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Figure 1 Schematic of molecular force field expression. Diagonal terms refer to inter-
actions that can be expressed as a function of a single internal coordinate, whereas
cross terms introduce coupled interactions involving two or more coordinates.
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Table 1 MM3 Heat of Formation Data for Aliphatic Amines (kcal/mol)?

H° calc H° exp Difference (calc — exp) Compound
-5.04 -5.50 0.46 Methylamine j
-4.04 -4.43 0.39 Dimethylamine
-6.09 -5.67 -0.42 Trimethylamine
-11.92 -11.35 -0.57 Ethylamine {
-17.41 -17.33 -0.08 Diethylamine |
-21.49 -22.17 0.68 Triethylamine
-16.95 -16.77 -0.18 n-Propylamine
-20.31 -20.02 -0.29 Isopropylamine
-21.85 -21.98 0.13 n-Butylamine
-24.31 —-25.06 0.75 sec-Butylamine
-23.51 -23.57 0.06 Isobutylamine
-28.90 -28.90 0.00 tert-Butylamine
-11.83 -11.76 -0.07 Piperidine
-20.30 -20.19 -0.11 2-Methylpiperidine
9.90 9.90 0.00 Cyclobutylamine
-13.70 -13.13 -0.57 Cyclopentylamine
-1.29 -1.03 -0.26 Quinuclidine
-31.67 -34.41 2.74 Diisopropylamine
—-24.86 -2.06 0.20 Cyclohexylamine
-0.94 -0.80 -0.14 Pyrrolidine
24.62 24.62 0.00 Azetane

Best values: C—N = 6.173, N—H = ~1.178, N=Me = 2.965, NISO = -4.442 NSEC =
2.635, TBUN = -8.867, NCBU = 1.171, 8-56 = 2.617. Fixed values: NTER = 0.000. Stan-
1ard deviation = 0.354. See ref. 44 for de” ‘itions.
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in order to fit transferable parameters.
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Table 1 Transferability of ab Initio Bond Parameters in Alkanes!17.121

Bond Force Bond Force
length constant length constant
Molecule (A) (ken) (bec) (keo)
Ethane 1.086 5.800 1.527 5.109
Propane 1.086 5.769 1.528 4.962
1.087 5.690 — —
1.086 5.803 — —
Butane 1.086 5.801 1.528 4.960
1.086 5.769 — —
1.088 5.659 1.530 4.910
Pentane 1.086 5.799 — —
1.086 5.770 — —
1.088 5.662 — —
1.089 5.628 — —
Cyclopropane 1.076 6.161 1.497 5.125
Cyclobutane® 1.084 5.813 1.549 4.669
Cyclobutane® 1.084 5.829 1.545 4.617
1.085 5.790 — —
Cyclopentane 1.085 5.799 1.531 4.875
1.085 5.773 — —
1.085 5.797 — —
1.088 5.670 — —
1.086 5.710 — —




80 _, harmonic function

¥k (b-bp
|
60 - / quartic function
2 2. .3 3., 4 4
_ kZ(0-b )2 +k>(0-b)%+k*(b-b)
O 40 -
E
©
20 -
2 ~ Morse function
= 04
cubic function
-20- 4" k2(o-b)?+k3(b-b)°
'40 T 4 i 1 I ]l
0.6 0.8 1 1.2 1.4 1.6 1.8

b,A

Figure 3 Schematic of a Morse function and the related harmonic, cubic, and quartic
potentials (Egs. [3] and [4]). When the bond length is increased beyond the point of
the minimum, the harmonic potential rises too steeply. The cubic term corrects for the
anharmonicity locally, but at longer distances turns and goes catastrophically to nega-
tive infinity. The quartic potential remains a good approximation over a relatively
laree range and is alwavs attractive at large distances.
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Fig. 4.7: Torsional potential varies as shown for different values of V,,, n and ~.

Fig. 4.8: Variation in torsional energy (AMBER force field) with O—C—C-O torsion angle (w) for OCH,—CH,0
fragment. The minimum energy conformations arise for w = 60° and 300°.
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Figure 2.3 Fourier decomposition of the torsional energy for rotation about the C—O bond of fiuo-
romethanol (bold black curve, energetics approximate). The Fourier sum (A) is composed of the
onefold (o), twofold (°), and threefold (O) periodic terms, respectively. In the Newman projection of
the molecule, the oxygen atom lies behind the carbon atom at center
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Figure 2.4 Fourier decomposition of the torsional energy for rotation about the C-C bonq of n-butane
(bold black curve, energetics approximate). The Fourier sum (A) has a close overlap, and is composed
of the onefold (o), twofold (o), and threefold (0J) periodic terms, respectively



Figure 4 Rigid internal rotation (torsional angle ¢) involving the methyl group as a
unit, and the dihedral motions (t), which describe a single H— C—C—H deforma-
tion, in ethane. Although there is a single definition of ¢, there are 9 independent

choices for t.

