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Wherever possible in this book, the simplest, non-mathematical treatment has been 
adopted. The majority of pulsed NMR experiments have been described in terms of 
extensions of the vector model* first introduced by Bloch. Ln a few applications, 
notably those involving multiple-quantum coherence*, this model breaks down, or 
at least has to be extendedin an ad hoc manner. The general theory to describe the 
response to 'an arbitrary pulse sequence is the density matrix or density operator 
treatment (1,2). Unfortunately, this becomes very unwieldy for systems of several 
coupled spins, and very quickly gets out of touch with physical intuition which has 
been our principal guide in this book. 

Fortunately, there is a more pictorial approach, championed by Sgrensen et al. (3), 
which allows the new spin gymnastics to be treated formally without losing sight of 
the physical interpretation so important for our sanity. It is based on the 
decomposition of the density operator into a linear combination of products of spin 
angular momentum operators (4). It is applicable to weakly coupled spin systems. 
With this shorthand algebra, the fate of the various operators can be followed 
throughout a complex sequence of pulses and free precessions, throwing light on the 
details of the time evolution of the particular experiment. Lallemand (5) has 
suggested a tree-like pictorial representation to aid this kind of visualization. 

For simplicity, we restrict ourselves here to the weakly coupled two-spin system 
IS, writing down the 16 product operators, 

E/2 (where E is the unity operator) 

IX X component of I-spin magnetization 

IY Y component of I-spin magnetization 

Iz Z component of I-spin magnetization (populations) 

Sx X component of S-spin magnetization 

S~ Y component of S-spin magnetization 

Sz Z component of S-spin magnetization (populations) 
21xSZ Antiphase I-spin magnetization 
21ySZ Antiphase I-spin magnetization 
21ZSx Antiphase S-spin magnetization 

21zs~ Antiphase S-spin magnetization 
21ZSZ Longitudinal two-spin order 
21xSx Two-spin coherence 
21YSY Two-spin coherence 
21xSY Two-spin coherence 
21ySx Two-spin coherence. 
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The term 21xSZ represents the X component of the I-spin magnetization split into 
two antiphase components corresponding to the two possible spin states of S. Such 
operators can be represented by the vector model but the last five product operators 
cannot be easily represented by vectors. 

Longitudinal two-spin order 21ZSZ is a specific disturbance of the populations of 
the four energy levels, having no net polarization. If the normal Boltzmann 
populations are represented as in Fig. I (a), with population differences of 2A across 
each transition, then this J-ordered state has the populations indicated in Fig. l(b). 
Both the I-spin doublet and the S-spin doublet have population disturbances such 
that a small flip angle read pulse would indicate an 'updown' pattern of intensities. 
This is a common occurrence in certain polarization transfer* experiments. 

Two-spin coherence 21xSx is a concerted motion of the I and S spins that induces 
no signal in the NMR receiver coil, but can only be detected indirectly by two- 
dimensional spectroscopy*. It is a superposition of zero-quantum coherence 
(simultaneous I and S spin flips in opposite senses) and double-quantum coherence 
(flips in the same sense). Pure zero-quantum coherence corresponds to linear 
combinations of these product operators 

Pure double-quantum coherence corresponds to the alternative linear combinations 

We shall see below that one of the great strengths of the product operator formalism 
is its ability to account for experiments which involve multiple-quantum coherence. 

(a) Boltzmann equilibrium (b) Longitudinal two-spin order 

Fig. 1. (a) Energy-level populations appropriate to a homonuclear IS spin system at 
Boltzmann equilibrium (A << 1). (b) Populations corresponding to longitudinal two-spin 
order represented ! e product operator term 21ZSZ., 
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SIGN CONVENTIONS FOR ROTATIONS 

For the vast majority of NMR experiments, the outcome is independent of the 
choice of the direction of precession of spins about magnetic fields. When using the 
vector model we adopted the widely used convention that (for a positive 
gyromagnetic ratio) a vector M rotates about a field in the rotating frame* as in 
Fig. 2. Thus for a radiofrequency field B1 applied along the +X axis, a 90" pulse 
rotates +MZ to +My 

Similarly, we chose to take the sense of free precession to be clockwise looking 
down on the XY plane 

for a Larmor frequency higher than the frequency of the rotating frame (dB 
positive). This convention simplifies diagrams of magnetization trajectories by 
concentrating on the front quadrant of the unit sphere. 

