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I. Introduction

Molecular dynamics and Monte Carlo simulations of proteins, which
began about 25 years ago, are by now widely used as tools to investigate
their structure and dynamics under a wide variety of conditions, ranging
from studies of ligand binding and enzyme-reaction mechanisms
to problems of denaturation and protein re-folding. Fundamental to
such simulations is the representation of the energy of the protein as a
function of its atomic coordinates. The states expected to be populated at
thermal equilibrium are the low-energy regions of this (potential) energy
function, and forces on individual atoms are related to the gradient of this
function, which is why such functions are also commonly referred to as
‘‘force fields.’’

Atomistic simulations of the properties of proteins commonly consider
an average over the much-faster electronic motions, so that the energy
surface on which the atoms move is the Born-Oppenheimer ground-state
27 Copyright 2003, Elsevier Inc.
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28 PONDER AND CASE
energy. It is not yet feasible to calculate directly such surfaces for
macromolecules with high accuracy by means of quantum chemistry
electronic structure calculations, so most practical simulations use a set
of simple classical functions to represent the energy, adjusting a
large number of parameters to optimize agreement with experimental
data and with quantum calculations on smaller molecules. The design and
parameterization of force fields for use in protein simulations is a complex
task, involving many decisions concerning which data to emphasize in the
fits, expectations of transferability to areas outside the ‘‘fit set,’’ and
computational efficiency. Our goal here is to provide an overview of the
thinking that goes into the choices that must be made, a general
description of the sorts of force fields that are most commonly used
at present, and an indication of the directions of current research that may
yield better functions in the near future. Although we hope the discussion
can be read with profit by non-specialists, we will assume a general
familiarity with molecular mechanics and dynamics and with their
applications to proteins. Simulation methods for proteins are by now
well-enough established that there are many good textbooks and
monographs that cover the basics (Burkert and Allinger, 1982; Harvey
and McCammon, 1987; Leach, 2001; Becker et al., 2001; Cramer, 2002;
Schlick, 2002).

It is impossible for a short review like this one to be comprehensive, and
we have chosen to concentrate on a few areas, necessarily at the expense of
others. We will restrict our discussion to simulations of proteins in water,
leaving aside the interesting questions of how to deal with the large variety
of small molecules that interact with proteins or with non-aqueous
solvents. With perhaps less justification, we have chosen to focus on a few
force fields that are very widely used, and even here it is not possible to
give any real account of the differences among potentials. With regard to
newer developments, we have chosen to concentrate on two main areas:
the use of continuum methods to model the electrostatic effects of
hydration, and the introduction of polarizability to model the electronic
response to changes in the environment. These are not the only recent
developments worthy of note, but we do expect them to be keys areas of
research for the next few years.

There is much current development, and other good reviews of force
fields (MacKerell, 2001; Hünenberger and van Gunsteren, 1997; Damm
and Halgren, 2001). Hence, after a brief survey of current models, mostly
generated during the 1990s, our review will focus on the general
directions the field is taking in developing new models.

The most commonly used protein force fields incorporate a relatively
simple (sometimes called ‘‘Class I’’) potential energy function:
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The first three summations are over bonds (1-2 interactions), angles
(1-3 interactions), and torsions (1-4 interactions). These are illustrated in
Fig. 1. The torsion term can also include so-called ‘‘improper’’ torsions,
where the four atoms defining the angle are not all connected by covalent
bonds; such terms serve primarily to enforce planarity around sp2 central
atoms, and other functional forms can be used for the same purpose. The
final sum (over pairs of atoms i and j) excludes 1-2 and 1-3 interactions
and often uses separate parameters for 1-4 interactions as compared with
those used for atoms separated by more than three covalent bonds. It
describes electrostatics that use partial charges qi on each atom that
interact via Coulomb’s law. The combination of dispersion and exchange
repulsion forces are represented by a Lennard-Jones 6-12 potential; this
is often called the ‘‘van der Waals’’ term.

Equation 1 is about the simplest potential energy function that can
reproduce the basic features of protein energy landscapes at an atomic
level of detail, and it has proved to give insight into a remarkably broad
range of properties. The combination of a potential energy function (as in
equation 1) and all the parameters that go into it (kb, b0, k �, �0, etc.)
constitutes a ‘‘force field.’’ In practice, there is a close connection between
the force fields and the computer codes that implement them, although
this is becoming less true now than it used to be.

In section II, we review some of the history and performance of widely
used protein force fields based on equation 1, or closely related equations.
Sections III and IV outline some promising developments that go beyond
this, primarily by altering the way electrostatics interactions are treated.
Fig. 1. Schematic view of force field interactions. Covalent bonds are indicated by
heavy solid lines, nonbonded interactions by a light, dashed line.
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Section III considers the use of atomic multipoles and off-center charge
distributions, as well as attempts to incorporate electronic polarizability.
Rather than making the electrostatic model more complex, Section IV
considers continuum solvent models that simplify the problem by
accounting for all solvent (water plus mobile counterions) effects in an
averaged fashion.

II. Protein Force Fields, 1980 to the Present

There have been a large number of force fields used over the years for
simulations of proteins, and it is not our intent to try to provide any sort of
comprehensive review. Sections A through C provide an overview of three
sets of parameters that have been widely used. The discussion emphasizes
the decisions that went into their development. A very short summary of
other important protein force fields is presented in section D, and a brief
comparison of the results from different force fields is given in section E.
Many of the more recent developments in protein force fields address
electronic polarizability or the effects of solvation; these are discussed in
sections III and IV, respectively.

Our historical discussion of protein force fields begins roughly in 1980,
when molecular dynamics and Monte Carlo simulations of proteins were
in their infancy. It is important to note, however, that the developments
outlined below did not arise sui generis but rather were built on earlier
force field developments in organic chemistry. Of particular importance
were the ECEPP potentials from Scheraga and co-workers (Momany et al.,
1975; Némethy et al., 1983) and the consistent force field (CFF)
developments from the Lifson group (Lifson and Warshel, 1969; Hagler
et al., 1974; Hagler and Lifson, 1974; Niketic and Rasmussen, 1977). These
provided important starting points for the work described here, as did
efforts to develop potential energy functions in the general area of organic
chemistry (Allinger, 1976; Burkert and Allinger, 1982).

We hope that our introduction below to three popular force fields will
help to prepare readers to appreciate a literature that is much broader
than we can cover here. Other good reviews exist (MacKerell, 2001;
Hüenberger and van Gunsteren, 1997) that complement our presentation.

A. The Amber Force Fields

By the first half of the 1980s, enough experience had accumulated with
earlier parameterizations for several groups to begin fairly systematic
projects to develop a new generation of force fields. The earliest of these
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efforts were still done at a time when the limited power of computers
made it attractive to not include all hydrogen atoms as explicit force
centers. The importance of hydrogen bonding, however, led many
investigators to adopt a compromise whereby polar hydrogens were
explicitly represented but hydrogens bonded to carbon were combined
into united atoms. A widely used force field at this level was developed in
1984 in the Kollman group (Weiner et al., 1984) and incorporated into the
Amber molecular mechanics package, which was at an early stage of
development as well (Weiner and Kollman, 1981). The key ideas in this
initial work were to be used repeatedly in later efforts by this group.
Charges were derived from quantum chemistry calculations at the Hartree-
Fock STO-3G level, via fitting of partial atomic charges to the quantum
electrostatic potential; these are generally called ESP (for electrostatic
potential) charges. The van der Waals terms were adapted from fits to
amide crystal data by Lifson’s group (Hagler et al., 1974; Hagler and
Lifson, 1974) and from liquid-state simulations pioneered by Jorgensen
(Jorgensen, 1981). Force constants and idealized bond lengths and angles
were taken from crystal structures and adapted to match normal mode
frequencies for a number of peptide fragments. Finally, torsion force
constants were adjusted to match torsional barriers extracted from
experiment or from quantum chemistry calculations. Since it is only the
total potential energy, as a function of torsion angle, that needs to agree
with the target values, and since (in this potential energy function) these
barriers have significant electrostatic and van der Waals interactions
between the end atoms (the so-called ‘1-4’ interactions), the k� values are
closely coupled to the nonbonded potentials used and are hardly
transferable from one force field to another.

Three problems with this ‘‘polar hydrogen only’’ approach, along with
improvements in the speed of available computers, led many groups to
move to an all-atom approach. First, aromatic rings such as benzene have a
significant quadrupolar charge distribution, with an effective positive
charge near the hydrogens and an effective negative charge nearer to the
middle of the ring. This effect can be crucial in determining the ways in
which aromatic side chains in proteins interact with other groups. For
example, ‘‘T-shaped’’ geometries between rings are stabilized relative to
‘‘stacked’’ geometries that optimize van der Waals interactions (Williams,
1991, 2001). Also important are �-cation interactions, where positive
groups are found directly above the centers of aromatic rings (Dougherty,
1995; Zacharias and Dougherty, 2002). Second, the forces that affect the
pseudorotation between conformations, or ‘‘pucker,’’ of five-member
aliphatic rings (Tomimoto and Go, 1995) are difficult to describe when
only the heavy atoms are available as force centers. This affects only
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proline residues in proteins, but analogous problems involving ribose and
deoxyribose in nucleic acids (whose force fields were being parameterized
at the same time) led momentum toward all-atom force fields. Finally, it is
difficult with united atom models to make comparisons between
computed and observed vibrational frequencies. An extension of the
1984 force field to an all-atom model was published in 1986, as a
collaboration between the Kollman and Case groups (Weiner et al., 1986).
Both the 1984 and 1986 parameter sets were primarily developed based on
experience with gas phase simulations.

The continued increase in the speed of computers led the Kollman
group to decide in the early 1990s that a new round of force-field
development was warranted; this came to be known as the ‘‘Cornell et al.’’
or ff94 force field (Cornell et al., 1995). In addition to improvements in
the parameters, a more serious attempt was made to explicitly describe the
algorithm by which the parameters were derived, so that consistent
extensions could be made to molecules other than proteins (Fox and
Kollman, 1998). This goal was not really achieved until the development
almost a decade later of the antechamber program that completely
automates all of the steps in the creation of an Amber-like force field
for an arbitrary molecule or fragment.

A key motivation for this development was a desire to produce potentials
suitable for condensed phase simulations, since the earlier work had
concentrated in large part on gas phase behavior. In particular, the ways in
which the OPLS potentials (discussed below) had been parameterized to
reproduce the densities and heats of vaporization of neat organic liquids
was very influential, along with recognition of the importance of having a
balanced description of solute-solvent versus solvent-solvent interactions.
A second point arose from the ability to use larger basis sets and fragment
sizes to determine atomic charges that mimic the electrostatic potentials
outside the molecule found from quantum mechanical calculations.
Earlier work had established that fitting charges to the potentials at the
Hartree-Fock 6-31G* level tended to overestimate bond-dipoles (compared
with observed gas phase values) by amounts comparable to that in
empirical water models such as SPC/E or TIP3P; such ‘‘overpolarization’’
is an expected consequence of electronic polarization in liquids. Hence,
the use of fitted charges at the HF/6-31G* level appeared to offer a general
procedure for quickly developing charges for all 20 amino acids in a way
that would be roughly consistent with the water models that were expected
to be used. Tests of this idea, with liquid-state simulations of amides and
simple hydrocarbons, gave encouraging results.

The actual implementation of this scheme for developing charges had
to deal with two complications, which continue to plague force field



Fig. 2. Charge models for the Amber potentials. (Left) HF-6-31G*RESP charges in
the style of Amber ff 94. (Right) polarizable, extra-point charge model in the style of
Amber ff02-EP with the atomic polarizabilities in Å3 given in parentheses.
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developers to the present day. First, the effective charges of the more-
buried atoms are often underdetermined, so that charges for atoms in
similar environments in different molecules might vary significantly. In
effect, there are many combinations of atomic charges that will fit the
electrostatic potential almost equally well. There are a variety of ways to
overcome this problem, often involving statistical techniques based on
singular-value decomposition, but Bayly et al. (Bayly et al., 1993; Cornell
et al., 1993) chose to use a hyperbolic restraint term to limit the absolute
magnitude of charges on non-hydrogen atoms. This is called RESP (for
restrained electrostatic potential fit) and weakly favors solutions with
smaller charges for buried atoms, yielding fairly consistent charge sets with
little degradation in the quality of the fit to the electrostatic potential
outside the molecule. As an example, the left-hand side of Fig. 2 shows the
charges determined in this way for N-methylacetamide, modeling the
peptide bond; the right-hand side of this figure is for a more complex
electrostatic model, described below.

A second and more fundamental problem with the RESP procedure is
that the resulting charges depend on molecular conformation, often in
significant ways. This is a manifestation of electronic polarizability, which
can only be described in a very averaged way if fixed atomic charges are to
be used. Any real solution to this problem must involve a more complex
model, such as those described in section III, below. The compromise
chosen for the ff94 force field was to fit charges simultaneously to several
conformations, in the hopes of achieving optimal averaged behavior.