OL( |

improper Wilson, Decius, pyramid
torsion and Cross | height
A B C

Figure 5 Definitions of out-of-plane coordinate. The molecule shown is the formate
anion. The improper torsion definition is nonphysical and is used only because it can
be easily adapted to existing torsional models and programs.
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Stretch ~ stretch Stretch - torsion

Stretch - bend Bend - torsion

Fig. 4.13: Schematic illustration of the cross terms believed to be most important in force fields. (Adapted from Dinur
U and A T Hagler 1991. New Approaches to Empirical Force Fields. In Reviews in Computational Chemistry,
Lipkowitz K B and D B Boyd (Editors). New York, VCH Publishers, pp. 99-164.)

Fig. 4.12: Coupling between the stretching of the bonds as an angle closes.

Fig. 4.14: Valence bond representation of the hyperconjugation effect which leads to a lengthening of the C—H bond
in acetaldeyde.
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Fig. 1. Theoverall three-dimensional shape of the amide group in AcNHMe. The carbonyl
group is on the right with the oxvgen at the top of the figure, while the N-H is t-ans-
directed toward [heol‘ower border of the plane. (A) Surface of constant electron density
of 0.027 electrons/A”. roughlv corresponding to van der Waals radius. (B) Surface of
constant clectron density of 0.75 clectron/A”.
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Types of VDW Potentials

Exponential
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Fig. 4.37: Calculating the three-body Axilrod-Teller contribution.

Three-body effects can significantly affect the dispersion interaction. For example, it is
believed that three-body interactions account for approximately 10% of the lattice energy
of crystalline argon. For very precise work, interactions involving more than three atoms
may have to be taken into account, but they are usually small enough to be ignored. A poten-
tial that includes both two- and three-body interactions would be written in the following
general form:

N N N N N
@)=Y Y P +Y Y Y Ora) (4.80)
i=1 j=i+1 i=1 j=i+1 k=j+1

Axilrod and Teller investigated the three-body dispersion contribution and showed that the
leading term is:

3 cos 0, cos g cos ¢

0(3)(”,\8, TAB)TBC) = VAB,C (4.81)

('AB'AC'BC)3
0a, 6 and 6c are the internal angles of the triangle with sides of length ras, rac and rpc
(Figure 4.37). vp g c is a constant characteristic of the three species A, B and C. If A, B and
C are identical then v, gc is approximately related to the Lennard-Jones coefficient Cq
and the polarisability by

” _ 30C6
ABC ™ ™ 4(dne,)

The effect of the Axilrod-Teller term (also known as the triple-dipole correction) is to make
the interaction energy more negative when three molecules are linear but to weaken it
when the molecules form an equilateral triangle. This is because the linear arrangement
enhances the correlations of the motions of the electrons, whereas the equilateral arrange-
ment reduces it.

(4.82)

The three-body contribution may also be modelled using a term of the form
v®) (78, ac, T8c) = Kapc{exp(—arap) exp(—PBrac) exp(—rsc)} where K, o, 8 and v are
constants describing the interaction between the atoms A, B and C. Such a functional
form has been used in simulations of ion-water systems, where polarisation alone does
not exactly model configurations when there are two water molecules close to an ion
[Lybrand and Kollman 1985]. The three-body exchange repulsion term is thus only calcu-
lated for ion-water-water trimers when the species are close together.
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4.9.2 Point-charge Electrostatic Models

We therefore return to the point-charge model for calculating electrostatic interactions. If
sufficient point charges are used then all of the electric moments can be reproduced and
the multipole interaction energy, Equation (4.30), is exactly equal to that calculated from
the Coulomb summation, Equation (4.19).

An accurate representation of a molecule’s electrostatic properties may require charges to be
placed at locations other than at the atomic nuclei. A simple example of this is molecular
nitrogen, which has a dipole moment of zero. The total charge on nitrogen is zero, and so
an atomic partial charge model would put zero charge on each nucleus. However, nitrogen
does have a quadrupole moment and this significantly affects its properties. The simplest
way to model this is to place three partial charges along the bond: a charge of —g at each
nucleus and +24 at the centre of mass. The quadrupole-quadrupole interaction between
two nitrogen molecules can then be calculated by summing nine pairs of charge-charge
interactions. The value of g can be calculated using the following relationship between the
quadrupole moment and the partial charge:

0 =24(1/2)* (4.31)

lis the bond length. The experimental quadrupole moment is consistent with a charge, g, of
approximately 0.5e. In fact, a better representation of the electrostatic potential around the
nitrogen molecule is obtained using the five-charge model shown in Figure 4.20.