When it comes to mathematical treatments using density operators or product 
operators, the sense of rotation is rather less of an academic point, and two opposite 

Fig. 2. Convention adopted for the sense of rotation of a magnetizatio~ tor M about a 
radiofrequency field B 
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Fig. 3. Sign conventions for the evolution operators Iy, IZ, I!, and 21ZSZ acting on the 
product operators Ix, Iyr IZ, 21xSZ and 21ySZ. This schematic diagram is equivalent to 
Table 1 .  

schools of thought persist. Since the treatise of Sgrensen et al. has become the 
standard article on the use of product operators in NMR pulse experiments, we 
adopt their sign convention, which is opposite to that of several other authors 
(2,5,6). In the product operator nomenclature, an operator (IZ) is acted on by 
another operator Ix and the sign convention is opposite to that used above for 
magnetization vectors and fields (Fig. 3) 

Similarly, a resonance offset effect causes a counter-clockwise rotation looking 
down on the XY plane 

Finally, an operator 21ZSZ has a specific sense of rotation 

These conventions are illustrated pictorially in Fig. 3 and embodied in Table 1. 



Table 1. The effect of one of the evolution operators (top row) acting on one of the 
operators describing the state of the spin system (left-hand column). 

MANIPULATION OF PRODUCT OPERATORS 

For the majority of pulsed NMR experiments in liquids, we are concerned with 
three main types of evolution - rotation by a radiofrequency pulse, rotation due to 
chemical shift, and rotation due to spin-spin coupling. Although the operation of a 
given pulse sequence clearly depends on the time ordering of the pulses and the 
intervening periods of free precession, during these latter periods we are at liberty 
to change the ordering of chemical shift and spin coupling evolutions, provided that 
the spin system is weakly coupled. The corresponding terms in the Harniltonian are 
said to commute. We may speak of a cascade (7) of chemical shift or spin coupling 
terms where the time ordering is immaterial. Furthermore, a non-selective 
radiofrequency pulse acting on both the I and S spins may be broken down into a 
cascade of two pulses acting selectively on the I spins and the S spins, and the 
relative ordering does not matter. 

RADIOFREQUENCY PULSES 

During a radiofrequency pulse, the chemical shifts aid spin-spin coupling 
constants can be imagined to be 'switched off' and the rotation is about an axis in 
the XY plane, normally the X axis. If necessary, we can consider rotation about a 
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tilted radiofrequency field Beff. Consider, first of all, an excitation pulse P(X) acting 
on the Z magnetization of the I spins, represented by IZ. Thus 

In the common example of a 90" pulse, this generates pure -Y magnetization; if it 
is a 180" pulse, there is a population inversion (-IZ). Analogous expressions apply 
to pulses applied to the S spins, and for a non-selective pulse we would cascade the 
two rotations 

A more complicated example occurs in the INEPT (8) experiment for polarization 
transfer in a heteronuclear IS system,.commonly used to enhance the sensitivity of 
carbon-13 or nitrogen-15 spectra. In the key step of this sequence, I-spin 
magnetization vectors are prepared in an antiphase alignment along the kX axes of 
the rotating frame and a 7~12 pulse is applied to the I spins about the +Y axis. This 
rotation can be written as 

This creates longitudinal two-spin order, usually represented by I-spin vectors 
aligned along the axes. These population disturbances affect the S spins through 
the common energy levels, and these perturbations can be 'read' by a xi2 pulse 
applied to the S spins 

We observe that the S-spin doublet has one line inverted and one line in the usual 
sense; in the case where the I spins are protons and the S spins are carbon-13, the 
4:l population advantage is transferred from protons to carbon-13, improving the 
sensitivity. 

CHEMICAL SHIFTS 

The evolution due to chemical shift effects may be represented by the operator 
equation 

where is the shift of the I-spin resonance measured from the transmitter 
frequency. Note the sense of rotation is opposite to that used in the vector model. 