Once the charges and the ‘‘stiff’’ internal parameters for bonds and
angles were available (the latter estimated in the same way as outlined
above), the Lennard-Jones parameters could be established primarily by
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reference to densities and heats of vaporization in liquid-state simulations.
Only a small number of sets of 6-12 parameters were necessary to achieve
reasonable agreement with experiment. A key expansion from earlier
work was the notion that parameters for hydrogens should depend in an
important way on the electronegativity of the atoms they are bonded to
(Gough et al., 1992; Veenstra et al., 1992).

As with many other force-field projects, the final parameters to be fit
were the ‘‘soft’’ torsional potentials about single bonds. It makes some
sense to address these after the charges and Lennard-Jones parameters
have been developed, since the energy profile for rotation about torsion
angles depends importantly on the nonbonded interactions between the
moving groups at the ends, as well as on whatever intrinsic torsional
potential is assigned. The question of how best to partition torsional
barriers into ‘‘bonded’’ versus ‘‘nonbonded’’ interactions is a thorny one,
and many developers of force fields have adopted a strictly empirical
approach, fitting k�, n, and � so that the total profile (including the
nonbonded terms) matches some target extracted from quantum
mechanics or from experiment.

A key set of torsional parameters are those for the � and  backbone
angles, since these affect every amino acid residue and heavily influence
the relative energies of helices, sheets, and turns in proteins. The ff94
parameters were fit to representative points on the dipeptide maps for
glycine and alanine, computed at the MP2 level with a triple-� +
polarization (TZP) basis set. This is not an unreasonable choice for a
target function, but it has a number of intrinsic difficulties. First, the �-
helix region near �, = �60,�40 is not a minimum for a gas-phase
dipeptide, so fitting just a representative point (as was done) can lead to
errors in the surface as a whole, compared to the full MP2/TZP surface.
More importantly, the use of a gas phase dipeptide model as a target
ignores both the non-local electronic structure contributions that would
be seen in larger fragments (Beachy et al., 1997) and the polarization
effects inherent in a condensed phase environment (Ösapay et al., 1996).
Some account of the longer-range effects was provided in subsequent
parameterizations, referred to as ff96 (Kollman et al., 1997) and ff99
(Wang et al., 2000), in which the � and  potentials were fit to tetrapeptide
as well as dipeptide quantum mechanical conformational energies. These
later fits provided potential surfaces that were significantly different from
those in ff94, but it was hard to tell if physical realism was really being
improved.

In recent years it has become computationally feasible to test protein
potentials (and especially their backbone torsion angle behavior) by
carrying out converged or nearly converged simulations on short peptides
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and comparing the resulting conformational populations to those derived
from experiment (Damm and van Gunsteren, 2000; Mitsutake et al., 2001;
Garcı́a and Sanbonmatsu, 2001). The experimental estimates, obtained
mainly from circular dichroism or from NMR, are often only qualitative,
but this can be enough to identify obvious errors in computed ensembles.
For example, the ff94 parameters appear to over-stabilize helical peptide
conformers in many if not all instances. Computed melting temperatures
for polyalanine helices are too high (Garcı́a and Sanbonmatsu, 2002), and
helical conformers can predominate in simulations of sequences that
experimentally form other structures, such as �-hairpins. At least two
modifications of the ff94 � and  potentials have been proposed and
tested on large-scale peptide simulations (Garcı́a and Sanbonmatsu, 2002;
Simmerling et al., 2002). It will be of interest to see how these ideas
develop as a new generation of long time-scale peptide simulations
becomes feasible.

B. The CHARMM Force Fields

As with Amber, the CHARMM program (Chemistry at HARvard using
Molecular Mechanics) (Brooks et al., 1983) was originally developed in the
early 1980s and initially used an extended atom force field with no explicit
hydrogens. By 1985, this had been replaced by the CHARMM19
parameters, in which hydrogen atoms bonded to nitrogen and oxygen
are explicitly represented, while hydrogens bonded to carbon or sulfur are
treated as part of extended atoms (Reiher, 1985; Neria et al., 1996). Key to
the parameterization of this model were fits to quantum calculations at the
HF/6-31G level of hydrogen bonded complexes between water and the H-
bond donors or acceptors of the amino acids or fragments. This involves a
series of supermolecular calculations of the model compound, such as
formamide or N-methylacetamide and a single water molecule at each of
several interaction sites. Before making the fits, the interaction energies
are scaled by a factor of 1.16, which is the ratio of the water dimerization
energy predicted by the TIP3P model to that predicted at the HF/6-31G
level. As in the Amber parameterizations described above, the goal here
was to obtain a balanced interaction between solute-water and water-water
energies when the latter are represented by TIP3P. For peptides, it was
found that fitting the peptide-water interactions in this way led to peptide-
peptide hydrogen bonds that were also larger than HF/6-31G values by a
factor very close to 1.16; in other cases, explicit fitting to solute-solute
hydrogen bonded dimers may be needed for parameter generation
(MacKerell, 2001).
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As with the contemporaneous Amber 1984 united-atom parameteriza-
tion, the CHARMM19 values were developed and tested primarily on gas-
phase simulations. However, the CHARMM19 potential seems to do well
(perhaps fortuitously) in solvated simulations and continues to be used for
peptide and protein simulations; this is in contrast to the 1984 Amber
force field, which is no longer widely used. In addition, the CHARMM19
values have often been used in conjunction with a distance-dependent
dielectric constant as a rough continuum solvation model.

In the early 1990s, the CHARMM development group also recognized
the need to refine parameters more explicitly pointed to obtaining a good
balance of interaction energies in explicit solvent simulations. The
resulting CHARMM22 protein force field was first included in the
corresponding version of CHARMM, released in 1992, and was fully
described a few years later (MacKerell et al., 1998; MacKerell, 2001). The
key approach from CHARMM19 was carried over by deriving charge
models primarily from fits to solute-water dimer energetics (now
calculated at the HF/6-31G* level). In addition to fitting the dimer
interaction energies, charges for model compounds were adjusted to
obtain dipole moments somewhat larger than experimental or ab initio
values. This has the same goal as the RESP procedure described above:
bonds are expected to be more polarized in condensed phases than in the
gas phase. The use of empirical charges that yield enhanced dipoles both
reflects this behavior and allows a reasonably balanced set of interactions
with the TIP3P water model, which has a similarly enhanced dipole
moment.

Once the charges were determined by these dimer studies, the Lennard-
Jones parameters were refined to reproduce densities and heats of vapor-
ization of liquids as well as unit cell parameters and heats of sublimation
for crystals. As with the Amber parameterization, generally only small
adjustments from earlier values were required to fit the empirical data.
Nevertheless, because of the steep dependence of these forces, such
adjustments may be crucial for a well-balanced and successful set of
parameters.

As with the Amber ff94 force field, the torsional parameters were finally
adjusted to target data derived from vibrational spectra and from ab initio
calculations. The torsional potentials for the � and  torsions were initially
fit to HF/6-31+G* calculations on an analog of the alanine dipeptide in
which the terminal methyl groups are replaced by hydrogen. These were
then refined in an iterative procedure to improve the agreement with
experiment of the backbone angles in simulations of myoglobin. In
principle at least, this latter adjustment provides a way of correcting the ab
initio dipeptide energy map for effects caused by the protein environment.



Fig. 3. Charge models for N-methylacetamide for two of the CHARMM force field
parameterizations. In CHARMM19, the methyl groups are treated as united atoms, so
that there is no breakdown into separate C and H charges.
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As with the Amber parameterization, the question of how best to obtain
good backbone torsional potentials is a vexing one, and studies are
continuing, both at the dipeptide level and with solvated simulations of
oligopeptides. Most recently, an extensive reworking of the nucleic acid
parameters has resulted in the CHARMM27 force field (Foloppe and
MacKerell, 2000). However, the CHARMM27 protein parameters are
essentially identical to those from the CHARMM22 force field.

One feature of the CHARMM parameterizations is the enforcement of
neutral groups, which are small sets of contiguous atoms whose atomic
charges are constrained to sum to zero. This is illustrated in Fig. 3, which
shows partial atomic charges for N-methylacetamide in the CHARMM19
and CHARMM22 force fields. For example, charges for the C and O atoms
of the peptide group form a small neutral group. These groups can be
useful when truncating long-range electrostatic interactions: if an entire
group is either included or ignored (or scaled by a smoothing factor),
then there is never any splitting of dipoles. Ignoring charged side chains,
each atom would then feel the electrostatic effects of a net neutral
environment. The same behavior occurs with solvent molecules, if the
interactions of a given water molecule are always treated as a group.
Although it was long deemed plausible that such a group-based truncation
scheme would yield better results than an atom-based scheme (wherein
some members of a group might interact with a given atom, while others
would not), this is probably not the case for most biomolecular
simulations in water (Steinbach and Brooks, 1994; Darden et al., 1998;
Darden, 2001; Mark and Nilsson, 2002). In any event, such considerations
are now much less important than in earlier times, since many current
simulations use Ewald or fast multipole schemes to handle long-range
electrostatics, where nothing is gained by having small neutral groups.
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Comparison with the corresponding Amber charges from ff94 (Fig. 2)
shows that the peptide carbonyl group is somewhat less polar in
CHARMM22 than in Amber, whereas the opposite is true for the NH
dipole. Still, the similarities in the charge models for these force fields are
more striking than the differences.

C. The OPLS Force Fields

A third main development in the early 1980s (already alluded to above)
involved potentials developed by Jorgensen and co-workers to simulate
liquid state properties, initially for water and for more than 40 organic
liquids. These were called OPLS (Optimized Potentials for Liquid
Simulations) and placed a strong emphasis on deriving nonbonded
interactions by comparison to liquid-state thermodynamics (Jorgensen,
1998). Indeed, the earliest applications of OPLS potentials were to rigid-
molecule Monte Carlo simulations of the structure and thermodynamics
of liquid hydrogen fluoride (Jorgensen, 1981). The reproduction of
densities and heats of vaporization provides some confidence in both the
size of the molecules and in the strengths of their intermolecular
interactions. These early models (now called OPLS-UA) treated hydrogens
bonded to aliphatic carbons as part of an extended atom but represented
all other hydrogens explicitly.

The initial applications to proteins (Jorgensen and Swenson, 1985;
Jorgensen and Tirado-Rives, 1988; Tirado-Rives and Jorgensen, 1990) used
a polar-hydrogen–only representation, taking the atom types and the
valence (bond, angle, dihedral) parameters from the 1984 Amber force
field. This was called the AMBER/OPLS force field, and for some time was
reasonably popular. As with Amber and CHARMM, an all-atom version
(OPLS-AA) was developed later, but with much the same philosophy for
derivation of charges and van der Waals parameters from simulations on
pure liquids (Jorgensen et al., 1996; Rizzo and Jorgensen, 1999; Kaminski
et al., 2001). Torsional parameters were developed in a consistent way by
fits to HF/6-31G* energy profiles (Maxwell et al., 1995), along with some
recent modifications, especially for charged side chains (Kaminski et al.,
2001). Bond stretching and angle bending terms were standardized but
were largely taken from the 1986 Amber all-atom force field. The
parameter choices were intended to be ‘‘functional group friendly,’’ so
that they could be easily transferred to other molecules with similar
chemical groupings. Although the parameters were principally derived
with reference to condensed phase simulations, comparisons to gas-phase
peptide energetics also show good results (Beachy et al., 1997).



Fig. 4. Charge models for N-methylacetamide for two OPLS force field parameter-
izations. In OPLS-UA, the methyl groups are treated as united atoms, so that there is no
breakdown into separate C and H charges.
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Fig. 4 shows the fitted atomic charge models for the OPLS-UA
and OPLS-AA force fields. Again, the polarity of the CO and NH
bonds is similar to that in the Amber and CHARMM force fields. As
with CHARMM, the OPLS charge fitting procedures yield small neutral
groups.