An alternative to the point charge model is to assign dipoles to the bonds in the molecule. The
electrostatic energy is then given as a sum of dipole-dipole interaction energies. This approach
(which is adopted in MM2/MM3/MM4) can be unwieldy for molecules that have a formal
charge and which require charge—charge and charge-dipole terms to be included in the
energy expression. Charged species are dealt with more naturally using the point charge model.

— ke

Charge ~ dipole Charge - quadrupole Quadrupole ~ quadrupole

——-—>
—————

——  —+
e

Dipole - dipole Dipole - quadrupole

Fig. 4.18: The most favourable orientations of various multipoles. (Figure adapted from Buckingham A D 1959.
Molecular Quadrupole Moments. Quarterly Reviews of the Chemical Society 13:183-214.)
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Fig. 4.20: Two charge models for N, with the electrostatic potentials that they generate. Also shown is the
electrostatic potential calculated using ab initio quantum mechanics (6-31G" basis set.) Negative contours are dashed
and the zero contour is bold.



Table 12 Goodness-of-Fit of PD Atomic Multipole Expansions and Bond Dipole

Models®
Molecule M M+D M+D+Q D BD RBD
Methane 0.21 0.02 0.01 0.11 0.32 0.32
13.53 1.04 0.39 6.88 20.05 20.05
Ethylene 1.19 0.20 0.02 0.58 0.30 1.12
15.93 2.66 0.21 7.73 3.99 1491
Acetylene 0.19 0.01 0.00 0.02 0.35 0.35
1.34 0.06 0.02 0.14 2.46 2.46
Hydrogen fluoride 2.20 0.13 0.00 1.25 2.20 2.24
7.54 0.41 0.00 4.28 7.53 7.65
Methyl fluoride 1.01 0.18 0.01 0.61 0.90 1.15
4.38 0.78 0.03 2.63 3.45 5.03
Water 2.67 0.22 0.00 2.14 1.37 2.74
8.44 0.88 0.01 6.76 4.35 8.73
Methanol 1.98 0.31 0.00 0.78 0.62 1.77
8.35 1.31 0.02 3.29 2.60 7.33
Dimethyl ether 1.72 0.25 0.00 0.27 0.71 1.82
9.49 1.37 0.02 1.47 3.93 9.82
Carbon dioxide 0.65 0.02 0.00 » 1.55 0.21 0.21
5.08 0.12 0.00 112,09 1.65 1.65
Formaldehyde 1.22 0.59 0.03 1.66 1.10 1.14
3.84 1.86 0.11 5.21 3.48 3.63
Acetaldehyde 1.19 0.38 0.02 0.78 0.63 1.15
3.90 1.23 0.05 2.55 2.05 3.81
Acetone 0.70 0.30 0.01 0.65 0.48 0.55
2.31 0.98 0.02 2.14 1.58 1.85
Formic acid 1.80 0.38 0.02 1.20 0.72 1.61
6.64 1.28 0.07 4.45 2.66 6.05
Acetic acid 0.89 0.23 0.01 0.86 0.43 1.01
3.65 0.94 0.03 3.54 1.76 4.16
Methyl formate 2.11 0.23 0.01 0.92 0.62 1.75
9.21 1.00 0.04 4.02 2.70 7.59
Methyl! acetate 1.28 0.14 0.00 0.64 0.48 0.92
6.03 0.67 0.02 3.03 2.28 4.25
Ammonia 2.66.. 0.62 0.01 1.20 0.63 2.41
9.90 2.31 0.02 4.45 2.36 9.20
Methyl amine 2.79 0.38 0.00 0.57 0.71 2.47
13.74 1.87 0.02 2.78 3.50 12.68
Dimethyl amine 2.66 0,24 0.01 0.39 0.74 2.57
16.27 1.48 0.03 2.38 3.50 16.87
Trimethyl amine 1.36 0.15 0.01 0.30 0.64 1.23
11.68 1.25 0.05 2.58 5.53 11.40
Formamide 1.65 0.29 0.01 0.91 0.56 1.59
3.68 0.65 0.03 2.03 1.24 3.53
Acetamide 0.67 0.21 0.00 0.67 0.33 0.50
1.69 0.52 0.01 1.67 0.82 1.24
N-Methylformamide 1.63 0.18 0.01 0.58 0.45 1.65
4.20 0.46 0.02 1.49 1.16 4.24
N-Methylacetamide 1.11 0.10 0.00 0.86 0.45 1.0$
3.26 0.30 0.01 2.44 1.28 2.86