Chemical shifts of the S spins are handled in analogous fashion. For 
heteronuclear systems a separate rotating reference frame is assumed for each spin, 
the chemical shifts being measured with respect to the appropriate transmitter 
frequencies in fir'- respective frames. 
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SPIN-SPIN COUPLING 

According to the vector model, spin-spin coupling causes a divergence of I-spin 
vectors at rates *J, with respect to a hypothetical vector precessing at the 
chemical shift frequency. In the product operator formalism coupling is represented .. 
by 

If the interval z is chosen such that z = 1/(2JIs) then the cosine term is zero and we 
are left with 

that is to say, two I-spin magnetization vectors aligned in opposition along the +X 
axes. We may then consider another period of free precession: 

If we make this second interval z = 1/(2JIs) then we find that the two vectors are 
realigned along the -Y axis 

With these simple rules the evolution of spin systems under the influence of a pulse 
sequence can be followed by evaluating the effect of the seven evolution operators 
Ix, I,, I,, Sx, S,, S, and 21ZSZ on the operators describing the state of the spin 
system (15 in all). Table 1 shows the results. Then an 'evolution tree' can be 
constructed (5) where by convention each left-hand branch represents the cosine 
term of the evolution equations [5], [lo], [ l l ]  or [13], while the right-hand side 
represents the sine term (evaluated from Table 1). When the two operators 
commute (El2 in Table 1) then there is no change in that term. Note that the 
unaffected term is always associated with cosine; the affected term is associated 
with sine. 

CORRELATION SPECTROSCOPY (COSY) 

For the worked example we take the homonuclear correlation spectroscopy 
(COSY) for a system of two coupled spins I and S. This simple system illustrates 
the essential points; additional spins merely make the spectrum more complicated 
by increasing the number of resonances and by splitting the IS peaks through 
'passive' couplings JIq and JsQ: etc. A second important simplification is to drop 
S, from the initial density matnx, concentrating our attention on what happens to 
IZ, since the problem is symmetrical with respect to the two spin systems. 

The pulse sequence is deceptively simple: 

90°(+X) - t, - 90°(+X) - acquisition (t2). 1151 
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For the present purposes we may ignore the phase cycling* that is normally 
employed. 

Chemical shift (I,) and spin coupling operators (21ZSZ) may be applied in any 
order; in the acquisition period 3 precession of the S spins is also considered, since 
by then there has been some transfer of coherence from the I spins. The evolution 
tree is set out in Fig. 4 showing the four stages of branching, leading to 13 terms in 
the final density operator. Of these, nine represent unobservable quantities - 
longitudinal magnetization (Z), multiple-quantum coherence (M) and antiphase 
magnetizations (A). It is the remaining four terms that are important; they can be 
grouped in pairs 

It is clear that D represents coherence that has precessed at frequencies close to the 
chemical shift 6I in both tl and 3. These are the diagonal peaks. The term in square 
brackets indicates that there is phase modulation in the 3 interval. The significance 

Rotation 

(7f/2) Ix 

Z M M M M D  A D  A  A C A  

Fig. 4. Evolution of product operators appropriate to the homonuclear shift correlation 
experiment 'COSY'. For simplicity, the evolution of SZ is omitted; it may be deduced from 
considerations of symmetry. Each left-hand branch implies multiplication by the cosine of 
the argument shown in the left-hand column, for example -Iy C O S ( ~ Z ~ + ~ ) ,  while each 
right-hand branch implies multiplication by the corresponding sine term. The final 13 
product operators are identified as Z magnetization (Z), multiple-quantum coherence (M), 
antiphase magnetization (A), diagonal peaks (D) or cross-peaks (C). 
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of the two J-modulation terms, cos(.nJIstl) and cos(7cJISt2), may not be immediately 
apparent. They may be converted by means of trigonometrical identities 

This represents a response in the F1 dimension, centred at 4 and split into a doublet 
(JIs), both lines having the same phase. Similarly, the terms in t;! may be combined 
to show that there is an in-phase doublet in the F2 dimension. This is the familiar 
square pattern of lines straddling the principal diagonal. 

By contrast, eqn [17] represents coherence that originated at frequencies near the 
chemical shift 61 but which was detected at frequencies near tis, and thus describes 
one of the cross-peaks. (The other cross-peak would have been predicted by 
following the fate of SZ, neglected in our calculation.) In this case the 
trigonometrical identity is 

This represents a response, centred at in the F, dimension, which is an antiphase 
doublet (JIs). A similar identity shows that it is also an antiphase doublet in the F2 
dimension, centred at tis. The cross-peak is therefore a square pattern with the 
familiar intensity alternation. Normally we adjust the spectrometer phase so that the 
cross-peaks are in the absorption mode; then the diagonal peaks are in dispersion 
(sine modulation). 