D. Other Protein Force Fields

Our abbreviated discussion neglects many important advances in
the development of protein force fields. In particular, there are several
other protein potentials that have been widely used but will not be
assessed in detail here. The GROMOS force fields (van Gunsteren et al.,
1998) were developed in conjunction with the program package of
the same name (van Gunsteren and Berendsen, 1987; Scott et al., 1999).
The all-atom CEDAR and GROMACS force fields are largely derived
from GROMOS. The Merck Molecular Force Field (MMFF) was developed
by Halgren (Halgren, 1996a,b,c,d; Halgren and Nachbar, 1996;
Halgren, 1999a,b), and has been aimed more at drug-like organic
compounds than at proteins. MMFF was not derived for use in bulk
phase simulations and performs poorly when used to model organic
liquids (Kaminski and Jorgensen, 1996). This deficiency is not inherent in
the buffered 14-7 function (Halgren, 1992) used in MMFF’s van der Waals
term, because this same functional form can be reparameterized to fit
liquid data (Ren and Ponder, 2003). The DISCOVER force field (Maple
et al., 1998) has seen use primarily in conjunction with the commercial
INSIGHT modeling package. The MM3 and MM4 potentials for amides
(Lii and Allinger, 1991; Langley and Allinger, 2002) are an offshoot of



Table I

Other Force Fields for Peptide and Protein Modeling

Force field Potential type Key references

BUFF All Atom Carlson, 2000
CEDAR All Atom Hermans et al., 1984; Hu et al., 2003
CVFF All Atom Kitson and Hagler, 1988
DISCOVER All Atom Maple et al., 1998
ECEPP/3 All Atom, Torsional Némethy et al., 1993
ENCAD All Atom Daggett and Levitt, 1993;

Levitt et al., 1995
GROMOS87 United Atom van Gunsteren and

Berendsen, 1987
GROMOS96 United Atom Scott et al., 1999
MM2 All Atom Lii et al., 1989
MM3 All Atom Lii et al., 1991
MM4 All Atom Langley and Allinger, 2002
MMFF All Atom Halgren, 1996a,b,c,d
NEMO Polarizable Hermida-Ramón et al., 2003
PROSA Polarizable Stern et al., 1999
SCHRODINGER Polarizable Kaminski et al., 2002
SDFF Polarizable Palmo et al., 2003
SIBFA Polarizable Gresh, 1997; Guo et al., 2000
SPASIBA All Atom Derreumaux and Vergoten, 1995
TRIPOS All Atom Clark et al., 1989
UCSD-WILSON All Atom Mackay et al., 1984
UFF All Atom Rappé et al., 1992
UPJOHN All Atom Oie et al., 1981
YETI United, Torsional Vedani, 1988
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Allinger’s highly respected molecular mechanics parameterizations and
have been applied primarily to peptides. These MM methods use atomic
charges only at formally charged groups, and rely on bond dipole
moments to provide for most electrostatic interactions. A series of
potentials refined over many years in Levitt’s group (Levitt, 1983; Levitt
and Sharon, 1988; Levitt et al., 1995, 1997) are incorporated in the
ENCAD (ENergy Calculation And Dynamics) program and have been
notably used to study protein folding and unfolding (Daggett, 2002). The
ENCAD potential is unique in its use of group-based, rather than atom-
based, neighbor exclusion of short-range electrostatic interactions. It also
uses pairwise nonbonded potentials shifted to zero energy at short range,
and specifically parameterized to reflect these small cutoff distances. The
polarizable force fields listed in Table I will be discussed in section III of
this review.
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E. Comparisons Among Protein Force Fields

One might imagine that more than a quarter century of experience with
force field methods for proteins would have led to some secure
conclusions about their relative quality, at least for certain types of
applications. It is very difficult, however, to generate ‘‘gold standards’’ by
which different force fields may be compared. For one thing, experi-
mental measurements reflect a great deal of thermal averaging of
conformers in a complex condensed-phase environment. Until recently,
few interesting simulations on peptides or proteins have been converged
sufficiently well in their conformational sampling to allow deviations from
experiment to be ascribed solely to deficiencies in the force field.
Quantum chemistry calculations offer the attractive possibility of much
simpler comparisons for fixed conformations or families of conformations
depending on only a few degrees of freedom. For example, Halgren
(1999b) has compared the predictions of inter- and intramolecular
conformational energies for a variety of force fields to experiment and to
quantum results. These comparisons offer useful insights into how force
fields work but are not directly relevant to peptides and proteins.
Furthermore, it is not clear that a force field optimized to fit such data
for isolated molecules will work best in liquid-state simulations. This is
especially true if electronic polarizability is ignored, as in the force fields
described above, since the charge distributions appropriate for the gas
phase will change significantly in a high-dielectric liquid such as water.
Hence, simple class I–type force fields involve rather severe compromises
between accuracy and simplicity, so that efforts to judge their ‘‘quality’’
are likely to depend strongly on what sorts of simulations are being
considered and on the details of what is judged to be ‘‘correct’’ behavior.

With the passage of time, the fixed charge force fields appear to be
converging toward a common electrostatic model. In Table II, it is seen
that the most recent parameterizations of the Amber, CHARMM, and
OPLS force fields use charge values that are more similar than those from
previous sets—that is, compare the older (Amber ff84, CHARMM19,
OPLS-UA) charges against the newer (CHARMM22/27, Amber ff94/99,
OPLS-AA) values. Some of the convergence of these values represents
movement toward an optimal fixed-charge model, but it also reflects the
increasingly similar parameterization protocols and test sets (Beachy et al.,
1997) used by the Amber, CHARMM and OPLS developers. As the table
indicates, other current force fields such as GROMOS96 and BUFF use
very different charge values for amino acid residues.

After a lengthy period of refinement of partial charge values during the
1980s and 1990s, much effort has shifted toward improvement of the



Table II

Comparison of Fixed Partial Charge Models for Serine Taken from Current and Previous Generation Protein Force Fields

Amber 84 Amber 94/99 CHARMM19 CHARMM22/27 OPLS-UA OPLS-AA GROMOS96 BUFF

N �0.463 �0.4157 �0.35 �0.47 �0.57 �0.50 �0.28 �0.749
HN 0.252 0.2719 0.25 0.31 0.37 0.30 0.28 0.328
CA 0.035 �0.0249 0.10 0.07 0.20 0.14 0.00 0.189
HA 0.048 0.0843 0.09 0.06 0.048

C 0.616 0.5973 0.55 0.51 0.50 0.50 0.38 0.828
O �0.504 �0.5679 �0.55 �0.51 �0.50 �0.50 �0.38 �0.679

CB 0.018 0.2117 0.25 0.05 0.265 0.145 0.15 0.296
HB 0.119 0.0352 0.09 0.06 0.006
OG �0.55 �0.6546 �0.65 �0.66 �0.70 �0.683 �0.548 �0.764
HO 0.31 0.4275 0.40 0.43 0.435 0.418 0.398 0.491
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protein torsional potentials. Each of the three major potentials discussed
above has recently undergone revision of torsional parameters. The
torsional parameters are traditionally the last values to be determined in
the generation of a new protein force field, and these values have less
theoretical underpinning than other force field terms. With the
convergence of many of the other functional forms and parameters, the
torsions are often used as a more general ‘‘error function’’ to correct the
final force field results to agree with a desired set of conformational
energy differences. For example, the recent OPLS-AA/L force field
consists of a series of modifications of torsional parameters fit to ab initio
results (Kaminski et al., 2001). One important application for protein
force fields with highly optimized torsional parameters is the prediction of
side-chain rotamer preferences (Jacobson et al., 2002), which is a critical
component of accurate protein homology modeling protocols.

Even with the use of similar functional forms and parameter values that
seem to be converging with the passage of time, recent versions of the
traditional force fields still exhibit significant differences. Shown in Fig. 5
are Ramachandran free energy maps for solvated alanine dipeptide
computed with the CHARMM27, Amber ff94, and OPLS-AA force fields.
The simulation system consisted of one dipeptide molecule and 206 waters
in a cubic box with periodic boundaries and with Ewald summation used
to account for long-range electrostatics. Each map was determined by
running 288 separate umbrella sampling MD trajectories restrained to
small regions of �- space and totaling about 70 ns of simulation for each
force field. The separate trajectories were then stitched together to
generate full �- maps with a 2-D WHAM procedure (Kumar et al., 1995).
A similar comparison based on analysis of single lengthy MD trajectories
has recently been published by Hermans’ group (Hu et al., 2003). In
addition, this same group performed tight-binding DFT-based QM-MM
simulations of a QM alanine dipeptide molecule solvated by MM water.
Integrated conformer populations given in Table III show that all three
force fields exhibit large differences from the DFT map: AMBER ff94
strongly favors �-helical structures, OPLS-AA overpredicts �-sheet struc-
ture, and CHARMM27 does not connect the helix and sheet structures via
the expected bridge region (across  = 0) of the map.

One should not infer from these difficulties that there is a lack of
interest in comparing one force field to another or in improving the
existing parameterizations. It has been recognized for several years that
many features seen in simulations are insensitive to the details of the force
field parameterization. These are expected to include most qualitative
features of the average structure of folded proteins and the nature and
extent of fluctuations about the average structure. This expectation has



Fig. 5. Comparison of �- free energy plots from 2-D WHAM analysis of umbrella
sampling trajectories for alanine dipeptide as computed with the AMBER ff94,
CHARMM27 and OPLS-AA pairwise force fields. The contours shown are at 0.5 kcal/
mol intervals from the global minimum of each Ramachandran map.
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been borne out in explicit comparisons of protein simulations with
different force fields, concentrating on structure details (Roterman et al.,
1989; Ceccarelli and Marchi, 1997) or on fluctuation behavior (Teeter and
Case, 1990; Price and Brooks, 2002). These results are often highly
dependent on the strongly repulsive portions of the force field, which
tend to be quite similar in different parameterizations, especially when



Table III

Alanine Dipeptide Population Percentages from QM-MM and Force Fields

Alpha R Bridge Beta

DFT QM-MM 27 16 48
AMBER ff94 57 6 29
CHARMM27 46 3 49
OPLS-AA 14 10 70

The force field values were obtained by integrating data from Fig. 5 over the alpha R,
bridge (‘‘pass’’) and beta regions defined by Hu et al., 2003.

FORCE FIELDS FOR PROTEIN SIMULATIONS 45
liquid-state densities are a part of the fitting process. More variable are
results that depend also on the softer, longer-range portions of the
potential, where differences in the description of dispersion and
electrostatic interactions become more important. Comparative tests on
organic liquids (Kaminski and Jorgensen, 1996) show reasonable accord
between popular force fields for those properties considered during the
parameterization process. However, it is far from clear that this agreement
would carry over, for example, to estimates of ligand-binding affinities or
to helix-coil transition temperatures in peptides, which can be quite
sensitive to energetic details.

III. Beyond Fixed Atomic Point-Charge Electrostatics

Unlike their biopolymer counterparts, empirical potentials for gas-
phase, nonpolar organic molecules are exquisitely accurate. The widely
respected MM3 force field for hydrocarbons has been used to compute
the heat of formation of a set of 57 molecules, many of them very strained.
The average estimated experimental error in �Hf was 0.40 kcal/mol for
the full set of molecules. The standard deviation of the difference between
the MM3 computed �Hf and the experimental values was 0.42 kcal/mol
(Allinger et al., 1989). The more recent MM4 (Allinger et al., 1996) and
Class II QMFF (Maple et al., 1994) force fields give results at least as good as
those for the original MM3. The quality of computed structures from any of
these hydrocarbon force fields is equally high. We can conclude that, at least
for hydrocarbons, a molecular mechanics computation is as trustworthy as
the corresponding experimental result. For proteins and other biopoly-
mers, the situation is currently much less satisfactory. Most of the effort to
improve protein force fields has gone toward more accurate treatment of
electrostatic and solvation effects, because these are thought to be the
largest sources of error for these polar molecules in aqueous environments.
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A. Limitations of Fixed Atomic Point-Charges

It is widely recognized that the use of an electrostatic model based on
fixed atom-centered charges has two significant shortcomings. First, the
restriction to only partial charges and to only the nuclear sites results in a
model insufficiently flexible to describe certain features of molecular
charge distributions. Second, the use of fixed charges means that the
model is unable to respond directly to the molecular environment. For
example, a carbonyl oxygen typically carries the same charge whether it is
buried in the center of a folded protein or exposed to water on the
protein surface. Both of these problems can be addressed via relatively
simple extensions of the traditional fixed atomic point-charge model, but
these modified force fields have yet to make their way into routine use.

Simple partial charge representations are intrinsically unable to
accurately model the electrostatic potential around polar molecules.
Algorithms to fit partial charges to the electrostatic potential defined by an
ab initio wave function have been reported (PDM from Williams, 1988;
CHELPG from Breneman and Wiberg, 1990). Williams’ results indicate
that optimally fit partial charges produce a potential with a relative RMS
error of 5% to 15% from a target potential derived from quantum
electronic structure calculations. Since partial charge electrostatic
energies are usually expressed as a sum over pairs of interaction sites,
the relative error in interaction energies will be even larger between two
neighboring sets of sites. The key result is that atomic partial charge
models lack the mathematical flexibility to describe the static, permanent
electrostatics of general polar molecules to within ‘‘chemical accuracy.’’
No amount of reparameterization can change this basic fact. A number of
publications (Bayly et al., 1993; Chipot et al., 1993; Winn et al., 1997) have
proposed detailed schemes for arriving at atomic partial charges for
biopolymers. In particular, Kollman’s RESP model (Bayly et al., 1993)
solves some problems by applying penalty function restraints during the
fitting process. Simultaneous fitting to multiple conformations of a
flexible molecule can provide charges that are better determined
statistically (Reynolds et al., 1992). Stouch and Williams (1993) found
similar improvement could be made by fixing ill-defined charges at
chemically reasonable values. However, the inherent inflexibility of a
nonpolarizable, fixed-charge model is not overcome by these methods.

