical inten-

sities were identical. It was suggested that the inadequa-

cies of the current forcefields and parameters limited the

agreement of the results from the detailed calculation with

the experimental measurements. The most important

result from this study was that, regardless of the metho-

dology chosen, the end result was only meaningful when

the ensemble contained all relevant conformations. When

comparisons are made to NMR experimental observa-

tions, the extent of sampling is more important than

the details of the atomic motion [64��].

Conclusions
The most difficult question to answer is how good are the

forcefields we use. Forcefields are not physical laws, but

rather parameterizations of the system energy as a function

of its atomic configuration. These parameterizations are

accordingly subject to modifications and calibration with

experimental data. As better sampling methods emerge,

the accuracy of all forcefields must be revisited. However,

in light of the results described above, the performance of

existing forcefields has exceeded our expectations. Con-

sidering that current forcefields were predominately cali-

brated with folded proteins, the balance between multiple

conformations in folding simulations and the observation

of folding/unfolding transitions at temperatures within 10–

20% of experimentally observed values is reason for opti-

mism. Small changes in the forcefield will most probably

result in better agreement with experiments. Although

close agreement between simulation and experiment is

important, we emphasize that care should be taken before

stating that ‘simulation results are in agreement with

experiment’. Areas of disagreement between simulation

and experiment are equally important, and are essential to

improving simulation methods. Conversely, hasty claims

of agreement with experiment may stunt the growth of the

simulation community in a manner akin to ‘sweeping the

problem under the rug’.
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