
Version 4.1 June 2003

TINKER
Software Tools for Molecular Design

TINKER

Software Tools for Molecular Design

Version 4.1

June 2003

Copyright © 1990-2003 by Jay William Ponder
All Rights Reserved

 2 TINKER User's Guide 2

Copyright © 1990-2003 by Jay William Ponder
All Rights Reserved

User's Guide Cover Illustration by Jay Nelson
Courtesy of Prof. R. T. Paine, Univ. of New Mexico

TINKER IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY
EXPRESS OR IMPLIED. THE USER ASSUMES ALL RISKS OF USING
THIS SOFTWARE. THERE IS NO CLAIM OF THE MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

YOU MAY MAKE COPIES OF TINKER FOR YOUR OWN USE, AND
MODIFY THOSE COPIES. YOU MAY NOT DISTRIBUTE ANY MODIFIED
SOURCE CODE OR DOCUMENTATION TO USERS AT ANY SITE
OTHER THAN YOUR OWN.

v4.1 06/03

 3 TINKER User's Guide 3

TINKER

Software Tools for Molecular Design

Version 4.1 June 2003

Table of Contents Page

 1. Introduction to the TINKER Package 5
 2. Installing TINKER on your Computer 7
 3. Types of Input & Output Files 9
 4. Potential Energy Programs 12
 5. Structure Manipulation Programs 18
 6. Force Field Parameter Sets 22
 7. Use of the Keyword Control File 28
 8. Notes on Special Features & Methods 56
 9. Descriptions of TINKER Routines 62
10. Contents of Common Block Variables 126
11. Index of Function & Subroutine Calls 152
12. Examples using the TINKER Package 179
13. Benchmark Results 181
14. Collaborators & Acknowledgments 184
15. References & Suggested Reading 186

 4 TINKER User's Guide 4

 5 TINKER User's Guide 5

1. Introduction to the TINKER Package

 Welcome to the TINKER molecular modeling package! TINKER is designed to be an easily used
and flexible system of programs and routines for molecular mechanics and dynamics as well as other
energy-based and structural manipulation calculations. It is intended to be modular enough to enable
development of new computational methods and efficient enough to meet most production calculation
needs. Rather than incorporating all the functionality in one monolithic program, TINKER provides a set of
relatively small programs that interoperate to perform complex computations. New programs can be easily
added by modelers with only limited programming experience. The series of major programs included in
the distribution system perform the following core tasks:

 (1) building protein and nucleic acid models from sequence
 (2) energy minimization and structural optimization
 (3) analysis of energy distribution within a structure
 (4) molecular dynamics and stochastic dynamics
 (5) simulated annealing with a choice of cooling schedules
 (6) normal modes and vibrational frequencies
 (7) conformational search and global optimization
 (8) transition state location and conformational pathways
 (9) fitting of energy parameters to crystal data
 (10) distance geometry with pairwise metrization
 (11) molecular volumes and surface areas
 (12) free energy changes for structural mutations
 (13) advanced algorithms based on potential smoothing

 Many of the various energy minimization and molecular dynamics computations can be performed
on full or partial structures, over Cartesian, internal or rigid body coordinates, and including a variety of
boundary conditions and crystal cell types. Other programs are available to generate timing data and allow
checking of potential function derivatives for coding errors. Special features are available to facilitate input
and output of protein and nucleic acid structures. However, the basic core routines have no knowledge of
biopolymer structure and can be used for general molecular systems.

 Due to its emphasis on ease of modification, TINKER differs from many other currently available
molecular modeling packages in that the user is expected to be willing to write simple ``front-end''
programs and make some alterations at the source code level. The main programs provided should be
considered as templates for the users to change according to their wishes. All subroutines are internally
documented and structured programming practices are adhered to throughout. The result, it is hoped, will
be a calculational system which can be tailored to local needs and desires.

 The core TINKER system consists of nearly 130,000 lines of source written entirely in a portable
Fortran77 superset. Use is made of only some very common extensions that aid in writing highly structured
code. The current version of the package has been ported to a wide range of computers with no or
extremely minimal changes. Tested systems include: Red Hat Linux, Microsoft Windows 9X/NT/2000/XP,
Apple OS9 and OSX, HP/Compaq/DEC Alphas under Tru64 Unix and OpenVMS, Hewlett-Packard, IBM,
Silicon Graphics and Sun workstations under each vendor's Unix. At present, our new code is written on
various Linux platforms, and occasionally tested for compatibility on various of the other machine and OS
combinations listed above. At present, we are in the process of converting our primary development efforts
from Fortran77 to a more modern Fortran dialect. A machine-translated C version of TINKER is currently
available, and a hand-translated optimized C version of a previous TINKER release is available for
inspection. Conversion to C or C++ is under consideration, but not being actively pursued at this time.

 The basic design of the energy function engine used by the TINKER system allows usage of
several different parameter sets. At present we are distributing parameters that implement AMBER ff94
and ff96, CHARMM19 and 27, MM2, MM3, OPLS-UA, OPLS-AA and our own AMOEBA (Atomic

 6 TINKER User's Guide 6

Multipole Optimized Energetics for Biomolecular Applications) parameters. In most cases, the source code
separates the geometric manipulations needed for energy derivatives from the actual form of the energy
function itself. Several other literature parameter sets are being considered for possible future development
(ENCAD, MMFF-94, MM4, UFF, etc.), and many of the alternative potential function forms reported in
the literature can be implemented directly or after minor code changes.

 Much of the software in the TINKER package has been heavily used and well tested, but some
modules are still in a fairly early stage of development. Further work on the TINKER system is planned in
three main areas: (1) extension and improvement of the potential energy parameters including additional
parameterization and testing of our polarizable multipole AMOEBA force field, (2) coding of new
computational algorithms including additional methods for free energy determination, torsional Monte
Carlo and molecular dynamics sampling, advanced methods for long range interactions, better transition
state location, and further application of the potential smoothing paradigm, and (3) further development of
Force Field Explorer, a Java-based GUI front-end to the TINKER programs that provides for calculation
setup, launch and control as well as basic visualization.

 Questions and comments regarding the TINKER package, including suggestions for
improvements and changes should be made to the author:

 Professor Jay William Ponder
 Biochemistry & Molecular Biophysics, Box 8231
 Washington University School of Medicine
 660 South Euclid Avenue
 Saint Louis, MO 63110 U.S.A.

 office: Center for Computational Biology, Room 208
 phone: (314) 362-4195
 fax: (314) 362-7183
 email: ponder@dasher.wustl.edu

In addition, an Internet web site containing an online version of this User's Guide, the most recent
distribution version of the full TINKER package and other useful information can be found at
http://dasher.wustl.edu/tinker, the Home Page for the TINKER Molecular Modeling Package.

 7 TINKER User's Guide 7

2. Installing TINKER on your Computer

 The TINKER package is distributed on the Internet via either the web site or the anonymous ftp
account on dasher.wustl.edu with an IP number of 128.252.208.48. This node is an AlphaServer 4100 file
server running Tru64 Unix and located in the Ponder lab at Washington University School of Medicine.
The package is available via the web and standard browsers from the TINKER home page at
http://dasher.wustl.edu/tinker/. Alternatively TINKER can be downloaded by logging into
dasher.wustl.edu via anonymous ftp (Username: anonymous, Password: "your email address") and
downloading the software from the /pub/tinker subdirectory. The complete TINKER distribution as well as
individual files can be downloaded from this site.

 On dasher.wustl.edu, the TINKER package is present as compressed Unix tar archives, Windows
zip files, and as a complete set of uncompressed source and data files. Binaries are provided for machines
running Windows 9X/ME/NT/2000/XP, Linux, and Apple OSX. All of these executables are available in
standard compressed formats as individual programs or as complete sets of executables. It is expected that
other Unix users and PC users who need specially customized versions, will build binaries for their specific
system. Sites with access to the Unix tar, compress and uncompress commands should simply obtain the
archive file tinker.tar.Z. Alternatively, tinker.tar.gz and tinker.zip containing identical the archives
compressed to GNU gzip and Windows ZIP format are also provided. If you choose to download individual
files, you will need at a minimum the contents of the /doc, /source and /params subdirectories. Also
required are the compile/build scripts from the subdirectory named for your machine type. Other areas
contain test cases and examples, benchmark results, machine-translated C code, and the Force Field
Explorer Java GUI for TINKER. The entire TINKER package, after building the executables, will require
from about 40 to over 150 megabytes of disk space depending on the components installed and the use of
shared libraries in the executables.

 The documentation for the TINKER programs, including the guide you are currently reading, is
located in the /pub/tinker/doc subdirectory. The documentation was prepared using the Applixware Words
and Graphics programs. Portable versions of the documentation are provided as ascii text in .txt files and in
.ps Postscript and .pdf Adobe Acrobat file formats. Please read and return by mail the TINKER license. In
particular, we note that TINKER is not ``Open Source'' as users are prohibited from redistribution of
original or modified TINKER source code or binaries to other parties. While our intent is to distribute the
TINKER code to anyone who wants it, the Ponder Lab would like to remain the sole distribution site and
keep track of researchers using the package. The returned license forms also help us justify further
development of TINKER. When new modules and capabilities become available, and when the almost
inevitable bugs are uncovered, we will attempt to notify those who have returned a license form. Finally,
we remind you that this software is copyrighted, and ask that it not be redistributed in any form.

 The compilation and building of the TINKER executables should be easy for most of the common
workstation and PC class computers. We provide in the /make area a Unix-style Makefile that with some
modification can be used to build TINKER on most Unix machines. As a simpler alternative to Makefiles
for the Unix versions, we also provide machine-specific directories with three separate shell scripts to
compile the source, build an object library, and link binary executables. Three similar command files are
provided for Windows, Macintosh and Open VMS systems. Compilation on Unix workstations should use
the vendor supplied Fortran compiler, if available. The public domain GNU g77 Fortran compiler available
from http://gcc.gnu.org/ is also capable of building TINKER on Linux and other Unix-based machines.
The Linux executables we provide are built with the Intel Fortran for Linux 7.0 compiler. The Portland
Group (PGI) and Absoft ProFortran compilers have also been tested under Linux, both of which generate
executables roughly comparable in speed to the Intel compiler. On Linux, the g77 executables tend to
exhibit degraded performance compared with executables from commercial compilers. Some benchmark
results are provided in a later section of this User's Guide For the Macintosh we distribute executables built
under Apple OSX 10.2 with the GNU g77 compiler. TINKER also builds on the Macintosh using the
Absoft ProFortran compiler. For PCs running Windows 9X/NT/2000/XP, the distributed TINKER
executables are built under the Intel Fortran for Windows 7.0 compiler. Alternative Windows compilers

 8 TINKER User's Guide 8

such as Compaq Visual Fortran, Lahey/Fujitsu and The Portland Group compilers, and GNU g77 under
Cygwin have been tested and shown to build TINKER correctly. Please see the README files in each of
the machine-specific areas for further information.

 The first step in building TINKER using the script files is to run the appropriate ``compile'' script.
Next you must use the ``library'' script to create an archive of object code modules. Finally, run the ``link''
script to produce the complete set of TINKER executables. The executables can be renamed and moved to
wherever you like by editing and running the ``rename'' script.

 Regardless of your target machine, only a few small pieces of code can possibly require attention
prior to building. The first two are the system dependent time and date routines found in clock.f and
calendar.f respectively. Next is the openend.f routine that facilitates appending data to the end of an
existing disk file. Please uncomment the sections of these routines needed for your computer type. Version
of these system dependent routines suitable for each system are also provided in the directory for each
machine/OS type. The final set of possible source alterations are to the master array dimensions found in
the include file sizes.i. The most basic limit is on the number of atoms allowed, ``maxatm''. This parameter
can be set to 10000 or more on most workstations. Personal computers with minimal memory may need a
lower limit, perhaps 1000 atoms, depending on available memory, swap space and other resources. A
description of the other parameter values is contained in the header of the file. Note that in order to keep the
code completely transparent, TINKER does not implement any sort of dynamic memory allocation or heap
data structure. This requires that sizes.i dimensioning values be set at least as large as the biggest problem
you intend to run. Obviously, you should not set the array sizes to unnecessarily large values, since this can
tax your compute resources and may result in performance degradation or overt failure of the executables.

 Specific questions about the building or use of the TINKER package should be directed to
tinker@dasher.wustl.edu. TINKER related questions or comments of more general interest can be sent to
the Computational Chemistry List (http://www.ccl.net/) run by Jan Labanowski of The Ohio
Supercomputer Center. The TINKER developers monitor this list and will respond to the list or the
individual poster as appropriate.

 9 TINKER User's Guide 9

3. Types of Input & Output Files

 This section describes the basic file types used by the TINKER package. Let's say you wish to
perform a calculation on a particular small organic molecule. Assume that the file name chosen for our
input and output files is sample. Then all of the TINKER files will reside on the computer under the name
sample.xxx where .xxx is any of the several extension types to be described below.

SAMPLE.XYZ

The .xyz file is the basic TINKER Cartesian coordinates file type. It contains a title line followed by one
line for each atom in the structure. Each line contains: the sequential number within the structure, an atomic
symbol or name, X-, Y-, and Z-coordinates, the force field atom type number of the atom, and a list of the
atoms connected to the current atom. Except for programs whose basic operation is in torsional space, all
TINKER calculations are done from some version of the .xyz format.

SAMPLE.INT

The .int file contains an internal coordinates representation of the molecular structure. It consists of a title
line followed by one line for each atom in the structure. Each line contains: the sequential number within
the structure, an atomic symbol or name, the force field atom type number of the atom, and internal
coordinates in the usual Z-matrix format. For each atom the internal coordinates consist of a distance to
some previously defined atom, and either two bond angles or a bond angle and a dihedral angle to previous
atoms. The length, angle and dihedral definitions do not have to represent real bonded interactions.
Following the last atom definition are two optional blank line separated sets of atom number pairs. The first
list contains pairs of atoms that are covalently bonded, but whose bond length was not used as part of the
atom definitions. These pairs are typically used to close ring structures. The second list contains ``bonds''
that are to be broken, i.e., pairs of atoms that are not covalently bonded, but which were used to define a
distance in the atom definitions.

SAMPLE.KEY

The keyword parameter file always has the extension .key and is optionally present during TINKER
calculations. It contains values for any of a wide variety of switches and parameters that are used to change
the course of the computation from the default. The detailed contents of this file is explained in a latter
section of this User's Guide. If a molecular system specific keyfile, in this case sample.key, is not present,
the the TINKER program will look in the same directory for a generic file named tinker.key.

SAMPLE.DYN

The .dyn file contains values needed to restart a molecular or stochastic dynamics computation. It stores
the current position, current velocity and current and previous accelerations for each atom, as well as the
size and shape of any periodic box or crystal unit cell. This information can be used to start a new dynamics
run from the final state of a previous run. Upon startup, the dynamics programs always check for the
presence of a .dyn file and make use of it whenever possible. The .dyn file is updated concurrent with the
saving of a new dynamics trajectory snapshot.

SAMPLE.END

The .end file type provides a mechanism to gracefully stop a running TINKER calculation. At appropriate
checkpoints during a calculation, TINKER will test for the presence of a sample.end file, and if found will
terminate the calculation after updating the output. The .end file can be created at any time during a
computation, and will be detected when the next checkpoint is reached. The file may be of zero size, and its

 10 TINKER User's Guide 10

contents are unimportant. In the current version of TINKER, the .end mechanism is only available within
dynamics-based programs.

SAMPLE.001, SAMPLE.002,

Several types of computations produce files containing a three or more digit extension (.001 as shown; or
.002, .137, .5678, etc.). These are referred to as cycle files, and are used to store various types of output
structures. The cycle files from a given computation are identical in internal structure to either the .xyz or
.int files described above. For example, the vibrational analysis program can save the tenth normal mode in
sample.010. A molecular dynamics-based program might save its tenth 0.1 picosecond frame (or an energy
minimizer its tenth partially minimized intermediate) in a file of the same name.

SAMPLE.LOG

The Force Field Explorer interface to TINKER saves results of all calculations launched from the GUI to a
log file with the .log suffix. Any output that would normally be directed to the screen after starting a
program from the command line is appended to this log file by Force Field Explorer.

SAMPLE.ARC

A TINKER archive file is simply a series of .xyz Cartesian coordinate files appended together one after
another. This file can be used to condense the results from intermediate stages of an optimization, frames
from a molecular dynamics trajectory, or set of normal mode vibrations into a single file for storage.
TINKER archive files can be displayed as ``movies'' by the Force Field Explorer modeling program.

SAMPLE.PDB

This file type contains coordinate information in the PDB format developed by the Brookhaven Protein
Data Bank for deposition of model structures based on macromolecular X-ray diffraction and NMR data.
Although TINKER itself does not use .pdb files directly for input/output, auxiliary programs are provided
with the system for interconverting .pdb files with the .xyz format described above.

SAMPLE.SEQ

This file type contains the primary sequence of a biopolymer in the standard one-letter code with 50
residues per line. The .seq file for a biopolymer is generated automatically when a PDB file is converted to
TINKER .xyz format or when using the PROTEIN or NUCLEIC programs to build a structure from
sequence It is required for the reverse conversion of a TINKER file back to PDB format..

SAMPLE.FRAC

The fractional coordinates corresponding to the asymmetric unit of a crystal unit cell are stored in the .frac
file. The internal format of this file is identical to the .xyz file; except that the coordinates are fractional
instead of in Angstrom units.

SAMPLE.XMOL

The ARCHIVE program has the option of converting a series of .xyz cycle files into an XMakemol XYZ
file. These files can be displayed as a movie using the XMakemol display program. Note that the .xmol file
format does not contain TINKER atom type information, so it is not possible to convert an .xmol file back
into a TINKER .xyz file.

 11 TINKER User's Guide 11

SAMPLE.CAR

The ARCHIVE program has the option of converting a series of .xyz cycle files into an Accelerys InsightII
coordinate archive file. These files can be displayed as a movie using the InsightII display program. Note
that the .car file format does not contain TINKER atom type information, so it is not possible to convert a
.car file back into a TINKER .XYZ file.

PARAMETER FILES

The potential energy parameter files distributed with the TINKER package all end in the extension .prm,
although this is not required by the programs themselves. Each of these files contains a definition of the
potential energy functional forms for that force field as well as values for individual energy parameters. For
example, the mm3pro.prm file contains the energy parameters and definitions needed for a protein-
specific version of the MM3 force field.

 12 TINKER User's Guide 12

4. Potential Energy Programs

 This section of the manual contains a brief description of each of the TINKER potential energy
programs. A detailed example showing how to run each program is included in a later section. The
programs listed below are all part of the main, supported distribution. Additional source code for various
unsupported programs can be found in the /other directory of the TINKER distribution.

ALCHEMY

A simple program to perform very basic free energy perturbation calculations. This program is provided
mostly for demonstration purposes. For example, we use ALCHEMY in a molecular modeling course
laboratory exercise to perform such classic mutations as chloride to bromide and ethane to methanol in
water. The present version uses the perturbation formula and windowing with an explicit mapping of atoms
involved in the mutation (``AMBER''-style), instead of thermodynamic integration and independent freely
propagating groups of mutated atoms (``CHARMM''-style). Some of the code specific to this program is
limited to the AMBER and OPLS potential functional forms, but could be easily generalized to handle
other potentials. A more general and sophisticated version is currently under development.

ANALYZE

Provides information about a specific molecular structure. The program will ask for the name of a structure
file, which must be in the TINKER .xyz file format, and the type of analysis desired. Options allow output
of: (1) total potential energy of the system, (2) breakdown of the energy by potential function type or over
individual atoms, (3) computation of the total dipole moment and its components, moments of inertia and
radius of gyration, (4) listing of the parameters used to compute selected interaction energies, (5) energies
associated with specified individual interactions.

ANNEAL

Performs a molecular dynamics simulated annealing computation. The program starts from a specified
input molecular structure in TINKER .xyz format. The trajectory is updated using either a modified
Beeman or a velocity Verlet integration method. The annealing protocol is implemented by allowing
smooth changes between starting and final values of the system temperature via the Groningen method of
coupling to an external bath. The scaling can be linear or sigmoidal in nature. In addition, parameters such
as cutoff distance can be transformed along with the temperature. The user must input the desired number
of dynamics steps for both the equilibration and cooling phases, a time interval for the dynamics steps, and
an interval between coordinate/trajectory saves. All saved coordinate sets along the trajectory are placed in
sequentially numbered cycle files.

DYNAMIC

Performs a molecular dynamics (MD) or stochastic dynamics (SD) computation. Starts either from a
specified input molecular structure (an .xyz file) or from a structure-velocity-acceleration set saved from a
previous dynamics trajectory (a restart from a .dyn file). MD trajectories are propagated using either a
modified Beeman or a velocity Verlet integration method. SD is implemented via our own derivation of a
velocity Verlet-based algorithm. In addition the program can perform full crystal calculations, and can
operate in constant energy mode or with maintenance of a desired temperature and/or pressure using the
Groningen method of coupling to external baths. The user must input the desired number of dynamics
steps, a time interval for the dynamics steps, and an interval between coordinate/trajectory saves.
Coordinate sets along the trajectory can be saved as sequentially numbered cycle files or directly to a
TINKER archive .arc file. At the same time that a point along the trajectory is saved, the complete
information needed to restart the trajectory from that point is updated and stored in the .dyn file.

 13 TINKER User's Guide 13

GDA

A program to implement Straub's Gaussian Density Annealing algorithm over an effective series of
analytically smoothed potential energy surfaces. This method can be viewed as an extended stochastic
version of the diffusion equation method of Scheraga, et al., and also has many similar features to the
TINKER Potential Smoothing and Search (PSS) series of programs. The current version of GDA is similar
to but does not exactly reproduce Straub's published method and is limited to argon clusters and other
simple systems involving only van der Waals interactions; further modification and development of this
code is currently underway in the Ponder research group. As with other programs involving potential
smoothing, GDA currently requires use of the smooth.prm force field parameters.

MINIMIZE

The MINIMIZE program performs a limited memory L-BFGS minimization of an input structure over
Cartesian coordinates using a modified version of the algorithm of Jorge Nocedal. The method requires
only the potential energy and gradient at each step along the minimization pathway. It requires storage
space proportional to the number of atoms in the structure. The MINIMIZE procedure is recommended for
preliminary minimization of trial structures to an rms gradient of 1.0 to 0.1 kcal/mole/Å. It has a relatively
fast cycle time and is tolerant of poor initial structures, but converges in a slow, linear fashion near the
minimum. The user supplies the name of the TINKER .xyz coordinates file and a target rms gradient value
at which the minimization will terminate. Output consists of minimization statistics written to the screen or
redirected to an output file, and the new coordinates written to updated .xyz files or to cycle files.

MINIROT

The MINIROT program uses the same limited memory L-BFGS method as MINIMIZE, but performs the
computation in terms of dihedral angles instead of Cartesian coordinates. Output is saved in an updated .int
file or in cycle files.

MINRIGID

The MINRIGID program is similar to MINIMIZE except that it operates on rigid bodies starting from a
TINKER .xyz coordinate file and the rigid body group definitions found in the corresponding .key file.
Output is saved in an updated .xyz file or in cycle files.

MONTE

The MONTE program implements the Monte Carlo Minimization algorithm developed by Harold
Scheraga's group and others. The procedure takes Monte Carlo steps for either a single atom or a single
torsional angle, then performs a minimization before application of the Metropolis sampling method. This
results in effective sampling of a modified potential surface where the only possible energy levels are those
of local minima on the original surface. The program can be easily modified to elaborate on the available
move set.

NEWTON

A truncated Newton minimization method which requires potential energy, gradient and Hessian
information. This procedure has significant advantages over standard Newton methods, and is able to
minimize very large structures completely. Several options are provided with respect to minimization
method and preconditioning of the Newton equations. The default options are recommended unless the user
is familiar with the math involved. This program operates in Cartesian coordinate space and is fairly
tolerant of poor input structures. Typical algorithm iteration times are longer than with nonlinear conjugate
gradient or variable metric methods, but many fewer iterations are required for complete minimization.

 14 TINKER User's Guide 14

NEWTON is usually the best choice for minimizations to the 0.01 to 0.000001 kcal/mole/Å level of rms
gradient convergence. Tests for directions of negative curvature can be removed, allowing NEWTON to be
used for optimization to conformational transition state structures (this only works if the starting point is
very close to the transition state). Input consists of a TINKER .xyz coordinates file; output is an updated set
of minimized coordinates and minimization statistics.

NEWTROT

The NEWTROT program is similar to NEWTON except that it requires a .int file as input and then
operates in terms of dihedral angles as the minimization variables. Since the dihedral space Hessian matrix
of an arbitrary structure is often indefinite, this method will often not perform as well as the other, simpler
dihedral angle based minimizers.

OPTIMIZE

The OPTIMIZE program performs a optimally conditioned variable metric minimization of an input
structure over Cartesian coordinates using an algorithm due to William Davidon. The method does not
perform line searches, but requires computation of energies and gradients as well as storage for an estimate
of the inverse Hessian matrix. The program operates on Cartesian coordinates from a TINKER .xyz file.
OPTIMIZE will typically converge somewhat faster and more completely than MINIMIZE. However, the
need to store and manipulate a full inverse Hessian estimate limits its use to structures containing less than
a few hundred atoms on workstation class machines. As with the other minimizers, OPTIMIZE needs input
coordinates and an rms gradient cutoff criterion. The output coordinates are saved in updated .xyz files or
as cycle files.

OPTIROT

The OPTIROT program is similar to OPTIMIZE except that it operates on dihedral angles starting from a
TINKER .int internal coordinate file. This program is usually the preferred method for most dihedral angle
optimization problems since Truncated Newton methods appear, in our hands, to lose some of their efficacy
in moving from Cartesian to torsional coordinates.

OPTRIGID

The OPTRIGID program is similar to OPTIMIZE except that it operates on rigid bodies starting from a
TINKER .xyz coordinate file and the rigid body atom group definitions found in the corresponding .key
file. Output is saved in an updated .xyz file or in cycle files.

PATH

A program that implements a variant of Elber's Lagrangian multiplier-based reaction path following
algorithm. The program takes as input a pair of structural minima as TINKER .xyz files, and then generates
a user specified number of points along a path through conformational space connecting the input
structures. The intermediate structures are output as TINKER cycle files, and the higher energy
intermediates can be used as input to a Newton-based optimization to locate conformational transition
states.

PSS

Implements our version of a potential smoothing and search algorithm for the global optimization of
molecular conformation. An initial structure in .xyz format is first minimized in Cartesian coordinates on a
series of increasingly smoothed potential energy surfaces. Then the smoothing procedure is reversed with
minimization on each successive surface starting from the coordinates of the minimum on the previous

 15 TINKER User's Guide 15

surface. A local search procedure is used during the backtracking to explore for alternative minima better
than the one found during the current minimization. The final result is usually a very low energy
conformation or, in favorable cases, the global energy minimum conformation. The minimum energy
coordinate sets found on each surface during both the forward smoothing and backtracking procedures are
placed in sequentially numbered cycle files.

PSSRIGID

This program implements the potential smoothing and search method as described above for the PSS
program, but performs the computation in terms of keyfile-defined rigid body atom groups instead of
Cartesian coordinates. Output is saved in numbered cycle files with the .xyz file format.

PSSROT

This program implements the potential smoothing and search method as described above for the PSS
program, but performs the computation in terms of a set of user-specified dihedral angles instead of
Cartesian coordinates. Output is saved in numbered cycle files with the .int file format.

SADDLE

A program for the location of a conformational transition state between two potential energy minima.
SADDLE uses a conglomeration of ideas from the Bell-Crighton quadratic path and the Halgren-Lipscomb
synchronous transit methods. The basic idea is to perform a nonlinear conjugate gradient optimization in a
subspace orthogonal to a suitably defined reaction coordinate. The program requires as input the
coordinates (TINKER .xyz files) of the two minima and an rms gradient convergence criterion for the
optimization. The current estimate of the transition state structure is written to the file TSTATE.XYZ.
Crude transition state structures generated by SADDLE can sometimes be refined using the NEWTON
program. Optionally, a scan of the interconversion pathway can be made at each major iteration.

SCAN

A program for general conformational search of an entire potential energy surface via a basin hopping
method. The program takes as input a TINKER .xyz coordinates file which is then minimized to find the
first local minimum for a search list. A series of activations along various normal modes from this initial
minimum are used as seed points for additional minimizations. Whenever a previously unknown local
minimum is located it is added to the search list. When all minima on the search list have been subjected to
the normal mode activation without locating additional new minima, the program terminates. The
individual local minima are written to cycle files as they are discovered. While the SCAN program can be
used on standard undeformed potential energy surfaces, we have found it to be most useful for quickly
``scanning'' a smoothed energy surface to enumerate the major basins of attraction spaning the entire
surface.

SNIFFER

A program that implements the Sniffer global optimization algorithm of Butler and Slaminka, a discrete
version of Griewank's global search trajectory method. The program takes an input TINKER .xyz
coordinates file and shakes it vigorously via a modified dynamics trajectory before, hopefully, settling into
a low lying minimum. Some trial and error is often required as the current implementation is sensitive to
various parameters and tolerances that govern the computation. At present, these parameters are not user
accessible, and must be altered in the source code. However, this method can do a good job of quickly
optimizing conformation within a limited range of convergence.

TESTGRAD

 16 TINKER User's Guide 16

The TESTGRAD program computes and compares the analytical and numerical first derivatives (i.e., the
gradient vector) of the potential energy for a Cartesian coordinate input structure. The output can be used to
test or debug the current potential or any added user defined energy terms.

TESTHESS

The TESTHESS program computes and compares the analytical and numerical second derivatives (i.e., the
Hessian matrix) of the potential energy for a Cartesian coordinate input structure. The output can be used to
test or debug the current potential or any added user defined energy terms.

TESTLIGHT

A program to compare the efficiency of different nonbonded neighbor methods for the current molecular
system. The program times the computation of energy and gradient for the van der Waals and charge-
charge electrostatic potential terms using a simple double loop over all interactions and using the Method
of Lights algorithm to select neighbors. The results can be used to decide whether the Method of Lights has
any CPU time advantage for the current structure. Both methods should give exactly the same answer in all
cases, since the identical individual interactions are computed by both methods. The default double loop
method is faster when cutoffs are not used, or when the cutoff sphere contains about half or more of the
total system of unit cell. In cases where the cutoff sphere is much smaller than the system size, the Method
of Lights can be much faster since it avoids unnecessary calculation of distances beyond the cutoff range.

TESTROT

The TESTROT program computes and compares the analytical and numerical first derivatives (i.e., the
gradient vector) of the potential energy with respect to dihedral angles. Input is a TINKER .int internal
coordinate file. The output can be used to test or debug the current potential functions or any added user
defined energy terms.

TIMER

A simple program to provide timing statistics for energy function calls within the TINKER package.
TIMER requires an input .xyz file and outputs the CPU time (wall clock time on some machine types)
needed to perform a specified number of energy, gradient and Hessian evaluations.

TIMEROT

This program is similar to TIMER, only it operates over dihedral angles via input of a TINKER .int
internal coordinate file. In the current version, the torsional Hessian is computed numerically from the
analytical torsional gradient.

VIBRATE

A program to perform vibrational analysis by computing and diagonalizing the full Hessian matrix (i.e., the
second partial derivatives) for an input structure (a TINKER .xyz file). Eigenvalues and eigenvectors of the
mass weighted Hessian (i.e., the vibrational frequencies and normal modes) are also calculated. Structures
corresponding to individual normal mode motions can be saved in cycle files.