Following on the work of Buckingham and Fowler (1985), atom- or
bond-centered multipole expansions have been used to try to achieve a
better fit to quantum-derived electrostatic potentials (for example,
Sokalski et al., 1993 and Colonna et al., 1992). The relative RMS error in an
optimal atomic multipole-based potential truncated after the quadrupole



Table IV

Energy and Structure of the K+-Benzene Dimer

�E0 K +-Centroid �H298

OPLS-AA �9.32 2.90
CHARMM27 �11.06 2.81
Amber ff94 �12.55 2.74
Amber ff02 �15.87 2.63
AMOEBA �19.27 2.81 �18.15
MP2/6-311+G(2d,2p) �18.4 2.81
MP2/aVQZ �19.9 2.79
CCSD(T)/CBS �20.6 2.79 �20.1
Expt (HPMS) �18.3
Expt (CID) �17.7

Minimum energies and binding enthalples are given in kcal/mol, the K+ to benzene
centroid distance is given in Ångstoms. MP2/aVQZ and extrapolated CCSD(T)/CBS
theoretical results are from Feller et al., 2000; MP2/6-311 + G(2d,2p) and CID
experimental values are from Amicangelo and Armentrout (2000); the HPMS value,
corrected for unimolecular dissociation, is from Sunner et al. (1981).
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moments is usually less than 0.1% from the corresponding quantum-based
target potential (Williams, 1988). The advantages of multipole methods
are their functional flexibility and implicit inclusion of conformational
effects (Dykstra, 1993; Price, 2000).

The need for explicit inclusion of polarization effects in protein force
fields is a matter of current discussion in the literature (van der Vaart,
2000; Roux and Bernèche, 2002). A large body of work suggests that
explicit polarization is required if a single set of parameters is to correctly
describe both gas-phase cluster and bulk environments. However, the
increased complexity and expense of polarizable force fields has seemed
to require strong justification of their use in protein modeling.

A striking example of the importance of polarization in force-field
calculations is provided by the interaction of a potassium cation with
benzene. The benzene molecule is highly polarizable, and polarization
effects are responsible for much of the large binding energy. As shown in
Table IV, the simple partial charge force fields grossly underestimate the
strength of this interaction. It is impossible to find reasonable sets of
parameters that repair the simple force fields, especially in light of the
concurrent need to fit water-ion and liquid benzene properties.

Table IV also shows results from two polarizable force fields, the Amber
ff02 parameter set and a polarizable force field being developed by one of
us for the TINKER molecular modeling package (Ren and Ponder,
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unpublished). Both of these models yield interactions closer to experi-
mental and high-level quantum results, though the ff02 binding energy is
not tight enough.

Since truly accurate quantum calculations are finally becoming available
for a variety of small molecule interactions (Dunning, 2000; Huang and
MacKerell, 2002), polarizable protein force fields that are directly
validated against such data will be parameterized in the near future.
Optimal simple partial charge force fields for biopolymer modeling in
water must implicitly include the effects of the aqueous environment.
Without explicit polarization, current force fields should not be
parameterized directly against high-level gas-phase quantum calculations.
The ability to transfer quantum-derived electrostatics to bulk-phase
modeling is a major practical advantage of polarizable force fields.

B. Flexible Models for Static Charge Distributions

Better static electrostatic models for polar molecules necessitate going
beyond the atomic partial charge paradigm. This can be done by adding
additional partial charges at sites other than nuclei or by placing a more
elaborate model at the atomic centers. There is significant experience with
both types of extensions to the basic atomic charge model.

Lone pairs sites have been used by various force fields on selected
nitrogen, oxygen, or sulfur atoms to fine-tune hydrogen bond inter-
actions. Both the MM methods of Allinger and some of the Amber
parameterizations (Dixon and Kollman, 1997) have adopted lone pairs
for some protein atoms. An example of off-center charge modeling in
recent Amber force fields is given in the right-hand side of Fig. 2. A
generalization of this method would be to use distributed off-site point
charges that would in principle achieve any level of accuracy in
reproducing a target potential (Brobjer and Murrell, 1982). The XED
force field uses a charge on the nucleus and up to five nearby partial
charges on ‘‘orbital points’’ to represent each atom, and it has advantages
over traditional force fields in modeling aromatic interactions (Chessari
et al., 2002). Simple application of Coulomb’s law then leads to an O(N2)
CPU-time dependence on the total number of charges, which is inefficient
when compared with atom-centered multipole approaches. In addition,
off-site charges may result in ‘‘site fusion’’ during procedures that can
generate large conformational changes between energy evaluations such
as random or Monte Carlo searches. Finally, it is possible to replace simple
point charges with isotropic atom-centered charge distributions. A
method using a point charge and counterbalancing Gaussian charge
distribution on each atom yields a novel water model claimed to mimic
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some of the effects of the environment without the need for an explicit
polarization calculation (Guillot and Guissani, 2001).

Another means of increasing the mathematical flexibility of a static
electrostatic description beyond the limitations of partial atomic charges is
to use atomic multipole moments. The derivation, use, and manipulation
of higher-order moments in the study of intermolecular interactions are
thoroughly covered in the important monograph by Stone (1996). Given
the density matrix or electrostatic potential from a high-level electronic
structure calculation, it is possible to derive atomic multipoles that provide
an optimal least-squares fit to the target density. The PDM programs of
Williams (1988) have been used to show that an atom-centered expansion
through quadrupole moments can provide a potential within 0.1% of an
MO-derived target. Alternatively, multipole expansions can be built by
moving elements of overlap density from a quantum calculation to a
distributed set of sites such as atomic nuclei. The similar distributed
multipole analysis (DMA; Stone, 1981) and cumulative atomic multipole
moments (CAMM; Sokalski and Poirier, 1983) protocols are examples of
this approach. Spatial decomposition of the density, such as the atoms-in-
molecules (AIM) procedure from Bader’s lab (Bader, 1990; Popelier,
2000), has also been used to construct multipoles for protein atom types
(Matta and Bader, 2000). It appears that atomic DMA values converge
slightly more rapidly than AIM expansions (Popelier et al., 2001), but the
more important question for use in protein force fields relates to
transferability of the multipole values.

If a limited set of lone pair partial charges are used, their motion
relative to the rest of the structure can be governed by standard molecular
mechanics bond and angle terms involving the lone pair sites. More
generally, the use of off-site charges or atomic multipole moments
requires definition of a local coordinate frame at each atom and motion of
each atom’s electrostatic model relative to its frame (Koch and Egert,
1995). There are two formulations available for computation of the
electrostatic interactions between point multipoles: a polytensor scheme
(Applequist, 1983; Dykstra, 1988) that becomes very efficient for higher-
order derivatives and a spherical harmonic expansion (Price et al., 1984;
Popelier and Stone, 1994) leading to the energy, forces, and torques. In
brief, the atomic multipoles at a site i can be represented as Mi = [qi, 	i,1,
	i,2, 	i,3, Q i,11, Q i,12, Q i,13 ,. . .Q i,33] where q, 	 and Q are the monopole,
dipole, and quadrupole components, respectively. Then the interaction
energy between two sites i and j is given by Mj

T � T � Mi where the T tensors
are constructed from extended derivatives of the inverse distance between
the sites, 1/R. Following Stone’s notation (Stone, 1996), the multipole
interaction T elements, with 4�e0 omitted for clarity, are expressed as:
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A concise description of the Ewald summation technique for multipole
interactions is also available (Smith, 1998).

C. Including Environmental Effects via Polarization

As with the static electrostatic model, there are several possible methods
available for including polarization in force-field calculations. An excellent
recent review by Rick and Stuart (2002) covers the current methodologies
for incorporating polarizability in simulations. An earlier summary of the
status of polarizable force fields was provided by Halgren and Damm
(2001). We will not repeat their treatments of the various polarization
formalisms but focus instead on problems common to all polarizable force
fields as they are extended from small, relatively rigid molecules such as
water to large, flexible protein structures.

Three basic methods for including polarization have been studied:
fluctuating charge, Drude oscillator, and induced dipole models.
Fluctuating charge models use the principle of electronegativity equaliza-
tion to produce a set of point charges that optimize the total electrostatic
energy. In theory, intermolecular charge transfer is then handled by
requiring conservation of charge for the whole system. In actual
application, charge conservation is often enforced for each individual
molecule. The original force field model of this class was the charge
equilibration (QEq) method of Rappé and Goddard (1991) that is still
used in their UFF force field (Rappé et al., 1992) and its BUFF biopolymer
counterpart (Carlson, 2000). Problems in computing analytical derivatives
of QEq have led to the recent formulation of a ‘‘consistent’’ variation,
CQEq (Kitao and Ogawa, 2003). The more recent dynamical fluctuating
charge (FQ) method (Rick et al., 1994) can be viewed as a perturbation
formulation of QEq. In the typical use of FQ, the electrostatic forces
required for dynamics simulation are propagated via an extended
Lagrangian (Liu et al., 1998), thus avoiding the need for a closed analytic
form of the derivative.
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Drude oscillator (DO) methods, also referred to as shell models, use a
harmonic restraint potential to tether a mobile point charge to an
interaction site. In a general Drude oscillator model, an atom will carry a
charge fixed at the nucleus and a second restrained charge of variable
position. The charge magnitudes and harmonic force constants are fit to
atomic and molecular polarizability data and experimental energies. As
with FQ, the DO model is most often used with an extended Lagrangian
treatment of the variable charges during a molecular dynamics simulation
(Mitchell and Fincham, 1993).

Perhaps the best-studied method for handling polarization is use of
induced multipole moments. While higher-order multipole polarization
and hyperpolarization can be included in force fields (Dykstra, 1989), only
induced dipoles are usually considered. The use of induced dipoles in
molecular dynamics dates back at least to Vesely’s treatment of polarizable
Stockmayer-type systems (Vesely, 1977). Point polarizabilities are generally
assigned to either molecular centers of mass or distributed over some or
all atomic sites. The direct, permanent electrostatic field felt at each
polarizable site then results in a site of ‘‘direct’’ induced dipoles. But since
the induced dipoles alter the field at each site, the procedure must be
iterated to generate a self-consistent set of ‘‘mutual’’ induced dipoles
arising from the mutual polarization.

Three methods are available for calculation of the induced dipole
moments. The first is the iteration alluded to above. The induced dipole at
each atomic site is computed as 	i,�

ind = �iEi,�, where �i is the atomic
polarizability and Ei,�is the sum of the fields generated by both permanent
multipoles and induced dipoles:

	ind
i;� ¼ �i
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where Mj = [q j, 	j,1, 	j,2, 	j,3, . . .]T contains the permanent multipole
components and T�

ij = [T�, T�1, T�2, T�3, . . .] is the interaction tensor
between site i and j introduced in the previous section. The sets {j} and {j 0}
in equation 3 consist of all atomic sites except for separate small lists of
omitted near-neighbor sites that may differ based on the details of the
model. In fully interactive models (see below) the set {j 0} includes all
atomic sites other than i itself. It can be shown that the solution of the
above self-consistent equation can be written as:
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where 	ind
i;� (0) ¼ �i

P
{j}T�

ijMj is the ‘‘direct’’ induced dipole on site i due to
the electric field from permanent multipoles of other molecules, and
�i

P
{j 0}T��

ij 0	j 0, �
ind (n) is the ‘‘mutual’’ induced dipole further induced by

dipoles on all the other sites. The iterative solution can generally be
accelerated by well-known successive overrelaxation (SOR) techniques
(Young, 1971) by using a value of ! = 0.75 in equation 5, which converges
rapidly to any reasonable level of accuracy.
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A second method for finding the induced dipoles is full-matrix
direct solution of the set of coupled linear equations, avoiding the
iterative procedure. Also, in the context of molecular dynamics, the
dipoles can again be updated via an extended Lagrangian scheme.
Ewald summation has been described for various polarizable multipole
schemes (Nymand and Linse, 2000; Ren and Ponder, 2003), and particle
mesh Ewald (PME) has been derived for induced dipole interactions
(Toukmaji et al., 2000).

D. Consistent Treatment of Electrostatics

In this section, we discuss the features necessary for a consistent and
effective treatment of polarization that is intended for use in modeling
flexible, polar molecules such as proteins. Discussion will be limited to
induced dipole models, since these are the most commonly used type at
present, but most of the points below also apply and can be adapted for
fluctuating charge or Drude oscillator formulations.