The presence of the terms sin(nJIstl) sin(.nJIst2) has another interesting 
consequence. It predicts that cross-peaks will have low relative intensities unless 
both tl and t;! are permitted to evolve for times comparable with ( n ~ ~ ~ ) - ' ,  whereas 
the diagonal peaks will be relatively strong. This is important when searching for 
correlations based on very small coupling constants. Sometimes, a fixed delay is 
introduced into the evolution period in order to emphasize the effects of very small 
couplings (9). 

Since this has been an illustrative exercise, all the evolutions have been worked 
out explicitly. Once familiarity with product operator algebra has been acquired, it 
is not normally necessary to carry through the calculation to the bitter end. For 
example, we could choose to stop the COSY calculation immediately after the 
second pulse (3 = 0), recognizing that the Ix term will give an in-phase doublet in 
the F2 dimension and that the -21ZSY term will evolve to give an antiphase doublet 
in F2. 
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V ector Model 

Spin choreography is becoming more and more intricate. Many modern NMR 
experiments involve complex manipulations of nuclear magnetizations - 
enhancement, decoupling, correlation, refocusing, scaling, filtration, editing or 
purging. A simple scheme for visualizing these operations is therefore essential. 
The density operator theory is generally too cumbersome for the task, so many 
spectroscopists adopt the shorthand product operator formalism*, usually reduced 
to the bare minimum. Otherwise any intuitive insight is quickly lost if there are 
several coupled spins or if the manipulations become too complex. The vector 
model fills an important gap here, by permitting a ready visualization of possible 
spin manipulations, thus facilitating the task of devising new pulse sequences. 

The vector picture is a natural extension of the classic treatment of magnetic 
resonance by Bloch (1,2) embodying the transient solutions of the Bloch equations. 
Although nuclear spins obey quantum laws, the ensemble average, taken over the 
very large number of spins in a typical sample, behaves just like a classical system, 
obeying the familiar laws of classical mechanics. We consider (initially) an isolated 
set of spin-$ nuclei in an intense field Bo and represented by a single vector M, the 
resultant of all the individual nuclear magnetizations within the active volume of 
the sample. The motion is considered in a rotating frame* of reference, chosen such 
that the applied radiofrequency field 2B, cos(oot) can be represented as a static 
field B,  aligned along the +X axis of this frame. The counter-rotating component 
of the radiofrequency field is ignored. In this frame the applied static magnetic field 
Bo is reduced to a residual field 

so as to retain the Larmor precession condition. 
At Boltzmann equilibrium, and in the absence of any recent radiofrequency 

excitation, the precession phases of individual spins are random and there is no 
resultant transverse magnetization (MXY = 0). The longitudinal magnetization 
component Mo reflects the slight excess of spins aligned along the field Bo 
compared with those opposed to Bo. Most experiments start from this initial 
condition. In their simplest form, the Bloch equations tell us how the macroscopic 
magnetization vector reacts to the presence of the applied magnetic field and the 
temporary imposition of a radiofrequency field. At this stage we neglect relaxation 
effects. 
328 
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This resolves the mainetization vector into its X, Y and Z components and 
considers their motion in the presence of magnetic fields Bx, By or BZ. If there is 
any magnetic field in the rotating frame, the nuclear magnetization vector M 
precesses around the field direction until that field is extinguished. For example, the 
familiar 90" excitation pulse is represented as a field Bx applied for such a duration 
that a vector Mo along +Z is turned through 90" to the +Y axis of the rotating frame. 
Normally we are dealing with a hard pulse (Bx = B, >> AB) so the residual field 
AB is neglected during the pulse. After the pulse the transverse nuclear 
magnetization vector precesses in the XY plane at a rate yAB rad s-l. In this case - 
AEI represents the chemical shift measured with respect to the transmitter frequency 
(the rotating frame frequency). A vector rotating in the XY plane intersects the 
receiver coil and induces a voltage which we call the free induction signal. The coil 
is, of course, in the laboratory frame, so we must add the frequency of the rotating 
frame, giving a result measured in hundreds of MHz, but the spectrometer 
reconverts this to an audiofrequency signal by subtracting the transmitter frequency 
(heterodyne action) so we are again dealing with the precession frequency in the 
rotating frame of reference. 