VIBROT

The program VIBROT forms the torsional Hessian matrix via numerical differentiation of the analytical
torsional gradient. The Hessian is then diagonalized and the eigenvalues are output. The present version

 17 TINKER User's Guide 17

does not compute the kinetic energy matrix elements needed to convert the Hessian into the torsional
normal modes; this will be added in a later version. The required input is a TINKER .int internal coordinate
file.

XTALFIT

The XTALFIT program is of use in the automated fitting of potential parameters to crystal structure and
thermodynamic data. XTALFIT takes as input several crystal structures (TINKER .xyz files with unit cell
parameters in corresponding keyfiles) as well as information on lattice energies and dipole moments of
monomers. The current version uses a nonlinear least squares optimization to fit van der Waals and
electrostatic parameters to the input data. Bounds can be placed on the values of the optimization
parameters.

XTALMIN

A program to perform full crystal minimizations. The program takes as input the structure coordinates and
unit cell lattice parameters. It then alternates cycles of Newton-style optimization of the structure and
conjugate gradient optimization of the crystal lattice parameters. This alternating minimization is slower
than more direct optimization of all parameters at once, but is somewhat more robust in our hands. The
symmetry of the original crystal is not enforced, so interconversion of crystal forms may be observed in
some cases.

 18 TINKER User's Guide 18

5. Structure Manipulation Programs

 This section of the manual contains a brief description of each of the TINKER structure
manipulation, geometric calculation and auxiliary programs. A detailed example showing how to run each
program is included in a later section. The programs listed below are all part of the main, supported
distribution. Additional source code for various unsupported programs can be found in the /other directory
of the TINKER distribution.

ARCHIVE

A program for concatenating TINKER cycle files into a single archive file; useful for storing the
intermediate results of minimizations, dynamics trajectories, and so on. The archive file can be written in
TINKER format, or in formats usable with MSI's InsightII (their CAR file with .msi extension) or with
XMakemol (their file format with .xmol extension). Only active atoms are written into the InsightII and
XMakemol output files, allowing display of partial structures. The program can also extract individual
cycle files from a TINKER archive.

CORRELATE

A program to compute time correlation functions from collections of TINKER cycle files. Its use requires a
user supplied function property that computes the value of the property for which a time correlation is
desired for two input structures. A sample routine is supplied that computes either a velocity
autocorrelation function or an rms structural superposition as a function of time. The main body of the
program organizes the overall computation in an efficient manner and outputs the final time correlation
function.

CRYSTAL

A program for the manipulation of crystal structures including interconversion of fractional and Cartesian
coordinates, generation of the unit cell from an asymmetric unit, and building of a crystalline block of
specified size via replication of a single unit cell. The present version can handle about 25 of the most
common space groups, others can easily be added as needed by modification of the routine symmetry.

DIFFUSE

A program to compute the self-diffusion constant for a homogeneous liquid via the Einstein equation. A
previously saved dynamics trajectory is read in and ``unfolded'' to reverse translation of molecules due to
use of periodic boundary conditions. The average motion over all molecules is then used to compute the
self-diffusion constant. While the current program assumes a homogeneous system, it should be easy to
modify the code to handle diffusion of individual molecules or other desired effects.

DISTGEOM

A program to perform distance geometry calculations using variations on the classic metric matrix method.
A user specified number of structures consistent with keyfile input distance and dihedral restraints is
generated. Bond length and angle restraints are derived from the input structure. Trial distances between the
triangle smoothed lower and upper bounds can be chosen via any of several metrization methods, including
a very effective partial random pairwise scheme. The correct radius of gyration of the structure is
automatically maintained by choosing trial distances from Gaussian distributions of appropriate mean and
width. The initial embedded structures can be further refined against a geometric restraint-only potential
using either a sequential minimization protocol or simulated annealing.

 19 TINKER User's Guide 19

DOCUMENT

The DOCUMENT program is provided as a minimal listing and documentation tool. It operates on the
TINKER source code, either individual files or the complete source listing produced by the command script
listing.make, to generate lists of routines, common blocks or valid keywords. In addition, the program has
the ability to output a formatted parameter listing from the standard TINKER parameter files.

INTEDIT

A program to allow interactive inspection and alteration of the internal coordinate definitions and values of
a TINKER structure. If the structure is altered, the user has the option to write out a new internal
coordinates file upon exit.

INTXYZ

A program to convert a TINKER .int internal coordinates formatted file into a TINKER .xyz Cartesian
coordinates formatted file.

NUCLEIC

A program for automated building of nucleic acid structures. Upon interactive input of a nucleotide
sequence with optional phosphate backbone angles, the program builds internal and Cartesian coordinates.
Standard bond lengths and angles are used. Both DNA and RNA sequences are supported as are A-, B- and
Z-form structures. Double helixes of complementary sequence can be automatically constructed via a rigid
docking of individual strands.

PDBXYZ

A program for converting a Brookhaven Protein Data Bank file (a PDB file) into a TINKER .xyz Cartesian
coordinate file. If the PDB file contains only protein/peptide amino acid residues, then standard protein
connectivity is assumed, and transferred to the .xyz file. For non-protein portions of the PDB file, atom
connectivity is determined by the program based on interatomic distances. The program also has the ability
to add or remove hydrogen atoms from a protein as required by the force field specified during the
computation.

POLARIZE

A program for computing molecular polarizability from an atom-based distributed model of polarizability.
A damped interaction model due to Thole is optionally via keyfile settings. A TINKER .xyz file is required
as input. The output consists of the overall polarizability tensor in the global coordinates and its
eigenvalues.

PROTEIN

A program for automated building of peptide and protein structures. Upon interactive input of an amino
acid sequence with optional phi/psi/omega/chi angles, D/L chirality, etc., the program builds internal and
Cartesian coordinates. Standard bond lengths and angles are assumed for the peptide. The program will
optionally convert the structure to a cyclic peptide, or add either or both N- and C-terminal capping groups.
Atom type numbers are automatically assigned for the specified force field. The final coordinates and a
sequence file are produced as the output.

RADIAL

 20 TINKER User's Guide 20

A program to compute the pair radial distribution function between two atom types. The user supplies the
two atom names for which the distribution function is to be computed, and the width of the distance bins
for data analysis. A previously saved dynamics trajectory is read as input. The raw radial distribution and a
spline smoothed version are then output from zero to a distance equal to half the minimum periodic box
dimension. The atom names are matched to the atom name column of the TINKER .xyz file, independent
of atom type.

SPACEFILL

A program to compute the volume and surface areas of molecules. Using a modified version of Connolly's
original analytical description of the molecular surface, the program determines either the van der Waals,
accessible or molecular (contact/reentrant) volume and surface area. Both surface area and volume are
broken down into their geometric components, and surface area is decomposed into the convex contribution
for each individual atom. The probe radius is input as a user option, and atomic radii can be set via the
keyword file. If TINKER archive files are used as input, the program will compute the volume and surface
area of each structure in the input file.

SPECTRUM

A program to compute a power spectrum from velocity autocorrelation data. As input, this program
requires a velocity autocorrelation function as produced by the CORRELATE program. This data, along
with a user input time step, are Fourier transformed to generate the spectral intensities over a wavelength
range. The result is a power spectrum, and the positions of the bands are those predicted for an infrared or
Raman spectrum. However, the data is not weighted by molecular dipole moment derivatives as would be
required to produce correct IR intensities.

SUPERPOSE

A program to superimpose two molecular structures in 3-dimensions. A variety of options for input of the
atom sets to be used during the superposition are presented interactively to the user. The superposition can
be mass-weighted if desired, and the coordinates of the second structure superimposed on the first structure
are optionally output. If TINKER archive files are used as input, the program will compute all pairwise
superpositions between structures in the input files.

SYBYLXYZ

A program for converting a TRIPOS Sybyl MOL2 file into a TINKER .xyz Cartesian coordinate file. The
current version of the program does not attempt to convert the Sybyl atoms types into the active TINKER
force field types, i.e., all atoms types are simply set to zero.

TVIEW

This is a molecule viewing program derived from the well-know Rasmol program of Roger Sayle. TVIEW
is modified to remove most of the protein-specific options and to directly read the TINKER .xyz file
format. The original RasMol program has been altered to allow selection and specification by atoms instead
of residues. We hope to provide additional functionality in future versions of TVIEW, especially the ability
to animate the viewing of sequences of coordinate snapshots from a minimization or dynamic trajectory.

XYZEDIT

A program that performs and of a variety of manipulations on an input TINKER .xyz Cartesian coordinates
formatted file. The present version of the program has the following interactively selectable options: (1)
Offset the Numbers of the Current Atoms, (2) Deletion of Individual Specified Atoms, (3) Deletion of

 21 TINKER User's Guide 21

Specified Types of Atoms, (4) Deletion of Atoms outside Cutoff Range, (5) Insertion of Individual
Specified Atoms, (6) Replace Old Atom Type with a New Type, (7) Assign Connectivities based on
Distance, (8) Convert Units from Bohrs to Angstroms, (9) Invert thru Origin to give Mirror Image, (10)
Translate Center of Mass to the Origin, (11) Translate a Specified Atom to the Origin, (12) Translate and
Rotate to Inertial Frame, (13) Move to Specified Rigid Body Coordinates, (14) Create and Fill a Periodic
Boundary Box, (15) Soak Current Molecule in Box of Solvent, (16) Append another XYZ file to Current
One. In most cases, multiply options can be applied sequentially to an input file. At the end of the editing
process, a new version of the original .xyz file is written as output.

XYZINT

A program for converting a TINKER .xyz Cartesian coordinate formatted file into a TINKER .int internal
coordinates formatted file.

XYZPDB

A program for converting a TINKER .xyz Cartesian coordinate file into a Brookhaven Protein Data Bank
file (a PDB file).

XYZSYBYL

A program to convert a TINKER .xyz Cartesian coordinates file into a TRIPOS Sybyl MOL2 file. The
conversion generates only the MOLECULE, ATOM, BOND and SUBSTRUCTURE record type in the
MOL2 file. Generic Sybyl atom types are used in most cases; while these atom types may need to be
altered in some cases, Sybyl is usually able to correctly display the resulting MOL2 file.

 22 TINKER User's Guide 22

6. Force Field Parameter Sets

 The TINKER package is distributed with several force field parameter sets, implementing a
selection of widely used literature force fields as well as the TINKER force field currently under
construction in the Ponder lab. We try to exactly reproduce the intent of the original authors of our
distributed, third-party force fields. In all cases the parameter sets have been validated against literature
reports, results provided by the original developers, or calculations made with the authentic programs. With
the few exceptions noted below, TINKER calculations can be treated as authentic results from the genuine
force fields. A brief description of each parameter set, including some still in preparation and not
distributed with the current version, is provided below with lead literature references for the force field:

AMOEBA.PRM

Preliminary parameters for the TINKER polarizable atomic multipole force field. As the release of
TINKER 4.0 we have completed parametrization for a large number of small molecule systems. Work on a
full protein force field is also essentially complete. The currently distributed file contains a sample of small
molecule parameters. For further information, or if you are interested in testing other small molecules or
the protein parameter set, please contact the TINKER developers.

AMBER94.PRM

AMBER ff94 parameters for proteins and nucleic acids. Note that with their ``Cornell'' force field, the
Kollman group has devised separate, fully independent partial charge values for each of the N- and C-
terminal amino acid residues. At present, the terminal residue charges for TINKER's version maintain the
correct formal charge, but redistributed somewhat at the alpha carbon atoms from the Kollman group
values. The total magnitude of the redistribution is less than 0.01 electrons in most cases. The file provided
with TINKER reproduces the original ff94 set; torsional parameter changes for ff96 are noted in that
section of the file. The newer ff99 and polarizable ff02 parameter sets are not distributed with TINKER at
the present time.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T.
Fox, J. W. Caldwell and P. A. Kollman, A Second Generation Force Field for the Simulation of Proteins,
Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc., 117, 5179-5197 (1995) [PARM94]

P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot and A. Pohorille, The Development/ Application of a
'Minimalist' Organic/Biochemical Molecular Mechanic Force Field using a Combination of ab Initio
Calculations and Experimental Data, in Computer Simulation of Biomolecular Systems, W. F. van
Gunsteren, P. K. Weiner, A. J. Wilkinson, eds., Volume 3, 83-96 (1997) [PARM96]

G. Moyna, H. J. Williams, R. J. Nachman and A. I. Scott, Conformation in Solution and Dynamics of a
Structurally Constrained Linear Insect Kinin Pentapeptide Analogue, Biopolymers, 49, 403-413 (1999)
[AIB charges]

W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994) [alkali metal ions]

J. Aqvist, Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J. Phys.
Chem., 94, 8021-8024, 1990 [alkaline earth Ions, radii adapted for AMBER combining rule]

Current force field parameter values and suggested procedures for development of parameters for
additional molecules are available from the AMBER web site at UCSF,
http://www.amber.ucsf.edu/amber/amber.html/

 23 TINKER User's Guide 23

CHARMM19.PRM

CHARMM19 united-atom parameters for proteins. The nucleic acid parameter are not yet implemented.
There are some differences between authentic CHARMM19 and the TINKER version due to replacement
of CHARMM impropers by torsions for cases that involve atoms not bonded to the trigonal atom and
TINKER's use of all possible torsions across a bond instead of a single torsion per bond.

E. Neria, S. Fischer and M. Karplus, Simulation of Activation Free Energies in Molecular Systems, J.
Chem. Phys., 105, 1902-1921 (1996)

L. Nilsson and M. Karplus, Empirical Energy Functions for Energy Minimizations and Dynamics of
Nucleic Acids, J. Comput. Chem., 7, 591-616 (1986)

W. E. Reiher III, Theoretical Studies of Hydrogen Bonding, Ph.D. Thesis, Department of Chemistry,
Harvard University, Cambridge, MA, 1985

CHARMM27.PRM

CHARMM27 all-atom parameters for proteins and lipids. Most of the nucleic acid and small model
compound parameters are not yet implemented. We plan to provide these additional parameters in due
course.

N. Foloppe and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 1) Parameter
Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data, J. Comput.
Chem., 21, 86-104 (2000) [CHARMM27]

N. Banavali and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 2) Application to
Molecular Dynamics Simulations of DNA and RNA in Solution, J. Comput. Chem., 21, 105-120 (2000)

A. D. MacKerrell, Jr., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies
of Proteins, J. Phys. Chem. B, 102, 3586-3616 (1998) [CHARMM22]

A. D. MacKerell, Jr., J. Wiorkeiwicz-Kuczera and M. Karplus, An All-Atom Empirical Energy Function
for the Simulation of Nucleic Acids, J. Am. Chem. Soc., 117, 11946-11975 (1995)

S. E. Feller, D. Yin, R. W. Pastor and A. D. MacKerell, Jr., Molecular Dynamics Simulation of Unsaturated
Lipids at Low Hydration: Parametrization and Comparison with Diffraction Studies, Biophysical Journal,
73, 2269-2279 (1997) [alkenes]

R. H. Stote and M. Karplus, Zinc Binding in Proteins and Solution - A Simple but Accurate Nonbonded
Representation, Proteins, 23, 12-31 (1995) [zinc ion]

Current and legacy parameter values are available from the CHARMM force field web site on Alex
MacKerell's Research Interests page at the University of Maryland School of Pharmacy,
https://rxsecure.umaryland.edu/research/amackere/research.html/

DUDEK.PRM

Protein-only parameters for the early 1990's TINKER force field with multipole values of Dudek and
Ponder. The current file contains only the multipole values from the 1995 paper by Dudek and Ponder. This

 24 TINKER User's Guide 24

set is now superceeded by the more recent TINKER force field developed by Pengyu Ren (see
WATER.PRM, below).

M. J. Dudek and J. W. Ponder, Accurate Electrostatic Modelling of the Intramolecular Energy of Proteins,
J. Comput. Chem., 16, 791-816 (1995)

ENCAD.PRM

ENCAD parameters for proteins and nucleic acids. (in preparation)

M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, Potential Energy Function and Parameters for
Simulations of the Molecular Dynamics of Protein and Nucleic Acids in Solution, Comp. Phys. Commun.,
91, 215-231 (1995)

M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Daggett, Calibration and Testing of a Water
Model for Simulation of the Molecular Dynamics of Protein and Nucleic Acids in Solution, J. Phys. Chem.
B, 101, 5051-5061 (1997) [F3C water]

HOCH.PRM

Simple NMR-NOE force field of Hoch and Stern.

J. C. Hoch and A. S. Stern, A Method for Determining Overall Protein Fold from NMR Distance
Restraints, J. Biomol. NMR, 2, 535-543 (1992)

MM2.PRM

Full MM2(1991) parameters including •-systems. The anomeric and electronegativity correction terms
included in some later versions of MM2 are not implemented.

N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2
Torsional Terms, J. Am. Chem. Soc., 99, 8127-8134 (1977)

J. T. Sprague, J. C. Tai, Y. Yuh and N. L. Allinger, The MMP2 Calculational Method, J. Comput. Chem.,
8, 581-603 (1987)

J. C. Tai and N. L. Allinger, Molecular Mechanics Calculations on Conjugated Nitrogen-Containing
Heterocycles, J. Am. Chem. Soc., 110, 2050-2055 (1988)

J. C. Tai, J.-H. Lii and N. L. Allinger, A Molecular Mechanics (MM2) Study of Furan, Thiophene, and
Related Compounds, J. Comput. Chem., 10, 635-647 (1989)

N. L. Allinger, R. A. Kok and M. R. Imam, Hydrogen Bonding in MM2, J. Comput. Chem., 9, 591-595
(1988)

L. Norskov-Lauritsen and N. L. Allinger, A Molecular Mechanics Treatment of the Anomeric Effect, J.
Comput. Chem., 5, 326-335 (1984)

All parameters distributed with TINKER are from the ``MM2 (1991) Parameter Set'', as provided by N. L.
Allinger, University of Georgia

MM3.PRM

 25 TINKER User's Guide 25

Full MM3(2000) parameters including pi-systems. The directional hydrogen bonding term and
electronegativity bond length corrections are implemented, but the anomeric and Bohlmann correction
terms are not implemented.

N. L. Allinger, Y. H. Yuh and J.-H. Lii, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1,
J. Am. Chem. Soc., 111, 8551-8566 (1989)

J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational
Frequencies and Thermodynamics, J. Am. Chem. Soc., 111, 8566-8575 (1989)

J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der
Waals' Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons, J. Am. Chem. Soc., 111,
8576-8582 (1989)

N. L. Allinger, H. J. Geise, W. Pyckhout, L. A. Paquette and J. C. Gallucci, Structures of Norbornane and
Dodecahedrane by Molecular Mechanics Calculations (MM3), X-ray Crystallography, and Electron
Diffraction, J. Am. Chem. Soc., 111, 1106-1114 (1989) [stretch-torsion cross term]

N. L. Allinger, F. Li and L. Yan, Molecular Mechanics. The MM3 Force Field for Alkenes, J. Comput.
Chem., 11, 848-867 (1990)

N. L. Allinger, F. Li, L. Yan and J. C. Tai, Molecular Mechanics (MM3) Calculations on Conjugated
Hydrocarbons, J. Comput. Chem., 11, 868-895 (1990)

J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. I, J. Phys. Org.
Chem., 7, 591-609 (1994)

J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. II, J. Comput. Chem.,
19, 1001-1016 (1998)

All parameters distributed with TINKER are from the ``MM3 (2000) Parameter Set'', as provided by N. L.
Allinger, University of Georgia, August 2000

MM3PRO.PRM

Protein-only version of the MM3 parameters.

J.-H. Lii and N. L. Allinger, The MM3 Force Field for Amides, Polypeptides and Proteins, J. Comput.
Chem., 12, 186-199 (1991)

OPLSUA.PRM

Complete OPLS-UA with united-atom parameters for proteins and many classes of organic molecules.
Explicit hydrogens on polar atoms and aromatic carbons.

W. L. Jorgensen and J. Tirado-Rives, The OPLS Potential Functions for Proteins. Energy Minimizations
for Crystals of Cyclic Peptides and Crambin, J. Am. Chem. Soc., 110, 1657-1666 (1988) [peptide and
proteins]

 26 TINKER User's Guide 26

W. L. Jorgensen and D. L. Severance, Aromatic-Aromatic Interactions: Free Energy Profiles for the
Benzene Dimer in Water, Chloroform, and Liquid Benzene, J. Am. Chem. Soc., 112, 4768-4774 (1990)
[aromatic hydrogens]

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and P. Weiner, A
New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem. Soc.,
106, 765-784 (1984) [united-atom ``AMBER/OPLS'' local geometry]

S. J. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case, An All Atom Force Field for Simulations of
Proteins and Nucleic Acids, J. Comput. Chem., 7, 230-252 (1986) [all-atom "AMBER/OPLS" local
geometry]

L. X. Dang and B. M. Pettitt, Simple Intramolecular Model Potentials for Water, J. Phys. Chem., 91, 3349-
3354 (1987) [flexible TIP3P and SPC water]

W. L. Jorgensen, J. D. Madura and C. J. Swenson, Optimized Intermolecular Potential Functions for Liquid
Hydrocarbons, J. Am. Chem. Soc., 106, 6638-6646 (1984) [hydrocarbons]

W. L. Jorgensen, E. R. Laird, T. B. Nguyen and J. Tirado-Rives, Monte Carlo Simulations of Pure Liquid
Substituted Benzenes with OPLS Potential Functions, J. Comput. Chem., 14, 206-215 (1993) [substituted
benzenes]

E. M. Duffy, P. J. Kowalczyk and W. L. Jorgensen, Do Denaturants Interact with Aromatic Hydrocarbons
in Water?, J. Am. Chem. Soc., 115, 9271-9275 (1993) [benzene, naphthalene, urea, guanidinium,
tetramethyl ammonium]

W. L. Jorgensen and C. J. Swenson, Optimized Intermolecular Potential Functions for Amides and
Peptides. Structure and Properties of Liquid Amides, J. Am. Chem. Soc., 106, 765-784 (1984) [amides]

W. L. Jorgensen, J. M. Briggs and M. L. Contreras, Relative Partition Coefficients for Organic Solutes
form Fluid Simulations, J. Phys. Chem., 94, 1683-1686 (1990) [chloroform, pyridine, pyrazine,
pyrimidine]

J. M. Briggs, T. B. Nguyen and W. L. Jorgensen, Monte Carlo Simulations of Liquid Acetic Acid and
Methyl Acetate with the OPLS Potential Functions, J. Phys. Chem., 95, 3315-3322 (1991) [acetic acid,
methyl acetate]

H. Liu, F. Muller-Plathe and W. F. van Gunsteren, A Force Field for Liquid Dimethyl Sulfoxide and
Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation, J.
Am. Chem. Soc., 117, 4363-4366 (1995) [dimethyl sulfoxide]

J. Gao, X. Xia and T. F. George, Importance of Bimolecular Interactions in Developing Empirical Potential
Functions for Liquid Ammonia, J. Phys. Chem., 97, 9241-9246 (1993) [ammonia]

J. Aqvist, Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J. Phys.
Chem., 94, 8021-8024 (1990) [metal ions]

W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994) [alkali metal ions]

J. Chandrasekhar, D. C. Spellmeyer and W. L. Jorgensen, Energy Component Analysis for Dilute Aqueous
Solutions of Li+, Na+, F-, and Cl- Ions, J. Am. Chem. Soc., 106, 903-910 (1984) [halide ions]

 27 TINKER User's Guide 27

Most parameters distributed with TINKER are from ``OPLS and OPLS-AA Parameters for Organic
Molecules, Ions, and Nucleic Acids'' as provided by W. L. Jorgensen, Yale University, October 1997

OPLSAA.PRM

OPLS-AA with all-atom parameters for proteins and many general classes of organic molecules.

W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and Testing of the OPLS All-Atom
Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 117,
11225-11236 (1996)

W. L. Jorgensen and N. A. McDonald, Development of an All-Atom Force Field for Heterocycles.
Properties of Liquid Pyridine and Diazenes, THEOCHEM-J. Mol. Struct., 424, 145-155 (1998)

N. A. McDonald and W. L. Jorgensen, Development of an All-Atom Force Field for Heterocycles.
Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles, J. Phys. Chem. B, 102, 8049-8059 (1998)

All parameters distributed with TINKER are from ``OPLS and OPLS-AA Parameters for Organic
Molecules, Ions, and Nucleic Acids'' as provided by W. L. Jorgensen, Yale University, October 1997

SMOOTH.PRM

Version of OPLS-UA for use with potential smoothing. Largely adapted largely from standard OPLS-UA
parameters with modifications to the vdw and improper torsion terms.

R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing and
Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998) [smoothing
modifications]

SMOOTHAA.PRM

Version of OPLS-AA for use with potential smoothing. Largely adapted largely from standard OPLS-AA
parameters with modifications to the vdw and improper torsion terms.

R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing and
Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998) [smoothing
modifications]

WATER.PRM

The AMOEBA water parameters for a polarizable atomic multipole electrostatics model. This model is
equal or better to the best available water models for many bulk and cluster properties.

P. Ren and J. W. Ponder, A Polarizable Atomic Multipole Water Model for Molecular Mechanics
Simulation, J. Phys. Chem. B, 107, xxx-xxx (2003) [in press]

An earlier version the AMOEBA water model is described in: Yong Kong, Multipole Electrostatic Methods
for Protein Modeling with Reaction Field Treatment, Biochemistry & Molecular Biophysics, Washington
University, St. Louis, August, 1997 [available from http://dasher.wustl.edu/ponder/]

 28 TINKER User's Guide 28

7. Use of the Keyword Control File

 This section contains a description of the keyword parameters which may be used to define or
alter the course of a TINKER calculation. The keyword control file is optional in the sense that all of the
TINKER programs will run in the absence of a keyfile and will simply use default values or query the user
for needed information. However, the keywords allow use of a wide variety of algorithmic and procedural
options, many of which are unavailable interactively.

 Keywords are read from the keyword control file. All programs look first for a keyfile with the
same base name as the input molecular system and ending in the extension .key. If this file does not exist,
then TINKER tries to use a generic keyfile with the name tinker.key and located in the same directory as
the input system. If neither a system specific nor a generic keyfile is present, TINKER will continue by
using default values for keyword options and asking interactive questions as necessary.

 TINKER searches the keyfile during the course of a calculation for relevant keywords that may be
present. All keywords must appear as the first word on the line. Any blank space to the left of the keyword
is ignored, and all contents of the keyfiles are case insensitive. Some keywords take modifiers; i.e.,
TINKER looks further on the same line for additional information, such as the value of some parameter
related to the keyword. Modifier information is read in free format, but must be completely contained on
the same line as the original keyword. Any lines contained in the keyfile which do not qualify as valid
keyword lines are treated as comments and are simply ignored.

 Several keywords take a list of integer values (atom numbers, for example) as modifiers. For these
keywords the integers can simply be listed explicitly and separated by spaces, commas or tabs. If a range of
numbers is desired, it can be specified by listing the negative of the first number of the range, followed by a
separator and the last number of the range. For example, the keyword line ACTIVE 4 -9 17 23 could be
used to add atoms 4, 9 through 17, and 23 to the set of active atoms during a TINKER calculation.

 Listed below are the valid TINKER keywords sorted into groups by general function. The section
ends with an alphabetical listing of the individual keywords along with brief descriptions of their action and
possible modifiers, and examples of usage.

Keywords Grouped by Functionality

OUTPUT CONTROL KEYWORDS

ARCHIVE DEBUG DIGITS
ECHO EXIT-PAUSE NOVERSION
OVERWRITE PRINTOUT SAVE-CYCLE
SAVE-INDUCED SAVE-VELOCITY VERBOSE
WRITEOUT

FORCE FIELD SELECTION KEYWORDS

FORCEFIELD PARAMETERS

POTENTIAL FUNCTION SELECTION KEYWORDS

ANGANGTERM ANGLETERM BONDTERM
CHARGETERM CHGDPLTERM DIPOLETERM
EXTRATERM IMPROPTERM IMPTORSTERM

 29 TINKER User's Guide 29

METALTERM MPOLETERM OPBENDTERM
OPDISTTERM POLARIZETERM RESTRAINTERM
RXNFIELDTERM SOLVATETERM STRBNDTERM
STRTORTERM TORSIONTERM TORTORTERM
UREYTERM VDWTERM

POTENTIAL FUNCTION PARAMETER KEYWORDS

ANGANG ANGLE ANGLE3
ANGLE4 ANGLE5 ANGLEF
ATOM BIOTYPE BOND
BOND3 BOND4 BOND5
CHARGE DIPOLE DIPOLE3
DIPOLE4 DIPOLE5 ELECTNEG
HBOND IMPROPER IMPTORS
METAL MULTIPOLE OPBEND
OPDIST PIATOM PIBOND
POLARIZE SOLVATE STRBND
STRTORS TORSION TORSION4
TORSION5 TORTOR UREYBRAD
VDW VDW14 VDWPR

ENERGY UNIT CONVERSION KEYWORDS

ANGLEUNIT ANGANGUNIT BONDUNIT
IMPROPUNIT IMPTORUNIT OPBENDUNIT
OPDISTUNIT STRBNDUNIT STRTORUNIT
TORSIONUNIT TORTORUNIT UREYUNIT

LOCAL GEOMETRY FUNCTIONAL FORM KEYWORDS

ANGLE-CUBIC ANGLE-QUARTIC ANGLE-PENTIC
ANGLE-SEXTIC BOND-CUBIC BOND-QUARTIC
BONDTYPE MM2-STRBND PISYSTEM
UREY-CUBIC UREY-QUARTIC

VAN DER WAALS FUNCTIONAL FORM KEYWORDS

A-EXPTERM B-EXPTERM C-EXPTERM
DELTA-HALGREN EPSILONRULE GAMMA-HALGREN
GAUSSTYPE RADIUSRULE RADIUSSIZE
RADIUSTYPE VDW-12-SCALE VDW-13-SCALE
VDW-14-SCALE VDW-15-SCALE VDWTYPE

ELECTROSTATICS FUNCTIONAL FORM KEYWORDS

CHG-12-SCALE CHG-13-SCALE CHG-14-SCALE
CHG-15-SCALE DIELECTRIC DIRECT-11-SCALE
DIRECT-12-SCALE DIRECT-13-SCALE DIRECT-14-SCALE
MPOLE-12-SCALE MPOLE-13-SCALE MPOLE-14-SCALE
MPOLE-15-SCALE MUTUAL-11-SCALE MUTUAL-12-SCALE
MUTUAL-13-SCALE MUTUAL-14-SCALE POLAR-12-SCALE
POLAR-13-SCALE POLAR-14-SCALE POLAR-15-SCALE
POLAR-DAMP POLAR-EPS POLAR-OLD

 30 TINKER User's Guide 30

POLAR-SOR POLARIZATION REACTIONFIELD

NONBONDED CUTOFF KEYWORDS

CHG-CUTOFF CHG-TAPER CUTOFF
DPL-CUTOFF DPL-TAPER HESS-CUTOFF
LIGHTS MPOLE-CUTOFF MPOLE-TAPER
NEIGHBOR-GROUPS NEUTRAL-GROUPS POLYMER-CUTOFF
TAPER TRUNCATE VDW-CUTOFF
VDW-TAPER

EWALD SUMMATION KEYWORDS

EWALD EWALD-ALPHA EWALD-BOUNDARY
EWALD-CUTOFF EWALD-FRACTION PME-GRID
PME-ORDER

CRYSTAL LATTICE & PERIODIC BOUNDARY KEYWORDS

A-AXIS B-AXIS C-AXIS
ALPHA BETA GAMMA
OCTAHEDRON SPACEGROUP

OPTIMIZATION KEYWORDS

ANGMAX CAPPA FCTMIN
HGUESS INTMAX LBFGS-VECTORS
MAXITER NEWHESS NEXTITER
SLOPEMAX STEEPEST-DESCENT STEPMAX
STEPMIN

DYNAMICS KEYWORDS

COLLISION COMPRESS FRICTION
FRICTION-SCALING INTEGRATE NOSE-MASS
TAU-PRESSURE TAU-TEMPERATURE THERMOSTAT

TRANSITION STATE KEYWORDS

DIVERGE GAMMAMIN REDUCE
SADDLEPOINT

DISTANCE GEOMETRY KEYWORDS

TRIAL-DISTANCE TRIAL-DISTRIBUTION

RANDOM NUMBER KEYWORDS

RANDOMSEED

FREE ENERGY PERTURBATION KEYWORDS

 31 TINKER User's Guide 31

LAMBDA MUTATE

PARTIAL STRUCTURE KEYWORDS

ACTIVE GROUP GROUP-INTER
GROUP-INTRA GROUP-MOLECULE GROUP-SELECT
INACTIVE

CONSTRAINT & RESTRAINT KEYWORDS

BASIN ENFORCE-CHIRALITY RATTLE
RATTLE-DISTANCE RESTRAIN-ANGLE RESTRAIN-DISTANCE
RESTRAIN-GROUPS RESTRAIN-POSITION RESTRAIN-TORSION
SPHERE WALL

POTENTIAL SMOOTHING KEYWORDS

DEFORM DIFFUSE-CHARGE DIFFUSE-TORSION
DIFFUSE-VDW SMOOTHING

Description of Individual Keywords

The following is an alphabetical list of the TINKER keywords along with a brief description of the action
of each keyword and required or optional parameters that can be used to extend or modify each keyword.
The form of possible modifiers, if any, is shown in brackets following each keyword.