At the most basic level, the polarization method used in a force field
should be able to compute molecular polarizabilites with reasonable
fidelity. A number of atomic polarizability models, including additive
(Miller, 1990; Stout and Dykstra, 1998) and interactive models (Applequist
et al., 1972; Bode ande Applequist, 1996; Thole, 1981; van Duijnen et al.,
1998), have been proposed for treatment of molecular polarizability.
Additive models allow the polarizable sites to respond to an external field
but not to other sites within the molecule. Interactive models include the
mutual effects of polarizable sites within a molecule on each other, as well
as polarization induced by an external field. Simple additive models are
sufficient for use with a force field if intramolecular polarization can be
neglected, as is often the case for very small molecules. However, for larger
peptides and proteins the distinction between intra- and intermolecular
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polarization is obviously blurred, and an interactive model that treats both
on the same basis is required.

The successful Dang-Chang polarizable model for water (Dang and
Chang, 1997) uses only a single polarizable site that carries the
experimental molecular polarizability of 1.444 Å3. Other models have
used distributed polarizabilities on oxygen and the hydrogens that linearly
sum to the correct water value. In these models, intramolecular
polarization is neglected and is implicitly included within the overall
parameterization scheme.

Alternatively, the POL3 water model (Caldwell and Kollman, 1995) and
the Amber ff02 protein force field (Cieplak et al., 2001) use a modified
form of Applequist’s interactive polarization. The Applequist model uses
generally smaller distributed atomic polarizabilities than most additive
models. When the sites interact via mutual polarization, the total
polarizability is increased and correct molecular polarizabilities are
generated. For example, the POL3 model for water contains point
polarizabilities of 0.528 Å3 on oxygen and 0.17 Å3 on hydrogen. When
these sites interact via full mutual induction, a molecular polarizability of
1.46 Å3 is generated in good agreement with the experimental water value.
However, the Amber ff02 energy model calls for neglect of mutual
induction between atoms that are 1-2 or 1-3 bonded in analogy with the
molecular mechanics tradition of omitting electrostatic interactions
between near neighbor atoms. The result is that the atomic polarizabilities
in the POL3 model do not interact, and the molecular polarizability of
POL3 water is reduced to the additive value of 0.87 Å3. Based on this
analysis, we might predict that the POL3 model will be underpolarized,
and indeed this appears to be the case. The POL3 water dimer interaction
energy and O-O separation distance are 5.44 kcal/mol and 2.79 Å,
respectively. These values are intermediate between ‘‘fully polarized’’
high-level quantum results of 5.0 kcal/mol and 2.91 Å and a typical
nonpolarizable pairwise model such as TIP3P with dimer values of
6.54 kcal/mol and 2.75 Å. The analysis extends to proteins as well. Neglect
of neighboring atom mutual polarization leads to a systematic underesti-
mation of polarization effects in ff02. The remaining polarization can, of
course, be implicitly included in the overall parameterization as is the case
with the simple pairwise protein force fields.

Unfortunately, it is not possible to simply ‘‘turn on’’ the 1-2 and 1-3
mutual polarization to regain the full molecular polarizability. Attempts to
include full mutual polarization within a modified POL3 model lead to a
‘‘polarization catastrophe’’ in the liquid wherein the induced dipole
moments fail to converge and become infinite in magnitude. The origin
of the catastrophe resides in the non-physical approximation of using a
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point polarizability model. The diffuse nature of the true charge
distribution and the fact that polarizability is more realistically spread
over corresponding regions of space suggest that polarization should be
damped at short range. The lack of damping in the Applequist model
leads to failure of energetic models derived from it. The inability of the
original Applequist scheme to adequately model the molecular polariz-
ability of very polar, anisotropic molecules such as benzene is another
symptom of the same problem (Applequist, 1993).

Among the interactive models, the damped induction suggested
by Thole (1981) exhibits several advantages: (1) it avoids the polar-
ization catastrophe at short range by replacing point dipole interactions
with interactions between smeared dipoles, (2) it produces anisotropic
responses to an external field by using only isotropic atomic polarizabil-
ities, and (3) atomic polarizabilities derived within the model are
highly transferable. For example, a single atomic polarizability value for
each of the elements C, N, O, and H gives an excellent fit to a large
number of experimental molecular polarizabilities (van Duijnen and
Swart, 1998).

To avoid a ‘‘polarization catastrophe’’ at very short range, Thole
introduced a modification scheme in which dipole interactions are
damped as though one of the point dipoles in each pairwise interaction is
replaced by a smeared charge distribution. As a result, the dipole
interaction energy approaches a finite value instead of becoming infinite
as the separation distance approaches zero. Several charge distributions
yield roughly similar results, but the one most commonly used to date has
the form

 ¼ 3a

4�
expð�au3Þ ð6Þ

where u ¼ Rij=(�i�j)
116 is the effective distance as a function of atomic

polarizabilities of sites i (�i) and j (�j). The factor a is a dimensionless
width parameter of the smeared charge distribution and controls the
strength of damping. Using the charge distribution given by equation 6,
the damped T matrix elements corresponding to equation 3 can be
derived. It has been shown that the damped first-order T element is
(Kong, 1997)

T D
� ¼ �½1 � expð�au3Þ�R�

R3
ð7Þ

The modified higher-order T matrix elements can be obtained succes-
sively by taking the derivative of the preceding lower rank elements:
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where the li for i 2 {3,5,7,9} are the damping coefficients that modify
the standard interactions

l3 ¼ 1 � exp ð�au3Þ
l5 ¼ 1 � ð1 þ au3Þ exp ð�au3Þ
l7 ¼ 1 � ð1 þ au3 þ 3

5
a2u6Þ exp ð�au3Þ

l9 ¼ ð1 � ½1 þ au3 þ ð18a2u6 þ 9a3u9Þ=35� exp ð�au3Þ

ð9Þ

After replacing the original interaction matrix elements with the above
damped ones, the energy, force, and electric field are computed in the
usual fashion. Some groups apply damping to all electrostatic interactions
(Burnham et al., 1999). Other workers choose to damp only those energy
terms involving induced moments, leaving the interactions between
permanent multipoles unmodified (Ren and Ponder, 2003).

Under a Thole-style scheme, atomic polarizabilities are generally larger
than those from simple additive fits because of the reduction in
polarization caused by the short-range damping. For example, a modified
Thole water model devised by the Ponder group (Ren and Ponder, 2003)
uses atomic polarizabilities of 0.837 Å3 on oxygen and 0.496 Å3 on each
hydrogen but yields a molecular polarizability of only 1.41 Å3. The Thole
interaction model was introduced into energy calculations by the
Groningen group (de Vries et al., 1997) and later adopted by Burnham
et al. (1999) for their initial ‘‘Thole-type’’ model (TTM) for water. It has
also recently been used by Karlstrom’s group for their NEMO polarizable
potential (Brdarski et al., 2000).

Once a polarization model gives satisfactory results for molecular
polarizabilities, the next test is generation of accurate electrostatic
potentials in the region surrounding a polarizable molecule. A key point
is that permanent electrostatics taken from a quantum calculation should
not be used directly as the permanent model in a polarizable force field. If
mutual induction is allowed as in the Applequist or Thole models, then
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some intramolecular polarization must be removed from the
quantum results, where it is already implicitly included, to avoid ‘‘double
counting’’ of induction effects. Various groups have devised procedures to
modify molecular orbital-derived charges or multipoles for use with their
intramolecular polarization schemes (Cieplak et al., 2001; Ren and Ponder,
2002). The multipoles on each atom taken directly from a quantum
calculation may be considered as a sum of intrinsic ‘‘permanent’’ and
‘‘induced’’ moments:

Mi ¼ M
perm
i þ M ind

i ; ð10Þ

where Mi
ind is produced by direct and mutual induction from all sites in

the absence of an external field:

M ind
i;� ¼ �i

X
f jg

T ij
�M

perm
j þ

X
f j 0g

T ij 0
� M ind

j 0

0
@

1
A: ð11Þ

This is the same relation as in equation 3, except that the induced dipole
is replaced by generalized induced moments. Substitution of equation 10
into the above expression yields

M ind
i;� ¼ �i

X
f jg

T ij
� ðMj � M ind

j Þ þ
X
f j 0g

T ij 0
� M ind

j 0

0
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If the same scaling factors are employed for mutual and direct induction
using identical groups { j } and {j 0}, then equation 12 reduces to a
surprisingly simple expression:

M ind
i;� ¼ �i

X
fjg

T ij
�Mj : ð13Þ

In the case where {j } and {j 0} are not the same, or when different fractional
scaling factors are desired for short-range direct and mutual interactions, a
more complex formulation requiring iterative solution is necessitated.
The underlying ‘‘permanent’’ moments, Mi

perm, calculated via equation 10
will return the full quantum mechanical result when combined with the
force field polarization model defined by equation 11. Following this
protocol, ‘‘permanent’’ moments from small quantum calculated frag-
ments can be combined in a consistent fashion to build electrostatic
models for larger structures. Finally, we should point out that it may
be convenient (or necessary) to differentiate the short-range treatment
of direct induction caused by the permanent field from the treatment of
mutual induction. A number of empirical models for inclusion of direct
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induction have been tested (Ren and Ponder, 2002), and the best choice
will depend on other details of the particular polarization implementation
being considered.

Finally, a polarizable force field has to achieve a balance between inter-
and intramolecular energetics. All molecular mechanics methods face the
challenge of combining a description of nonbonded interactions (vdW,
electrostatics, polarization) with short-range valence interactions (bonds,
angles, torsions). As noted above, force fields usually ignore or scale
intramolecular vdW and permanent electrostatic interactions between
atoms separated by three or fewer bonds. Such interactions are thought to
be handled by the valence terms. Polarizable force fields developed to date
apply similar schemes for scaling of short-range intramolecular polariza-
tion. However, there is no reason that the scaling scheme used for the
induction calculation will be optimal, or even appropriate, for computing
energetic terms arising from polarization. Use of separate scaling schemes
provides a useful flexibility during parameterization of a polarizable force
field but at the cost of a somewhat more complex calculation. The
felicitous merging of valence and nonbonded terms is a critical consider-
ation in any successful force field for flexible proteins, and polarizable
models are no exception.

E. Current Status of Polarizable Force Fields

The systems studied via polarizable potentials fall into two separate
classes, each exposing an additional layer of challenges for the force-field
developer. The simpler class contains water and most other small mole-
cules. A large number of water models have been proposed, many of
which use potentials that would be difficult to extend to more general
molecular systems. As noted above, several workers have found that
polarization in water is treated adequately by a single isotropic polarizable
site. Force fields for small organics require potentials applicable for several
elements or atom types and a distributed polarization model. However, as
long as the systems considered are monofunctional or lacking rotatable
bonds, it is usually sufficient to ignore explicit intramolecular polarization
by including it implicitly in the parameterization. The second class would
include polarizable force fields for arbitrarily large, flexible molecules
such as proteins. In this case, the force field developer has the additional
problem of maintaining consistency and balance in the treatment of intra-
vs. intermolecular polarization. Also, there is the hope that the final model
will account for at least some of the conformational effects of polarization
in flexible systems.
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1. Polarizable Models for Small Molecules

There have undoubtedly been more polarizable simulations reported
for liquid water than for any other substance. Previous attempts to
parameterize a water model applicable across multiple phases date back to
the ‘‘polarizable electropole’’ model of Barnes et al. (1979) that treated
electrostatics via a single site carrying the experimental dipole and
quadrupole moments and isotropic dipole polarizability. An interesting
polarizable and dissociable potential was suggested by Stillinger and David
(1978) and applied to water clusters and ion monohydrates. The original
MCY model (Matsuoka et al., 1976) based on a fit to points on an ab initio
dimer surface has evolved into the NCC-vib potential (Corongiu, 1992)
that includes induced dipole polarization and vibrational flexibility. Sprik
and Klein (1988) made an early attempt at modifying the existing TIP4P
potential to include polarization within a Drude oscillator framework
particularly suitable for molecular dynamics simulation. Another early
water model from the Levy group (Bernardo et al., 1994) uses partial
charges and induced dipoles on each atomic center, along with a
Thole-like polarization damping scheme.

Recent work on polarizable water includes a simple, rigid, non-iterative
3-site model (Yu et al., 2003) parameterized to include only direct
induction and an elaborate Drude oscillator model (MCDHO; Saint-
Martin et al., 2000) that was compared with high-quality ab initio calcul-
ations. The POL5/TZ and POL5/QZ water models (Stern et al., 2001),
which combine fluctuating charge and induced dipole polarization, yield
good agreement with a range of structural and thermodynamic properties.
The AMOEBA water model (Ren and Ponder, 2003) also gives excellent
cluster and liquid phase results and has been designed for compatibility
with a protein force field built around a polarizable atomic multipole
electrostatic description.