%The first row gives rms in kJ/mol; the second rrms in %.



r(OH), A

HOH, deg

A x 1073, kcal A"¥/mol
C. kcal A%/mol

q(0)

q(H)

qM)

r{OM), A

SPC

1.0
109.47
629.4
625.5

-0.82

0.41

0.0

0.0

SPC/E

1.0
109.47
629.4
625.5

—0.8472

0.4238

0.0

0.0

P3P

0.9572
104.52
582.0
595.0

-0.834

0.417

0.0

0.0

BF

0.96
105.7
560.4
837.0

0.0

0.49

-0.98

0.15

TiPap

0.9572
104.52
600.0
610.0

0.0

0.52

-1.04

0.15

ST2

1.0
109.47
238.7
268.9

0.0

0.2375

-0.2375

0.8

Table 4.3 A comparison of various water models [Jorgensen et al. 1983). For the ST2 potential, (M) is the charge on
the ‘lone pairs’, which are a distance 0.8 A from the oxygen atom (see Figure 4.40).
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Derivatives of the Molecular Mechanics Energy Function

Many molecular modelling techniques that use force-field models require the derivatives of the
energy (i.e. the force) to be calculated with respect to the coordinates. It is preferable that ana-
lytical expressions for these derivatives are available because they are more accurate and faster
than numerical derivatives. A molecular mechanics energy is usually expressed in terms of a
combination of internal coordinates of the system (bonds, angles, torsions, etc.) and interatomic
distances (for the non-bonded interactions). The atomic positions in molecular mechanics are
invariably expressed in terms of Cartesian coordinates (unlike quantum mechanics, where
internal coordinates are often used). The calculation of derivatives with respect to the atomic
coordinates usually requires the chain rule to be applied. For example, for an energy function
that depends upon the separation between two atoms (such as the Lennard-Jones potential,
Coulomb electrostatic interaction or bond-stretching term) we can write:

ri = (& — %)+ (¥ - y)* + (2 — ) (4.96)
Ov Ov 0r,»1~
ox; a—r; Bx; (4.97)
Orj  (xi — x;)
T (4.98)
1 ll

Thus, for the Lennard-Jones potential:

12 6
2] ()" (2
ar,-i r,-,- r,-j Tg,'
The force in the x direction acting on atom i due to its interaction with atom j is given by:
24¢ o \? o \°
f.=(xi—-x)—= 12 =) - = .
= ) | (r.-,-) (n,-)] (4.100)

Analytical expressions for the derivatives of the other terms that are commonly found in
force fields are also available [Niketic and Rasmussen 1977]. Similar expressions must be
derived from scratch when new functional forms are developed.
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Figure 8 Sampling of a potential energy surface for formamide. The curve represents a
potential energy profile. The cluster of points superimposed on the profile represents
the multiple first and second derivatives of the energy for the configuration with that
value on the x-coordinate. The number of data points for each configuration is one
energy, n first derivatives, and #(n + 1)/2 second derivatives. This shows schemati-
cally that whereas a mapping of the energy from ab initio gives a single piece of infor-
mation for each configuration x, the energy and first and second derivatives give far
more information about the energy surface. In formamide, with only 6 atoms, each
configuration yields only one energy, but there are 12 first derivatives and 78 second
derivatives. Thus one obtains almost two orders of magnitude more information
ab- 1t the energy surface by using the gracd'~nt and second derivatives.
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Figure 1. Showing the vibrational spectra calculated
here with single-bond torsion angle variables. The
number of modes with frequencies in a 10 cm™! interval
is plotted against frequency to give a density of states
distribution. If each mode had the same intensity and a
half line-width of 5 cm ™" the intensity envelope would be
like the distribution shown. The spectra shown are for:
(a) BPTI, (b) crambin, (c) ribonuclease and (d) lysozyme.

Figure 9, Showing the domain motion due to the lowest frequency modes in ribonuclease and lysozyme. The arrows
on the a-carbon backbone are drawn ss described in the legend to Fig. 8. (a) Ribonuclease, v, =2-43cm™!,
period = 13-7 ps. (b} Lysozyme, v, = 2-98 em™?, period = 11-2 ps.
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