A-AXIS [real] Sets the value of the a-axis length for a crystal unit cell, or, equivalently, the X-axis
length for a periodic box. The length value in Angstroms is listed after the keyword.

A-EXPTERM [real] Sets the value of the ``A'' premultiplier term in the Buckingham van der Waals
function, i.e., the value of A in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }.

ACTIVE [integer list] Sets the list of active atoms during a TINKER computation. Individual potential
energy terms are computed when at least one atom involved in the term is active. For Cartesian space
calculations, active atoms are those allowed to move. For torsional space calculations, rotations are allowed
when all atoms on one side of the rotated bond are active. Multiple ACTIVE lines can be present in the
keyfile and are treated cumulatively. On each line the keyword can be followed by one or more atom
numbers or atom ranges. The presence of any ACTIVE keyword overrides any INACTIVE keywords in the
keyfile.

ALPHA [real] Sets the value of the • angle of a crystal unit cell, i.e., the angle between the b-axis and c-
axis of a unit cell, or, equivalently, the angle between the Y-axis and Z-axis of a periodic box. The default
value in the absence of the ALPHA keyword is 90 degrees.

ANGANG [1 integer & 3 reals] This keyword provides the values for a single angle-angle cross term
potential parameter.

ANGANGTERM [NONE/ONLY] This keyword controls use of the angle-angle cross term potential
energy. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for
this one.

 32 TINKER User's Guide 32

ANGANGUNIT [real] Sets the scale factor needed to convert the energy value computed by the angle-
angle cross term potential into units of kcal/mole. The correct value is force field dependent and typically
provided in the header of the master force field parameter file. The default of (•/180)2 = 0.0003046 is used,
if the ANGANGUNIT keyword is not given in the force field parameter file or the keyfile.

ANGLE [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter. The integer modifiers give the atom class numbers for the three kinds of atoms involved in the
angle which is to be defined. The real number modifiers give the force constant value for the angle and up
to three ideal bond angles in degrees. In most cases only one ideal bond angle is given, and that value is
used for all occurrences of the specified bond angle. If all three ideal angles are given, the values apply
when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen atoms, respectively. This
``hydrogen environment'' option is provided to implement the corresponding feature of Allinger's MM
force fields. The default units for the force constant are kcal/mole/radian2, but this can be controlled via the
ANGLEUNIT keyword.

ANGLE-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the bond
angle bending potential energy. The real number modifier gives the value of the coefficient as a multiple of
the quadratic coefficient. This term multiplied by the angle bending energy unit conversion factor, the force
constant, and the cube of the deviation of the bond angle from its ideal value gives the cubic contribution to
the angle bending energy. The default value in the absence of the ANGLE-CUBIC keyword is zero; i.e., the
cubic angle bending term is omitted.

ANGLE-PENTIC [real] Sets the value of the fifth power term in the Taylor series expansion form of
the bond angle bending potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion
factor, the force constant, and the fifth power of the deviation of the bond angle from its ideal value gives
the pentic contribution to the angle bending energy. The default value in the absence of the ANGLE-
PENTIC keyword is zero; i.e., the pentic angle bending term is omitted.

ANGLE-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of the
bond angle bending potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion
factor, the force constant, and the forth power of the deviation of the bond angle from its ideal value gives
the quartic contribution to the angle bending energy. The default value in the absence of the ANGLE-
QUARTIC keyword is zero; i.e., the quartic angle bending term is omitted.

ANGLE-SEXTIC [real] Sets the value of the sixth power term in the Taylor series expansion form of
the bond angle bending potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion
factor, the force constant, and the sixth power of the deviation of the bond angle from its ideal value gives
the sextic contribution to the angle bending energy. The default value in the absence of the ANGLE-
SEXTIC keyword is zero; i.e., the sextic angle bending term is omitted.

ANGLE3 [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers for
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled
via the ANGLEUNIT keyword. If any ANGLE3 keywords are present, either in the master force field
parameter file or the keyfile, then TINKER requires that special ANGLE3 parameters be given for all
angles in 3-membered rings. In the absence of any ANGLE3 keywords, standard ANGLE parameters will
be used for bonds in 3-membered rings.

 33 TINKER User's Guide 33

ANGLE4 [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers for
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled
via the ANGLEUNIT keyword. If any ANGLE4 keywords are present, either in the master force field
parameter file or the keyfile, then TINKER requires that special ANGLE4 parameters be given for all
angles in 4-membered rings. In the absence of any ANGLE4 keywords, standard ANGLE parameters will
be used for bonds in 4-membered rings.

ANGLE5 [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers for
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled
via the ANGLEUNIT keyword. If any ANGLE5 keywords are present, either in the master force field
parameter file or the keyfile, then TINKER requires that special ANGLE5 parameters be given for all
angles in 5-membered rings. In the absence of any ANGLE5 keywords, standard ANGLE parameters will
be used for bonds in 5-membered rings.

ANGLEF [3 integers & 3 reals] This keyword provides the values for a single bond angle bending
parameter for a SHAPES-style Fourier potential function. The integer modifiers give the atom class
numbers for the three kinds of atoms involved in the angle which is to be defined. The real number
modifiers give the force constant value for the angle, the angle shift in degrees, and the periodicity value.
Note that the force constant should be given as the ``harmonic'' value and not the native Fourier value. The
default units for the force constant are kcal/mole/radian2, but this can be controlled via the ANGLEUNIT
keyword.

ANGLETERM [NONE/ONLY] This keyword controls use of the bond angle bending potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for
this one.

ANGLEUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
angle bending potential into units of kcal/mole. The correct value is force field dependent and typically
provided in the header of the master force field parameter file. The default value of (•/180)2 = 0.0003046 is
used, if the ANGLEUNIT keyword is not given in the force field parameter file or the keyfile.

ANGMAX [real] Set the maximum permissible angle between the current optimization search direction
and the negative of the gradient direction. If this maximum angle value is exceeded, the optimization
routine will note an error condition and may restart from the steepest descent direction. The default value in
the absence of the ANGMAX keyword is usually 88 degrees for conjugate gradient methods and 180
degrees (i.e., disabled) for variable metric optimizations.

ARCHIVE Causes TINKER molecular dynamics-based programs to write trajectories directly to a
single plain-text archive file with the .arc format. If an archive file already exists at the start of the
calculation, then the newly generated trajectory is appended to the end of the existing file. The default in
the absence of this keyword is to write the trajectory snapshots to consecutively numbered cycle files.

ATOM [2 integers, name, quoted string, integer, real & integer] This keyword provides the values
needed to define a single force field atom type.

 34 TINKER User's Guide 34

B-AXIS [real] Sets the value of the b-axis length for a crystal unit cell, or, equivalently, the Y-axis
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is
absent, the b-axis length is set equal to the a-axis length.

B-EXPTERM [real] Sets the value of the ``B'' exponential factor in the Buckingham van der Waals
function, i.e., the value of B in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }.

BASIN [2 reals] Presence of this keyword turns on a ``basin'' restraint potential function that serves to
drive the system toward a compact structure. The actual function is a Gaussian of the form Ebasin = • A exp[-
B R2], summed over all pairs of atoms where R is the distance between atoms. The A and B values are the
depth and width parameters given as modifiers to the BASIN keyword. This potential is currently used to
control the degree of expansion during potential energy smooth procedures through the use of shallow,
broad basins.

BETA [real] Sets the value of the • angle of a crystal unit cell, i.e., the angle between the a-axis and c-
axis of a unit cell, or, equivalently, the angle between the X-axis and Z-axis of a periodic box. The default
value in the absence of the BETA keyword is to set the • angle equal to the • angle as given by the keyword
ALPHA.

BIOTYPE [integer, name, quoted string & integer] This keyword provides the values to define the
correspondence between a single biopolymer atom type and its force field atom type.

BOND [2 integers & 2 reals] This keyword provides the values for a single bond stretching parameter.
The integer modifiers give the atom class numbers for the two kinds of atoms involved in the bond which is
to be defined. The real number modifiers give the force constant value for the bond and the ideal bond
length in Å. The default units for the force constant are kcal/mole/Å2, but this can be controlled via the
BONDUNIT keyword.

BOND-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the bond
stretching potential energy. The real number modifier gives the value of the coefficient as a multiple of the
quadratic coefficient. This term multiplied by the bond stretching energy unit conversion factor, the force
constant, and the cube of the deviation of the bond length from its ideal value gives the cubic contribution
to the bond stretching energy. The default value in the absence of the BOND-CUBIC keyword is zero; i.e.,
the cubic bond stretching term is omitted.

BOND-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of the
bond stretching potential energy. The real number modifier gives the value of the coefficient as a multiple
of the quadratic coefficient. This term multiplied by the bond stretching energy unit conversion factor, the
force constant, and the forth power of the deviation of the bond length from its ideal value gives the quartic
contribution to the bond stretching energy. The default value in the absence of the BOND-QUARTIC
keyword is zero; i.e., the quartic bond stretching term is omitted.

BOND3 [2 integers & 2 reals] This keyword provides the values for a single bond stretching parameter
specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers for the two kinds
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2,
but this can be controlled via the BONDUNIT keyword. If any BOND3 keywords are present, either in the
master force field parameter file or the keyfile, then TINKER requires that special BOND3 parameters be
given for all bonds in 3-membered rings. In the absence of any BOND3 keywords, standard BOND
parameters will be used for bonds in 3-membered rings.

 35 TINKER User's Guide 35

BOND4 [2 integers & 2 reals] This keyword provides the values for a single bond stretching parameter
specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers for the two kinds
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2,
but this can be controlled via the BONDUNIT keyword. If any BOND4 keywords are present, either in the
master force field parameter file or the keyfile, then TINKER requires that special BOND4 parameters be
given for all bonds in 4-membered rings. In the absence of any BOND4 keywords, standard BOND
parameters will be used for bonds in 4-membered rings

BOND5 [2 integers & 2 reals] This keyword provides the values for a single bond stretching parameter
specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers for the two kinds
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2,
but this can be controlled via the BONDUNIT keyword. If any BOND5 keywords are present, either in the
master force field parameter file or the keyfile, then TINKER requires that special BOND5 parameters be
given for all bonds in 5-membered rings. In the absence of any BOND5 keywords, standard BOND
parameters will be used for bonds in 5-membered rings

BONDTERM [NONE/ONLY] This keyword controls use of the bond stretching potential energy term.
In the absence of a modifying option, this keyword turns on use of the potential. The NONE option turns
off use of this potential energy term. The ONLY option turns off all potential energy terms except for this
one.

BONDTYPE [TAYLOR/MORSE/GAUSSIAN] Chooses the functional form of the bond stretching
potential. The TAYLOR option selects a Taylor series expansion containing terms from harmonic through
quartic. The MORSE option selects a Morse potential fit to the ideal bond length and stretching force
constant parameter values. The GAUSSIAN option uses an inverted Gaussian with amplitude equal to the
Morse bond dissociation energy and width set to reproduce the vibrational frequency of a harmonic
potential. The default is to use the TAYLOR potential.

BONDUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
stretching potential into units of kcal/mole. The correct value is force field dependent and typically
provided in the header of the master force field parameter file. The default value of 1.0 is used, if the
BONDUNIT keyword is not given in the force field parameter file or the keyfile.

C-AXIS [real] Sets the value of the C-axis length for a crystal unit cell, or, equivalently, the Z-axis
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is
absent, the C-axis length is set equal to the A-axis length.

C-EXPTERM [real] Sets the value of the ``C'' dispersion multiplier in the Buckingham van der Waals
function, i.e., the value of C in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }.

CAPPA [real] This keyword is used to set the normal termination criterion for the line search phase of
TINKER optimization routines. The line search exits successfully if the ratio of the current gradient
projection on the line to the projection at the start of the line search falls below the value of CAPPA. A
default value of 0.1 is used in the absence of the CAPPA keyword.

CHARGE [1 integer & 1 real] This keyword provides a value for a single atomic partial charge
electrostatic parameter. The integer modifier, if positive, gives the atom type number for which the charge
parameter is to be defined. Note that charge parameters are given for atom types, not atom classes. If the
integer modifier is negative, then the parameter value to follow applies only to the individual atom whose
atom number is the negative of the modifier. The real number modifier gives the values of the atomic
partial charge in electrons.

 36 TINKER User's Guide 36

CHARGETERM [NONE/ONLY] This keyword controls use of the charge-charge potential energy
term between pairs of atomic partial charges. In the absence of a modifying option, this keyword turns on
use of the potential. The NONE option turns off use of this potential energy term. The ONLY option turns
off all potential energy terms except for this one.

CHG-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-2 connected atoms, i.e., atoms that are directly bonded. The
default value of 0.0 is used, if the CHG-12-SCALE keyword is not given in either the parameter file or the
keyfile.

CHG-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-3 connected atoms, i.e., atoms separated by two covalent bonds.
The default value of 0.0 is used, if the CHG-13-SCALE keyword is not given in either the parameter file or
the keyfile.

CHG-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-4 connected atoms, i.e., atoms separated by three covalent
bonds. The default value of 1.0 is used, if the CHG-14-SCALE keyword is not given in either the parameter
file or the keyfile.

CHG-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-5 connected atoms, i.e., atoms separated by four covalent bonds.
The default value of 1.0 is used, if the CHG-15-SCALE keyword is not given in either the parameter file or
the keyfile.

CHG-CUTOFF [real] Sets the cutoff distance value in Angstroms for charge-charge electrostatic
potential energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to zero.
Other keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff
distance in the absence of the CHG-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for
periodic systems.

CHG-TAPER [real] This keyword allows modification of the cutoff window for charge-charge
electrostatic potential energy interactions. It is similar in form and action to the TAPER keyword, except
that its value applies only to the charge-charge potential. The default value in the absence of the CHG-
TAPER keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance.

CHGDPLTERM [NONE/ONLY] This keyword controls use of the charge-dipole potential energy term
between atomic partial charges and bond dipoles. In the absence of a modifying option, this keyword turns
on use of the potential. The NONE option turns off use of this potential energy term. The ONLY option
turns off all potential energy terms except for this one.

COLLISION [real] Sets the value of the random collision frequency used in the Andersen stochastic
collision dynamics thermostat. The supplied value has units of fs-1 atom-1 and is multiplied internal to
TINKER by the time step in fs and N-2/3 where N is the number of atoms. The default value used in the
absence of the COLLISION keyword is 0.1 which is appropriate for many systems but may need
adjustment to achieve adequate temperature control without perturbing the dynamics.

COMPRESS [real] Sets the value of the bulk solvent isothermal compressibility in Atm-1 for use during
pressure computation and scaling in molecular dynamics computations. The default value used in the
absence of the COMPRESS keyword is 0.000046, appropriate for water. This parameter serves as a scale
factor for the Groningen-style pressure bath coupling time, and its exact value should not be of critical
importance.

 37 TINKER User's Guide 37

CUTOFF [real] Sets the cutoff distance value for all nonbonded potential energy interactions. The
energy for any of the nonbonded potentials of a pair of sites beyond the cutoff distance will be set to zero.
Other keywords can be used to select a smoothing scheme near the cutoff distance, or to apply different
cutoff distances to various nonbonded energy terms.

DEBUG Turns on printing of detailed information and intermediate values throughout the progress of a
TINKER computation; not recommended for use with large structures or full potential energy functions
since a summary of every individual interaction will usually be output.

DEFORM [real] Sets the amount of diffusion equation-style smoothing that will be applied to the
potential energy surface when using the SMOOTH force field. The real number option is equivalent to the
``time'' value in the original Piela, et al. formalism; the larger the value, the greater the smoothing. The
default value is zero, meaning that no smoothing will be applied.

DELTA-HALGREN [real] Sets the value of the • parameter in Halgren's buffered 14-7 vdw potential
energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of 0.07 is used.

DIELECTRIC [real] Sets the value of the bulk dielectric constant used to damp all electrostatic
interaction energies for any of the TINKER electrostatic potential functions. The default value is force field
dependent, but is usually equal to 1.0 (for Allinger's MM force fields the default is 1.5).

DIFFUSE-CHARGE [real] This keyword is used during potential function smoothing procedures to
specify the effective diffusion coefficient to be applied to the smoothed form of the Coulomb's Law charge-
charge potential function. In the absence of the DIFFUSE-CHARGE keyword, a default value of 3.5 is
used.

DIFFUSE-TORSION [real] This keyword is used during potential function smoothing procedures to
specify the effective diffusion coefficient to be applied to the smoothed form of the torsion angle potential
function. In the absence of the DIFFUSE-TORSION keyword, a default value of 0.0225 is used.

DIFFUSE-VDW [real] This keyword is used during potential function smoothing procedures to specify
the effective diffusion coefficient to be applied to the smoothed Gaussian approximation to the Lennard-
Jones van der Waals potential function. In the absence of the DIFFUSE-VDW keyword, a default value of
1.0 is used.

DIGITS [integer] This keyword controls the number of digits of precision output by TINKER in
reporting potential energies and atomic coordinates. The allowed values for the integer modifier are 4, 6
and 8. Input values less than 4 will be set to 4, and those greater than 8 will be set to 8. Final energy values
reported by most TINKER programs will contain the specified number of digits to the right of the decimal
point. The number of decimal places to be output for atomic coordinates is generally two larger than the
value of DIGITS. In the absence of the DIGITS keyword a default value of 4 is used, and energies will be
reported to 4 decimal places with coordinates to 6 decimal places.

DIPOLE [2 integers & 2 reals] This keyword provides the values for a single bond dipole electrostatic
parameter. The integer modifiers give the atom type numbers for the two kinds of atoms involved in the
bond dipole which is to be defined. The real number modifiers give the value of the bond dipole in Debyes
and the position of the dipole site along the bond. If the bond dipole value is positive, then the first of the
two atom types is the positive end of the dipole. For a negative bond dipole value, the first atom type listed
is negative. The position along the bond is an optional modifier that gives the postion of the dipole site as a
fraction between the first atom type (position=0) and the second atom type (position=1). The default for the
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond.

DIPOLE3 [2 integers & 2 reals] This keyword provides the values for a single bond dipole electrostatic
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom type numbers for the

 38 TINKER User's Guide 38

two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If
any DIPOLE3 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special DIPOLE3 parameters be given for all bond dipoles in 3-membered rings. In
the absence of any DIPOLE3 keywords, standard DIPOLE parameters will be used for bonds in 3-
membered rings.

DIPOLE4 [2 integers & 2 reals] This keyword provides the values for a single bond dipole electrostatic
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom type numbers for the
two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If
any DIPOLE4 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special DIPOLE4 parameters be given for all bond dipoles in 4-membered rings. In
the absence of any DIPOLE4 keywords, standard DIPOLE parameters will be used for bonds in 4-
membered rings.

DIPOLE5 [2 integers & 2 reals] This keyword provides the values for a single bond dipole electrostatic
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom type numbers for the
two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If
any DIPOLE5 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special DIPOLE5 parameters be given for all bond dipoles in 5-membered rings. In
the absence of any DIPOLE5 keywords, standard DIPOLE parameters will be used for bonds in 5-
membered rings.

DIPOLETERM [NONE/ONLY] This keyword controls use of the dipole-dipole potential energy term
between pairs of bond dipoles. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

DIRECT-11-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms within a polarization group during an induced dipole calculation, i.e.,
atoms that are in the same polarization group as the atom being polarized. The default value of 0.0 is used,
if the DIRECT-11-SCALE keyword is not given in either the parameter file or the keyfile.

DIRECT-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-2 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups directly connected to the group containing the atom being polarized.
The default value of 0.0 is used, if the DIRECT-12-SCALE keyword is not given in either the parameter
file or the keyfile.

DIRECT-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-3 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups separated by one group from the group containing the atom being
polarized. The default value of 0.0 is used, if the DIRECT-13-SCALE keyword is not given in either the
parameter file or the keyfile.

DIRECT-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-4 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups separated by two groups from the group containing the atom being

 39 TINKER User's Guide 39

polarized. The default value of 1.0 is used, if the DIRECT-14-SCALE keyword is not given in either the
parameter file or the keyfile.

DIVERGE [real] This keyword is used by the SADDLE program to set the maximum allowed value of
the ratio of the gradient length along the path to the total gradient norm at the end of a cycle of
minimization perpendicular to the path. If the value provided by the DIVERGE keyword is exceeded, then
another cycle of maximization along the path is required. A default value of 0.005 is used in the absence of
the DIVERGE keyword.

DPL-CUTOFF [real] Sets the cutoff distance value in Angstroms for bond dipole-bond dipole
electrostatic potential energy interactions. The energy for any pair of bond dipole sites beyond the cutoff
distance will be set to zero. Other keywords can be used to select a smoothing scheme near the cutoff
distance. The default cutoff distance in the absence of the DPL-CUTOFF keyword is essentially infinite for
nonperiodic systems and 10.0 for periodic systems.

DPL-TAPER [real] This keyword allows modification of the cutoff windows for bond dipole-bond
dipole electrostatic potential energy interactions. It is similar in form and action to the TAPER keyword,
except that its value applies only to the vdw potential. The default value in the absence of the DPL-TAPER
keyword is to begin the cutoff window at 0.75 of the dipole cutoff distance.

ECHO [text string] The presence of this keyword causes whatever text follows it on the line to be
copied directly to the output file. This keyword is also active in parameter files. It has no default value; if
no text follows the ECHO keyword, a blank line is placed in the output file.

ELECTNEG [3 integers & 1 real] This keyword provides the values for a single electronegativity bond
length correction parameter. The first two integer modifiers give the atom class numbers of the atoms
involved in the bond to be corrected. The third integer modifier is the atom class of an electronegative
atom. In the case of a primary correction, an atom of this third class must be directly bonded to an atom of
the second atom class. For a secondary correction, the third class is one atom removed from an atom of the
second class. The real number modifier is the value in Å by which the original ideal bond length is to be
corrected.

ENFORCE-CHIRALITY This keyword causes the chirality found at chiral tetravalent centers in the
input structure to be maintained during TINKER calculations. The test for chirality is not exhaustive; two
identical monovalent atoms connected to a center cause it to be marked as non-chiral, but large equivalent
substituents are not detected. Trivalent ``chiral'' centers, for example the alpha carbon in united-atom
protein structures, are not enforced as chiral.

EPSILONRULE [GEOMETRIC/ARITHMETIC/HARMONIC/HHG] This keyword selects the
combining rule used to derive the • value for van der Waals interactions. The default in the absence of the
EPSILONRULE keyword is to use the GEOMETRIC mean of the individual • values of the two atoms
involved in the van der Waals interaction.

EWALD This keyword turns on the use of Ewald summation during computation of electrostatic
interactions in periodic systems. In the current version of TINKER, regular Ewald is used for polarizable
atomic multipoles, and smooth particle mesh Ewald (PME) is used for charge-charge interactions. Ewald
summation is not available for interactions involving bond-centered dipoles. By default, in the absence of
the EWALD keyword, distance-based cutoffs are used for electrostatic interactions.

EWALD-ALPHA [real] Sets the value of the Ewald coefficient which controls the width of the
Gaussian screening charges during particle mesh Ewald summation. In the absence of the EWALD-
ALPHA keyword, a value is chosen which causes interactions outside the real-space cutoff to be below a
fixed tolerance. For most standard applications of Ewald summation, the program default should be used.

 40 TINKER User's Guide 40

EWALD-BOUNDARY This keyword invokes the use of ``vacuum'' boundary conditions during Ewald
summation, corresponding to the media surrounding the system having a dielectric value of 1. The default
in the absence of the EWALD-BOUNDARY keyword is to use ``tinfoil'' boundary conditions where the
surrounding media is assumed to have an infinite dielectric value.

EWALD-CUTOFF [real] Sets the value in Angstroms of the real-space distance cutoff for use during
Ewald summation. By default, in the absence of the EWALD-CUTOFF keyword, a value of 9.0 is used.

EWALD-FRACTION [real] Sets the fraction between 0 and 1 of reciprocal space included in the
reciprocal sum when using regular Ewald summation. The keyword has no effect on PME calculations. A
default value of 0.5 is used in the absence of the EWALD-FRACTION keyword.

EXIT-PAUSE This keyword causes TINKER programs to pause and wait for a carriage return at the
end of executation prior to returning control to the operating system. This is useful to keep the execution
window open following termination on machines running Microsoft Windows or Apple MacOS. The
default in the absence of the EXIT-PAUSE keyword, is to return control to the operating system
immediately at program termination.

EXTRATERM [NONE/ONLY] This keyword controls use of the user defined extra potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for
this one.

FCTMIN [real] This keyword sets a convergence criterion for successful completion of a TINKER
optimization. If the value of the optimization objective function, typically the potential energy, falls below
the value set by FCTMIN, then the optimization is deemed to have converged. The default value in the
absence of the FCTMIN keyword is -1000000, effectively removing this criterion as a possible agent for
termination.

FORCEFIELD [name] This keyword provides a name for the force field to be used in the current
calculation. Its value is usually set in the master force field parameter file for the calculation (see the
PARAMETERS keyword) instead of in the keyfile.

FRICTION [real] Sets the value of the frictional coefficient in ps-1 for use with stochastic dynamics.
The default value used in the absence of the FRICTION keyword is 91.0, which is generally appropriate for
water.

GAMMA [real] Sets the value of the • angle of a crystal unit cell, i.e., the angle between the a-axis and
b-axis of a unit cell, or, equivalently, the angle between the X-axis and Z-axis of a periodic box. The
default value in the absence of the GAMMA keyword is to set the • angle equal to the • angle as given by
the keyword ALPHA.

GAMMA-HALGREN [real] Sets the value of the • parameter in Halgren's buffered 14-7 vdw potential
energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of 0.12 is used.

GAMMAMIN [real] Sets the convergence target value for • during searches for maxima along the
quadratic synchronous transit used by the SADDLE program. The value of • is the square of the ratio of the
gradient projection along the path to the total gradient. A default value of 0.00001 is used in the absence of
the GAMMAMIN keyword.

GAUSSTYPE [LJ-2/LJ-4/MM2-2/MM3-2/IN-PLACE] This keyword specifies the underlying vdw
form that a Gaussian vdw approximation will attempt to fit.number of terms to be used in a Gaussian
approximation of the Lennard-Jones van der Waals potential. The text modifier gives the name of the

 41 TINKER User's Guide 41

functional form to be used. Thus LJ-2 as a modifier will result in a 2-Gaussian fit to a Lennard-Jones vdw
potential. The GAUSSTYPE keyword only takes effect when VDWTYPE is set to GAUSSIAN. This
keyword has no default value.

GROUP [integer, integer list] This keyword defines an atom group as a substructure within the full
input molecular structure. The value of the first integer is the group number which must be in the range
from 1 to the maximum number of allowed groups. The remaining intergers give the atom or atoms
contained in this group as one or more atom numbers or ranges. Multiple keyword lines can be used to
specify additional atoms in the same group. Note that an atom can only be in one group, the last group to
which it is assigned is the one used.

GROUP-INTER This keyword assigns a value of 1.0 to all inter-group interactions and a value of 0.0 to
all intra-group interactions. For example, combination with the GROUP-MOLECULE keyword provides
for rigid-body calculations.

GROUP-INTRA This keyword assigns a value of 1.0 to all intra-group interactions and a value of 0.0 to
all inter-group interactions.

GROUP-MOLECULE This keyword sets each individual molecule in the system to be a separate atom
group, but does not assign weights to group-group interactions.

GROUP-SELECT [2 integers, real] This keyword gives the weight in the final potential energy of a
specified set of intra- or intergroup interactions. The integer modifiers give the group numbers of the
groups involved. If the two numbers are the same, then an intragroup set of interactions is specified. The
real modifier gives the weight by which all energetic interactions in this set will be multiplied before
incorporation into the final potential energy. If omitted as a keyword modifier, the weight will be set to 1.0
by default. If any SELECT-GROUP keywords are present, then any set of interactions not specified in a
SELECT-GROUP keyword is given a zero weight. The default when no SELECT-GROUP keywords are
specified is to use all intergroup interactions with a weight of 1.0 and to set all intragroup interactions to
zero.

HBOND [2 integers & 2 reals] This keyword provides the values for the MM3-style directional
hydrogen bonding parameters for a single pair of atoms. The integer modifiers give the pair of atom class
numbers for which hydrogen bonding parameters are to be defined. The two real number modifiers give the
values of the minimum energy contact distance in Å and the well depth at the minimum distance in
kcal/mole.

HESS-CUTOFF [real] This keyword defines a lower limit for significant Hessian matrix elements.
During computation of the Hessian matrix of partial second derivatives, any matrix elements with absolute
value below HESS-CUTOFF will be set to zero and omitted from the sparse matrix Hessian storage scheme
used by TINKER. For most calculations, the default in the absence of this keyword is zero, i.e., all
elements will be stored. For most Truncated Newton optimizations the Hessian cutoff will be chosen
dynamically by the optimizer.

HGUESS [real] Sets an initial guess for the average value of the diagonal elements of the scaled inverse
Hessian matrix used by the optimally conditioned variable metric optimization routine. A default value of
0.4 is used in the absence of the HGUESS keyword.

IMPROPER [4 integers & 2 reals] This keyword provides the values for a single CHARMM-style
improper dihedral angle parameter.