The family of second-generation TTM models, TTM2-R and TTM2-F
(Burnham and Xantheas, 2002a,b), exhibit excellent agreement with ab
initio structures and energies for water clusters through (H2O)6 but
perform less well in liquid simulations. The TTM2-F model points up an
interesting problem not solved by including polarization in the potential.
It is known experimentally that the bond angle in water increases from
104.52� in the gas phase to a value near 106� in the liquid. Essentially all
flexible water models, pairwise or polarizable, exhibit the opposite trend
in that the average angle value decreases on moving from gas to liquid. As
Burnham and Xantheas show with TTM2-F, the problem is that the
electrostatic model does not respond correctly to changes in valence
geometry. In particular, the dipole moment derivative vector with respect
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to bond stretching lies in the wrong direction in all empirical potentials,
including those with explicit polarization. The solution lies in explicitly
coupling the electrostatic model to the valence terms. The complex
TTM2-F model uses a numerical correction based on a theoretical dipole
moment surface for the water molecule. A potentially similar, but simpler,
method based on bond charge fluxes has been proposed by Palmo and
Krimm (1998). It seems likely that analogous problems will be exposed for
the backbone amide group of proteins. Many studies suggest that typical
protein force fields are too stiff with respect to pyramidalization at the
amide nitrogen. A very recent publication, also from the Krimm group
(Mannifors et al., 2003), provides an explanation and fix based again on
electrostatic-valence coupling and charge flux.

A major impetus for ‘‘next generation’’ empirical potentials is the hope
that accurate prediction of ligand and drug-binding energies with proteins
will become a reality. The specific electrostatic interactions encoded in a
polarizable force field are certainly capable of describing effects
completely missing in current generation force fields. For example,
Fig. 6 shows a comparison of the OPLS-AA and AMOEBA force fields for
Fig. 6. Comparison of ab initio, OPLS-AA and AMOEBA structures and energies for
dimer configurations of dimethylformamide (DMF). The MP2 values are taken from
Vargas et al. (2000), who suggested the DMF dimer as a model for possible C—H to
O›C hydrogen bonding interactions in proteins. All energies are in kcal/mol. RMS
values in Å from the ab initio minima are given in parentheses. The upper panel shows
the superposition of the AMOEBA minima on the Vargas et al. structures.
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four configurations of the dimethylformamide (DMF) dimer. According
to correlated large-basis molecular orbital calculations (Vargas et al.,
2000), configurations C and D exhibit much tighter binding than either A
or B because of the presence of non-traditional C-H to O=C hydrogen
bonds. This structural feature is not included in the parameterization of
current generation force fields, and OPLS-AA fares poorly on all of the
DMF configurations, especially C and D. Such specific, but subtle,
energetic effects almost certainly play an important role in regulating
binding at protein receptor sites.

2. Polarizable Protein Force Fields

As of early 2003, there is no polarizable force field that sees wide use in
protein modeling. Several efforts are under way, but parameter sets are
still under development, and published applications are limited to those
from the development groups. This is partly a reflection of the difficulty of
the problems involved and the fact that the behavior of polarizable force
fields for flexible molecules is not yet completely understood. Also, the
methods and software used to treat polarization are not as standardized as
for the current generation of pairwise protein potentials.

The Amber ff02 potential (Cieplak et al., 2001) has been mentioned
above. It represents an initial polarizable member of the Amber family of
force fields and is the result of Peter Kollman’s long-standing interest
(Lybrand and Kollman, 1985) in non-additive force fields. Unlike other
developing polarizable protein models, ff02 was intentionally derived via
perturbation of an existing pairwise force field, a fact that should make it
easier to judge the overall effect of including ff02-style polarization in
protein simulations.

The Columbia groups of Friesner and Berne, in collaboration with
researchers at Schrödinger, have produced an evolving series of polarizable
protein models. The first, sometimes referred to as the PROSA force field,
is based on a fluctuating charge formalism (Banks et al., 1999). This model
was later extended via the addition of induced dipoles on some sites
(Stern et al., 1999). Recently, many of these same workers have published a
new ‘‘first generation’’ protein potential that abandons the FQ method-
ology in favor of exclusive use of induced atomic dipoles. The latest model
claims to reproduce quantum mechanical energies of di- and tetrapeptide
test cases to within an average RMSD of 0.5 kcal/mol. The same torsional
fitting techniques currently being used for the OPLS-AA parameter set
were applied by the Columbia and Schrödinger workers in an attempt to
improve side chain rotamer prediction.

The SIBFA force field developed by Gresh (1997) has been applied
to a series of protein structure and molecular recognition problems.
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The energy function is based on a rather direct decomposition of ab initio
SCF computations, including multipole electrostatics, repulsion, and
dispersion-like terms and separate terms for polarization and charge
transfer. The latter term is considered critical for ion interactions but also
contributes a substantial fraction of the energy of polar hydrogen bonds as
computed by SIBFA (Gresh, 1997; Masella et al., 1998). The SIBFA
potential was combined with a continuum reaction field solvation model
to analyze the conformational preferences of alanine dipeptide and other
oligopeptides (Gresh et al., 1998).

Very recently, a NEMO potential for a capped glycine residue has been
reported (Hermida-Ramón et al., 2003). This study devoted considerable
attention to the intramolecular potential, and presented comparisons with
several nonpolarizable protein force fields. The authors conclude that
their model accounts for most of the intramolecular polarization, but that
errors on the order of 1-2 kcal/mol should be expected in conformational
energies.

The SDFF (spectroscopically determined force field) from Krimm’s
group at Michigan (Palmo et al., 2003) is unique among current polariz-
able protein force-field efforts in its extensive use of cross-terms and
emphasis on valence potential functions. In particular the use of charge
flux methods, as described earlier, appears to provide an important next
step with its flexible coupling of electrostatics to bond stretching (Palmo
and Krimm, 1998; Mannfors et al., 2003). At present the SDFF has been
described for amides and peptide backbone components, but it remains to
be elaborated into a full protein force field.

In 1997 Beachy et al. reported an extensive comparison of nonpolariz-
able protein force fields and uncovered a systematic difference in alterna-
tive hydrogen bonding arrangements between fixed charge potentials and
ab initio quantum calculations. Fig. 7 highlights the difference in
dimerization energy between the simple amide cis-NMA and a larger
protein �-sheet model based on alanine dipeptide. These systems were
subsequently modeled with the SIBFA force field (Gresh et al., 1999). The
SIBFA results are shown in the figure and compared with some
nonpolarizable models, a preliminary AMOEBA protein force field, and
quantum calculations. The current generation of fixed-charge force fields
predicts the �-sheet model to be more stable than the cis-NMA structure,
whereas more elaborate force fields such as AMOEBA and SIBFA predict
the opposite, in agreement with the quantum results. The most reasonable
conclusion is that fixed charge force fields are missing cooperative effects
in hydrogen bonding networks that can lead to significant energetic
errors.



Fig. 7. Comparison of interaction energies for dimers of cis-N-methylacetamide
(NMA) and alanine dipeptide (�-Sheet) as computed via quantum and force field
methods. All energies are in kcal/mol. Force field values for the NMA dimer are
fully optimized geometries, while the �-sheet structures were restrained to � = �139

�

and  = +135
�
. The SIBFA and quantum values are taken from Gresh et al. (1999).
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IV. Modeling the Solvent Environment

A. Explicit Water Models

The original atomic-scale computational model for liquid water was
proposed by Bernal and Fowler (1933). At the time of the development of
the earliest protein force fields, the ST2 model of Stillinger and Rahman
(1974) was in wide use. The ST2 model was adopted for some of the first
protein simulations done in the Karplus group at Harvard. The early 1980s
saw the introduction of the SPC (Berendsen et al., 1981) and TIP3P
( Jorgensen et al., 1983) potentials, two similar, rigid 3-site water models
parameterized to reproduce the basic bulk phase structure and
thermodynamics of liquid water. At present, these two potentials are still
the most commonly cited solvent models for use in protein modeling and
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simulation. Still other water potentials have added intramolecular
flexibility and interpolate the parameter space between the SPC and
TIP3P models (for example, the F3C model of Levitt et al., 1997 and
a model from Ferguson, 1995). The addition of a fourth site along the
H-O-H bisector leads to the TIP4P model ( Jorgensen et al., 1983). This
potential yields improvements in the gas-phase dimer structure and liquid
O-O radial distribution function and has been generalized to the flexible
TIP4F model (Mahoney and Jorgensen, 2001).

The recently developed TIP5P potential (Mahoney and Jorgensen,
2000) exhibits excellent agreement with the experimental internal energy,
density, and O-O radial distribution at room temperature. This 5-site
model is essentially a modernization of the ST2 potential. It uses only
fixed partial charges to model electrostatics and includes polarization
response to the environment only in an averaged, mean-field sense. As a
result, TIP5P provides an excellent description of the homogeneous bulk
phase but is a poor model for gas-phase clusters and for nonpolar solutes
in polar solvents. For example, the gas-phase binding energy of the water
dimer is overestimated by more than 30% in the TIP5P model.

In application to large biomolecular systems, there is concern that such
models cannot correctly account for situations where the same nonpolar-
izable moiety is exposed to different electrostatic environments, either
within a single large static structure or during a course of simulation. In
addition, there is an inherent inconsistency in most nonpolarizable
models related to their static inclusion of average bulk polarization within
the potential. This results in internal energies and other properties that
are derived against a gas-phase reference state that is already ‘‘pre-
polarized’’ for the liquid phase. While it is possible to correct for the
resulting self-energy of the reference state, as in the SPC/E water model
(Berendsen et al., 1987), such corrections are not routinely used for
heterogeneous systems. This suggests that use of SPC/E with uncorrected
protein potentials will lead to a mismatch in the balance of water-water
and protein-water electrostatics. Of course, this reference state problem
disappears if fully polarizable potentials are used for both the protein and
water components.

Protein simulations containing explicit water have obvious advantages
over continuum solvent treatments in some respects. For example,
detailed bound solvent motifs, such as water bridges, require solvent
molecules as an integral part of the structural model. A recent report of
potentials of mean force (PMFs) for side chain pairs in explicit and various
continuum solvents (Masunov and Lazaridis, 2003) shows a dramatic lack
of fine structure in the continuum versus explicit PMFs because of
continuum averaging of specific water interactions.
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B. Continuum Solvent Models

There are many circumstances in molecular modeling studies in which
a simplified description of solvent effects has advantages over the explicit
modeling of each solvent molecule. One of the most popular models,
especially for water, treats the solvent as a high dielectric continuum,
interacting with charges that are embedded in solute molecules of
lower dielectric. The solute charge distribution, and its response to the
reaction field of the solvent dielectric, can be modeled either by quantum
mechanics or by partial atomic charges in a molecular mechanics
description. In spite of the severity of the approximation, this model
often gives a good account of equilibrium solvation energetics and is
widely used to estimate pKs, redox potentials, and the electrostatic
contributions to molecular solvation energies (Tomasi and Persico, 1994;
Cramer and Truhlar, 1999; Beroza and Case, 1998; Schaefer et al., 1998;
Roux and Simonson, 1999). For molecules of arbitrary shape, the Poisson-
Boltzmann equations that describe electrostatic interactions in a multiple-
dielectric environment are typically solved by finite-difference or boundary
element numerical methods. These can be efficiently solved for small
molecules but may become expensive for proteins or nucleic acids.
Although progress continues to be made in numerical solutions, there is a
clear interest in exploring more efficient, if approximate, approaches to
this problem.

Most of the simulation techniques to be used here rest on models in
which the protein degrees of freedom are treated explicitly but the solvent
degrees of freedom are not. This requires that the energy surface used for
the protein degrees of freedom be a potential of mean force (PMF) in
which the solvent degrees of freedom are implicitly averaged over (Roux
and Simonson, 1999). Assuming that the full potential energy function
consists of a term, Uvac for the interactions within the protein, depending
only on the protein degrees of freedom, r, and additional terms for the
protein-solvent and solvent-solvent interactions, the PMF is ideally,

Upmf ðrÞ ¼ UvacðrÞ þ�Gsol ðrÞ ð14Þ

where �Gsol (r) is the free energy of transferring the protein from vacuum
to the solvent with its internal degrees of freedom fixed at r . A very
common model divides �Gsol (r) into electrostatic and non-polar
contributions, which are defined in terms of a hypothetical thermo-
dynamic cycle in which the process of vacuum to solvent transfer is carried
out in three steps: in vacuum, set to zero all atomic partial charges; then
transfer the resulting apolar molecule to solvent; and finally, in solvent,
restore the atomic partial charges to their original values. �Gnp is then the
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free energy change for the apolar transfer step, and �Gelec is the difference
of the electrostatic work of charging the system in solvent versus vacuum.

The non-polar term should be very similar to the free energy of
transferring from vacuum to solvent an aliphatic compound with the same
steric form as the solute molecule of interest. For small, fairly rigid
molecules, this can be taken from experimental measurements on hydro-
carbons (Chen et al., 1994) or from a variety of theories for solvation of non-
polar molecules. A common estimate is that aliphatic solvation energies
in water have linear dependence on solvent accessible surface area,

�Gnp ¼ 
ðSAÞ þ b ð15Þ

where SA is the solvent accessible surface area and 
 and b are empirical
parameters fit to the solvation free energy of alkanes (Sitkoff et al., 1994;
Simonson and Brünger, 1994). This simple model is certainly not fully
correct, and there have been a number of attempts to extend it (Sharp
et al., 1996; Gallichio et al., 2002), but a full discussion of this topic is
beyond the scope of this review. For the rest of this section, we will
consider models for the electrostatic contribution to hydration.