In the more general case, the radiofrequency pulse may not satisfy the condition 
B1 >> AB, and we must consider an effective field 

which is tilted in the XZ plane away from the +X axis through an angle 0 given by 

A radiofrequency pulse applied to an equilibrium magnetization vector then rotates 
the latter about the tilted effective field (see Radiofrequency pulses*). 

Extensions of these simple manipulations can be represented by arcs on the 
surface of a unit sphere. In the presence of relaxation effects these magnetization 
trajectories must also include changes in length of the magnetization vector with 
time. This is achieved by treating relaxation phenomenologically, simply adding 
extra terms in the Bloch equations 
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This asks no questions about the nature of relaxation; T, is merely the time constant 
for the recovery of longitudinal magnetization, while T2 is the time constant for the 
decay of transverse magnetization. Thus we see how thermal equilibrium is 
established when a sample is first placed in the magnetic field (eqn [9]), 
longitudinal relaxation carrying the instantaneous magnetization MZ back to its 
equilibrium value Mo. It also describes how the transverse magnetization decays 
with time (eqns [7] and [8]), giving rise to a free induction decay. 

We recognize, of course, that free induction signals usually decay much faster 
than predicted by the spin-spin relaxation rate. We now need another extension of 
the model, dividing up the sample into a mosaic of tiny volume elements called 
isochromats (2). These are large enough that they still contain a very large number 
of spins, but small enough that any gradients of the applied magnetic field can be 
neglected within an isochromat. The inhomogeneity of the applied field is thereby 
'digitized', being represented by the slightly different Larmor frequencies of the 
different isochromats. Each isochromat is assigned a small vector m; their resultant 
is the macroscopic vector M. After a hard 90" pulse all the isochromatic vectors are 
in phase along the +Y axis, but they precess at different rates, fanning out in the XY 
plane and causing a decay of the detected NMR response. We normally represent 
this decay by a time constant T?j, the instrumental decay constant; this should not 
be confused with T2. This picture clearly highlights the difference between the 
irreversible loss of magnetization through spin-spin relaxation and the dispersal of 
local isochromats, which can be reversed in a spin-echo* experiment. 

EXTENSIONS OF THE BLOCH PICTURE 

The Bloch equations were formulated at a time when high-resolution spectra with 
many different resonance lines were far in the future. Yet it can be very useful to 
extend these concepts to encompass several groups of chemically shifted nuclei, 
represented by independent vectors MA, MB,.. ., having the appropriate resonance 
offsets and relative intensities. Furthermore, the individual lines of a spin multiplet 
may also be assigned vectors, and they precess at frequencies which differ by the 
relevant spin-spin coupling constant. They can be labelled according to the spin 
states of the coupling partner, for example a and P for a doublet. We must therefore 
recognize that if this neighbour spin is inverted by a 180" pulse, the a and P labels 
are interchanged, and divergence becomes convergence (or vice versa). 

This extension immediately suggests the concept of a selective (soft) 
radiofrequency pulse, one designed with a low-intensity B, (and correspondingly 
longer duration) so that it affects only one line (or close group of lines) without 
significantly perturbing the rest. We are then implicitly relying on the tilt of the 
effective field to discriminate between 'resonant' and 'non-resonant' situations: an 
effective field near the XY plane implies excitation, an effective field near the Z 
axis has little effect. We see that this can only be a relatively slow function of offset; 



hence the need for shaped soft pulses with a more sharply defined transition 
between 'resonant' and 'non-resonant'. See Selective excitation*. 

Such a picture has a reassuring parallel with the actual frequency-domain 
spectrum obtained by Fourier transformation. A vector MA precessing at a 
frequency fA in the XY plane during a free induction decay corresponds to a 
resonance at the frequency fA Hz in the high-resolution spectrum and has an 
intensity proportional to MA. If that particular vector decays with a time constant 
T2 or T; in the time domain, the corresponding resonance has a full linewidth of 
l l ( q )  or ll(nT,*) Hz in the frequency domain. If we rotate the vector MA through 
180" (e.g. by a population inversion), the corresponding resonance line appears 
inverted. Note that we are implicitly assuming that each individual vector obeys the 
Bloch equations. 