IMPROPTERM [NONE/ONLY] This keyword controls use of the CHARMM-style improper dihedral
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the

 42 TINKER User's Guide 42

potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

IMPROPUNIT [real] Sets the scale factor needed to convert the energy value computed by the
CHARMM-style improper dihedral angle potential into units of kcal/mole. The correct value is force field
dependent and typically provided in the header of the master force field parameter file. The default value of
1.0 is used, if the IMPROPUNIT keyword is not given in the force field parameter file or the keyfile.

IMPTORS [4 integers & up to 3 real/real/integer triples] This keyword provides the values for a
single AMBER-style improper torsional angle parameter. The first four integer modifiers give the atom
class numbers for the atoms involved in the improper torsional angle to be defined. By convention, the third
atom class of the four is the trigonal atom on which the improper torsion is centered. The torsional angle
computed is literally that defined by the four atom classes in the order specified by the keyword. Each of
the remaining triples of real/real/integer modifiers give the half-amplitude, phase offset in degrees and
periodicity of a particular improper torsional term, respectively. Periodicities through 3-fold are allowed for
improper torsional parameters.

IMPTORSTERM [NONE/ONLY] This keyword controls use of the AMBER-style improper torsional
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

IMPTORSUNIT [real] Sets the scale factor needed to convert the energy value computed by the
AMBER-style improper torsional angle potential into units of kcal/mole. The correct value is force field
dependent and typically provided in the header of the master force field parameter file. The default value of
1.0 is used, if the IMPTORSUNIT keyword is not given in the force field parameter file or the keyfile.

INACTIVE [integer list] Sets the list of inactive atoms during a TINKER computation. Individual
potential energy terms are not computed when all atoms involved in the term are inactive. For Cartesian
space calculations, inactive atoms are not allowed to move. For torsional space calculations, rotations are
not allowed when there are inactive atoms on both sides of the rotated bond. Multiple INACTIVE lines can
be present in the keyfile, and on each line the keyword can be followed by one or more atom numbers or
ranges. If any INACTIVE keys are found, all atoms are set to active except those listed on the INACTIVE
lines. The ACTIVE keyword overrides all INACTIVE keywords found in the keyfile.

INTEGRATE [VERLET/BEEMAN/STOCHASTIC/RIGIDBODY] Chooses the integration method
for propagation of dynamics trajectories. The keyword is followed on the same line by the name of the
option. Standard Newtonian MD can be run using either VERLET for the Velocity Verlet method, or
BEEMAN for the velocity form of Bernie Brook's ``Better Beeman'' method. A Velocity Verlet-based
stochastic dynamics trajectory is selected by the STOCHASTIC modifier. A rigid-body dynamics method
is selected by the RIGIDBODY modifier. The default integration scheme is MD using the BEEMAN
method.

INTMAX [integer] Sets the maximum number of interpolation cycles that will be allowed during the
line search phase of an optimization. All gradient-based TINKER optimization routines use a common line
search routine involving quadratic extrapolation and cubic interpolation. If the value of INTMAX is
reached, an error status is set for the line search and the search is repeated with a much smaller initial step
size. The default value in the absence of this keyword is optimization routine dependent, but is usually in
the range 5 to 10.

LAMBDA [real] This keyword sets the value of the • path parameter for free energy perturbation
calculations. The real number modifier specifies the position along the mutation path and must be a number
in the range from 0 (initial state) to 1 (final state). The actual atoms involved in the mutation are given
separately in individual MUTATE keyword lines.

 43 TINKER User's Guide 43

LBFGS-VECTORS [integer] Sets the number of correction vectors used by the limited-memory L-
BFGS optimization routine. The current maximum allowable value, and the default in the absence of the
LBFGS-VECTORS keyword is 15.

LIGHTS This keyword turns on Method of Lights neighbor generation for the charge-charge potential
and any of the van der Waals potentials. This method will yield identical energetic results to the standard
double loop method. Method of Lights will be faster when the volume of a sphere with radius equal to the
nonbond cutoff distance is significantly less than half the volume of the total system (i.e., the full molecular
system, the crystal unit cell or the periodic box).

MAXITER [integer] Sets the maximum number of minimization iterations that will be allowed for any
TINKER program that uses any of the nonlinear optimization routines. The default value in the absence of
this keyword is program dependent, but is always set to a very large number.

METAL This keyword provides the values for a single transition metal ligand field parameter. Note this
keyword is present in the code, but not active in the current version of TINKER.

METALTERM [NONE/ONLY] This keyword controls use of the transition metal ligand field potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms
except for this one.

MM2-STRBND This keyword switches the behavior of the stretch-bend potential function to match the
formulation used by the MM2 force field. In MM2, stretching of bonds to attached hydrogen atoms is not
including in computing the stretch-bend cross term energy. The default behavior in the absence of this
keyword is to include stretching of attached hydrogen atoms as in the MM3 force field.

MPOLE-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-2 connected atoms, i.e., atoms that are
directly bonded. The default value of 0.0 is used, if the MPOLE-12-SCALE keyword is not given in either
the parameter file or the keyfile.

MPOLE-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-3 connected atoms, i.e., atoms separated
by two covalent bonds. The default value of 0.0 is used, if the MPOLE-13-SCALE keyword is not given in
either the parameter file or the keyfile.

MPOLE-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-4 connected atoms, i.e., atoms separated
by three covalent bonds. The default value of 1.0 is used, if the MPOLE-14-SCALE keyword is not given
in either the parameter file or the keyfile.

MPOLE-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-5 connected atoms, i.e., atoms separated
by four covalent bonds. The default value of 1.0 is used, if the MPOLE-15-SCALE keyword is not given in
either the parameter file or the keyfile.

MPOLE-CUTOFF [real] Sets the cutoff distance value in Angstroms for atomic multipole potential
energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to zero. Other
keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff distance in
the absence of the MPOLE-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for periodic
systems.

 44 TINKER User's Guide 44

MPOLE-TAPER [real] This keyword allows modification of the cutoff window for atomic multipole
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its value
applies only to the atomic multipole potential. The default value in the absence of the MPOLE-TAPER
keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance.

MPOLETERM [NONE/ONLY] This keyword controls use of the atomic multipole electrostatics
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

MULTIPOLE [5 lines with: 3 or 4 integers & 1 real; 3 reals; 1 real; 2 reals; 3 reals] This keyword
provides the values for a set of atomic multipole parameters at a single site. A complete keyword entry
consists of three consequtive lines, the first line containing the MULTIPOLE keyword and the two
following lines. The first line contains three integers which define the atom type on which the multipoles
are centered, and the Z-axis and X-axis defining atom types for this center. The optional fourth integer
contains the Y-axis defining atom type, and is only required for locally chiral multipole sites. The real
number on the first line gives the monopole (atomic charge) in electrons. The second line contains three
real numbers which give the X-, Y- and Z-components of the atomic dipole in electron-Å. The final three
lines, consisting of one, two and three real numbers give the upper triangle of the traceless atomic
quadrupole tensor in electron-Å2.

MUTATE [3 integers] This keyword is used to specify atoms to be mutated during free energy
perturbation calculations. The first integer modifier gives the atom number of an atom in the current
system. The final two modifier values give the atom types corresponding the the •=0 and •=1 states of the
specified atom.

MUTUAL-11-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
induced (mutual) field due to atoms within a polarization group during an induced dipole calculation, i.e.,
atoms that are in the same polarization group as the atom being polarized. The default value of 1.0 is used,
if the MUTUAL-11-SCALE keyword is not given in either the parameter file or the keyfile.

MUTUAL-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
induced (mutual) field due to atoms in 1-2 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups directly connected to the group containing the atom being polarized.
The default value of 1.0 is used, if the MUTUAL-12-SCALE keyword is not given in either the parameter
file or the keyfile.

MUTUAL-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
induced (mutual) field due to atoms in 1-3 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups separated by one group from the group containing the atom being
polarized. The default value of 1.0 is used, if the MUTUAL-13-SCALE keyword is not given in either the
parameter file or the keyfile.

MUTUAL-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
induced (mutual) field due to atoms in 1-4 polarization groups during an induced dipole calculation, i.e.,
atoms that are in polarization groups separated by two groups from the group containing the atom being
polarized. The default value of 1.0 is used, if the MUTUAL-14-SCALE keyword is not given in either the
parameter file or the keyfile.

NEIGHBOR-GROUPS This keyword causes the attached atom to be used in determining the charge-
charge neighbor distance for all monovalent atoms in the molecular system. Its use causes all monovalent
atoms to be treated the same as their attached atoms for purposes of including or scaling 1-2, 1-3 and 1-4
interactions. This option works only for the simple charge-charge electrostatic potential; it does not affect

 45 TINKER User's Guide 45

bond dipole or atomic multipole potentials. The NEIGHBOR-GROUPS scheme is similar to that used by
some common force fields such as ENCAD.

NEUTRAL-GROUPS The keyword causes the attached atom to be used in determining the charge-
charge interaction cutoff distance for all monovalent atoms in the molecular system. Its use reduces cutoff
discontinuities by avoiding splitting many of the largest charge separations found in typical molecules.
Note that this keyword does not rigorously implement the usual concept of a ``neutral group'' as used in the
literature with AMBER/OPLS and other force fields. This option works only for the simple charge-charge
electrostatic potential; it does not affect bond dipole or atomic multipole potentials.

NEWHESS [integer] Sets the number of algorithmic iterations between recomputation of the Hessian
matrix. At present this keyword applies exclusively to optimizations using the Truncated Newton method.
The default value in the absence of this keyword is 1, i.e., the Hessian is computed on every iteration.

NEXTITER [integer] Sets the iteration number to be used for the first iteration of the current
computation. At present this keyword applies to optimization procedures where its use can effect
convergence criteria, timing of restarts, and so forth. The default in the absence of this keyword is to take
the initial iteration as iteration 1.

NOSE-MASS [2 reals] Sets the hypothetical mass in Daltons of each of the two chain particles for the
Nose-Hoover thermostat. If only a single real number modifier is given, its value is used for both chains.
The default in the absence of this keyword is to use a mass of 10 Daltons for each Nose-Hoover chain.

NOVERSION Turns off the use of version numbers appended to the end of filenames as the method for
generating filenames for updated copies of an existing file. The presence of this keyword results in direct
use of input file names without a search for the highest available version, and requires the entry of specific
output file names in many additional cases. By default, in the absence of this keyword, TINKER generates
and attaches version numbers in a manner similar to the Digital OpenVMS operating system. For example,
subsequent new versions of the file molecule.xyz would be written first to the file molecule.xyz_2, then to
molecule.xyz_3, etc.

OCTAHEDRON Specifies that the periodic “box” is a truncated octahedron with maximal distance
across the truncated octahedron as given by the A-AXIS keyword. All other unit cell and periodic box size-
defining keywords are ignored if the OCTAHEDRON keyword is present.

OPBEND [2 integers & 1 real] This keyword provides the values for a single Allinger MM-style out-
of-plane angle bending potential parameter. The first integer modifier is the atom class of the central
trigonal atom and the second integer is the atom class of the out-of-plane atom. The real number modifier
gives the force constant value for the out-of-plane angle. The default units for the force constant are
kcal/mole/radian2, but this can be controlled via the OPBENDUNIT keyword.

OPBENDTERM [NONE/ONLY] This keyword controls use of the Allinger MM-style out-of-plane
bending potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

OPBENDUNIT [real] Sets the scale factor needed to convert the energy value computed by the Allinger
MM-style out-of-plane bending potential into units of kcal/mole. The correct value is force field dependent
and typically provided in the header of the master force field parameter file. The default of (•/180)2 =
0.0003046 is used, if the OPBENDUNIT keyword is not given in the force field parameter file or the
keyfile.

OPDIST [4 integers & 1 real] This keyword provides the values for a single out-of-plane distance
potential parameter. The first integer modifier is the atom class of the central trigonal atom and the three

 46 TINKER User's Guide 46

following integer modifiers are the atom classes of the three attached atoms. The real number modifier is
the force constant for the harmonic function of the out-of-plane distance of the central atom. The default
units for the force constant are kcal/mole/Å2, but this can be controlled via the OPDISTUNIT keyword.

OPDISTTERM [NONE/ONLY] This keyword controls use of the out-of-plane distance potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms
except for this one.

OPDISTUNIT [real] Sets the scale factor needed to convert the energy value computed by the out-of-
plane distance potential into units of kcal/mole. The correct value is force field dependent and typically
provided in the header of the master force field parameter file. The default value of 1.0 is used, if the
OPDISTUNIT keyword is not given in the force field parameter file or the keyfile.

OVERWRITE Causes TINKER programs, such as minimizations, that output intermediate coordinate
sets to create a single disk file for the intermediate results which is successively overwritten with the new
intermediate coordinates as they become available. This keyword is essentially the opposite of the
SAVECYCLE keyword.

PARAMETERS [file name] Provides the name of the force field parameter file to be used for the
current TINKER calculation. The standard file name extension for parameter files, .prm, is an optional part
of the file name modifier. The default in the absence of the PARAMETERS keyword is to look for a
parameter file with the same base name as the molecular system and ending in the .prm extension. If a
valid parameter file is not found, the user will asked to provide a file name interactively.

PIATOM [1 integer & 3 reals] This keyword provides the values for the pisystem MO potential
parameters for a single atom class belonging to a pisystem.

PIBOND [2 integers & 2 reals] This keyword provides the values for the pisystem MO potential
parameters for a single type of pisystem bond.

PISYSTEM [integer list] This keyword sets the atoms within a molecule that are part of a conjugated •-
system. The keyword is followed on the same line by a list of atom numbers and/or atom ranges that
constitute the •-system. The Allinger MM force fields use this information to set up an MO calculation used
to scale bond and torsion parameters involving •-system atoms.

PME-GRID [3 integers] This keyword sets the dimensions of the charge grid used during particle mesh
Ewald summation. The three modifiers give the size along the X-, Y- and Z-axes, respectively. If either the
Y- or Z-axis dimensions are omitted, then they are set equal to the X-axis dimension. The default in the
absence of the PME-GRID keyword is to set the grid size along each axis to the smallest power of 2, 3
and/or 5 which is at least as large as 1.5 times the axis length in Angstoms. Note that the FFT used by PME
is not restricted to, but is most efficient for, grid sizes which are powers of 2, 3 and/or 5.

PME-ORDER [integer] This keyword sets the order of the B-spline interpolation used during particle
mesh Ewald summation. A default value of 8 is used in the absence of the PME-ORDER keyword.

POLAR-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-2 polarization groups, i.e., pairs of atoms that are in directly connected
polarization groups. The default value of 0.0 is used, if the POLAR-12-SCALE keyword is not given in
either the parameter file or the keyfile.

POLAR-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-3 polarization groups, i.e., pairs of atoms that are in polarization groups

 47 TINKER User's Guide 47

separated by one other group. The default value of 0.0 is used, if the POLAR-13-SCALE keyword is not
given in either the parameter file or the keyfile.

POLAR-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-4 polarization groups, i.e., pairs of atoms that are in polarization groups
separated by two other groups. The default value of 1.0 is used, if the POLAR-14-SCALE keyword is not
given in either the parameter file or the keyfile.

POLAR-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-5 polarization groups, i.e., pairs of atoms that are in polarization groups
separated by three other groups. The default value of 1.0 is used, if the POLAR-15-SCALE keyword is not
given in either the parameter file or the keyfile.

POLAR-DAMP [2 reals] Controls the strength of the damping function applied to induced dipoles and
dipole polarization interaction energies. The first modifier sets the radius in Angstoms of a hypothetical
atom with unit polarizability, while the second modifier sets the scale factor for the exponent of the
damping function. The default values for the radius and the scale factor are 1.662 and 1.0, respectively.
Damping is eliminated entirely by using this keyword to set the radius value to zero.

POLAR-EPS [real] This keyword sets the convergence criterion applied during computation of self-
consistent induced dipoles. The calculation is deemed to have converged when the rms change (in Debyes)
of the induced dipoles at all polarizable sites is less than the value specified with this keyword. The default
value in the absence of the keyword is 10-6 Debyes.

POLAR-OLD This keyword selects the polarization damping scheme used in TINKER 3.8 and earlier.
Beginning with the 3.9 release, TINKER implements a short range polarization damping method due to
Thole. This option is included primarily to allow continued use of the early TINKER polarizable water
model based on the originally implemented flat multiplicative damping.

POLAR-SOR [real] Sets a successive overrelaxation (SOR) factor for use in computation of induced
atomic dipoles. Optimal values for this keyword will speed the induced dipole calculation, and poor values
can result in convergence failure. The default value in the absence of the POLAR-SOR keyword is 0.7
which often a reasonable value when short-range intramolecular polarization is present. For models lacking
intramolecular polarization, keyword values closer to 1.0 may be optimal.

POLARIZATION [DIRECT/MUTUAL] Selects between the use of direct and mutual dipole
polarization for force fields that incorporate the polarization term. The DIRECT modifier avoids an
iterative calculation by using only the permanent electric field in computation of induced dipoles. The
MUTUAL option, which is the default in the absence of the POLARIZATION keyword, iterates the
induced dipoles to self-consistency.

POLARIZE [1 integer, 1 real & up to 4 integers] This keyword provides the values for a single atomic
dipole polarizability parameter. The integer modifier, if positive, gives the atom type number for which a
polarizability parameter is to be defined. If the first integer modifier is negative, then the parameter value to
follow applies only to the individual atom whose atom number is the negative of the modifier. The real
number modifier gives the value of the dipole polarizability in Å3. The final integer modifiers list the atom
type numbers of atoms directly bonded to the current atom and which will be considered to be part of the
current atom's polarization group.

POLARIZETERM [NONE/ONLY] This keyword controls use of the atomic dipole polarization
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

 48 TINKER User's Guide 48

POLYMER-CUTOFF [real] Sets the value of an additional cutoff parameter needed for infinite
polymer systems. This value must be set to less than half the minimal periodic box dimension and should
be greater than the largest possible interatomic distance that can be subject to scaling or exclusion as a local
electrostatic or van der Waals interaction. The default in the absence of the POLYMER-CUTOFF keyword
is 5.5 Angstroms.

PRINTOUT [integer] A general parameter for iterative procedures such as minimizations that sets the
number of iterations between writes of status information to the standard output. The default value in the
absence of the keyword is 1, i.e., the calculation status is given every iteration.

RADIUSRULE [ARITHMETIC/GEOMETRIC/CUBIC-MEAN] Sets the functional form of the
radius combining rule for heteroatomic van der Waals potential energy interactions. The default in the
absence of the RADIUSRULE keyword is to use the arithmetic mean combining rule to get radii for
heteroatomic interactions.

RADIUSSIZE [RADIUS/DIAMETER] Determines whether the atom size values given in van der
Waals parameters read from VDW keyword statements are interpreted as atomic radius or diameter values.
The default in the absence of the RADIUSSIZE keyword is to assume that vdw size parameters are given
as radius values.

RADIUSTYPE [R-MIN/SIGMA] Determines whether atom size values given in van der Waals
parameters read from VDW keyword statements are interpreted as potential minimum (Rmin) or LJ-style
sigma (•) values. The default in the absence of the RADIUSTYPE keyword is to assume that vdw size
parameters are given as Rmin values.

RANDOMSEED [integer] Followed by an integer value, this keyword sets the initial seed value for the
random number generator used by TINKER. Setting RANDOMSEED to the same value as an earlier run
will allow exact reproduction of the earlier calculation. (Note that this will not hold across different
machine types.) RANDOMSEED should be set to a positive integer less than about 2 billion. In the absence
of the RANDOMSEED keyword the seed is chosen ``randomly'' based upon the number of seconds that
have elapsed in the current decade.

RATTLE [BONDS/ANGLES/DIATOMIC/TRIATOMIC/WATER] Invokes the rattle algorithm, a
velocity version of shake, on portions of a molecular system during a molecular dynamic calculation. The
RATTLE keyword can be followed by any of the modifiers shown, in which case all occurrences of the
modifier species are constrained at ideal values taken from the bond and angle parameters of the force field
in use. In the absence of any modifier, RATTLE constrains all bonds to hydrogen atoms at ideal bond
lengths.

RATTLE-DISTANCE [2 integers] This keyword allows the use of a ``Rattle'' constraint between the
two atoms whose numbers are specified on the keyword line. If the two atoms are involved in a covalent
bond, then their distance is constrained to the ideal bond length from the force field. For nonbonded atoms,
the rattle constraint is fixed at their distance in the input coordinate file.

REACTIONFIELD [2 reals & 1 integer] This keyword provides parameters needed for the reaction
field potential energy calculation. The two real modifiers give the radius of the dielectric cavity and the
ratio of the bulk dielectric outside the cavity to that inside the cavity. The integer modifier gives the number
of terms in the reaction field summation to be used. In the absence of the REACTIONFIELD keyword, the
default values are a cavity of radius 1000000 Å, a dielectric ratio of 80 and use of only the first term of the
reaction field summation.

REDUCE [real] Specifies the fraction between zero and one by which the path between starting and
final conformational state will be shortened at each major cycle of the transition state location algorithm
implemented by the SADDLE program. This causes the path endpoints to move up and out of the terminal

 49 TINKER User's Guide 49

structures toward the transition state region. In favorable cases, a nonzero value of the REDUCE modifier
can speed convergence to the transition state. The default value in the absence of the REDUCE keyword is
zero.

RESTRAIN-ANGLE [3 integers & 3 reals] This keyword implements a flat-welled harmonic potential
that can be used to restrain the angle between three atoms to lie within a specified angle range. The initial
integer modifiers contains the atom numbers of the three atoms whose angle is to be restrained. The first
real modifier is the force constant in kcal/degree2 for the restraint. The last two real number modifiers give
the lower and upper bounds in degrees on the allowed angle values. If the angle lies between the lower and
upper bounds, the restraint potential is zero. Outside the bounds, the harmonic restraint is applied. If the
angle range modifiers are omitted, then the atoms are restrained to the angle found in the input structure. If
the force constant is also omitted, a default value of 10.0 is used.

RESTRAIN-DISTANCE [2 integers & 3 reals] This keyword implements a flat-welled harmonic
potential that can be used to restrain two atoms to lie within a specified distance range. The initial integer
modifiers contains the atom numbers of the two atoms to be restrained. The first two real number modifiers
give the lower and upper bounds in Ångstroms on the allowed distance values. If the interatomic distance
lies between the lower and upper bounds, the restraint potential is zero. Outside the bounds, the harmonic
restraint is applied. If the distance range modifiers are omitted, then the atoms are restrained to the
interatomic distance found in the input structure. If the force constant is also omitted, a default value of
100.0 is used.

RESTRAIN-GROUPS [2 integers & 3 reals] This keyword implements a flat-welled harmonic
distance restraint between the centers-of-mass of two groups of atoms. The integer modifiers are the
numbers of the two groups which must be defined separately via the GROUP keyword. The first real
modifier is the force constant in kcal/Å2 for the restraint. The last two real number modifiers give the lower
and upper bounds in Ångstroms on the allowed distance values. If the distance range modifiers are omitted,
then the atoms are restrained to the intergroup distance found in the input structure. If the force constant is
also omitted, a default value of 100.0 is used.

RESTRAIN-POSITION [1 integer & 5 reals] This keyword provides the ability to restrain an
individual atom to a specified coordinate position. The initial integer modifier contains the atom number of
the atom to be restrained. The first real modifier sets the force constant in kcal/Å2 for the harmonic restraint
potential. The next three real number modifiers give the X-, Y- and Z-coordinates to which the atom is
tethered. The final real modifier defines a sphere around the specified coordinates within which the
restraint value is zero. If all the real modifiers are omitted, then the atom is restrained to the origin. If the
force constant is also omitted, a default value of 100.0 is used.

RESTRAIN-TORSION [4 integers & 3 reals] This keyword implements a flat-welled harmonic
potential that can be used to restrain the torsional angle between four atoms to lie within a specified angle
range. The initial integer modifiers contains the atom numbers of the four atoms whose torsional angle,
computed in the atom order listed, is to be restrained. The first real modifier gives a force constant in
kcal/degree2. The last two real number modifiers give the lower and upper bounds in degrees on the allowed
torsional angle values. The angle values given can wrap around across -180 and +180 degrees. Outside the
allowed angle range, the harmonic restraint is applied. If the angle range modifiers are omitted, then the
atoms are restrained to the torsional angle found in the input structure. If the force constant is also omitted,
a default value of 1.0 is used.

RESTRAINTERM [NONE/ONLY] This keyword controls use of the restraint potential energy terms.
In the absence of a modifying option, this keyword turns on use of these potentials. The NONE option turns
off use of these potential energy terms. The ONLY option turns off all potential energy terms except for
these terms.

 50 TINKER User's Guide 50

RXNFIELDTERM [NONE/ONLY] This keyword controls use of the reaction field continuum
solvation potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

SADDLEPOINT The presence of this keyword allows Newton-style second derivative-based
optimization routine used by NEWTON, NEWTROT and other programs to converge to saddlepoints as
well as minima on the potential surface. By default, in the absence of the SADDLEPOINT keyword,
checks are applied that prevent convergence to stationary points having directions of negative curvature.

SAVE-CYCLE This keyword causes TINKER programs, such as minimizations, that output
intermediate coordinate sets to save each successive set to the next consecutively numbered cycle file. The
SAVE-CYCLE keyword is the opposite of the OVERWRITE keyword.

SAVE-INDUCED This keyword causes TINKER molecular dynamics calculations that involve
polarizable atomic multipoles to save the values of the induced dipole components on each polarizable
atom to a separate cycle file. These files are written whenever the atomic coordinate snapshots are written
during the dynamics run. Each induced dipole file name contains as a suffix the cycle number followed by
the letter u.

SAVE-VELOCITY This keyword causes TINKER molecular dynamics calculations to save the values
of the velocity components on each atom to a separate cycle file. These files are written whenever the
atomic coordinate snapshots are written during the dynamics run. Each velocity file name contains as a
suffix the cycle number followed by the letter v.

SLOPEMAX [real] This keyword and its modifying value set the maximum allowed size of the ratio
between the current and initial projected gradients during the line search phase of conjugate gradient or
truncated Newton optimizations. If this ratio exceeds SLOPEMAX, then the initial step size is reduced by a
factor of 10. The default value is usually set to 10000.0 when not specified via the SLOPEMAX keyword.

SMOOTHING [DEM/GDA/TOPHAT/STOPHAT] This keyword activates the potential energy
smoothing methods. Several variations are available depending on the value of the modifier used: DEM=
Diffusion Equation Method with a standard Gaussian kernel; GDA= Gaussian Density Annealing as
proposed by the Straub group; TOPHAT= a local DEM-like method using a finite range ``tophat'' kernel;
STOPHAT= shifted tophat smoothing.

SOLVATE [ASP/SASA/ONION/STILL/HCT/ACE/GBSA] Use of this keyword during energy
calculations with any of the standard force fields turns on a continuum solvation free energy term. Several
algorithms are available based on the modifier used: ASP= Eisenberg-McLachlan ASP method using the
Wesson-Eisenberg vacuum-to-water parameters; SASA= the Ooi-Scheraga SASA method; ONION= the
original 1990 Still ``Onion-shell'' GB/SA method; STILL= the 1997 analytical GB/SA method from Still's
group; HCT= the pairwise descreening method of Hawkins, Cramer and Truhlar; ACE= the Analytical
Continuum Electrostatics solvation method from the Karplus group; GBSA= equivalent to the STILL
modifier. At present, GB/SA-style methods are only valid for force fields that use simple partial charge
electrostatics.

SOLVATETERM [NONE/ONLY] This keyword controls use of the macroscopic solvation potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms
except for this one.

SPACEGROUP [name] This keyword selects the space group to be used in manipulation of crystal unit
cells and asymmetric units. The name option must be chosen from one of the following currently

 51 TINKER User's Guide 51

implemented space groups: P1, P1(-), P21, Cc, P21/a, P21/n, P21/c, C2/c, P212121, Pna21, Pn21a, Cmc21,
Pccn, Pbcn, Pbca, P41, I41/a, P4(-)21c, P4(-)m2, R3c, P6(3)/mcm, Fm3(-)m, Im3(-)m.

SPHERE [4 reals, or 1 integer & 1 real] This keyword provides an alternative to the ACTIVE and
INACTIVE keywords for specification of subsets of active atoms. If four real number modifiers are
provided, the first three are taken as X-, Y- and Z-coordinates and the fourth is the radius of a sphere
centered at these coordinates. In this case, all atoms within the sphere at the start of the calculation are
active throughout the calculation, while all other atoms are inactive. Similarly if one integer and real
number are given, an ``active'' sphere with radius set by the real is centered on the system atom with atom
number given by the integer modifier. Multiple SPHERE keyword lines can be present in a single keyfile,
and the list of active atoms specified by the spheres is cumulative.

STEEPEST-DESCENT This keyword forces the L-BFGS optimization routine used by the MINIMIZE
program and other programs to perform steepest descent minimization. This option can be useful in
conjunction with small step sizes for following minimum energy paths, but is generally inferior to the L-
BFGS default for most optimization purposes.

STEPMAX [real] This keyword and its modifying value set the maximum size of an individual step
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size is
computed as the norm of the vector of changes in parameters being optimized. The default value depends
on the particular TINKER program, but is usually in the range from 1.0 to 5.0 when not specified via the
STEPMAX keyword.

STEPMIN [real] This keyword and its modifying value set the minimum size of an individual step
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size is
computed as the norm of the vector of changes in parameters being optimized. The default value is usually
set to about 10-16 when not specified via the STEPMIN keyword.

STRBND [1 integer & 3 reals] This keyword provides the values for a single stretch-bend cross term
potential parameter. The integer modifier gives the atom class number for the central atom of the bond
angle involved in stretch-bend interactions. The real number modifiers give the force constant values to be
used when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen atoms, respectively.
The default units for the stretch-bend force constant are kcal/mole/Å-degree, but this can be controlled via
the STRBNDUNIT keyword.

STRBNDTERM [NONE/ONLY] This keyword controls use of the bond stretching-angle bending cross
term potential energy. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

STRBNDUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
stretching-angle bending cross term potential into units of kcal/mole. The correct value is force field
dependent and typically provided in the header of the master force field parameter file. The default value of
1.0 is used, if the STRBNDUNIT keyword is not given in the force field parameter file or the keyfile.

STRTORS [2 integers & 1 real] This keyword provides the values for a single stretch-torsion cross
term potential parameter. The two integer modifiers give the atom class numbers for the atoms involved in
the central bond of the torsional angles to be parameterized. The real modifier gives the value of the
stretch-torsion force constant for all torsional angles with the defined central bond atom classes. The
default units for the stretch-torsion force constant can be controlled via the STRTORUNIT keyword.

STRTORTERM [NONE/ONLY] This keyword controls use of the bond stretching-torsional angle
cross term potential energy. In the absence of a modifying option, this keyword turns on use of the

 52 TINKER User's Guide 52

potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

STRTORUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
stretching-torsional angle cross term potential into units of kcal/mole. The correct value is force field
dependent and typically provided in the header of the master force field parameter file. The default value of
1.0 is used, if the STRTORUNIT keyword is not given in the force field parameter file or the keyfile.

TAPER [real] This keyword allows modification of the cutoff windows for nonbonded potential energy
interactions. The nonbonded terms are smoothly reduced from their standard value at the beginning of the
cutoff window to zero at the far end of the window. The far end of the window is specified via the
CUTOFF keyword or its potential function specific variants. The modifier value supplied with the TAPER
keyword sets the beginning of the cutoff window. The modifier can be given either as an absolute distance
value in Angstroms, or as a fraction between zero and one of the CUTOFF distance. The default value in
the absence of the TAPER keyword ranges from 0.65 to 0.9 of the CUTOFF distance depending on the
type of potential function. The windows are implemented via polynomial-based switching functions, in
some cases combined with energy shifting.