1. The COSMO Model

The COSMO approach (Klammt and Schüürmann, 1993) is a very
simple yet effective model for continuum solvents that allows the basic
ideas to be developed in a few lines of math. COSMO stands for
Conductor-like Screening Model and treats the situation illustrated in
Fig. 8, where the solvent dielectric becomes infinite (as in a conductor).
As with other models, we imagine the solute to be a low-dielectric object
(with embedded charges) that is immersed in this conductor-like solvent
environment.

Upon immersion, charge carriers in the solvent can move freely to the
surface of the solute, creating a non-uniform charge distribution at the
molecular surface. The electrostatic energy of this set of charges will be:

E ¼ Egas þ
X

i

Z
zi

1

jri � rq j
qdS þ 1

2

Z
q

1

jrq � rq 0 j
q 0dSdS 0 ð16Þ

Here Egas is the electrostatic energy of the molecular charge distribution
in the absence of solvent. The zi are partial atomic charges in the
molecule, at positions ri, and q represents the surface charge in an element
of surface area, dS. Hence, the second term in equation 16 represents the
interaction energy between the molecular charge distribution and the
induced surface charges, whereas the final term represents the mutual
repulsion among these induced charges. Anticipating the fact that the



Fig. 8. Schematic diagram of a solute embedded in a medium of infinite dielectric.
The shaded area represents the molecule, which consists of low dielectric material with
embedded partial atomic charges. The ‘‘þ’’ and ‘‘�’’ signs along the molecular surface
represent the accumulation of charges to balance the atomic charges. This surface
charge distribution can be determined by minimizing as the electrostatic energy of the
system, as described in the text.
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integrals above eventually will be estimated by some sort of quadrature, we
can re-write this as a matrix equation:

E ¼ Egas þ zT Bq þ 1

2
qT Aq ð17Þ

Here z and q are vectors representing the molecular and surface charges,
and A and B are matrices of inverse inter-charge distances. For the present
discussion, the details of how the discretization is carried out are not
relevant.

To determine the induced charge distribution, we simply minimize the
energy expression in equation 17 by setting (@E/@q) = 0, which yields

Aq ¼ �Bz ð18Þ

or

q ¼ �A�1Bz ð19Þ

Substituting q from equation 19 into equation 17 gives expressions for the
solute-solvent interaction energy:

Esolute -solvent ¼ �zT BA�1Bz ð20Þ
and for the solvent-solvent repulsion energy:

Esolvent -solvent ¼
1

2
zT BA�1AA�1Bz ¼ 1

2
zT BA�1Bz ð21Þ
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There are two very useful features of these models that can be seen from
this very simple, symbolic, approach. First, the solvent-solvent energy is
proportional to the squares of the atomic charges, since z appears twice in
equation 20. The is known to be approximately true for simple ions (e.g.,
the hydration free energy of divalent ions such as Mg2þ is about four times
that of monovalent ions such as Naþ), and the same ideas hold for partial
atomic charges as well: solvation effects for partial charges near 0.5 (such
as the C or O atoms in a ketone or amide group) are much more
important (by something like a factor of 25) than are solvation effects for
most CH groups, which have partial atomic charges near 0.1.
Furthermore, in this model, the sign of the charge is not important, so
that both þ0.5 and �0.5 charges have the same (favorable) solvation free
energy; this aspect of the model is only approximately true for water,
where negative charges (of equivalent size) are somewhat better solvated
than the corresponding positive charges.

The second general feature of continuum solvent models that is evident
from the above derivation is that the solvent-solvent repulsion or penalty
is exactly minus one-half of the (favorable) solute-solvent interaction.
This is a general feature of linear-response theories, and again appears
to be approximately valid for real solutes as well, at least as judged by
microscopic simulations (Simonson, 2002).

Of course, biological solvents are not immersed in infinite dielectrics,
and so the model as presented above would be of limited usefulness: for
relatively high dielectrics like water, it gives solvation energies that are
roughly correct, but electrostatic interactions between solute molecules
would be completely screened by the surface charges, completely
removing all long-range electrostatic interactions. To a remarkable extent,
these deficiencies can be ameliorated by increasing the electrostatic
interactions between the surface charge sites (i.e., the second term in
equation 16, or equivalently the A matrix) by a factor e/(e� 1). This has
the effect of making the screening charge opposite in sign, but slightly
smaller in magnitude, than the corresponding atomic charge, so that
charge screening by the solvent is not complete. These ideas were
originally developed in the context of a quantum mechanical description
of the solute charge density and are still widely used for such calculations
(Andzelm et al., 1995; Truong and Stefanovich, 1995; Baldridge and
Klammt, 1997; Barone and Cossi, 1998; Dolney et al., 2000), primarily
because energy gradients can be expressed in a simple fashion. The model
can also be used to describe the electrostatic effects of solvation in a
force field context (York and Karplus, 1999); here, however, the COSMO
model has mostly been overshadowed by Poisson-Boltzmann models
(which are more general) and generalized Born models (which are
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faster). Nevertheless, the basic physics present in the conductor-like model
are present as well in these alternative approaches, which we describe
next.

2. The Poisson-Boltzmann Models

For an approach that is more general and fundamental than COSMO,
but which preserves its continuum character, one can continue to treat
with the two-dielectric model illustrated in Fig. 5 but then formulate and
solve the corresponding electrostatic model without resorting to any
approximations concerning the magnitude of the exterior dielectric
constant. An additional advantage of this model is that the effects of mobile
co- and counterions in the solvent can be included as in Debye-Hückel
theory. For this model (Sharp and Honig, 1990; Tomasi and Persico, 1994;
Cramer and Truhlar, 1999), the electrostatic potential � is determined
by the Poisson or linearized Poisson-Boltzmann (PB) equation,

reðr Þr�ðr Þ � �2ðr Þeðr Þ�ðr Þ ¼ �4�ðr Þ ð22Þ
where e(r) has the interior or exterior value depending on whether r lies
inside or outside the molecular surface (Connolly, 1983); �(r) is the usual
Debye-Huckel parameter in the solvent region but is zero in the interior
and within an ion exclusion radius from the molecular surface, and  is
the solute charge distribution. Because of the linearity of equation 22, the
work of creating a charge distribution,  is simply

R
�dV/2, and the

difference in the work of charging required for the calculation of �Ges is

�Ges ¼
1

2

X
i

qi ½�sol ðriÞ � �vacðriÞ� ð23Þ

where the qi and ri are the solute atomic partial charges and atomic
coordinates, respectively, and �sol and �vac are the solutions of equation 22
for exterior conditions corresponding to solvent and vacuum, respectively.

Because of the complex geometry of the dielectric and ion-exclusion
boundaries, equation 22 must generally be solved numerically. A variety of
programs have been developed to carry out such calculations that are
beyond the scope of this review. There have been several efforts to develop
charge and radius parameters for use in these models based on fitting
small molecule solvation energies (Lim et al., 1991; Sitkoff et al., 1994; Nina
et al., 1997, 1999). There have also been a number of studies comparing
potential energy profiles and surfaces computed with the continuum
solvent models to potentials of mean force calculated with explicit solvent
for both hydrogen bonding and ion-ion interactions (Ösapay et al., 1996,
Luo et al., 1999; Masunov and Lazaridis, 2003). The qualitative features of
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the continuum results are generally in good agreement with the explicit
solvent results, but the details and fine structure can depend critically on
parameterization. When a continuum solvent model is being used in
conjunction with a molecular mechanics potential energy function, it is
important that the continuum model use the same atomic partial charges
and dielectrics as the molecular mechanics potential, or artifacts related to
the over-screening or under-screening of charge-charge interactions can
occur (Ösapay et al., 1996). Since almost all protein force field charge
distributions were designed to be used in a e = 1 environment, troublesome
complications arise when these are combined with continuum solvent
models that other dielectrics (such as 2, 4, or 20) for the molecular
interior. These difficulties are not insuperable, but a discussion of them is
beyond the scope of this review.

Although the Poisson-Boltzmann model has a much lower computa-
tional cost than an analogous explicit solvent model, the direct use of the
model in molecular dynamics simulations has only recently been shown to
be feasible. First, the cost of solving equation 22 at each time step is
significantly greater than the cost of evaluating Uvac . Second, it is difficult,
although not impossible, to calculate the energy gradients that are needed
for molecular mechanics (Sharp, 1991; Gilson et al., 1995; Cortis et al.,
1996; Ripoll et al., 1996; Luo et al., 2002). Finally, the possibility that
solvent-sized and thus high-dielectric-filled voids can appear in the protein
interior during a simulation of unfolding creates discontinuities of the
energy surface that would be very problematic in dynamics. These
considerations have led many workers to consider approximate models,
such as the generalized Born theories considered next.

3. The Generalized Born Model

The Born (1920) model computes the electrostatic work required to
move a charged sphere from a vacuum environment into a continuous
dielectric region. The result is proportional to the square of the charge (as
in the COSMO model discussed above), and is inversely proportional to
the size of the ion. The basic ansatz of generalized Born theory (Still et al.,
1990; Bashford and Case, 2000) is to extend these ideas to non-spherical
molecules by casting the electrostatic contribution to solvation into the
following form:

�Ges ¼ � 1

2

X
i

X
j

qiqj

fGB
1 � 1

eout

� �
ð24Þ

A simple plausibility argument for the generalized Born model is the
following. Imagine a molecule consisting of charges qi embedded in spheres
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of radii, ai ; if the separation rij between any two spheres is sufficiently
large in comparison to the radii, then the solvation free energy can
be given by a sum of individual Born terms, and pairwise Coulombic
terms:

�Ges ¼ �
X

i

q2
i

2ai
1 � 1

eout

� �
� 1

2

X
i

X
j 6¼i

qiq j

rij
1 � 1

eout

� �
ð25Þ

where the factor (1 � 1/eout) appears in the pairwise terms because the
Coulombic interactions are re-scaled by the change of dielectric constant
on going from vacuum to solvent.

The goal of generalized Born theory can be thought of as an effort to
find a relatively simple analytical formula resembling equation 25 that for
real molecular geometries will capture as much as possible the physics of
the Poisson equation. Hence, to obtain a formula such as equation 24, we
seek a function fGB, such that in the self terms (the first summation in
equation 25), fGB acts as an ‘‘effective Born radius’’ while in the pairwise
terms (second summation in equation 25) it becomes an effective
interaction distance. A variety of functional forms for fGB have been
tested (Onufriev et al., 2002), but the most common form chosen is (Still
et al., 1990):

fGBðrij ;R i ;R jÞ ¼ r 2
ij þ R iR j exp �

r 2
ij

4R iR j

 !" #1=2

ð26Þ

Here, the R i are the effective Born radii of the atoms, which generally
depend not only on ai, the intrinsic atomic radii, but also on the radii and
relative positions of all other atoms. Ideally, R i should be chosen so that if
one were to solve the Poisson equation for a single charge placed at the
position of atom i, and a dielectric boundary determined by all of the
molecule’s atoms and their radii, then the self-energy of charge qi in its
reaction field, qi�(ri)/2, would be equal to

q2
i

2R i
1 � 1

eout

� �

Such a scheme leads to what have been called ‘‘perfect’’ radii (Onufriev
et al., 2002). These, in conjunction with the functional form for the cross
terms, equation 26, then yields very accurate cross terms when compared
with numerical solutions of the Poisson equation. Thus the key to accurate
GB models is the estimation of the effective radii (Onufriev et al., 2002;
Lee et al., 2002).
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In practice, of course, obtaining ‘‘perfect’’ radii requires an expensive
solution to the Poisson-Boltzmann equation, and a faster algorithm for
computing the R i values is needed for efficient molecular dynamics
simulations. In the classical electrostatics of a linearly polarizable medium
( Jackson, 1999), the work required to assemble a charge distribution can
be formulated either in terms of a product of the charge distribution with
the electric potential, as in equation 23 above, or in terms of the scalar
product of the electric field E and the electric displacement D:

W ¼ 1

8�

ð
E � DdV ð27Þ

We now introduce the essential approximation used in most forms of
generalized Born theory: that the electric displacement is Coulombic in
form and remains so even as the exterior dielectric is altered from 1 to eout

in the solvation process. In other words, the displacement that is due to
the charge of atom i (which for convenience is here presumed to lie on
the origin) is,

Di �
qir

r 3

This is called the Coulomb field approximation. In the spherically
symmetric case (as in the Born formula) it is exact, but in more complex
geometries, there can be substantial deviations. The work of placing a
charge qi at the origin within a molecule whose interior dielectric constant
is ein, surrounded by a medium of dielectric constant eout and in which no
other charges have yet been placed is then,

W ¼ 1

8�

ð
ðD=eÞ � DdV � 1

8�

ð
in

q2
i

r 4ein
dV þ 1

8�

ð
out

q2
i

r 4eout
dV ð28Þ

The electrostatic component of the solvation energy is found by taking
the difference in W when eout is changed from 1 to 80:

�Ges ¼
�1

8�
1 � 1

80

� �ð
out

q2
i

r 4
dV ð29Þ

where the contribution that is due to the interior region has canceled in
the subtraction.