As new phenomena were discovered, the Bloch picture was adapted to include 
them. Slow chemical exchange carries spins from one site (A) to another site (B) 
with a different chemical shift. A population inversion of the spins at A therefore 
diminishes the length of the vector MB as the inverted spins anive at that site, but 
eventually MB recovers its original length through spin-lattice relaxation. During 
exchange, spins departing from site A are replaced by B spins that have an 
essentially random phase. This can be reflected by introducing a new decay term 
into the relevant Bloch equation, for example 

where 112 is the rate of chemical exchange. Analogous considerations apply to the 
nuclear Overhauser effect*; a rearrangement of spin populations brought about by 
cross-relaxation increases the length of a vector MB when site A is saturated. 

MAGNETIZATION TRAJECTORIES 

Several important innovations in NMR methodology owe their inspiration to the 
intuitive application of the vector model. Tracing out the trajectory of a 
magnetization vector helps us understand certain types of pulse imperfection, for 
example the tilt effect of an off-resonance pulse. Levitt and Freeman (3) showed by 
drawing the appropriate magnetization trajectories that the error due to a tilt of the 
effective radiofrequency field could be largely compensated by combining three 
radiofrequency pulses into a composite pulse* 

This became the precursor of an entire family of self-compensating pulses that have 
enjoyed considerable success in many applications, for example broadband 
decoupling*. 

In a similar manner, it is hard to imagine the discovery of the DANTE sequence 
(4) without being able to visualize the 'zig-zag' trajectories followed by an off- 
resonance spin, and the existence of multiple sideband respr -.s follows neatly 
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from the vector picture. (See Selective excitation.) While it may now be common 
practice to rely on computer optimization techniques to design shaped soft 
radiofrequency pulses for (say) pure phase excitation (3, it will always be more 
satisfying to visualize the complex defocusing and refocusing effects by displaying 
families of magnetization vectors on the unit sphere. 

At the heart of many modem spin manipulation schemes is some trick to separate 
interesting signal components from undesirable responses. Often this is achieved by 
phase cycling* or by the application of pulsed field gradients*. The former method 
discriminates between desirable and undesirable responses by distributing the 
corresponding vectors differently in phase space (usually along the four orthogonal 
directions in the XY plane), retrieving the interesting signals by cycling the receiver 
reference phase. The latter method spreads the various signal components in 
geometrical space through the application of a pulsed magnetic field gradient. 
Individual isochromatic vectors would then find themselves arranged in the form of 
a helix whose axis is the field gradient direction. The required signals are then 
collected by a suitable recall gradient that leaves the unwanted components still 
widely dispersed in space. The vector model is crucial to the understanding of both 
of these methods. 

LIMITATIONS OF THE VECTOR MODEL 

Not all experiments can be adequately treated by the vector model. One of the 
important cases where it breaks down (or at best involves too many ad hoc 
assumptions) is in the treatment of multiple-quantum coherence. The initial stage 
of this experiment is readily formulated as the preparation of two vectors a and P 

Fig. 1. Preparation and evolution of double-quantum coherence couched in terms of 
vectors. (a) The initial antiphase configuration of a and P vectors. (b) A 90" pulse applied 
to the coupling partner interchanges a and P labels for half of the spins. (c) Rearrangement 
of these vectors. (d) Evolution of double-quantum coherence by free precession of 'locked' 
vectors. 
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from a J-doublet in an arrangement where they are diametrically opposed along the 
fl axes of the rotating frame. A 90" pulse on the coupling partner interchanges the 
a and p labels for just one-half of the spins, leaving two sets of antiphase vectors 
'locked' into a configuration from which they cannot escape by free precession 
alone (Fig. 1). During this period no signal can be induced in the receiver coil but 
some entity ('double-quantum coherence') certainly evolves with time and can 
eventually be reconverted into observable magnetization by a radiofrequency pulse. 
This is where the product operator formalism comes into its own; we forsake 
geometrical pictures for an algebraic notation, a sure sign that we have a less 
intimate understanding of the problem. 
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