TAU-PRESSURE [real] Sets the coupling time in picoseconds for the Groningen-style pressure bath
coupling used to control the system pressure during molecular dynamics calculations. A default value of
2.0 is used for TAU-PRESSURE in the absence of the keyword.

TAU-TEMPERATURE [real] Sets the coupling time in picoseconds for the Groningen-style
temperature bath coupling used to control the system temperature during molecular dynamics calculations.
A default value of 0.1 is used for TAU-TEMPERATURE in the absence of the keyword.

THERMOSTAT [BERENDSEN/ANDERSEN/NOSE-HOOVER] This keyword selects a thermostat
algorithm for use during molecular dynamics. Three modifiers are available cooresponding to Berendsen
bath coupling, Andersen stochastic collision, and Nose-Hoover extended dynamics methods. The default in
the absence of the THERMOSTAT keyword is to use the BERENDSEN algorithm.

TORSION [4 integers & up to 6 real/real/integer triples] This keyword provides the values for a
single torsional angle parameter. The first four integer modifiers give the atom class numbers for the atoms
involved in the torsional angle to be defined. Each of the remaining triples of real/real/integer modifiers
give the amplitude, phase offset in degrees and periodicity of a particular torsional function term,
respectively. Periodicities through 6-fold are allowed for torsional parameters.

TORSION4 [4 integers & up to 6 real/real/integer triples] This keyword provides the values for a
single torsional angle parameter specific to atoms in 4-membered rings. The first four integer modifiers
give the atom class numbers for the atoms involved in the torsional angle to be defined. The remaining
triples of real number and integer modifiers operate as described above for the TORSION keyword.

TORSION5 [4 integers & up to 6 real/real/integer triples] This keyword provides the values for a
single torsional angle parameter specific to atoms in 5-membered rings. The first four integer modifiers
give the atom class numbers for the atoms involved in the torsional angle to be defined. The remaining
triples of real number and integer modifiers operate as described above for the TORSION keyword.

TORSIONTERM [NONE/ONLY] This keyword controls use of the torsional angle potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for
this one.

TORSIONUNIT [real] Sets the scale factor needed to convert the energy value computed by the
torsional angle potential into units of kcal/mole. The correct value is force field dependent and typically

 53 TINKER User's Guide 53

provided in the header of the master force field parameter file. The default value of 1.0 is used, if the
TORSIONUNIT keyword is not given in the force field parameter file or the keyfile.

TORTOR [7 integers, then multiple lines of 2 integers and 1 real] This keyword is used to provide
the values for a single torsion-torsion parameter. The first five integer modifiers give the atom class
numbers for the atoms involved in the two adjacent torsional angles to be defined. The last two integer
modifiers contain the number of data grid points that lie along each axis of the torsion-torsion map. For
example, this value will be 13 for a 30 degree torsional angle spacing, i.e., 360/30 = 12, but 13 values are
required since data values for -180 and +180 degrees must both be supplied. The subsequent lines contain
the torsion-torsion map data as the integer values in degrees of each torsional angle and the target energy
value in kcal/mole.

TORTORTERM [NONE/ONLY] This keyword controls use of the torsion-torsion potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for
this one.

TORTORUNIT [real] Sets the scale factor needed to convert the energy value computed by the torsion-
torsion potential into units of kcal/mole. The correct value is force field dependent and typically provided
in the header of the master force field parameter file. The default value of 1.0 is used, if the TORTORUNIT
keyword is not given in the force field parameter file or the keyfile.

TRIAL-DISTANCE [CLASSIC/RANDOM/TRICOR/HAVEL integer/PAIRWISE integer]
Sets the method for selection of a trial distance matrix during distance geometry computations. The
keyword takes a modifier that selects the method to be used. The HAVEL and PAIRWISE modifiers also
require an additional integer value that specifies the number of atoms used in metrization and the
percentage of metrization, respectively. The default in the absence of this keyword is to use the PAIRWISE
method with 100 percent metrization. Further information on the various methods is given with the
description of the TINKER distance geometry program.

TRIAL-DISTRIBUTION [real] Sets the initial value for the mean of the Gaussian distribution used to
select trial distances between the lower and upper bounds during distance geometry computations. The
value given must be between 0 and 1 which represent the lower and upper bounds respectively. This
keyword is rarely needed since TINKER will usually be able to choose a reasonable value by default.

TRUNCATE Causes all distance-based nonbond energy cutoffs to be sharply truncated to an energy of
zero at distances greater than the value set by the cutoff keyword(s) without use of any shifting, switching
or smoothing schemes. At all distances within the cutoff sphere, the full interaction energy is computed.

UREY-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the Urey-
Bradley potential energy. The real number modifier gives the value of the coefficient as a multiple of the
quadratic coefficient. The default value in the absence of the UREY-CUBIC keyword is zero; i.e., the cubic
Urey-Bradley term is omitted.

UREY-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of the
Urey-Bradley potential energy. The real number modifier gives the value of the coefficient as a multiple of
the quadratic coefficient. The default value in the absence of the UREY-QUARTIC keyword is zero; i.e.,
the quartic Urey-Bradley term is omitted.

UREYBRAD [3 integers & 2 reals] This keyword provides the values for a single Urey-Bradley cross
term potential parameter. The integer modifiers give the atom class numbers for the three kinds of atoms
involved in the angle for which a Urey-Bradley term is to be defined. The real number modifiers give the
force constant value for the term and the target value for the 1-3 distance in Å. The default units for the
force constant are kcal/mole/Å2, but this can be controlled via the UREYUNIT keyword.

 54 TINKER User's Guide 54

UREYTERM [NONE/ONLY] This keyword controls use of the Urey-Bradley potential energy term. In
the absence of a modifying option, this keyword turns on use of the potential. The NONE option turns off
use of this potential energy term. The ONLY option turns off all potential energy terms except for this one.

UREYUNIT [real] Sets the scale factor needed to convert the energy value computed by the Urey-
Bradley potential into units of kcal/mole. The correct value is force field dependent and typically provided
in the header of the master force field parameter file. The default value of 1.0 is used, if the UREYUNIT
keyword is not given in the force field parameter file or the keyfile.

VDW [1 integer & 3 reals] This keyword provides values for a single van der Waals parameter. The
integer modifier, if positive, gives the atom class number for which vdw parameters are to be defined. Note
that vdw parameters are given for atom classes, not atom types. The three real number modifiers give the
values of the atom size in Å, homoatomic well depth in kcal/mole, and an optional reduction factor for
univalent atoms.

VDW-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van der
Waals potential interactions between 1-2 connected atoms, i.e., atoms that are directly bonded. The default
value of 0.0 is used, if the VDW-12-SCALE keyword is not given in either the parameter file or the keyfile.

VDW-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van der
Waals potential interactions between 1-3 connected atoms, i.e., atoms separated by two covalent bonds.
The default value of 0.0 is used, if the VDW-13-SCALE keyword is not given in either the parameter file
or the keyfile.

VDW-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van der
Waals potential interactions between 1-4 connected atoms, i.e., atoms separated by three covalent bonds.
The default value of 1.0 is used, if the VDW-14-SCALE keyword is not given in either the parameter file
or the keyfile.

VDW-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van der
Waals potential interactions between 1-5 connected atoms, i.e., atoms separated by four covalent bonds.
The default value of 1.0 is used, if the VDW-15-SCALE keyword is not given in either the parameter file
or the keyfile.

VDW-CUTOFF [real] Sets the cutoff distance value in Angstroms for van der Waals potential energy
interactions. The energy for any pair of van der Waals sites beyond the cutoff distance will be set to zero.
Other keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff
distance in the absence of the VDW-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for
periodic systems.

VDW-TAPER [real] This keyword allows modification of the cutoff windows for van der Waals
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its value
applies only to the vdw potential. The default value in the absence of the VDW-TAPER keyword is to
begin the cutoff window at 0.9 of the vdw cutoff distance.

VDW14 [1 integer & 2 reals] This keyword provides values for a single van der Waals parameter for
use in 1-4 nonbonded interactions. The integer modifier, if positive, gives the atom class number for which
vdw parameters are to be defined. Note that vdw parameters are given for atom classes, not atom types. The
two real number modifiers give the values of the atom size in Å and the homoatomic well depth in
kcal/mole. Reduction factors, if used, are carried over from the VDW keyword for the same atom class.

 55 TINKER User's Guide 55

VDWPR [2 integers & 2 reals] This keyword provides the values for the vdw parameters for a single
special heteroatomic pair of atoms. The integer modifiers give the pair of atom class numbers for which
special vdw parameters are to be defined. The two real number modifiers give the values of the minimum
energy contact distance in Å and the well depth at the minimum distance in kcal/mole.

VDWTERM [NONE/ONLY] This keyword controls use of the van der Waals repulsion-dispersion
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

VDWTYPE [LENNARD-JONES / BUCKINGHAM / BUFFERED-14-7 / MM3-HBOND /
GAUSSIAN] Sets the functional form for the van der Waals potential energy term. The text modifier
gives the name of the functional form to be used. The GAUSSIAN modifier value implements a two or four
Gaussian fit to the corresponding Lennard-Jones function for use with potential energy smoothing schemes.
The default in the absence of the VDWTYPE keyword is to use the standard two parameter Lennard-Jones
function.

VERBOSE Turns on printing of secondary and informational output during a variety of TINKER
computations; a subset of the more extensive output provided by the DEBUG keyword.

WALL [real] Sets the radius of a spherical boundary used to maintain droplet boundary conditions. The
real modifier specifies the desired approximate radius of the droplet. In practice, an artificial van der Waals
wall is constructed at a fixed buffer distance of 2.5 Å outside the specified radius. The effect is that atoms
which attempt to move outside the region defined by the droplet radius will be forced toward the center.

WRITEOUT [integer] A general parameter for iterative procedures such as minimizations that sets the
number of iterations between writes of intermediate results (such as the current coordinates) to disk file(s).
The default value in the absence of the keyword is 1, i.e., the intermediate results are written to file on
every iteration. Whether successive intermediate results are saved to new files or replace previously written
intermediate results is controlled by the OVERWRITE and SAVE-CYCLE keywords.

 56 TINKER User's Guide 56

8. Notes on Special Features & Methods

 This section contains several short notes with further information about TINKER methodology,
algorithms and special features. The discussion is not intended to be exhaustive, but rather to explain
features and capabilities so that users can make more complete use of the package.

FILE VERSION NUMBERS

 All of the input and output file types routinely used by the TINKER package are capable of
existing as multiple versions of a base file name. For example, if the program XYZINT is run on the input
file molecule.xyz, the output internal coordinates file will be written to molecule.int. If a file named
molecule.int is already present prior to running XYZINT, then the output will be written instead to the next
available version, in this case to molecule.int_2. In fact the output is generally written to the lowest
available, previously unused version number (molecule.int_3, molecule.int_4, etc., as high as needed).
Input file names are handled similarly. If simply molecule or molecule.xyz is entered as the input file name
upon running XYZINT, then the highest version of molecule.xyz will be used as the actual input file. If an
explicit version number is entered as part of the input file name, then the specified version will be used as
the input file.

 The version number scheme will be recognized by many older users as a holdover from the VMS
origins of the first version of the TINKER software. It has been maintained to make it easier to chain
together multiple calculations that may create several new versions of a given file, and to make it more
difficult to accidently overwrite a needed result. The version scheme applies to most uses of many common
TINKER file types such as .xyz, .int, .key, .arc. It is not used when an overwritten file ``update'' is
obviously the correct action, for example, the .dyn molecular dynamics restart files. For those users who
prefer a more Unix-like operation, and do not desire use of file versions, this feature can be turned off by
adding the NOVERSION keyword to the applicable TINKER keyfile.

 The version scheme as implemented in TINKER does have two known quirks. First, it becomes
impossible to directly use the original unversioned copy of a file if higher version numbers are present. For
example, if the files molecule.xyz and molecule.xyz_2 both exist, then molecule.xyz cannot be accessed as
input by XYZINT. If molecule.xyz is entered in response to the input file name question, molecule.xyz_2
(or the highest present version number) will be used as input. The only workaround is to copy or rename
molecule.xyz to something else, say molecule.new, and use that name for the input file. Secondly, missing
version numbers always end the search for the highest available version number; i.e., version numbers are
assumed to be consecutive and without gaps. For example, if molecule.xyz, molecule.xyz_2 and
molecule.xyz_4 are present, but not molecule.xyz_3, then molecule.xyz_2 will be used as input to
XYZINT if molecule is given as the input file name. Similarly, output files will fill in gaps in an already
existing set of file versions.

COMMAND LINE OPTIONS

 Many operating systems or compiler supplied-libraries make available something like the standard
Unix iargc and getarg routines for capturing command line arguments. On these machines most of the
TINKER programs support a selection of command line arguments and options. The name of the keyfile to
be used for a calculation is read from the argument following a -k (equivalent to either -key or -keyfile,
case insensitive) command line argument. Note that the -k options can appear anywhere on the command
line following the executable name. All other command line arguments, excepting the name of the
executable program itself, are treated as input arguments. These input arguments are read from left to right
and interpreted in order as the answers to questions that would be asked by an interactive invocation of the
same TINKER program. For example, the following command line:

newton molecule -k test a a 0.01

 57 TINKER User's Guide 57

will invoke the NEWTON program on the structure file molecule.xyz using the keyfile test.key, automatic
mode [a] for both the method and preconditioning, and 0.01 for the RMS gradient per atom termination
criterion in kcal/mole/Å. Provided that the force field parameter set, etc. is provided in test.key, the above
compuation will procede directly from the command line invocation without further interactive input.

USE ON MICROSOFT WINDOWS SYSTEMS

 TINKER executables for Microsoft PC systems should be run from the DOS or Command Prompt
window available under the various versions of Windows. The TINKER executable directory should be
added to your path via the autoexec.bat file or similar. If using Win2000 or XP, set the number of scrollable
lines in the Command Prompt window to a very large number, so that you will be able to inspect screen
output after it flies by. With Win95/98, these Command Prompt windows are only able to scroll a small
number of lines (amazing!), so TINKER programs which generate large amounts of screen output should
be run such that output will be redirected to a file. This can be accomplished by running the TINKER
program in batch mode or by using the Unix-like output redirection build into DOS. For example, the
command:

dynamic < molecule.inp > molecule.log

will run the TINKER dynamic program taking input from the file molecule.inp and sending output to
molecule.log. Also note that command line options as described above are available with the distributed
TINKER executables.

 Another alternative, particularly attractive to those already familiar with Linux or Unix systems, is
to download the Cygwin package currently available under GPL license from the site
http://source.redhat.com/cygwin/. The cygwin tools provide many of the GNU tools, including a bash
shell window from which TINKER programs can be run.

 If the distributed TINKER executables are run directly from Windows by double clicking on the
program icon, then the program will run in its own window. However, upon completion of the program the
window will close and screen output will be lost. Any output files written by the program will, of course,
still be available. The Windows behavior can be changed by adding the EXIT-PAUSE keyword to the
keyfile. This keyword causes the executation window to remain open after completion until the ``Enter''
key is pressed.

USE ON APPLE MACINTOSH SYSTEMS

 The TINKER executables are best run under Mac OS X in a ``terminal'' application window where
behavior is identical to that in a Linux terminal. At present the Force Field Explorer GUI for TINKER will
not run on OS X since the required Java3D extensions are unavailable.

 We have discontinued active support for Mac OS 9. However, the OS 9 versions of TINKER are
run by double clicking on a program icon. The program will run in its own window to which all ``screen''
output will be directed. Upon program termination the window will remain active pending a final return
entered by the user which will close the window. Prior to the final return, the contents of the screen window
can be saved to a file via the clipboard for permanent storage. Note that Macintosh OS9 uses a colon
instead of a forward- or back-slash as the directory separator, so keyfiles transfered from other machines
will need to be altered accordingly.

ATOM TYPES VS. ATOM CLASSES

 58 TINKER User's Guide 58

 Manipulation of atom types and the proliferation of parameters as atoms are further subdivided
into new types is the bane of force field calculation. For example, if each topologically distinct atom arising
from the 20 natural amino acids is given a different atom type, then about 300 separate type are required
(this ignores the different N- and C-terminal forms of the residues, diastereotopic hydrogens, etc.).
However, all these types lead to literally thousands of different force field parameters. In fact, there are
many thousands of distinct torsional parameters alone. It is impossible at present to fully optimize each of
these parameters; and even if we could, a great many of the parameters would be nearly identical. Two
somewhat complimentary solutions are available to handle the proliferation of parameters. The first is to
specify the molecular fragments to which a given parameter can be applied in terms of a chemical structure
language, SMILES strings for example. Some commercial systems, such as the TRIPOS Sybyl software,
make use of such a scheme to parse structures and assign force field parameters.

 A second general approach is to use hierarchical cascades of parameter groups. TINKER uses a
simple version of this scheme. Each TINKER force field atom has both an atom type number and an atom
class number. The types are subsets of the atom classes, i.e., several different atom types can belong to the
same atom class. Force field parameters that are somewhat less sensitive to local environment, such as local
geometry terms, are then provided and assigned based on atom class. Other energy parameters, such as
electrostatic parameters, that are very environment dependent are assigned over the atom types. This
greatly reduces the number of independent multiple-atom parameters like the four-atom torsional
parameters.

CALCULATIONS ON PARTIAL STRUCTURES

 Two methods are available for performing energetic calculations on portions or substructures
within a full molecular system. TINKER allows division of the entire system into active and inactive parts
which can be defined via keywords. In subsequent calculations, such as minimization or dynamics, only the
active portions of the system are allowed to move. The force field engine responds to the active/inactive
division by computing all energetic interactions involving at least one active atom; i.e., any interaction
whose energy can change with the motion of one or more active atoms is computed.

 The second method for partial structure computation involves dividing the original system into a
set of atom groups. As before, the groups can be specified via appropriate keywords. The current TINKER
implementation allows specification of up to a maximum number of groups as given in the sizes.i
dimensioning file. The groups must be disjoint in that no atom can belong to more than one group. Further
keywords allow the user to specify which intra- and intergroup sets of energetic interactions will contribute
to the total force field energy. Weights for each set of interactions in the total energy can also be input. A
specific energetic interaction is assigned to a particular intra- or intergroup set if all the atoms involved in
the interaction belong to the group (intra-) or pair of groups (inter-). Interactions involving atoms from
more than two groups are not computed.

 Note that the groups method and active/inactive method use different assignment procedures for
individual interactions. The active/inactive scheme is intended for situations where only a portion of a
system is allowed to move, but the total energy needs to reflect the presence of the remaining inactive
portion of the structure. The groups method is intended for use in rigid body calculations, and is needed for
certain kinds of free energy perturbation calculations.

METAL COMPLEXES AND HYPERVALENT SPECIES

 The distribution version of TINKER comes dimensioned for a maximum atomic coordination
number of four as needed for standard organic compounds. In order to use TINKER for calculations on
species containing higher coordination numbers, simply change the value of the parameter maxval in the
master dimensioning file sizes.i and rebuilt the package. Note that this parameter value should not be set
larger than necessary since large values can slow the execution of portions of some TINKER programs.

 59 TINKER User's Guide 59

 Many molecular mechanics approaches to inorganic and metal structures use an angle bending
term which is softer than the usual harmonic bending potential. TINKER implements a Fourier bending
term similar to that used by the Landis group's SHAPES force field. The parameters for specific Fourier
angle terms are supplied via the ANGLEF parameter and keyword format. Note that a Fourier term will
only be used for a particular angle if a corresponding harmonic angle term is not present in the parameter
file.

 We are now collaborating with Anders Carlsson's group in St. Louis to add his transition metal
ligand field term to TINKER. Support for this additional potential functional form is already in the
TINKER source code, and we plan to release the energy routines after further testing and parameterization.

NEIGHBOR METHODS FOR NONBONDED TERMS

 In addition to standard double loop methods, the Method of Lights is available to speed neighbor
searching. This method based on taking intersections of sorted atom lists can be much faster for problems
where the cutoff distance is significantly smaller than half the maximal cell dimension. The current version
of TINKER does not implement the ``neighbor list'' schemes common to many other simulation packages.

PERIODIC BOUNDARY CONDITIONS

 Both spherical cutoff images or replicates of a cell are supported by all TINKER programs that
implement periodic boundary conditions. Whenever the cutoff distance is too large for the minimum image
to be the only relevant neighbor (i.e., half the minimum box dimension for orthogonal cells), TINKER will
automatically switch from the image formalism to use of replicated cells.

DISTANCE CUTOFFS FOR ENERGY FUNCTIONS

 Polynomial energy switching over a window is used for terms whose energy is small near the
cutoff distance. For monopole electrostatic interactions, which are quite large in typical cutoff ranges, a two
polynomial multiplicative-additive shifted energy switch unique to TINKER is applied. The TINKER
method is similar in spirit to the force switching methods of Steinbach and Brooks, J. Comput. Chem., 15,
667-683 (1994). While the particle mesh Ewald method is preferred when periodic boundary conditions are
present, TINKER's shifted energy switch with reasonable switching windows is quite satisfactory for most
routine modeling problems. The shifted energy switch minimizes the perturbation of the energy and the
gradient at the cutoff to acceptable levels. Problems should arise only if the property you wish to monitor is
known to require explicit inclusion of long range components (i.e., calculation of the dielectric constant,
etc.).

EWALD SUMMATION METHODS

 TINKER contains a versions of the Ewald summation technique for inclusion of long range
electrostatic interactions via periodic boundaries. The particle mesh Ewald (PME) method is available for
simple charge-charge potentials, while regular Ewald is provided for polarizable atomic multipole
interactions. The accuracy and speed of the regular and PME calculations is dependent on several
interrelated parameters. For both methods, the Ewald coefficient and real-space cutoff distance must be set
to reasonable and complementary values. Additional control variables for regular Ewald are the fractional
coverage and number of vectors used in reciprocal space. For PME the additional control values are the B-
spline order and charge grid dimensions. Complete control over all of these parameters is available via the
TINKER keyfile mechanism. By default TINKER will select a set of parameters which provide a
reasonable compromise between accuracy and speed, but these should be checked and modified as
necessary for each individual system.

CONTINUUM SOLVATION MODELS

 60 TINKER User's Guide 60

 Several alternative continuum solvation algorithms are contained within TINKER. All of these are
accessed via the SOLVATE keyword and its modifiers. Two simple surface area methods are implemented:
the ASP method of Eisenberg and McLachlan, and the SASA method from Scheraga's group. These
methods are applicable to any of the standard TINKER force fields. Various schemes based on the
generalized Born formalism are also available: the original 1990 numerical ``Onion-shell'' GB/SA method
from Still's group, the 1997 analytical GB/SA method also due to Still, a pairwise descreening algorithm
originally proposed by Hawkins, Cramer and Truhlar, and the analytical continuum solvation (ACE)
method of Schaefer and Karplus. At present, the generalized Born methods should only be used with force
fields having simple partial charge electrostatic interactions.

 Some further comments are in order regarding the GB/SA-style solvation models. The ``Onion-
shell'' model is provided mostly for comparison purposes. It uses an exact, analytical surface area
calculation for the cavity term and the numerical scheme described in the original paper for the polarization
term. This method is very slow, especially for large systems, and does not contain the contribution of the
Born radii chain rule term to the first derivatives. We recommend its use only for single-point energy
calculations. The other GB/SA methods (``analytical'' Still, H-C-T pairwise descreening, and ACE) use an
approximate cavity term based on Born radii, and do contain fully correct derivatives including the Born
radii chain rule contribution. These methods all scale in CPU time with the square of the size of the system,
and can be used with minimization, molecular dynamics and large molecules.

 Finally, we note that the ACE solvation model should not be used with the current version of
TINKER. The algorithm is fully implemented in the source code, but parameterization is not complete. As
of late 2000, parameter values are only available in the literature for use of ACE with the older
CHARMM19 force field. We plan to develop values for use with more modern all-atom force fields, and
these will be incorporated into TINKER sometime in the future.

POLARIZABLE MULTIPOLE ELECTROSTATICS

 Atomic multipole electrostatics through the quadrupole moment is supported by the current
version of TINKER, as is either mutual or direct dipole polarization. Ewald summation is available for
inclusion of long range interactions. Calculations are implemented via a mixture of the CCP5 algorithms of
W. Smith and the Applequist-Dykstra Cartesian polytensor method. At present analytical energy and
Cartesian gradient code is provided.

 The TINKER package allows intramolecular polarization to be treated via a version of the
interaction damping scheme of Thole. To implement the Thole scheme, it is necessary to set all the
mutual-1x-scale keywords to a value of one. The other polarization scaling keyword series, direct-1x-
scale and polar-1x-scale, can be set independently to enable a wide variety of polarization models. In order
to use an Applequist-style model without polarization damping, simply set the polar-damp keyword to
zero.

POTENTIAL ENERGY SMOOTHING

 Versions of our Potential Smoothing and Search (PSS) methodology have been implemented
within TINKER. This methods belong to the same general family as Scheraga's Diffusion Equation
Method, Straub's Gaussian Density Annealing, Shalloway's Packet Annealing and Verschelde's Effective
Diffused Potential, but our algorithms reflect our own ongoing research in this area. In many ways the
TINKER potential smoothing methods are the deterministic analog of stochastic simulated annealing. The
PSS algorithms are very powerful, but are relatively new and are still undergoing modification, testing and
calibration within our research group. This version of TINKER also includes a basin-hopping
conformational scanning algorithm in the program SCAN which is particularly effective on smoothed
potential surfaces.

DISTANCE GEOMETRY METRIZATION

 61 TINKER User's Guide 61

 A much improved and very fast random pairwise metrization scheme is available which allows
good sampling during trial distance matrix generation without the usual structural anomalies and CPU
constraints of other metrization procedures. An outline of the methodology and its application to NMR
NOE-based structure refinement is described in the paper by Hodsdon, et al. in J. Mol. Biol., 264, 585-602
(1996). We have obtained good results with something like the keyword phrase trial-distribution pairwise
5, which performs 5% partial random pairwise metrization. For structures over several hundred atoms, a
value less than 5 for the percentage of metrization should be fine.

 62 TINKER User's Guide 62

9. Descriptions of TINKER Routines

 The distribution version of the TINKER package contains over 700 separate programs,
subroutines and functions. This section contains a brief description of the purpose of most of these code
units. Further information can be found in the comments located at the top of each source code file.

ACTIVE Subroutine

"active" sets the list of atoms that are used during each potential energy function calculation

ADDBASE Subroutine

"addbase" builds the Cartesian coordinates for a single nucleic acid base; coordinates are read from the
Protein Data Bank file or found from internal coordinates, then atom types are assigned and connectivity
data generated

ADDBOND Subroutine

"addbond" adds entries to the attached atoms list in order to generate a direct connection between two
atoms

ADDSIDE Subroutine

"addside" builds the Cartesian coordinates for a single amino acid side chain; coordinates are read from the
Protein Data Bank file or found from internal coordinates, then atom types are assigned and connectivity
data generated

ADJACENT Function

"adjacent" finds an atom connected to atom "i1" other than atom "i2"; if no such atom exists, then the
closest atom in space is returned

AGDA Program

"agda" implements the Adiabatic Gaussian Density Annealing method (AGDA) for global optimization
using a conjugate gradient optimization on differently annealed potential surfaces and a numerical
integrator to control the widths of the Gaussian densities

ALCHEMY Program

"alchemy" computes the free energy difference corresponding to a small perturbation by Boltzmann
weighting the potential energy difference over a number of sample states; current version (incorrectly)
considers the charge energy to be intermolecular in finding the perturbation energies

ANALYSIS Subroutine

"analysis" calls the series of routines needed to calculate the potential energy and perform energy
partitioning analysis in terms of type of interaction or atom number

ANALYZ4 Subroutine

 63 TINKER User's Guide 63

"analyz4" prints the energy to 4 decimal places and number of interactions for each component of the
potential energy

ANALYZ6 Subroutine

"analyz6" prints the energy to 6 decimal places and number of interactions for each component of the
potential energy

ANALYZ8 Subroutine

"analyz8" prints the energy to 8 decimal places and number of interactions for each component of the
potential energy

ANALYZE Program

"analyze" computes and displays the total potential; options are provided to partition the energy by atom or
by potential function type; parameters used in computing interactions can also be displayed by atom; output
of large energy interactions and of electrostatic and inertial properties is available

ANGLES Subroutine

"angles" finds the total number of bond angles and stores the atom numbers of the atoms defining each
angle; for each angle to a trivalent central atom, the third bonded atom is stored for use in out-of-plane
bending

ANNEAL Program

"anneal" performs a simulated annealing protocol by means of variable temperature molecular dynamics
using either linear, exponential or sigmoidal cooling schedules

ANORM Function

"anorm" finds the norm (length) of a vector; used as a service routine by the Connolly surface area and
volume computation

ARCHIVE Program

"archive" is a utility program for coordinate files which concatenates multiple coordinate sets into a single
archive file, or extracts individual coordinate sets from an archive

ASET Subroutine

"aset" computes by recursion the A functions used in the evaluation of Slater-type (STO) overlap integrals

ATOMYZE Subroutine

"atomyze" prints the potential energy components broken down by atom and to a choice of precision

ATTACH Subroutine

"attach" generates lists of 1-3, 1-4 and 1-5 connectivities starting from the previously determined list of
attached atoms (ie, 1-2 connectivity)

 64 TINKER User's Guide 64

BASEFILE Subroutine

"basefile" extracts from an input filename the portion consisting of any directory name and the base
filename

BCUCOF Subroutine

"bcucof" determines the coefficient matrix needed for bicubic interpolation of a function, gradients and
cross derivatives

BCUINT Subroutine

"bcuint" performs a bicubic interpolation of the function value on a 2D spline grid

BCUINT1 Subroutine

"bcuint1" performs a bicubic interpolation of the function value and gradient along the directions of a 2D
spline grid

BCUINT2 Subroutine

"bcuint2" performs a bicubic interpolation of the function value, gradient and Hessain along the directions
of a 2D spline grid

BEEMAN Subroutine

"beeman" performs a single molecular dynamics time step by means of a Beeman multistep recursion
formula; the actual coefficients are Brooks' "Better Beeman" values

BETACF Function

"betacf" computes a rapidly convergent continued fraction needed by routine "betai" to evaluate the
cumulative Beta distribution

BETAI Function

"betai" evaluates the cumulative Beta distribution function as the probability that a random variable from a
distribution with Beta parameters "a" and "b" will be less than "x"

BIGBLOCK Subroutine

"bigblock" replicates the coordinates of a single unit cell to give a larger block of repeated units

BITORS Subroutine

"bitors" finds the total number of bitorsions, pairs of overlapping dihedral angles, and the numbers of the
five atoms defining each bitorsion

BMAX Function

 65 TINKER User's Guide 65

"bmax" computes the maximum order of the B functions needed for evaluation of Slater-type (STO)
overlap integrals

BNDERR Function

"bnderr" is the distance bound error function and derivatives; this version implements the original and
Havel's normalized lower bound penalty, the normalized version is preferred when lower bounds are small
(as with NMR NOE restraints), the original penalty is needed if large lower bounds are present

BONDS Subroutine

"bonds" finds the total number of covalent bonds and stores the atom numbers of the atoms defining each
bond