Comparing equation 29 to the Born formula (equation 16), we
conclude that the effective Born radius should be,

R�1
i ¼ 1

4�

ð
out

r�4dV ð30Þ
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It is often convenient to re-write this in terms of an integration over the
interior region, excluding a radius ai around the origin,

R�1
i ¼ a�1

i � 1

4�

ð0
r�4dV ð31Þ

Here the integral is over the interior of the molecule, excluding regions
within a sphere of radius ai of atom i, and we have used the fact that
the integration of r�4 over all space outside radius a is simply 4�a�1. In the
case of a monatomic ion, where the molecular boundary is simply
the sphere of radius ai, the Born formula is recovered exactly.

The original formulation (Still et al., 1990), as well as some more recent
methods (Lee et al., 2002), use a numerical evaluation of this integral. In
alternative ‘‘pairwise’’ approaches, the integral is estimated via a sum over
pairs of atoms. There are a variety of ways to implement a pairwise
formula. In the ACE (analytical continuum electrostatics) model
(Schaefer and Karplus, 1996; Schaefer et al., 1998; Calimet et al., 2001),
Voronoi volumes for various atom types are determined from a database of
protein structures, and these are used to estimate the contribution of each
atom to the integral in equation 30. An alternative approach considers the
molecule as a set of (overlapping) spheres. The integrals over spheres
can then be obtained analytically, including the case that atom j overlaps
atom i (Schaefer and Froemmel, 1990; Hawkins et al., 1995, 1996). A
straightforward pairwise summation using these ideas would over-count
the solute region, since neighboring atoms j themselves overlap with each
other. Hawkins et al. proposed scaling the neighboring values of aj as an
empirical correction to compensate for this neglect of overlap (Hawkins
et al., 1995, 1996); the original correction factors were subsequently
optimized in the TINKER package to fit small molecule data. The
expression for the generalized Born radii then takes the form,

R�1
i ¼ a�1

i �
X

j

H ðrij ; SjajÞ ð32Þ

where H is a fairly complex expression and the Sj scaling factors are the
additional empirical parameters that account for overlaps. Several groups
have adopted this idea, using different training sets to determine the
intrinsic radii and scaling factors (Hawkins et al., 1996; Jayaram et al., 1998;
Dudek et al., 1998; Tsui and Case, 2000, 2001).

Ghosh et al. (1998) have proposed an alternative approach in which the
Coulomb field is still used in place of the correct field and Green’s
theorem is used to convert the volume integral in equation 31 to a surface
integral. At this level, the ‘‘S-GB’’ (surface-GB) model is formally identical
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to the model outlined above, although there are potential computational
advantages in the surface integral approach, especially for large systems
and for evaluating gradients. In practice, empirical short-range and long-
range corrections are added to improve agreement with numerical
Poisson theory. The combination of S-GB with novel models for the
non-electrostatic component of solvation appears to offer excellent
prospects for many applications, including distinguishing misfolded
decoys from more native conformations (Gallicchio et al., 2002; Felts
et al., 2002).

4. Incorporation of Salt Effects

Generalized Born models have not traditionally considered salt effects,
but the model can be extended to low-salt concentrations at the Debye-
Huckel level by the following arguments (Srinivasan et al., 1999). The basic
idea of the generalized Born approach can be viewed as an interpolation
formula between analytical solutions for a single sphere and for widely
separated spheres. For the latter, the solvation contribution becomes

�Gel ¼ � 1 �
exp ½��rij �

eout

� �
qiqj

rij
ð33Þ

where � is the Debye-Huckel screening parameter. The first term removes
the gas-phase interaction energy, and the second term replaces it with a
screened Coulomb potential. On the other hand, at short distances, the
generalized Born formula is used to reduce to the result for a single
spherical ion (Kirkwood, 1934; Tanford and Kirkwood, 1957):

�Gel ¼ � 1

2
1 � 1

eout

� �
q2

a
� q2�

2eoutð1 þ �bÞ ð34Þ

where a is the radius of the sphere and b is the radial distance to which salt
ions are excluded, so that b-a is the ion exclusion radius. To a close extent,
these two limits can be obtained by the simple substitution

1 � 1

eout

� �
) 1 � exp ½��fGB �

eout

� �
ð35Þ

in equation 24. This reduces directly to equation 33 for large distances and
to the correct result as rij goes to zero to terms linear in �. However, this
model does not contain an ion exclusion radius and hence tends to
overestimate salt effects (as compared with the usual PB model) by
allowing counterions to approach the solute more closely than they
should. A simple, ad hoc modification that leads to acceptable results can
be obtained by scaling � by 0.73 (Srinivasan et al., 1999).
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5. ‘‘Second Generation’’ Generalized Born Models

As outlined above, the key to making GB calculations more accurate, in
the sense of agreement with PB calculations, is improved estimation of the
effective Born radii. In the conventional models, two levels of approxima-
tion are involved, the Coulomb field approximation (CFA) used to derive
equation 30 and approximations used to estimate the integral in that
expression. Recent efforts to improve generalized Born models have
looked at both of these issues.

Some work has gone beyond the CFA. Lee et al. (2002) have looked at
replacing equation 30 with a formula that involves both volume integrals
of r�4 and also r�5, to provide a correction for deviations from spherical
geometry. Requirements of dimensional consistency and reduction to the
CFA form in the spherical case (where the CFA is exact) place strong
constraints on the functional form. The most promising approach uses the
formula

R�1
i ¼ P

1

2a2
i

� 1

4�

ð
r�5dV

� �1=2

� a�1
i þ 1

4�

ð
r�4dV ð36Þ

which has one empirical parameter P, and where the integrals cover the
same space as in equation 31. One can estimate the anticipated value for P
from the asymptotic limit of a single spherical cavity, where P = 2

ffiffiffi
2

p
gives

the exact Born result. Empirically, values slightly greater than 2.83 appear
optimal. When the integrals are evaluated with an accurate grid-based
numerical method, equation 36 provides remarkably good agreement
with effective Born radii calculated from Poisson equation solutions.
Further experimentation with the parameter P, for different dielectric
environments, and molecular sizes and shapes is planned.

A second track for improving the GB model involves more accurate
estimation of integrals such as that in equation 30. Onufriev et al. noted
that models that estimate the integral based on a fused-spheres picture
(and parameterized for small molecules) tend to understimate the
effective radii of atoms deeply buried in proteins (Onufriev et al., 2002).
They argued that this happens because interstices between spheres are not
counted as part of the low-dielectric interior, even when they are much too
small to accommodate a water molecule. In their new method, an
adjustable parameter l is introduced into equation 32:

R�1
i ¼ a�1

i � l
X

j

H ðrij ; SjajÞ ð37Þ

This has the effect of keeping the effective radii for atoms near the surface
the same as in conventional GB models (where the approximations are
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quite good) and to increase the R i values for more buried atoms. Tests on
protein structures showed substantially improved agreement with PB
solutions not only for the total solvation energies but for the individual
interaction terms that go into a pKa calculation. Further elaborations of
this basic idea appear to give considerable improvement in protein
molecular dynamics simulations and folding landscape characterization
(Onufriev, Bashford and Case, unpublished).

Another ‘‘second track’’ method (Lee et al., 2002) takes a more
systematic approach to improving the accuracy of these integrals.
Developing some ideas from the ACE model (Schaefer et al., 1998,
2001), this approach approximates the molecular volume by a set of atom-
based, overlapping weight functions; these are chosen so that their sum is
nearly constant inside the molecular surface and decays to zero very
quickly outside it. In this way, the effective Born radii (and their
derivatives) can be computed analytically in a sum-over-atoms approach.

C. Molecular Dynamics Simulations with the Generalized Born Model

It should be emphasized that adding a GB/SA solvation model to an
existing protein molecular mechanics potential creates a new combination
whose characteristics and quality can be difficult to predict. In principle,
all of the parameters of the combined model should be reoptimized,
following a protocol similar to that used for force fields designed for
explicit solvent simulations. This time-consuming task has not yet been
carried out, and early reports of results of molecular dynamics simulations
are mostly still in a mode of testing the accuracy of the models.

Because GB simulations can be faster than explicit water simulations,
and because the lack of solvent friction allows conformational space to be
sampled more quickly, continuum solvent simulations are very attractive in
studies of peptide and protein folding, where the qualitative features of
the landscapes (including likely folding pathways and intermediates) are
still unclear. Models with continuum solvation have reasonably good
performance in distinguishing native folds from misfolded ‘‘decoys’’
(Vorobjev et al., 1998; Dominy and Brooks, 2002; Felts et al., 2002; Feig and
Brooks, 2002), and searches for native conformations and folding
pathways have also yielded promising results (Pande and Rokhsar, 1999;
Bursulaya and Brooks, 2000; Mitsutake et al., 2001; Zagrovic et al., 2001,
2002a,b; Simmerling et al., 2002; Garcı́a and Sanbonmatsu, 2002).
Simulations of folded proteins have also been reported (Wagner and
Simonson, 1999; Dominy and Brooks, 1999; Calimet et al., 2001; Cornell,
et al., 2001; Tsui and Case, 2001). The general aspects of the dynamics, as
measured by NMR order parameters or by fluctuations about the mean,
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Fig. 9. (Top) Atomic fluctuations of the C� atoms of interleukin-8 about the mean.
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dashed lines. Adapted from Cornell et al. (2001).
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are nearly the same as in more conventional, explicit water simulations.
This is illustrated in Fig. 9 for interleukin-8. However, deviations from the
crystallographic or NMR starting structures have sometimes been notice-
ably larger than in explicit solvent simulations of comparable length.
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To some extent, this might be a consequence of the improved conforma-
tional sampling, which lets the simulation more quickly find non-native
structures that are energetically favored by the particular force field.
But it also seems likely that the current generation of GB models do not
have as good a balance between protein-protein and protein-solvent
interactions as do the more widely tested explicit solvent models.
Further experience and reparameterization will clearly be very useful in
sorting this out, but users of the current generation of GB models should be
aware that they have definite limitations, many of which are not yet fully
understood.

V. Conclusions

An increase in computer power of at least two orders of magnitude
should occur over the next decade. Without further research into the
accuracy of force-field potentials, future macromolecular modeling may
well be limited more by validity of the energy functions, particularly
electrostatic terms, than by technical ability to perform the computations.
For many calculations related to ligand binding, drug design, and protein
structure prediction, accuracy of the underlying potential functions is
critical. For example, imagine a hypothetical protein of N = 100 residues
for which the lowest potential energy basin, representing the family of
‘‘native’’ folds, lies �E = 5 kcal/mol below either a compact ‘‘misfolded’’
structure or the massive regime of unfolded states. Then the average
acceptable error per residue if we are to be able to distinguish the correct
fold is approximately �E/N1/2, or 0.5 kcal/mol. The above example has
been discussed by Dill (1997) and Abagyan (1997), with a similar analysis
advanced by many others. Note that the 0.5 kcal/mol value assumes that
error is randomly distributed. Systematic errors in the potential function
can further reduce the acceptable error per residue. However, contrary to
the pessimistic dogma held by some in the modeling community, this
simple error analysis indicates that further work on potential function
accuracy is valuable.

Calculation of ligand and drug binding energetics would benefit greatly
from potentials of ‘‘chemical accuracy’’—errors of less than 0.5 kcal/mol
in relative binding energies. The promise of structure-based drug design
remains largely unmet as a direct result of the inability of current
modeling protocols to generate reliable answers. In contrast to gas-phase
hydrocarbon potentials, protein potentials have not reached the required
level of accuracy, but they are close enough to suggest that improved
treatment of the major sources of error will lead to success. In addition,
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the argument should be made that we do not adequately understand the
basics of protein structure and energetics until quantitative force-field
modeling methods become truly predictive tools.

In this article we have sought to provide a description of the current
standard practice of protein simulations, providing some of the details of
how three of the currently popular protein force fields were developed
and tested. Along with this, we have highlighted two directions in which
force fields are currently moving, incorporating models of electronic
polarizability and simplifying solvent interactions with continuum ideas.
This selection of topics is of course heavily influenced by our interests and
experience and necessarily leaves out a discussion of other important
aspects of protein force fields. Nevertheless, we hope that even this
restricted view of the successes and limitations of current force fields will
provide a useful perspective on ways in which ‘‘chemical accuracy’’ may be
more closely approached in practical protein simulations in the near
future.
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