BORN Subroutine

"born" computes the Born radius of each atom for use with the various GB/SA solvation models

BORN1 Subroutine

"born1" computes derivatives of the Born radii with respect to atomic coordinates and increments total
energy derivatives and virial components for potentials involving Born radii

BOUNDS Subroutine

"bounds" finds the center of mass of each molecule, translates any stray molecules back into the periodic
box, and saves the offset of each atom relative to the molecular center of mass

BSET Subroutine

"bset" computes by downward recursion the B functions used in the evaluation of Slater-type (STO)
overlap integrals

BSPLINE Subroutine

"bspline" calculates the coefficients for an n-th order B-spline approximation

BSPLINE1 Subroutine

"bspline1" calculates the coefficients and derivative coefficients for an n-th order B-spline approximation

BSSTEP Subroutine

"bsstep" takes a single Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy

CALENDAR Subroutine

"calendar" returns the current time as a set of integer values representing the year, month, day, hour, minute
and second

CELLATOM Subroutine

 66 TINKER User's Guide 66

"cellatom" completes the addition of a symmetry related atom to a unit cell by updating the atom type and
attachment arrays

CENTER Subroutine

"center" moves the weighted centroid of each coordinate set to the origin during least squares superposition

CERROR Subroutine

"cerror" is the error handling routine for the Connolly surface area and volume computation

CFFTB Subroutine

"cfftb" computes the backward complex discrete Fourier transform, the Fourier synthesis

CFFTB1 Subroutine

CFFTF Subroutine

"cfftf" computes the forward complex discrete Fourier transform, the Fourier analysis

CFFTF1 Subroutine

CFFTI Subroutine

"cffti" initializes the array "wsave" which is used in both forward and backward transforms; the prime
factorization of "n" together with a tabulation of the trigonometric functions are computed and stored in
"wsave"

CFFTI1 Subroutine

CHIRER Function

"chirer" computes the chirality error and its derivatives with respect to atomic Cartesian coordinates as a
sum the squares of deviations of chiral volumes from target values

CHKCLASH Subroutine

"chkclash" determines if there are any atom clashes which might cause trouble on subsequent energy
evaluation

CHKPOLE Subroutine

"chkpole" inverts atomic multipole moments as necessary at sites with chiral local reference frame
definitions

CHKRING Subroutine

"chkring" tests angles to be constrained for their presence in small rings and removes constraints that are
redundant

 67 TINKER User's Guide 67

CHKSIZE Subroutine

"chksize" computes a measure of overall global structural expansion or compaction from the number of
excess upper or lower bounds matrix violations

CHKTREE Subroutine

"chktree" tests a minimum energy structure to see if it belongs to the correct progenitor in the existing map

CHKXYZ Subroutine

"chkxyz" finds any pairs of atoms with identical Cartesian coordinates, and prints a warning message

CHOLESKY Subroutine

"cholesky" uses a modified Cholesky method to solve the linear system Ax = b, returning "x" in "b"; "A" is
assumed to be a real symmetric positive definite matrix with its diagonal and upper triangle stored by rows

CIRPLN Subroutine

CJKM Function

"cjkm" computes the coefficients of spherical harmonics expressed in prolate spheroidal coordinates

CLIMBER Subroutine

CLIMBRGD Subroutine

CLIMBROT Subroutine

CLIMBTOR Subroutine

CLIMBXYZ Subroutine

CLOCK Subroutine

"clock" determines elapsed CPU time in seconds since the start of the job

CLUSTER Subroutine

"cluster" gets the partitioning of the system into groups and stores a list of the group to which each atom
belongs

COLUMN Subroutine

"column" takes the off-diagonal Hessian elements stored as sparse rows and sets up indices to allow
column access

COMMAND Subroutine

 68 TINKER User's Guide 68

"command" uses the standard Unix-like iargc/getarg routines to get the number and values of arguments
specified on the command line at program runtime

COMPRESS Subroutine

"compress" transfers only the non-buried tori from the temporary tori arrays to the final tori arrays

CONNECT Subroutine

"connect" sets up the attached atom arrays starting from a set of internal coordinates

CONNOLLY Subroutine

"connolly" uses the algorithms from the AMS/VAM programs of Michael Connolly to compute the
analytical molecular surface area and volume of a collection of spherical atoms; thus it implements Fred
Richards' molecular surface definition as a set of analytically defined spherical and toroidal polygons

CONTACT Subroutine

"contact" constructs the contact surface, cycles and convex faces

CONTROL Subroutine

"control" gets initial values for parameters that determine the output style and information level provided
by TINKER

COORDS Subroutine

"coords" converts the three principal eigenvalues/vectors from the metric matrix into atomic coordinates,
and calls a routine to compute the rms deviation from the bounds

CORRELATE Program

"correlate" computes the time correlation function of some user-supplied property from individual snapshot
frames taken from a molecular dynamics or other trajectory

CRYSTAL Program

"crystal" is a utility program which converts between fractional and Cartesian coordinates, and can generate
full unit cells from asymmetric units

CUTOFFS Subroutine

"cutoffs" initializes and stores spherical energy cutoff distance windows, Hessian element and Ewald sum
cutoffs, and the pairwise neighbor generation method

CYTSY Subroutine

"cytsy" solves a system of linear equations for a cyclically tridiagonal, symmetric, positive definite matrix

CYTSYP Subroutine

 69 TINKER User's Guide 69

"cytsyp" finds the Cholesky factors of a cyclically tridiagonal symmetric, positive definite matrix given by
two vectors

CYTSYS Subroutine

"cytsys" solves a cyclically tridiagonal linear system given the Cholesky factors

D1D2 Function

"d1d2" is a utility function used in computation of the reaction field recursive summation elements

DELETE Subroutine

"delete" removes a specified atom from the Cartesian coordinates list and shifts the remaining atoms

DEPTH Function

DFTMOD Subroutine

"dftmod" computes the modulus of the discrete Fourier transform of "bsarray", storing it into "bsmod"

DIAGQ Subroutine

"diagq" is a matrix diagonalization routine which is derived from the classical given, housec, and eigen
algorithms with several modifications to increase the efficiency and accuracy

DIFFEQ Subroutine

"diffeq" performs the numerical integration of an ordinary differential equation using an adaptive stepsize
method to solve the corresponding coupled first-order equations of the general form dyi/dx = f(x,y1,...,yn)
for yi = y1,...,yn

DIFFUSE Program

"diffuse" finds the self-diffusion constant for a homogeneous liquid via the Einstein relation from a set of
stored molecular dynamics frames; molecular centers of mass are unfolded and mean squared
displacements are computed versus time separation

DIST2 Function

"dist2" finds the distance squared between two points; used as a service routine by the Connolly surface
area and volume computation

DISTGEOM Program

"distgeom" uses a metric matrix distance geometry procedure to generate structures with interpoint
distances that lie within specified bounds, with chiral centers that maintain chirality, and with torsional
angles restrained to desired values; the user also has the ability to interactively inspect and alter the triangle
smoothed bounds matrix prior to embedding

 70 TINKER User's Guide 70

DMDUMP Subroutine

"dmdump" puts the distance matrix of the final structure into the upper half of a matrix, the distance of each
atom to the centroid on the diagonal, and the individual terms of the bounds errors into the lower half of the
matrix

DOCUMENT Program

"document" generates a formatted description of all the code modules or common blocks, an index of
routines called by each source code module, a listing of all valid keywords, a list of include file
dependencies as needed by a Unix-style Makefile, or a formatted force field parameter set summary

DOIMIN Subroutine

"loclmin" performs an energy minimization in Cartesian coordinate space using a truncated Newton
method

DOT Function

"dot" finds the dot product of two vectors

DSTMAT Subroutine

"dstmat" selects a distance matrix containing values between the previously smoothed upper and lower
bounds; the distance values are chosen from uniform distributions, in a triangle correlated fashion, or using
random partial metrization

DYNAMIC Program

"dynamic" computes a molecular dynamics trajectory in any of several statistical mechanical ensembles
with optional periodic boundaries and optional coupling to temperature and pressure baths alternatively a
stochastic dynamics trajectory can be generated

EANGANG Subroutine

"eangang" calculates the angle-angle potential energy

EANGANG1 Subroutine

"eangang1" calculates the angle-angle potential energy and first derivatives with respect to Cartesian
coordinates

EANGANG2 Subroutine

"eangang2" calculates the angle-angle potential energy second derivatives with respect to Cartesian
coordinates using finite difference methods

EANGANG2A Subroutine

"eangang2a" calculates the angle-angle first derivatives for a single interaction with respect to Cartesian
coordinates; used in computation of finite difference second derivatives

 71 TINKER User's Guide 71

EANGANG3 Subroutine

"eangang3" calculates the angle-angle potential energy; also partitions the energy among the atoms

EANGLE Subroutine

"eangle" calculates the angle bending potential energy; projected in-plane angles at trigonal centers or
Fourier angle bending terms are optionally used

EANGLE1 Subroutine

"eangle1" calculates the angle bending potential energy and the first derivatives with respect to Cartesian
coordinates; projected in-plane angles at trigonal centers or Fourier angle bending terms are optionally used

EANGLE2 Subroutine

"eangle2" calculates second derivatives of the angle bending energy for a single atom using a mixture of
analytical and finite difference methods; projected in-plane angles at trigonal centers or Fourier angle
bending terms are optionally used

EANGLE2A Subroutine

"eangle2a" calculates bond angle bending potential energy second derivatives with respect to Cartesian
coordinates

EANGLE2B Subroutine

"eangle2b" computes projected in-plane bending first derivatives for a single angle with respect to
Cartesian coordinates; used in computation of finite difference second derivatives

EANGLE3 Subroutine

"eangle3" calculates the angle bending potential energy, also partitions the energy among the atoms;
projected in-plane angles at trigonal centers or Fourier angle bending terms are optionally used

EBOND Subroutine

"ebond" calculates the bond stretching energy

EBOND1 Subroutine

"ebond1" calculates the bond stretching energy and first derivatives with respect to Cartesian coordinates

EBOND2 Subroutine

"ebond2" calculates second derivatives of the bond stretching energy for a single atom at a time

EBOND3 Subroutine

"ebond3" calculates the bond stretching energy; also partitions the energy among the atoms

 72 TINKER User's Guide 72

EBUCK Subroutine

"ebuck" calculates the Buckingham exp-6 van der Waals energy

EBUCK0A Subroutine

"ebuck0a" calculates the Buckingham exp-6 van der Waals energy using a pairwise double loop

EBUCK0B Subroutine

"ebuck0b" calculates the Buckingham exp-6 van der Waals energy using the method of lights to locate
neighboring atoms

EBUCK0C Subroutine

"ebuck0c" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for
potential energy smoothing

EBUCK1 Subroutine

"ebuck1" calculates the Buckingham exp-6 van der Waals energy and its first derivatives with respect to
Cartesian coordinates

EBUCK1A Subroutine

"ebuck1a" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using a pairwise
double loop

EBUCK1B Subroutine

"ebuck1b" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using the
method of lights to locate neighboring atoms

EBUCK1C Subroutine

"ebuck1c" calculates the Buckingham exp-6 van der Waals energy and its first derivatives via a Gaussian
approximation for potential energy smoothing

EBUCK2 Subroutine

"ebuck2" calculates the Buckingham exp-6 van der Waals second derivatives for a single atom at a time

EBUCK2A Subroutine

"ebuck2a" calculates the Buckingham exp-6 van der Waals second derivatives using a double loop over
relevant atom pairs

EBUCK2B Subroutine

"ebuck2b" calculates the Buckingham exp-6 van der Waals second derivatives via a Gaussian
approximation for use with potential energy smoothing

 73 TINKER User's Guide 73

EBUCK3 Subroutine

"ebuck3" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among the
atoms

EBUCK3A Subroutine

"ebuck3a" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among the
atoms using a pairwise double loop

EBUCK3B Subroutine

"ebuck3b" calculates the Buckingham exp-6 van der Waals energy and also partitions the energy among the
atoms using the method of lights to locate neighboring atoms

EBUCK3C Subroutine

"ebuck3c" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for
potential energy smoothing

ECHARGE Subroutine

"echarge" calculates the charge-charge interaction energy

ECHARGE0A Subroutine

"echarge0a" calculates the charge-charge interaction energy using a pairwise double loop

ECHARGE0B Subroutine

"echarge0b" calculates the charge-charge interaction energy using the method of lights to locate
neighboring atoms

ECHARGE0C Subroutine

"echarge0c" calculates the charge-charge interaction energy for use with potential smoothing methods

ECHARGE0D Subroutine

"echarge0d" calculates the charge-charge interaction energy using a particle mesh Ewald summation

ECHARGE0E Subroutine

"echarge0e" calculates the charge-charge interaction energy using a particle mesh Ewald summation and
the method of lights to locate neighboring atoms

ECHARGE1 Subroutine

"echarge1" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian
coordinates

 74 TINKER User's Guide 74

ECHARGE1A Subroutine

"echarge1a" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian
coordinates using a pairwise double loop

ECHARGE1B Subroutine

"echarge1b" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian
coordinates using the method of lights to locate neighboring atoms

ECHARGE1C Subroutine

"echarge1c" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian
coordinates for use with potential smoothing methods

ECHARGE1D Subroutine

"echarge1d" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian
coordinates using a particle mesh Ewald summation

ECHARGE2 Subroutine

"echarge2" calculates second derivatives of the charge-charge interaction energy for a single atom

ECHARGE2A Subroutine

"echarge2a" calculates second derivatives of the charge-charge interaction energy for a single atom using a
pairwise double loop

ECHARGE2B Subroutine

"echarge2b" calculates second derivatives of the charge-charge interaction energy for a single atom for use
with potential smoothing methods

ECHARGE2C Subroutine

"echarge2c" calculates second derivatives of the charge-charge interaction energy for a single atom using a
particle mesh Ewald summation

ECHARGE3 Subroutine

"echarge3" calculates the charge-charge interaction energy and partitions the energy among the atoms

ECHARGE3A Subroutine

"echarge3a" calculates the charge-charge interaction energy and partitions the energy among the atoms
using a pairwise double loop

ECHARGE3B Subroutine

 75 TINKER User's Guide 75

"echarge3b" calculates the charge-charge interaction energy and partitions the energy among the atoms
using the method of lights to locate neighboring atoms

ECHARGE3C Subroutine

"echarge3c" calculates the charge-charge interaction energy and partitions the energy among the atoms for
use with potential smoothing methods

ECHARGE3D Subroutine

"echarge3d" calculates the charge-charge interaction energy and partitions the energy among the atoms
using a particle mesh Ewald summation

ECHARGE3E Subroutine

"echarge3e" calculates the charge-charge interaction energy and partitions the energy among the atoms
using a particle mesh Ewald summation and the method of lights to locate neighboring atoms

ECHGDPL Subroutine

"echgdpl" calculates the charge-dipole interaction energy

ECHGDPL1 Subroutine

"echgdpl1" calculates the charge-dipole interaction energy and first derivatives with respect to Cartesian
coordinates

ECHGDPL2 Subroutine

"echgdpl2" calculates second derivatives of the charge-dipole interaction energy for a single atom

ECHGDPL3 Subroutine

"echgdpl3" calculates the charge-dipole interaction energy; also partitions the energy among the atoms

EDIPOLE Subroutine

"edipole" calculates the dipole-dipole interaction energy

EDIPOLE1 Subroutine

"edipole1" calculates the dipole-dipole interaction energy and first derivatives with respect to Cartesian
coordinates

EDIPOLE2 Subroutine

"edipole2" calculates second derivatives of the dipole-dipole interaction energy for a single atom

EDIPOLE3 Subroutine

"edipole3" calculates the dipole-dipole interaction energy; also partitions the energy among the atoms

 76 TINKER User's Guide 76

EGAUSS Subroutine

"egauss" calculates the Gaussian expansion van der Waals interaction energy

EGAUSS0A Subroutine

"egauss0a" calculates the Gaussian expansion van der Waals interaction energy using a pairwise double
loop

EGAUSS0B Subroutine

"egauss0b" calculates the Gaussian expansion van der Waals interaction energy for use with potential
energy smoothing

EGAUSS1 Subroutine

"egauss1" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives with
respect to Cartesian coordinates

EGAUSS1A Subroutine

"egauss1a" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives
using a pairwise double loop

EGAUSS1B Subroutine

"egauss1b" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives for
use with stophat potential energy smoothing

EGAUSS2 Subroutine

"egauss2" calculates the Gaussian expansion van der Waals second derivatives for a single atom at a time

EGAUSS2A Subroutine

"egauss2a" calculates the Gaussian expansion van der Waals second derivatives using a pairwise double
loop

EGAUSS2B Subroutine

"egauss2b" calculates the Gaussian expansion van der Waals second derivatives for stophat potential
energy smoothing

EGAUSS3 Subroutine

"egauss3" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy
among the atoms

EGAUSS3A Subroutine

 77 TINKER User's Guide 77

"egauss3a" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy
among the atoms using a pairwise double loop

EGAUSS3B Subroutine

"egauss3b" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy
among the atoms using a pairwise double loop

EGBSA0A Subroutine

"egbsa0a" calculates the generalized Born polarization energy for the GB/SA solvation models

EGBSA0B Subroutine

"egbsa0b" calculates the generalized Born polarization energy for the GB/SA solvation models for use with
potential smoothing methods via analogy to the smoothing of Coulomb's law

EGBSA1A Subroutine

"egbsa1a" calculates the generalized Born energy and first derivatives of the GB/SA solvation models

EGBSA1B Subroutine

"egbsa1b" calculates the generalized Born energy and first derivatives of the GB/SA solvation models for
use with potential smoothing methods

EGBSA2A Subroutine

"egbsa2a" calculates second derivatives of the generalized Born energy term for the GB/SA solvation
models

EGBSA2B Subroutine

"egbsa2b" calculates second derivatives of the generalized Born energy term for the GB/SA solvation
models for use with potential smoothing methods

EGBSA3A Subroutine

"egbsa3a" calculates the generalized Born energy term for the GB/SA solvation models; also partitions the
energy among the atoms

EGBSA3B Subroutine

"egbsa3b" calculates the generalized Born polarization energy for the GB/SA solvation models for use with
potential smoothing methods via analogy to the smoothing of Coulomb's law; also partitions the energy
among the atoms

EGEOM Subroutine

"egeom" calculates the energy due to restraints on positions, distances, angles and torsions as well as
Gaussian basin and spherical droplet restraints

 78 TINKER User's Guide 78

EGEOM1 Subroutine

"egeom1" calculates the energy and first derivatives with respect to Cartesian coordinates due to restraints
on positions, distances, angles and torsions as well as Gaussian basin and spherical droplet restraints

EGEOM2 Subroutine

"egeom2" calculates second derivatives of restraints on positions, distances, angles and torsions as well as
Gaussian basin and spherical droplet restraints

EGEOM3 Subroutine

"egeom3" calculates the energy due to restraints on positions, distances, angles and torsions as well as
Gaussian basin and droplet restraints; also partitions energy among the atoms

EHAL Subroutine

"ehal" calculates the buffered 14-7 van der Waals energy

EHAL0A Subroutine

"ehal0a" calculates the buffered 14-7 van der Waals energy using a pairwise double loop

EHAL0B Subroutine

"ehal0a" calculates the buffered 14-7 van der Waals energy using the method of lights to locate neighboring
atoms

EHAL1 Subroutine

"ehal1" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to Cartesian
coordinates

EHAL1A Subroutine

"ehal1a" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to
Cartesian coordinates using a pairwise double loop

EHAL1B Subroutine

"ehal1b" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to
Cartesian coordinates using the method of lights to locate neighboring atoms

EHAL2 Subroutine

"ehal2" calculates the buffered 14-7 van der Waals second derivatives for a single atom at a time

EHAL3 Subroutine

"ehal3" calculates the buffered 14-7 van der Waals energy and partitions the energy among the atoms

 79 TINKER User's Guide 79

EHAL3A Subroutine

"ehal3a" calculates the buffered 14-7 van der Waals energy and partitions the energy among the atoms
using a pairwise double loop

EHAL3B Subroutine

"ehal3b" calculates the buffered 14-7 van der Waals energy and also partitions the energy among the atoms
using the method of lights to locate neighboring atoms

EIGEN Subroutine

"eigen" uses the power method to compute the largest eigenvalues and eigenvectors of the metric matrix,
"valid" is set true if the first three eigenvalues are positive

EIGENCART Subroutine

EIGENRGD Subroutine

EIGENROT Subroutine

EIGENTOR Subroutine

EIGENXYZ Subroutine

EIMPROP Subroutine

"eimprop" calculates the improper dihedral potential energy

EIMPROP1 Subroutine

"eimprop1" calculates improper dihedral energy and its first derivatives with respect to Cartesian
coordinates

EIMPROP2 Subroutine

"eimprop2" calculates second derivatives of the improper dihedral angle energy for a single atom

EIMPROP3 Subroutine

"eimprop3" calculates the improper dihedral potential energy; also partitions the energy terms among the
atoms

EIMPTOR Subroutine

"eimptor" calculates the improper torsion potential energy

EIMPTOR1 Subroutine

"eimptor1" calculates improper torsion energy and its first derivatives with respect to Cartesian coordinates

 80 TINKER User's Guide 80

EIMPTOR2 Subroutine

"eimptor2" calculates second derivatives of the improper torsion energy for a single atom

EIMPTOR3 Subroutine

"eimptor3" calculates the improper torsion potential energy; also partitions the energy terms among the
atoms

ELJ Subroutine

"elj" calculates the Lennard-Jones 6-12 van der Waals energy

ELJ0A Subroutine

"elj0a" calculates the Lennard-Jones 6-12 van der Waals energy using a pairwise double loop

ELJ0B Subroutine

"elj0b" calculates the Lennard-Jones 6-12 van der Waals energy using the method of lights to locate
neighboring atoms

ELJ0C Subroutine

"elj0c" calculates the Lennard-Jones 6-12 van der Waals energy via a Gaussian approximation for potential
energy smoothing

ELJ0D Subroutine

"elj0d" calculates the Lennard-Jones 6-12 van der Waals energy for use with stophat potential energy
smoothing

ELJ1 Subroutine

"elj1" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives with respect to
Cartesian coordinates

ELJ1A Subroutine

"elj1a" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using a pairwise
double loop

ELJ1B Subroutine

"elj1b" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using the method
of lights to locate neighboring atoms

ELJ1C Subroutine

 81 TINKER User's Guide 81

"elj1c" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives via a Gaussian
approximation for potential energy smoothing

ELJ1D Subroutine

"elj1d" calculates the van der Waals interaction energy and its first derivatives for use with stophat
potential energy smoothing

ELJ2 Subroutine

"elj2" calculates the Lennard-Jones 6-12 van der Waals second derivatives for a single atom at a time

ELJ2A Subroutine

"elj2a" calculates the Lennard-Jones 6-12 van der Waals second derivatives using a double loop over
relevant atom pairs

ELJ2B Subroutine

"elj2b" calculates the Lennard-Jones 6-12 van der Waals second derivatives via a Gaussian approximation
for use with potential energy smoothing

ELJ2C Subroutine

"elj2c" calculates the Lennard-Jones 6-12 van der Waals second derivatives for use with stophat potential
energy smoothing

ELJ3 Subroutine

"elj3" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the
atoms

ELJ3A Subroutine

"elj3a" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the
atoms using a pairwise double loop

ELJ3B Subroutine

"elj3b" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the
atoms using the method of lights to locate neighboring atoms

ELJ3C Subroutine

"elj3c" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the
atoms via a Gaussian approximation for potential energy smoothing

ELJ3D Subroutine

"elj3d" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the
atoms for use with stophat potential energy smoothing

 82 TINKER User's Guide 82

EMBED Subroutine

"embed" is a distance geometry routine patterned after the ideas of Gordon Crippen, Irwin Kuntz and Tim
Havel; it takes as input a set of upper and lower bounds on the interpoint distances, chirality restraints and
torsional restraints, and attempts to generate a set of coordinates that satisfy the input bounds and restraints

EMETAL Subroutine

"emetal" calculates the transition metal ligand field energy

EMETAL1 Subroutine

"emetal1" calculates the transition metal ligand field energy and its first derivatives with respect to
Cartesian coordinates

EMETAL2 Subroutine

"emetal2" calculates the transition metal ligand field second derivatives for a single atom at a time

EMETAL3 Subroutine

"emetal3" calculates the transition metal ligand field energy and also partitions the energy among the atoms

EMM3HB Subroutine

"emm3hb" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy

EMM3HB0A Subroutine

"emm3hb0a" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy using a pairwise double loop

EMM3HB0B Subroutine

"emm3hb0b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy using the method of lights to locate neighboring atoms

EMM3HB1 Subroutine

"emm3hb1" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy with respect to Cartesian coordinates

EMM3HB1A Subroutine

"emm3hb1a" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy with respect to Cartesian coordinates using a pairwise double loop

EMM3HB1B Subroutine

 83 TINKER User's Guide 83

"emm3hb1b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy with respect to Cartesian coordinates using the method of lights to locate neighboring atoms

EMM3HB2 Subroutine

"emm3hb2" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
second derivatives for a single atom at a time

EMM3HB3 Subroutine

"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy, and partitions the energy among the atoms

EMM3HB3A Subroutine

"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy, and partitions the energy among the atoms

EMM3HB3B Subroutine

"emm3hb3b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding
energy using the method of lights to locate neighboring atoms

EMPOLE Subroutine

"empole" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability

EMPOLE0A Subroutine

"empole0a" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability
using a pairwise double loop

EMPOLE0B Subroutine

"empole0b" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability
using a regular Ewald summation

EMPOLE1 Subroutine

"empole1" calculates the multipole and dipole polarization energy and derivatives with respect to Cartesian
coordinates

EMPOLE1A Subroutine

"empole1a" calculates the multipole and dipole polarization energy and derivatives with respect to
Cartesian coordinates using a pairwise double loop

EMPOLE1B Subroutine

"empole1b" calculates the multipole and dipole polarization energy and derivatives with respect to
Cartesian coordinates using a regular Ewald summation

 84 TINKER User's Guide 84

EMPOLE2 Subroutine

"empole2" calculates second derivatives of the multipole and dipole polarization energy for a single atom at
a time

EMPOLE2A Subroutine

"empole2a" computes multipole and dipole polarization first derivatives for a single atom with respect to
Cartesian coordinates; used to get finite difference second derivatives

EMPOLE3 Subroutine

"empole3" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability,
and partitions the energy among the atoms

EMPOLE3A Subroutine

"empole3a" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability, and partitions the energy among the atoms using a double loop

EMPOLE3B Subroutine

"empole3b" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability, and partitions the energy among the atoms using a regular Ewald summation

ENERGY Function

"energy" calls the subroutines to calculate the potential energy terms and sums up to form the total energy

ENRGYZE Subroutine

"energyze" is an auxiliary routine for the analyze program that performs the energy analysis and prints the
total and intermolecular energies

EOPBEND Subroutine

"eopbend" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-Cross
angle bend

EOPBEND1 Subroutine

"eopbend1" computes the out-of-plane bend potential energy and first derivatives at trigonal centers via a
Wilson-Decius-Cross angle bend

EOPBEND2 Subroutine

"eopbend2" calculates second derivatives of the out-of-plane bend energy via a Wilson-Decius-Cross angle
bend for a single atom using finite difference methods

EOPBEND2A Subroutine

 85 TINKER User's Guide 85

"eopbend2a" calculates out-of-plane bending first derivatives at a trigonal center via a Wilson-Decius-
Cross angle bend; used in computation of finite difference second derivatives

EOPBEND3 Subroutine

"eopbend3" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-Cross
angle bend; also partitions the energy among the atoms

EOPDIST Subroutine

"eopdist" computes the out-of-plane distance potential energy at trigonal centers via the central atom height

EOPDIST1 Subroutine

"eopdist1" computes the out-of-plane distance potential energy and first derivatives at trigonal centers via
the central atom height

EOPDIST2 Subroutine

"eopdist2" calculates second derivatives of the out-of-plane distance energy for a single atom via the
central atom height

EOPDIST3 Subroutine

"eopdist3" computes the out-of-plane distance potential energy at trigonal centers via the central atom
height; also partitions the energy among the atoms

EPME Subroutine

"epme" computes the reciprocal space energy for a particle mesh Ewald summation over partial charges

EPME1 Subroutine

"epme1" computes the reciprocal space energy and first derivatives for a particle mesh Ewald summation

EPME3 Subroutine

"epme3" computes the reciprocal space energy for a particle mesh Ewald summation over partial charges
and prints information about the energy over the charge grid points

EPUCLC Subroutine

EREAL Subroutine

"ereal" evaluates the real space portion of the regular Ewald summation energy due to atomic multipole
interactions and dipole polarizability

EREAL1 Subroutine

 86 TINKER User's Guide 86

"ereal1" evaluates the real space portion of the regular Ewald summation energy and gradient due to atomic
multipole interactions and dipole polarizability

EREAL3 Subroutine

"ereal3" evaluates the real space portion of the regular Ewald summation energy due to atomic multipole
interactions and dipole polarizability and partitions the energy among the atoms

ERECIP Subroutine

"erecip" evaluates the reciprocal space portion of the regular Ewald summation energy due to atomic
multipole interactions and dipole polarizability

ERECIP1 Subroutine

"erecip1" evaluates the reciprocal space portion of the regular Ewald summation energy and gradient due to
atomic multipole interactions and dipole polarizability

ERECIP3 Subroutine

"erecip3" evaluates the reciprocal space portion of the regular Ewald summation energy due to atomic
multipole interactions and dipole polarizability, and prints information about the energy over the reciprocal
lattice vectors

ERF Function

"erf" computes a numerical approximation to the value of the error function via a Chebyshev
approximation

ERFC Function

"erfc" computes a numerical approximation to the value of the complementary error function via a
Chebyshev approximation

ERFCORE Subroutine

"erfcore" evaluates erf(x) or erfc(x) for a real argument x; when called with mode set to 0 it returns erf, a
mode of 1 returns erfc; uses rational functions that approximate erf(x) and erfc(x) to at least 18 significant
decimal digits

ERFIK Subroutine

"erfik" compute the reaction field energy due to a single pair of atomic multipoles

ERFINV Function

"erfinv" evaluates the inverse of the error function erf for a real argument in the range (-1,1) using a
rational function approximation followed by cycles of Newton-Raphson correction

ERXNFLD Subroutine

"erxnfld" calculates the macroscopic reaction field energy arising from a set of atomic multipoles

 87 TINKER User's Guide 87

ERXNFLD1 Subroutine

"erxnfld1" calculates the macroscopic reaction field energy and derivatives with respect to Cartesian
coordinates

ERXNFLD2 Subroutine

"erxnfld2" calculates second derivatives of the macroscopic reaction field energy for a single atom at a time

ERXNFLD3 Subroutine

"erxnfld3" calculates the macroscopic reaction field energy, and also partitions the energy among the atoms

ESOLV Subroutine

"esolv" calculates the continuum solvation energy via either the Eisenberg-McLachlan ASP model, Ooi-
Scheraga SASA model, various GB/SA methods or the ACE model

ESOLV1 Subroutine

"esolv1" calculates the continuum solvation energy and first derivatives with respect to Cartesian
coordinates using either the Eisenberg-McLachlan ASP, Ooi-Scheraga SASA or various GB/SA solvation
models

ESOLV2 Subroutine

"esolv2" calculates second derivatives of the continuum solvation energy using either the Eisenberg-
McLachlan ASP, Ooi-Scheraga SASA or various GB/SA solvation models

ESOLV3 Subroutine

"esolv3" calculates the continuum solvation energy using either the Eisenberg-McLachlan ASP model,
Ooi-Scheraga SASA model, various GB/SA methods or the ACE model; also partitions the energy among
the atoms

ESTRBND Subroutine

"estrbnd" calculates the stretch-bend potential energy

ESTRBND1 Subroutine

"estrbnd1" calculates the stretch-bend potential energy and first derivatives with respect to Cartesian
coordinates

ESTRBND2 Subroutine

"estrbnd2" calculates the stretch-bend potential energy second derivatives with respect to Cartesian
coordinates

ESTRBND3 Subroutine

 88 TINKER User's Guide 88

"estrbnd3" calculates the stretch-bend potential energy; also partitions the energy among the atoms

ESTRTOR Subroutine

"estrtor" calculates the stretch-torsion potential energy

ESTRTOR1 Subroutine

"estrtor1" calculates the stretch-torsion energy and first derivatives with respect to Cartesian coordinates

ESTRTOR2 Subroutine

"estrtor2" calculates the stretch-torsion potential energy second derivatives with respect to Cartesian
coordinates

ESTRTOR3 Subroutine

"estrtor3" calculates the torsion-torsion potential energy; also partitions the energy terms among the atoms

ESTRTOR3 Subroutine

"estrtor3" calculates the stretch-torsion potential energy; also partitions the energy terms among the atoms

ETORS Subroutine

"etors" calculates the torsional potential energy

ETORS0A Subroutine

"etors0a" calculates the torsional potential energy using a standard sum of Fourier terms

ETORS0B Subroutine

"etors0b" calculates the torsional potential energy for use with potential energy smoothing methods

ETORS1 Subroutine

"etors1" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates

ETORS1A Subroutine

"etors1a" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates
using a standard sum of Fourier terms

ETORS1B Subroutine

"etors1b" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates
for use with potential energy smoothing methods

ETORS2 Subroutine

 89 TINKER User's Guide 89

"etors2" calculates the second derivatives of the torsional energy for a single atom

ETORS2A Subroutine

"etors2a" calculates the second derivatives of the torsional energy for a single atom using a standard sum of
Fourier terms

ETORS2B Subroutine

"etors2b" calculates the second derivatives of the torsional energy for a single atom for use with potential
energy smoothing methods

ETORS3 Subroutine

"etors3" calculates the torsional potential energy; also partitions the energy among the atoms

ETORS3A Subroutine

"etors3a" calculates the torsional potential energy using a standard sum of Fourier terms and partitions the
energy among the atoms

ETORS3B Subroutine

"etors3b" calculates the torsional potential energy for use with potential energy smoothing methods and
partitions the energy among the atoms

ETORTOR Subroutine

"etortor" calculates the torsional potential energy using a standard sum of Fourier terms

ETORTOR1 Subroutine

"etortor1" calculates the torsion-torsion energy and first derivatives with respect to Cartesian coordinates

ETORTOR2 Subroutine

"etortor2" calculates the stretch-torsion potential energy second derivatives with respect to Cartesian
coordinates

EUREY Subroutine

"eurey" calculates the Urey-Bradley 1-3 interaction energy

EUREY1 Subroutine

"eurey1" calculates the Urey-Bradley interaction energy and its first derivatives with respect to Cartesian
coordinates

EUREY2 Subroutine

 90 TINKER User's Guide 90

"eurey2" calculates second derivatives of the Urey-Bradley interaction energy for a single atom at a time

EUREY3 Subroutine

"eurey3" calculates the Urey-Bradley energy; also partitions the energy among the atoms

EWALDCOF Subroutine

"ewaldcof" finds a value of the Ewald coefficient such that all terms beyond the specified cutoff distance
will have an value less than a specified tolerance

EXPLORE Subroutine

"explore" uses simulated annealing on an initial crude embedded distance geoemtry structure to refine
versus the bound, chirality, planarity and torsional error functions

EXTRA Subroutine

"extra" calculates any additional user defined potential energy contribution

EXTRA1 Subroutine

"extra1" calculates any additional user defined potential energy contribution and its first derivatives

EXTRA2 Subroutine

"extra2" calculates second derivatives of any additional user defined potential energy contribution for a
single atom at a time

EXTRA3 Subroutine

"extra3" calculates any additional user defined potential contribution and also partitions the energy among
the atoms

FATAL Subroutine

"fatal" terminates execution due to a user request, a severe error or some other nonstandard condition

FFTBACK Subroutine

FFTFRONT Subroutine

FFTSETUP Subroutine

FIELD Subroutine

"field" sets the force field potential energy functions from a parameter file and modifications specified in a
keyfile

FINAL Subroutine

 91 TINKER User's Guide 91

"final" performs any final program actions, prints a status message, and then pauses if necessary to avoid
closing the execution window

FINDATM Subroutine

"findatm" locates a specific PDB atom name type within a range of atoms from the PDB file, returns zero if
the name type was not found

FIXPDB Subroutine

"fixpdb" corrects problems with PDB files by converting residue and atom names to the forms used by
TINKER

FRACDIST Subroutine

"fracdist" computes a normalized distribution of the pairwise fractional distances between the smoothed
upper and lower bounds

FREEUNIT Function

"freeunit" finds an unopened Fortran I/O unit and returns its numerical value from 1 to 99; the units already
assigned to "input" and "iout" (usually 5 and 6) are skipped since they have special meaning as the default
I/O units

GAMMLN Function

"gammln" uses a series expansion due to Lanczos to compute the natural logarithm of the Gamma function
at "x" in [0,1]

GDA Program

"gda" implements Gaussian Density Annealing (GDA) algorithm for global optimization via simulated
annealing

GDA1 Subroutine

GDA2 Function

GDA3 Subroutine

GDASTAT Subroutine

GENDOT Subroutine

"gendot" finds the coordinates of a specified number of surface points for a sphere with the input radius and
coordinate center

GEODESIC Subroutine

"geodesic" smooths the upper and lower distance bounds via the triangle inequality using a sparse matrix
version of a shortest path algorithm

 92 TINKER User's Guide 92

GEOMETRY Function

"geometry" finds the value of the interatomic distance, angle or dihedral angle defined by two to four input
atoms

GETBASE Subroutine

"getbase" finds the base heavy atoms for a single nucleotide residue and copies the names and coordinates
to the Protein Data Bank file

GETIME Subroutine

"getime" gets elapsed CPU time in seconds for an interval

GETINT Subroutine

"getint" asks for an internal coordinate file name, then reads the internal coordinates and computes
Cartesian coordinates

GETKEY Subroutine

"getkey" finds a valid keyfile and stores its contents as line images for subsequent keyword parameter
searching

GETMOL2 Subroutine

"getmol2" asks for a Sybyl MOL2 molecule file name, then reads the coordinates from the file

GETNUCH Subroutine

"getnuch" finds the nucleotide hydrogen atoms for a single residue and copies the names and coordinates to
the Protein Data Bank file

GETNUMB Subroutine

"getnumb" searchs an input string from left to right for an integer and puts the numeric value in "number";
returns zero with "next" unchanged if no integer value is found

GETPDB Subroutine

"getpdb" asks for a Protein Data Bank file name, then reads in the coordinates file

GETPRB Subroutine

"getprb" tests for a possible probe position at the interface between three neighboring atoms

GETPRM Subroutine

"getprm" finds the potential energy parameter file and then opens and reads the parameters

 93 TINKER User's Guide 93

GETPROH Subroutine

"getproh" finds the hydrogen atoms for a single amino acid residue and copies the names and coordinates to
the Protein Data Bank file

GETREF Subroutine

"getref" copies structure information from the reference area into the standard variables for the current
system structure

GETSEQ Subroutine

"getseq" asks the user for the amino acid sequence and torsional angle values needed to define a peptide

GETSEQN Subroutine

"getseqn" asks the user for the nucleotide sequence and torsional angle values needed to define a nucleic
acid

GETSIDE Subroutine

"getside" finds the side chain heavy atoms for a single amino acid residue and copies the names and
coordinates to the Protein Data Bank file

GETSTRING Subroutine

"getstring" searchs for a quoted text string within an input character string; the region between the first and
second quotes is returned as the "text"; if the actual text is too long, only the first part is returned

GETTEXT Subroutine

"gettext" searchs an input string for the first string of non-blank characters; the region from a non-blank
character to the first blank space is returned as "text"; if the actual text is too long, only the first part is
returned

GETTOR Subroutine

"gettor" tests for a possible torus position at the interface between two atoms, and finds the torus radius,
center and axis

GETWORD Subroutine

"getword" searchs an input string for the first alphabetic character (A-Z or a-z); the region from this first
character to the first blank space or comma is returned as a "word"; if the actual word is too long, only the
first part is returned

GETXYZ Subroutine

"getxyz" asks for a Cartesian coordinate file name, then reads in the coordinates file

GRADIENT Subroutine

 94 TINKER User's Guide 94

"gradient" calls subroutines to calculate the potential energy and first derivatives with respect to Cartesian
coordinates

GRADRGD Subroutine

"gradrgd" calls subroutines to calculate the potential energy and first derivatives with respect to rigid body
coordinates

GRADROT Subroutine

"gradrot" calls subroutines to calculate the potential energy and its torsional first derivatives

GRAFIC Subroutine

"grafic" outputs the upper & lower triangles and diagonal of a square matrix in a schematic form for visual
inspection

GROUPS Subroutine

"groups" tests a set of atoms to see if all are members of a single atom group or a pair of atom groups; if so,
then the correct intra- or intergroup weight is assigned

GRPLINE Subroutine

"grpline" tests each atom group for linearity of the sites contained in the group

GYRATE Subroutine

"gyrate" computes the radius of gyration of a molecular system from its atomic coordinates

HANGLE Subroutine

"hangle" constructs hybrid angle bending parameters given an initial state, final state and "lambda" value

HATOM Subroutine

"hatom" assigns a new atom type to each hybrid site

HBOND Subroutine

"hbond" constructs hybrid bond stretch parameters given an initial state, final state and "lambda" value

HCHARGE Subroutine

"hcharge" constructs hybrid charge interaction parameters given an initial state, final state and "lambda"
value

HDIPOLE Subroutine

 95 TINKER User's Guide 95

"hdipole" constructs hybrid dipole interaction parameters given an initial state, final state and "lambda"
value

HESSIAN Subroutine

"hessian" calls subroutines to calculate the Hessian elements for each atom in turn with respect to Cartesian
coordinates

HESSRGD Subroutine

"hessrgd" computes the numerical Hessian elements with respect to rigid body coordinates via 6*ngroup+1
gradient evaluations

HESSROT Subroutine

"hessrot" computes the numerical Hessian elements with respect to torsional angles; either the full matrix
or just the diagonal can be calculated; the full matrix needs nomega+1 gradient evaluations while the
diagonal requires just two gradient calls

HIMPTOR Subroutine

"himptor" constructs hybrid improper torsional parameters given an initial state, final state and "lambda"
value

HSTRBND Subroutine

"hstrbnd" constructs hybrid stretch-bend parameters given an initial state, final state and "lambda" value

HSTRTOR Subroutine

"hstrtor" constructs hybrid stretch-torsion parameters given an initial state, final state and "lambda" value

HTORS Subroutine

"htors" constructs hybrid torsional parameters for a given initial state, final state and "lambda" value

HVDW Subroutine

"hvdw" constructs hybrid van der Waals parameters given an initial state, final state and "lambda" value

HYBRID Subroutine

"hybrid" constructs the hybrid hamiltonian for a specified initial state, final state and mutation parameter
"lambda"

IJKPTS Subroutine

"ijkpts" stores a set of indices used during calculation of macroscopic reaction field energetics

IMAGE Subroutine

 96 TINKER User's Guide 96

"image" takes the components of pairwise distance between two points in the same or neighboring periodic
boxes and converts to the components of the minimum image distance

IMPOSE Subroutine

"impose" performs the least squares best superposition of two atomic coordinate sets via a quaternion
method; upon return, the first coordinate set is unchanged while the second set is translated and rotated to
give best fit; the final root mean square fit is returned in "rmsvalue"

INDUCE Subroutine

"induce" computes the induced dipole moment at each polarizable site due to direct or mutual polarization;
assumes that multipole components have already been rotated into the global coordinate frame

INDUCE0A Subroutine

"induce0a" computes the induced dipole moment at each polarizable site using a pairwise double loop

INDUCE0B Subroutine

"induce0b" computes the induced dipole moment at each polarizable site using a regular Ewald summation

INEDGE Subroutine

"inedge" inserts a concave edge into the linked list for its temporary torus

INERTIA Subroutine

"inertia" computes the principal moments of inertia for the system, and optionally translates the center of
mass to the origin and rotates the principal axes onto the global axes

INITERR Function

"initerr" is the initial error function and derivatives for a distance geometry embedding; it includes
components from the local geometry and torsional restraint errors

INITIAL Subroutine

"initial" sets up original values for some parameters and variables that might not otherwise get initialized

INITPRM Subroutine

"initprm" completely initializes a force field by setting all parameters to zero and using defaults for control
values

INITRES Subroutine

"initres" sets names for biopolymer residue types used in PDB file conversion and automated generation of
structures

INITROT Subroutine

 97 TINKER User's Guide 97

"initrot" sets the torsional angles which are to be rotated in subsequent computation, by default
automatically selects all rotatable single bonds; assumes internal coordinates have already been setup

INSERT Subroutine

"insert" adds the specified atom to the Cartesian coordinates list and shifts the remaining atoms

INTEDIT Program

"intedit" allows the user to extract information from or alter the values within an internal coordinates file

INTXYZ Program

"intxyz" takes as input an internal coordinates file, converts to and then writes out Cartesian coordinates

INVBETA Function

"invbeta" computes the inverse Beta distribution function via a combination of Newton iteration and
bisection search

INVERT Subroutine

"invert" inverts a matrix using the Gauss-Jordan method

IPEDGE Subroutine

"ipedge" inserts convex edge into linked list for atom

ISPLPE Subroutine

"isplpe" computes the coefficients for a cubic periodic interpolating spline

JACOBI Subroutine

"jacobi" performs a matrix diagonalization of a real symmetric matrix by the method of Jacobi rotations

KANGANG Subroutine

"kangang" assigns the parameters for angle-angle cross term interactions and processes new or changed
parameter values

KANGLE Subroutine

"kangle" assigns the force constants and ideal angles for the bond angles; also processes new or changed
parameters

KATOM Subroutine

"katom" assigns an atom type definitions to each atom in the structure and processes any new or changed
values

 98 TINKER User's Guide 98

KBOND Subroutine

"kbond" assigns a force constant and ideal bond length to each bond in the structure and processes any new
or changed parameter values

KCHARGE Subroutine

"kcharge" assigns partial charges to the atoms within the structure and processes any new or changed
values

KCHIRAL Subroutine

"kchiral" determines the target value for each chirality and planarity restraint as the signed volume of the
parallelpiped spanned by vectors from a common atom to each of three other atoms

KDIPOLE Subroutine

"kdipole" assigns bond dipoles to the bonds within the structure and processes any new or changed values

KENEG Subroutine

"keneg" applies primary and secondary electronegativity bond length corrections to applicable bond
parameters

KEWALD Subroutine

"kewald" assigns both regular Ewald summation and particle mesh Ewald parameters for a periodic box

KGEOM Subroutine

"kgeom" asisgns parameters for geometric restraint terms to be included in the potential energy calculation

KIMPROP Subroutine

"kimprop" assigns potential parameters to each improper dihedral in the structure and processes any
changed values

KIMPTOR Subroutine

"kimptor" assigns torsional parameters to each improper torsion in the structure and processes any changed
values

KINETIC Subroutine

"kinetic" computes the total kinetic energy and kinetic energy contributions to the pressure tensor by
summing over velocities

KMETAL Subroutine

 99 TINKER User's Guide 99

"kmetal" assigns ligand field parameters to transition metal atoms and processes any new or changed
parameter values

KMPOLE Subroutine

"kmpole" assigns atomic multipole moments to the atoms of the structure and processes any new or
changed values

KOPBEND Subroutine

"kopbend" assigns the force constants for out-of-plane bending at trigonal centers via Wilson-Decius-Cross
angle bends; also processes any new or changed parameter values

KOPDIST Subroutine

"kopdist" assigns the force constants for out-of-plane distance at trigonal centers via the central atom
height; also processes any new or changed parameter values

KORBIT Subroutine

"korbit" assigns pi-orbital parameters to conjugated systems and processes any new or changed parameters

KPOLAR Subroutine

"kpolar" assigns atomic dipole polarizabilities to the atoms within the structure and processes any new or
changed values

KSOLV Subroutine

"ksolv" assigns continuum solvation energy parameters for the Eisenberg-McLachlan ASP, Ooi-Scheraga
SASA or various GB/SA solvation models

KSTRBND Subroutine

"kstrbnd" assigns the parameters for the stretch-bend interactions and processes new or changed parameter
values

KSTRTOR Subroutine

"kstrtor" assigns stretch-torsion parameters to torsions needing them, and processes any new or changed
values

KTORS Subroutine

"ktors" assigns torsional parameters to each torsion in the structure and processes any new or changed
values

KTORTOR Subroutine

"ktortor" assigns torsion-torsion parameters to adjacent torsion pairs and processes any new or changed
values

 100 TINKER User's Guide 100

KUREY Subroutine

"kurey" assigns the force constants and ideal distances for the Urey-Bradley 1-3 interactions; also processes
any new or changed parameter values

KVDW Subroutine

"kvdw" assigns the parameters to be used in computing the van der Waals interactions and processes any
new or changed values for these parameters

LATTICE Subroutine

"lattice" stores the periodic box dimensions and sets angle values to be used in computing fractional
coordinates

LBFGS Subroutine

"lbfgs" is a limited memory BFGS quasi-newton nonlinear optimization routine

LIGASE Subroutine

"ligase" translates a nucleic acid structure in Protein Data Bank format to a Cartesian coordinate file and
sequence file

LIGHTS Subroutine

"lights" computes the set of nearest neighbor interactions using the method of lights algorithm

LINGROUP Subroutine

"lingroup" finds the angular velocity of a linear rigid body given the inertia tensor and angular momentum

LMSTEP Subroutine

"lmstep" computes the Levenberg-Marquardt step during a nonlinear least squares calculation; this version
is based upon ideas from the Minpack routine LMPAR together with with the internal doubling strategy of
Dennis and Schnabel

LOCALMIN Subroutine

"localmin" is used during normal mode local search to perform a Cartesian coordinate energy minimization

LOCALRGD Subroutine

"localrgd" is used during the PSS local search procedure to perform a rigid body energy minimization

LOCALROT Subroutine

"localrot" is used during the PSS local search procedure to perform a torsional space energy minimization

 101 TINKER User's Guide 101

LOCALXYZ Subroutine

"localxyz" is used during the potential smoothing and search procedure to perform a local optimization at
the current smoothing level

LOCERR Function

"locerr" is the local geometry error function and derivatives including the 1-2, 1-3 and 1-4 distance bound
restraints

LOCLSRCH Subroutine

LOWCASE Subroutine

"lowcase" converts a text string to all lower case letters

MAJORIZE Subroutine

"majorize" refines the projected coordinates by attempting to minimize the least square residual between
the trial distance matrix and the distances computed from the coordinates

MAKEINT Subroutine

"makeint" converts Cartesian to internal coordinates where selection of internal coordinates is controlled by
"mode"

MAKEPDB Subroutine

"makexyz" converts a set of Cartesian coordinates to Protein Data Bank format with special handling for
systems consisting of polypeptide chains, ligands and water molecules

MAKEREF Subroutine

"makeref" copies the information contained in the "xyz" file of the current structure into corresponding
reference areas

MAKEXYZ Subroutine

"makexyz" generates a complete set of Cartesian coordinates for a full structure from the internal
coordinate values

MAPCHECK Subroutine

"mapcheck" checks the current minimum energy structure for possible addition to the master list of local
minima

MAXWELL Function

"maxwell" returns a speed in Angstroms/picosecond randomly selected from a 3-D Maxwell-Boltzmann
distribution for the specified particle mass and system temperature

 102 TINKER User's Guide 102

MCM1 Function

"mcm1" is a service routine that computes the energy and gradient for truncated Newton optimization in
Cartesian coordinate space

MCM2 Subroutine

"mcm2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton
optimization in Cartesian coordinate space

MCMSTEP Function

"mcmstep" implements the minimization phase of an MCM step via Cartesian minimization following a
Monte Carlo step

MDINIT Subroutine

"mdinit" initializes the velocities and accelerations for a molecular dynamics trajectory, including restarts

MDREST Subroutine

"mdrest" finds and removes any translational or rotational kinetic energy of the overall system center of
mass

MDSAVE Subroutine

"mdsave" writes molecular dynamics trajectory snapshots and auxiliary files with velocity and induced
dipole information; also checks for user requested termination of a simulation

MDSTAT Subroutine

"mdstat" is called at each molecular dynamics time step to form statistics on various average values and
fluctuations, and to periodically save the state of the trajectory

MEASFN Subroutine

MEASFP Subroutine

MEASFS Subroutine

MEASPM Subroutine

"measpm" computes the volume of a single prism section of the full interior polyhedron

MECHANIC Subroutine

"mechanic" sets up needed parameters for the potential energy calculation and reads in many of the user
selectable options

MERGE Subroutine

 103 TINKER User's Guide 103

"merge" combines the reference and current structures into a single new "current" structure containing the
reference atoms followed by the atoms of the current structure

METRIC Subroutine

"metric" takes as input the trial distance matrix and computes the metric matrix of all possible dot products
between the atomic vectors and the center of mass using the law of cosines and the following formula for
the distances to the center of mass:

MIDERR Function

"miderr" is the secondary error function and derivatives for a distance geometry embedding; it includes
components from the distance bounds, local geometry, chirality and torsional restraint errors

MINIMIZ1 Function

"minimiz1" is a service routine that computes the energy and gradient for a low storage BFGS optimization
in Cartesian coordinate space

MINIMIZE Program

"minimize" performs energy minimization in Cartesian coordinate space using a low storage BFGS
nonlinear optimization

MINIROT Program

"minirot" performs an energy minimization in torsional angle space using a low storage BFGS nonlinear
optimization

MINIROT1 Function

"minirot1" is a service routine that computes the energy and gradient for a low storage BFGS nonlinear
optimization in torsional angle space

MINPATH Subroutine

"minpath" is a routine for finding the triangle smoothed upper and lower bounds of each atom to a specified
root atom using a sparse variant of the Bellman-Ford shortest path algorithm

MINRIGID Program

"minrigid" performs an energy minimization of rigid body atom groups using a low storage BFGS
nonlinear optimization

MINRIGID1 Function

"minrigid1" is a service routine that computes the energy and gradient for a low storage BFGS nonlinear
optimization of rigid bodies

MMID Subroutine

 104 TINKER User's Guide 104

"mmid" implements a modified midpoint method to advance the integration of a set of first order
differential equations

MODECART Subroutine

MODEROT Subroutine

MODESRCH Subroutine

MODETORS Subroutine

MODULI Subroutine

"moduli" sets the moduli of the inverse discrete Fourier transform of the B-splines; bsmod[1-3] hold these
values, nfft[1-3] are the grid dimensions, bsorder is the order of B-spline approximation

MOLECULE Subroutine

"molecule" counts the molecules, assigns each atom to its molecule and computes the mass of each
molecule

MOLUIND Subroutine

"moluind" computes the molecular induced dipole components in the presence of an external electric field

MOMENTS Subroutine

"moments" computes the total electric charge, dipole and quadrupole moments for the entire system as a
sum over the partial charges, bond dipoles and atomic multipole moments

MONTE Program

"monte" performs a Monte Carlo/MCM conformational search using either Cartesian single atom or
torsional move sets

MUTATE Subroutine

"mutate" constructs the hybrid hamiltonian for a specified initial state, final state and mutation parameter
"lambda"

NEIGHBOR Subroutine

"neighbor" finds all of the neighbors of each atom

NEWATM Subroutine

"newatm" creates and defines an atom needed for the Cartesian coordinates file, but which may not present
in the original Protein Data Bank file

NEWTON Program

 105 TINKER User's Guide 105

"newton" performs an energy minimization in Cartesian coordinate space using a truncated Newton method

NEWTON1 Function

"newton1" is a service routine that computes the energy and gradient for truncated Newton optimization in
Cartesian coordinate space

NEWTON2 Subroutine

"newton2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton
optimization in Cartesian coordinate space

NEWTROT Program

"newtrot" performs an energy minimization in torsional angle space using a truncated Newton conjugate
gradient method

NEWTROT1 Function

"newtrot1" is a service routine that computes the energy and gradient for truncated Newton conjugate
gradient optimization in torsional angle space

NEWTROT2 Subroutine

"newtrot2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton
optimization in torsional angle space

NEXTARG Subroutine

"nextarg" finds the next unused command line argument and returns it in the input character string

NEXTTEXT Function

"nexttext" finds and returns the location of the first non-blank character within an input text string; zero is
returned if no such character is found

NORMAL Function

"normal" generates a random number from a normal Gaussian distribution with a mean of zero and a
variance of one

NUCBASE Subroutine

"nucbase" builds the side chain for a single nucleotide base in terms of internal coordinates

NUCCHAIN Subroutine

"nucchain" builds up the internal coordinates for a nucleic acid sequence from the sugar type, backbone and
glycosidic torsional values

NUCLEIC Program

 106 TINKER User's Guide 106

"nucleic" builds the internal and Cartesian coordinates of a polynucleotide from nucleic acid sequence and
torsional angle values for the nucleic acid backbone and side chains

NUMBER Function

"number" converts a text numeral into an integer value; the input string must contain only numeric
characters

NUMERAL Subroutine

"numeral" converts an input integer number into the corresponding right- or left-justified text numeral

NUMGRAD Subroutine

"numgrad" computes the gradient of the objective function "fvalue" with respect to Cartesian coordinates of
the atoms via a two-sided numerical differentiation

OCVM Subroutine

"ocvm" is an optimally conditioned variable metric nonlinear optimization routine without line searches

OLDATM Subroutine

"oldatm" get the Cartesian coordinates for an atom from the Protein Data Bank file, then assigns the atom
type and atomic connectivities

OPENEND Subroutine

"openend" opens a file on a Fortran unit such that the position is set to the bottom for appending to the end
of the file

OPTIMIZ1 Function

"optimiz1" is a service routine that computes the energy and gradient for optimally conditioned variable
metric optimization in Cartesian coordinate space

OPTIMIZE Program

"optimize" performs energy minimization in Cartesian coordinate space using an optimally conditioned
variable metric method

OPTIROT Program

"optirot" performs an energy minimization in torsional angle space using an optimally conditioned variable
metric method

OPTIROT1 Function

"optirot1" is a service routine that computes the energy and gradient for optimally conditioned variable
metric optimization in torsional angle space

 107 TINKER User's Guide 107

OPTRIGID Program

"optrigid" performs an energy minimization of rigid body atom groups using an optimally conditioned
variable metric method

OPTRIGID1 Function

"optrigid1" is a service routine that computes the energy and gradient for optimally conditioned variable
metric optimization of rigid bodies

ORBITAL Subroutine

"orbital" finds and organizes lists of atoms in a pisystem, bonds connecting pisystem atoms and torsions
whose two central atoms are both pisystem atoms

ORIENT Subroutine

"orient" computes a set of reference Cartesian coordinates in standard orientation for each rigid body atom
group

ORTHOG Subroutine

"orthog" performs an orthogonalization of an input matrix via the modified Gram-Schmidt algorithm

OVERLAP Subroutine

"overlap" computes the overlap for two parallel p-orbitals given the atomic numbers and distance of
separation

PARAMYZE Subroutine

"paramyze" prints the force field parameters used in the computation of each of the potential energy terms

PASSB Subroutine

PASSB2 Subroutine

PASSB3 Subroutine

PASSB4 Subroutine

PASSB5 Subroutine

PASSF Subroutine

PASSF2 Subroutine

PASSF3 Subroutine

PASSF4 Subroutine

 108 TINKER User's Guide 108

PASSF5 Subroutine

PATH Program

"path" locates a series of structures equally spaced along a conformational pathway connecting the input
reactant and product structures; a series of constrained optimizations orthogonal to the path is done via
Lagrangian multipliers

PATH1 Function

PATHPNT Subroutine

"pathpnt" finds a structure on the synchronous transit path with the specified path value "t"

PATHSCAN Subroutine

"pathscan" makes a scan of a synchronous transit pathway by computing structures and energies for
specific path values

PATHVAL Subroutine

"pathval" computes the synchronous transit path value for the specified structure

PDBATM Subroutine

"pdbatm" adds an atom to the Protein Data Bank file

PDBXYZ Program

"pdbxyz" takes as input a Protein Data Bank file and then converts to and writes out a Cartesian coordinates
file and, for polypeptides, a sequence file

PIALTER Subroutine

"pialter" first modifies bond lengths and force constants according to the standard bond slope parameters
and the bond order values stored in "pnpl"; also alters some 2-fold torsional parameters based on the bond-
order * beta matrix

PIMOVE Subroutine

"pimove" rotates the vector between atoms "list(1)" and "list(2)" so that atom 1 is at the origin and atom 2
along the x-axis; the atoms defining the respective planes are also moved and their bond lengths normalized

PIPLANE Subroutine

"piplane" selects the three atoms which specify the plane perpendicular to each p-orbital; the current
version will fail in certain situations, including ketenes, allenes, and isolated or adjacent triple bonds

PISCF Subroutine

 109 TINKER User's Guide 109

"piscf" performs an scf molecular orbital calculation for the pisystem using a modified Pariser-Parr-Pople
method

PITILT Subroutine

"pitilt" calculates for each pibond the ratio of the actual p-orbital overlap integral to the ideal overlap if the
same orbitals were perfectly parallel

PLACE Subroutine

"place" finds the probe sites by putting the probe sphere tangent to each triple of neighboring atoms

POLARGRP Subroutine

"polargrp" generates members of the polarization group of each atom and separate lists of the 1-2, 1-3 and
1-4 group connectivities

POLARIZE Program

"polarize" computes the molecular polarizability by applying an external field along each axis followed by
diagonalization of the resulting polarizability tensor

POLYMER Subroutine

"polymer" tests for the presence of an infinite polymer extending across periodic boundaries

POLYP Subroutine

"polyp" is a polynomial product routine that multiplies two algebraic forms

POTNRG Function

POTOFF Subroutine

"potoff" clears the forcefield definition by turning off the use of each of the potential energy functions

POWER Subroutine

"power" uses the power method with deflation to compute the few largest eigenvalues and eigenvectors of a
symmetric matrix

PRECISE Function

"precise" finds a machine precision value as selected by the input argument: (1) the smallest positive
floating point value, (2) the smallest relative floating point spacing, (3) the largest relative floating point
spacing

PRECOND Subroutine

"precond" solves a simplified version of the Newton equations Ms = r, and uses the result to precondition
linear conjugate gradient iterations on the full Newton equations in "tnsolve"

 110 TINKER User's Guide 110

PRESSURE Subroutine

"pressure" uses the internal virial to find the pressure in a periodic box and maintains a constant desired
pressure by scaling the coordinates via coupling to an external constant pressure bath

PRMKEY Subroutine

"field" parses a text string to extract keywords related to force field potential energy functional forms and
constants

PROCHAIN Subroutine

"prochain" builds up the internal coordinates for an amino acid sequence from the phi, psi, omega and chi
values

PROJCT Subroutine

PROMO Subroutine

"promo" writes a short message containing information about the TINKER version number and the
copyright notice

PROPERTY Function

"property" takes two input snapshot frames and computes the value of the property for which the
correlation function is being accumulated

PROPYZE Subroutine

"propyze" finds and prints the total charge, dipole moment components, radius of gyration and moments of
inertia

PROSIDE Subroutine

"proside" builds the side chain for a single amino acid residue in terms of internal coordinates

PROTEIN Program

"protein" builds the internal and Cartesian coordinates of a polypeptide from amino acid sequence and
torsional angle values for the peptide backbone and side chains

PRTARC Subroutine

"prtarc" writes out a set of Cartesian coordinates for all active atoms in the TINKER XYZ archive format

PRTCAR Subroutine

"prtcar" writes out a set of Cartesian coordinates for all active atoms in the Accelerys InsightII .car format

PRTDYN Subroutine

 111 TINKER User's Guide 111

"prtdyn" writes out the information needed to restart a molecular dynamics trajectory to an external disk
file

PRTERR Subroutine

"prterr" writes out a set of coordinates to a disk file prior to aborting on a serious error

PRTINT Subroutine

"prtint" writes out a set of Z-matrix internal coordinates to an external disk file

PRTMOL2 Program

"prtmol2" writes out a set of coordinates in Sybyl MOL2 format to an external disk file

PRTPDB Subroutine

"prtpdb" writes out a set of Protein Data Bank coordinates to an external disk file

PRTPRM Subroutine

"prtprm" writes out a formatted listing of the default set of potential energy parameters for a force field

PRTSEQ Subroutine

"prtseq" writes out a biopolymer sequence to an external disk file with 15 residues per line and distinct
chains separated by blank lines

PRTXMOL Subroutine

"prtxmol" writes out a set of Cartesian coordinates for all active atoms in a simple, generic XYZ format
originally used by the XMOL program

PRTXYZ Subroutine

"prtxyz" writes out a set of Cartesian coordinates to an external disk file

PSS Program

"pss" implements the potential smoothing plus search method for global optimization in Cartesian
coordinate space with local searches performed in Cartesian or torsional space

PSS1 Function

"pss1" is a service routine that computes the energy and gradient during PSS global optimization in
Cartesian coordinate space

PSS2 Subroutine

 112 TINKER User's Guide 112

"pss2" is a service routine that computes the sparse matrix Hessian elements during PSS global
optimization in Cartesian coordinate space

PSSRGD1 Function

"pssrgd1" is a service routine that computes the energy and gradient during PSS global optimization over
rigid bodies

PSSRIGID Program

"pssrigid" implements the potential smoothing plus search method for global optimization for a set of rigid
bodies

PSSROT Program

"pssrot" implements the potential smoothing plus search method for global optimization in torsional space

PSSROT1 Function

"pssrot1" is a service routine that computes the energy and gradient during PSS global optimization in
torsional space

PSSWRITE Subroutine

PTINCY Function

PZEXTR Subroutine

"pzextr" is a polynomial extrapolation routine used during Bulirsch-Stoer integration of ordinary
differential equations

QRFACT Subroutine

"qrfact" performs Householder transformations with column pivoting (optional) to compute a QR
factorization of the m by n matrix a; the routine determines an orthogonal matrix q, a permutation matrix p,
and an upper trapezoidal matrix r with diagonal elements of nonincreasing magnitude, such that a*p = q*r;
the Householder transformation for column k, k = 1,2,...,min(m,n), is of the form

QRSOLVE Subroutine

"qrsolve" solves a*x=b and d*x=0 in the least squares sense; normally used in combination with routine
"qrfact" to solve least squares problems

QUATFIT Subroutine

"quatfit" uses a quaternion-based method to achieve the best fit superposition of two sets of coordinates

RADIAL Program

"radial" finds the radial distribution function for a specified pair of atom types via analysis of a set of stored
coordinate frames from a liquid simulation

 113 TINKER User's Guide 113

RANDOM Function

"random" generates a random number on [0,1] via a long period generator due to L'Ecuyer with Bays-
Durham shuffle

RANVEC Subroutine

"ranvec" generates a unit vector in 3-dimensional space with uniformly distributed random orientation

RATTLE Subroutine

"rattle" implements the first portion of the rattle algorithm by correcting atomic positions and half-step
velocities to maintain constrained interatomic distances

RATTLE2 Subroutine

"rattle2" implements the second portion of the rattle algorithm by correcting the full-step velocities in order
to maintain constrained interatomic distances

READBLK Subroutine

"readblk" reads in a set of snapshot frames and transfers the values to internal arrays for use in the
computation of time correlation functions

READDYN Subroutine

"readdyn" get the positions, velocities and accelerations for a molecular dynamics restart from an external
disk file

READINT Subroutine

"readint" gets a set of Z-matrix internal coordinates from an external file

READMOL2 Subroutine

"readmol2" gets a set of Sybyl MOL2 coordinates from an external disk file

READPDB Subroutine

"readpdb" gets a set of Protein Data Bank coordinates from an external disk file

READPRM Subroutine

"readprm" processes the potential energy parameter file in order to define the default force field parameters

READSEQ Subroutine

"readseq" gets a biopolymer sequence containing one or more separate chains from an external file; all lines
containing sequence must begin with the starting sequence number, the actual sequence is read from
subsequent nonblank characters

 114 TINKER User's Guide 114

READXYZ Subroutine

"readxyz" gets a set of Cartesian coordinates from an external disk file

REFINE Subroutine

"refine" performs minimization of the atomic coordinates of an initial crude embedded distance geometry
structure versus the bound, chirality, planarity and torsional error functions

REPLICA Subroutine

"replica" decides between images and replicates for generation of periodic boundary conditions, and sets
the cell replicate list if the replicates method is to be used

RFINDEX Subroutine

"rfindex" finds indices for each multipole site for use in computing reaction field energetics

RGDSRCH Subroutine

RGDSTEP Subroutine

"rgdstep" performs a single molecular dynamics time step for a rigid-body calculation

RIBOSOME Subroutine

"ribosome" translates a polypeptide structure in Protein Data Bank format to a Cartesian coordinate file and
sequence file

RIGIDXYZ Subroutine

"rigidxyz" computes Cartesian coordinates for a rigid body group via rotation and translation of reference
coordinates

RINGS Subroutine

"rings" searches the structure for small rings and stores their constituent atoms

RMSERROR Subroutine

"rmserror" computes the maximum absolute deviation and the rms deviation from the distance bounds, and
the number and rms value of the distance restraint violations

RMSFIT Function

"rmsfit" computes the rms fit of two coordinate sets

ROTANG Function

ROTCHECK Function

 115 TINKER User's Guide 115

"rotcheck" tests a specified candidate rotatable bond for the disallowed case where inactive atoms are found
on both sides of the candidate bond

ROTCRD Subroutine

"rotcrd" computes updated atomic coordinates for a rigid body given the previous coordinates, the rotation
matrix and shift in the center of mass corresponding to the motion

ROTEULER Subroutine

"roteuler" computes a set of Euler angle values consistent with an input rotation matrix

ROTLIST Subroutine

"rotlist" generates the minimum list of all the atoms lying to one side of a pair of directly bonded atoms;
optionally finds the minimal list by choosing the side with fewer atoms

ROTMAT Subroutine

"rotmat" finds the rotation matrix that converts from the local coordinate system to the global frame at a
multipole site

ROTPOLE Subroutine

"rotpole" constructs the set of atomic multipoles in the global frame by applying the correct rotation matrix
for each site

ROTRGD Subroutine

"rotrgd" finds the rotation matrix for a rigid body due to a single step of dynamics

ROTSITE Subroutine

"rotsite" computes the atomic multipoles at a specified site in the global coordinate frame by applying a
rotation matrix

SADDLE Program

"saddle" finds a transition state between two conformational minima using a combination of ideas from the
synchronous transit (Halgren-Lipscomb) and quadratic path (Bell-Crighton) methods

SADDLE1 Function

"saddle1" is a service routine that computes the energy and gradient for transition state optimization

SADDLES Subroutine

"saddles" constructs circles, convex edges and saddle faces

SCAN Program

 116 TINKER User's Guide 116

"scan" attempts to find all the local minima on a potential energy surface via an iterative series of local
searches

SCAN1 Function

"scan1" is a service routine that computes the energy and gradient during exploration of a potential energy
surface via iterative local search

SCAN2 Subroutine

"scan2" is a service routine that computes the sparse matrix Hessian elements during exploration of a
potential energy surface via iterative local search

SDAREA Subroutine

"sdarea" optionally scales the atomic friction coefficient of each atom based on its accessible surface area

SDSTEP Subroutine

"sdstep" performs a single stochastic dynamics time step via a velocity Verlet integration algorithm

SDTERM Subroutine

"sdterm" gets frictional and random force terms needed to update positions and velocities via stochastic
dynamics

SEARCH Subroutine

"search" is a unidimensional line search based upon parabolic extrapolation and cubic interpolation using
both function and gradient values; if forced to search in an uphill direction, return is after the initial step

SETIME Subroutine

"setime" initializes the elapsed interval CPU timer

SHAKEUP Subroutine

"shakeup" initializes any holonomic constraints for use with the rattle algorithm during molecular dynamics

SIGMOID Function

"sigmoid" implements a normalized sigmoidal function on the interval [0,1]; the curves connect (0,0) to
(1,1) and have a cooperativity controlled by beta, they approach a straight line as beta -> 0 and get more
nonlinear as beta increases

SKTCALL Subroutine

"sktcall" is a Fortran dummy version of the C routine that passes structural and system information to the
graphical user interface

 117 TINKER User's Guide 117

SKTCLOSE Subroutine

"sktclose" closes any currently open socket connection

SKTINIT Subroutine

"sktinit" sets up socket communication with the graphical user interface by starting the socket daemon

SKTKILL Subroutine

"sktkill" closes socket connections and kills the socket daemon

SKTSEND Subroutine

"sktsend" is the main routine for communication of system and structural information to the graphical user
interface via a socket mechanism

SLATER Subroutine

"slater" is a general routine for computing the overlap integrals between two Slater-type orbitals

SMOOTH Subroutine

"smooth" sets the type of smoothing method and the extent of surface deformation for use with potential
energy smoothing

SNIFFER Program

"sniffer" performs a global energy minimization using a discrete version of Griewank's global search
trajectory

SNIFFER1 Function

"sniffer1" is a service routine that computes the energy and gradient for the Sniffer global optimization
method

SOAK Subroutine

"soak" takes a currently defined solute system and places it into a solvent box, with removal of any solvent
molecules that overlap the solute

SORT Subroutine

"sort" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm

SORT2 Subroutine

"sort2" takes an input list of reals and sorts it into ascending order using the Heapsort algorithm; it also
returns a key into the original ordering

SORT3 Subroutine

 118 TINKER User's Guide 118

"sort3" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm; it also
returns a key into the original ordering

SORT4 Subroutine

"sort4" takes an input list of integers and sorts it into ascending absolute value using the Heapsort algorithm

SORT5 Subroutine

"sort5" takes an input list of integers and sorts it into ascending order based on each value modulo "m"

SORT6 Subroutine

"sort6" takes an input list of character strings and sorts it into alphabetical order using the Heapsort
algorithm

SORT7 Subroutine

"sort7" takes an input list of character strings and sorts it into alphabetical order using the Heapsort
algorithm; it also returns a key into the original ordering

SORT8 Subroutine

"sort8" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm,
duplicate values are removed from the final sorted list

SORT9 Subroutine

"sort9" takes an input list of character strings and sorts it into alphabetical order using the Heapsort
algorithm, duplicate values are removed from the final sorted list

SPACEFILL Program

"spacefill" computes the surface area and volume of a structure; the van der Waals, accessible-excluded,
and contact-reentrant definitions are available

SPECTRUM Program

"spectrum" computes a power spectrum over a wavelength range from the velocity autocorrelation as a
function of time

SPMDAEMON Subroutine

"spmdaemon" is a Fortran dummy version of the C routine that starts the Simple Sockets Library
communication daemon

SQUARE Subroutine

 119 TINKER User's Guide 119

"square" is a nonlinear least squares routine derived from the IMSL routine BCLSF and More's Minpack
routine LMDER; the Jacobian is estimated by finite differences and bounds can be specified for the
variables to be refined

STAT Subroutine

SUFFIX Subroutine

"suffix" checks a filename for the presence of an extension, and appends an extension if none is found

SUPERPOSE Program

"superpose" takes pairs of structures and superimposes them in the optimal least squares sense; it will
attempt to match all atom pairs or only those specified by the user

SURFACE Subroutine

"surface" performs an analytical computation of the weighted solvent accessible surface area of each atom
and the first derivatives of the area with respect to Cartesian coordinates

SURFATOM Subroutine

"surfatom" performs an analytical computation of the surface area of a specified atom; a simplified version
of "surface"

SWITCH Subroutine

"switch" sets the coeffcients used by the fifth and seventh order polynomial switching functions for
spherical cutoffs

SYBYLXYZ Program

"sybylxyz" takes as input a Sybyl MOL2 coordinates file, converts to and then writes out Cartesian
coordinates

SYMMETRY Subroutine

"symmetry" applies symmetry operators to the fractional coordinates of the asymmetric unit in order to
generate the symmetry related atoms of the full unit cell

TANGENT Subroutine

"tangent" finds the projected gradient on the synchronous transit path for a point along the transit pathway

TEMPER Subroutine

"temper" maintains a constant desired temperature via either Berendsen's velocity scaling coupled to an
external temperature bath or Andersen's stochastic collision method

TESTGRAD Program

 120 TINKER User's Guide 120

"testgrad" computes and compares the analytical and numerical gradient vectors of the potential energy
function with respect to Cartesian coordinates

TESTHESS Program

"testhess" computes and compares the analytical and numerical Hessian matrices of the potential energy
function with respect to Cartesian coordinates

TESTLIGHT Program

"testlight" performs a set of timing tests to compare the evaluation of potential energy and energy/gradient
using the method of lights with a double loop over all atom pairs

TESTROT Program

"testrot" computes and compares the analytical and numerical gradient vectors of the potential energy
function with respect to rotatable torsional angles

TIMER Program

"timer" measures the CPU time required for file reading and parameter assignment, potential energy
computation, energy and gradient computation, and Hessian matrix evaluation

TIMEROT Program

"timerot" measures the CPU time required for file reading and parameter assignment, potential energy
computation, energy and gradient over torsions, and torsional angle Hessian matrix evaluation

TNCG Subroutine

"tncg" implements a truncated Newton optimization algorithm in which a preconditioned linear conjugate
gradient method is used to approximately solve Newton's equations; special features include use of an
explicit sparse Hessian or finite-difference gradient-Hessian products within the PCG iteration; the exact
Newton search directions can be used optionally; by default the algorithm checks for negative curvature to
prevent convergence to a stationary point having negative eigenvalues; if a saddle point is desired this test
can be removed by disabling "negtest"

TNSOLVE Subroutine

"tnsolve" uses a linear conjugate gradient method to find an approximate solution to the set of linear
equations represented in matrix form by Hp = -g (Newton's equations)

TORPHASE Subroutine

"torphase" sets the n-fold amplitude and phase values for each torsion via sorting of the input parameters

TORQUE Subroutine

"torque" takes the torque values on sites defined by local coordinate frames and distributes thme to convert
to forces on the original sites and sites specifying the local frames

TORQUE1 Subroutine

 121 TINKER User's Guide 121

"torque1" takes the torque value on a site defined by a local coordinate frame and distributes it to convert to
forces on the original site and sites specifying the local frame

TORSER Function

"torser" computes the torsional error function and its first derivatives with respect to the atomic Cartesian
coordinates based on the deviation of specified torsional angles from desired values, the contained bond
angles are also restrained to avoid a numerical instability

TORSIONS Subroutine

"torsions" finds the total number of dihedral angles and the numbers of the four atoms defining each
dihedral angle

TORUS Subroutine

"torus" sets a list of all of the temporary torus positions by testing for a torus between each atom and its
neighbors

TOTERR Function

"toterr" is the error function and derivatives for a distance geometry embedding; it includes components
from the distance bounds, hard sphere contacts, local geometry, chirality and torsional restraint errors

TRANSIT Function

"transit" evaluates the synchronous transit function and gradient; linear and quadratic transit paths are
available

TRIANGLE Subroutine

"triangle" smooths the upper and lower distance bounds via the triangle inequality using a full-matrix
variant of the Floyd-Warshall shortest path algorithm; this routine is usually much slower than the sparse
matrix shortest path methods in "geodesic" and "trifix", and should be used only for comparison with
answers generated by those routines

TRIFIX Subroutine

"trifix" rebuilds both the upper and lower distance bound matrices following tightening of one or both of
the bounds between a specified pair of atoms, "p" and "q", using a modification of Murchland's shortest
path update algorithm

TRIMTEXT Function

"trimtext" finds and returns the location of the last non-blank character before the first null character in an
input text string; the function returns zero if no such character is found

TRIPLE Function

"triple" finds the triple product of three vectors; used as a service routine by the Connolly surface area and
volume computation

 122 TINKER User's Guide 122

TRUST Subroutine

"trust" updates the model trust region for a nonlinear least squares calculation; this version is based on the
ideas found in NL2SOL and in Dennis and Schnabel's book

UDIRECT1 Subroutine

"udirect1" computes the reciprocal space contribution of the permanent atomic multipole moments to the
electrostatic field for use in finding the direct induced dipole moments via a regular Ewald summation

UDIRECT2 Subroutine

"udirect2" computes the real space contribution of the permanent atomic multipole moments to the
electrostatic field for use in finding the direct induced dipole moments via a regular Ewald summation

UFIELD Subroutine

"ufield" finds the field at each polarizable site due to the induced dipoles at the other sites using Thole's
method to damp the field at close range

UMUTUAL1 Subroutine

"umutual1" computes the reciprocal space contribution of the induced atomic dipole moments to the
electrostatic field for use in iterative calculation of induced dipole moments via a regular Ewald summation

UMUTUAL2 Subroutine

"umutual2" computes the real space contribution of the induced atomic dipole moments to the electrostatic
field for use in iterative calculation of induced dipole moments via a regular Ewald summation

UNITCELL Subroutine

"unitcell" gets the periodic boundary box size and related values from an external keyword file

UPCASE Subroutine

"upcase" converts a text string to all upper case letters

VAM Subroutine

"vam" takes the analytical molecular surface defined as a collection of spherical and toroidal polygons and
uses it to compute the volume and surface area

VCROSS Subroutine

"vcross" finds the cross product of two vectors

VDWERR Function

 123 TINKER User's Guide 123

"vdwerr" is the hard sphere van der Waals bound error function and derivatives that penalizes close
nonbonded contacts, pairwise neighbors are generated via the method of lights

VECANG Function

"vecang" finds the angle between two vectors handed with respect to a coordinate axis; returns an angle in
the range [0,2*pi]

VERLET Subroutine

"verlet" performs a single molecular dynamics time step by means of the velocity Verlet multistep
recursion formula

VERSION Subroutine

"version" checks the name of a file about to be opened; if if "old" status is passed, the name of the highest
current version is returned; if "new" status is passed the filename of the next available unused version is
generated

VIBRATE Program

"vibrate" performs a vibrational normal mode analysis; the Hessian matrix of second derivatives is
determined and then diagonalized both directly and after mass weighting; output consists of the eigenvalues
of the force constant matrix as well as the vibrational frequencies and displacements

VIBRIGID Program

"vibrigid" computes the eigenvalues and eigenvectors of the Hessian matrix over rigid body degrees of
freedom

VIBROT Program

"vibrot" computes the eigenvalues and eigenvectors of the torsional Hessian matrix

VNORM Subroutine

"vnorm" normalizes a vector to unit length; used as a service routine by the Connolly surface area and
volume computation

VOLUME Subroutine

"volume" calculates the excluded volume via the Connolly analytical volume and surface area algorithm

VOLUME1 Subroutine

"volume1" calculates first derivatives of the total excluded volume with respect to the Cartesian coordinates
of each atom

VOLUME2 Subroutine

"volume2" calculates second derivatives of the total excluded volume with respect to the Cartesian
coordinates of the atoms

 124 TINKER User's Guide 124

WATSON Subroutine

"watson" uses a rigid-body optimization to approximately align the paired strands of a nucleic acid double
helix

WATSON1 Function

"watson1" is a service routine that computes the energy and gradient for optimally conditioned variable
metric optimization of rigid bodies

WRITEOUT Subroutine

"writeout" is used by each of the optimization routines to save imtermediate atomic coordinates to a disk
file

XTALERR Subroutine

"xtalerr" computes an error function value derived from derivatives with respect to lattice parameters,
lattice energy and monomer dipole moments

XTALFIT Program

"xtalfit" computes an optimized set of potential energy parameters for user specified van der Waals and
electrostatic interactions by fitting to crystal structure, lattice energy and monomer dipole moment data

XTALLAT1 Function

"xtalmol1" is a service routine that computes the energy and numerical gradient with respect to the six
lattice lengths and angles for a crystal energy minimization

XTALMIN Program

"xtalmin" performs a full crystal energy minimization by alternating cycles of truncated Newton
optimization over atomic coordinates with variable metric optimization over the six lattice dimensions and
angles

XTALMOL1 Function

"xtalmol1" is a service routine that computes the energy and gradient with respect to the atomic Cartesian
coordinates for a crystal energy minimization

XTALMOL2 Subroutine

"xtalmol2" is a service routine that computes the sparse matrix Hessian elements with respect to the atomic
Cartesian coordinates for a crystal energy minimization

XTALMOVE Subroutine

"xtalmove" converts fractional to Cartesian coordinates for rigid molecules during fitting of force field
parameters to crystal structure data

 125 TINKER User's Guide 125

XTALPRM Subroutine

"xtalprm" stores or retrieves a crystal structure; used to make a previously stored structure the currently
active structure, or to store a structure for later use; only provides for the intermolecular energy terms

XTALWRT Subroutine

"xtalwrt" is a utility that prints intermediate results during fitting of force field parameters to crystal data

XYZATM Subroutine

"xyzatm" computes the Cartesian coordinates of a single atom from its defining internal coordinate values

XYZEDIT Program

"xyzedit" provides for modification and manipulation of the contents of a Cartesian coordinates file

XYZINT Program

"xyzint" takes as input a Cartesian coordinates file, then converts to and writes out an internal coordinates
file

XYZPDB Program

"xyzpdb" takes as input a Cartesian coordinates file, then converts to and writes out a Protein Data Bank
file

XYZRIGID Subroutine

"xyzrigid" computes the center of mass and Euler angle rigid body coordinates for each atom group in the
system

XYZSYBYL Program

"xyzsybyl" takes as input a Cartesian coordinates file, converts to and then writes out a Sybyl MOL2 file

ZATOM Subroutine

"zatom" adds an atom to the end of the current Z-matrix and then increments the atom counter; atom type,
defining atoms and internal coordinates are passed as arguments

ZHELP Subroutine

"zhelp" prints the general information and instructions for the Z-matrix editing program

ZVALUE Subroutine

"zvalue" gets user supplied values for selected coordinates as needed by the internal coordinate editing
program

 126 TINKER User's Guide 126

10. Contents of Common Block Variables

 The Fortran common blocks found in the TINKER package are listed below along with a brief
description of the contents of each variable in each common block. Each individual common block is
present as a separate ".i" file in the /source subdirectory. A source code listing containing each of the source
code modules and each of the common blocks can be produced by running the "listing.make" script found
in the distribution.

ACTION total number of each energy term computed

neb number of bond stretch energy terms computed
nea number of angle bend energy terms computed
neba number of stretch-bend energy terms computed
neub number of Urey-Bradley energy terms computed
neaa number of angle-angle energy terms computed
neopb number of out-of-plane bend energy terms computed
neopd number of out-of-plane distance energy terms computed
neid number of improper dihedral energy terms computed
neit number of improper torsion energy terms computed
net number of torsional energy terms computed
nebt number of stretch-torsion energy terms computed
nett number of torsion-torsion energy terms computed
nev number of van der Waals energy terms computed
nec number of charge-charge energy terms computed
necd number of charge-dipole energy terms computed
ned number of dipole-dipole energy terms computed
nem number of multipole energy terms computed
nep number of polarization energy terms computed
new number of Ewald summation energy terms computed
ner number of reaction field energy terms computed
nes number of solvation energy terms computed
nelf number of metal ligand field energy terms computed
neg number of geometric restraint energy terms computed
nex number of extra energy terms computed

ALIGN information for superposition of structures

wfit weights assigned to atom pairs during superposition
nfit number of atoms to use in superimposing two structures
ifit atom numbers of pairs of atoms to be superimposed

ANALYZ energy components partitioned over atoms

aeb bond stretch energy partitioned over atoms
aea angle bend energy partitioned over atoms
aeba stretch-bend energy partitioned over atoms
aeub Urey-Bradley energy partitioned over atoms
aeaa angle-angle energy partitioned over atoms
aeopb out-of-plane bend energy partitioned over atoms
aeopd out-of-plane distance energy partitioned over atoms
aeid improper dihedral energy partitioned over atoms
aeit improper torsion energy partitioned over atoms
aet torsional energy partitioned over atoms
aebt stretch-torsion energy partitioned over atoms

 127 TINKER User's Guide 127

aett torsion-torsion energy partitioned over atoms
aev van der Waals energy partitioned over atoms
aec charge-charge energy partitioned over atoms
aecd charge-dipole energy partitioned over atoms
aed dipole-dipole energy partitioned over atoms
aem multipole energy partitioned over atoms
aep polarization energy partitioned over atoms
aer reaction field energy partitioned over atoms
aes solvation energy partitioned over atoms
aelf metal ligand field energy partitioned over atoms
aeg geometric restraint energy partitioned over atoms
aex extra energy term partitioned over atoms

ANGANG angle-angle terms in current structure

kaa force constant for angle-angle cross terms
nangang total number of angle-angle interactions
iaa angle numbers used in each angle-angle term

ANGLE bond angles within the current structure

ak harmonic angle force constant (kcal/mole/rad**2)
anat ideal bond angle or phase shift angle (degrees)
afld periodicity for Fourier bond angle term
nangle total number of bond angles in the system
iang numbers of the atoms in each bond angle
angtyp potential energy function type for each bond angle

ANGPOT specifics of bond angle functional forms

cang cubic coefficient in angle bending potential
qang quartic coefficient in angle bending potential
pang quintic coefficient in angle bending potential
sang sextic coefficient in angle bending potential
angunit convert angle bending energy to kcal/mole
stbnunit convert stretch-bend energy to kcal/mole
aaunit convert angle-angle energy to kcal/mole
opbunit convert out-of-plane bend energy to kcal/mole
opdunit convert out-of-plane distance energy to kcal/mole
mm2stbn logical flag governing use of MM2-style stretch-bend

ARGUE command line arguments at program startup

maxarg maximum number of command line arguments
narg number of command line arguments to the program
listarg flag to mark available command line arguments
arg strings containing the command line arguments

ATMLST local geometry terms involving each atom

bndlist list of the bond numbers involving each atom
anglist list of the angle numbers centered on each atom

ATMTYP atomic properties for each current atom

 128 TINKER User's Guide 128

mass atomic weight for each atom in the system
tag integer atom labels from input coordinates file
class atom class number for each atom in the system
atomic atomic number for each atom in the system
valence valence number for each atom in the system
name atom name for each atom in the system
story descriptive type for each atom in system

ATOMS number, position and type of current atoms

x current x-coordinate for each atom in the system
y current y-coordinate for each atom in the system
z current z-coordinate for each atom in the system
n total number of atoms in the current system
type atom type number for each atom in the system

BATH temperature and pressure control parameters

kelvin target value for the system temperature (K)
atmsph target value for the system pressure (atm)
tautemp time constant in psec for temperature bath coupling
taupres time constant in psec for pressure bath coupling
compress isothermal compressibility of medium (atm-1)
collide collision frequency for Andersen thermostat
isothermal logical flag geverning use of temperature bath
isobaric logical flag governing use of pressure bath
thermostat type of thermostat, either Berendsen or Andersen

BITOR bitorsions within the current structure

nbitor total number of bitorsions in the system
ibitor numbers of the atoms in each bitorsion

BNDPOT specifics of bond stretch functional forms

cbnd cubic coefficient in bond stretch potential
qbnd quartic coefficient in bond stretch potential
bndunit convert bond stretch energy to kcal/mole
bndtyp type of bond stretch potential energy function

BOND covalent bonds in the current structure

bk bond stretch force constants (kcal/mole/Ang**2)
bl ideal bond length values in Angstroms
nbond total number of bond stretches in the system
ibnd numbers of the atoms in each bond stretch

BORDER bond orders for a conjugated pisystem

pbpl pi-bond orders for bonds in "planar" pisystem
pnpl pi-bond orders for bonds in "nonplanar" pisystem

 129 TINKER User's Guide 129

BOUND control of periodic boundary conditions

polycut cutoff distance for infinite polymer nonbonds
polycut2 square of infinite polymer nonbond cutoff
use_bounds flag to use periodic boundary conditions
use_image flag to use images for periodic system
use_replica flag to use replicates for periodic system
use_polymer flag to mark presence of infinite polymer

BOXES parameters for periodic boundary conditions

xbox length in Angs of a-axis of periodic box
ybox length in Angs of b-axis of periodic box
zbox length in Angs of c-axis of periodic box
alpha angle in degrees between b- and c-axes of box
beta angle in degrees between a- and c-axes of box
gamma angle in degrees between a- and b-axes of box
xbox2 half of the a-axis length of periodic box
ybox2 half of the b-axis length of periodic box
zbox2 half of the c-axis length of periodic box
box34 three-fourths axis length of truncated octahedron
recip reciprocal lattice vectors as matrix columns
volbox volume in Ang**3 of the periodic box
beta_sin sine of the beta periodic box angle
beta_cos cosine of the beta periodic box angle
gamma_sin sine of the gamma periodic box angle
gamma_cos cosine of the gamma periodic box angle
beta_term term used in generating triclinic box
gamma_term term used in generating triclinic box
orthogonal flag to mark periodic box as orthogonal
monoclinic flag to mark periodic box as monoclinic
triclinic flag to mark periodic box as triclinic
octahedron flag to mark box as truncated octahedron
spacegrp space group symbol for the unitcell type

CELL periodic boundaries using replicated cells

xcell length of the a-axis of the complete replicated cell
ycell length of the b-axis of the complete replicated cell
zcell length of the c-axis of the complete replicated cell
xcell2 half the length of the a-axis of the replicated cell
ycell2 half the length of the b-axis of the replicated cell
zcell2 half the length of the c-axis of the replicated cell
ncell total number of cell replicates for periodic boundaries
icell offset along axes for each replicate periodic cell

CENTRE atom coordinates relative to center of mass

xcm offset of each atom from center of mass x-coordinate
ycm offset of each atom from center of mass y-coordinate
zcm offset of each atom from center of mass z-coordinate

CHARGE partial charges for the current structure

 130 TINKER User's Guide 130

pchg magnitude of the partial charges (e-)
nion total number of partial charges in system
iion number of the atom site for each partial charge
jion neighbor generation site for each partial charge
kion cutoff switching site for each partial charge
chglist partial charge site for each atom (0=no charge)

CHGPOT specifics of charge-charge functional form

dielec dielectric constant for electrostatic interactions
c2scale factor by which 1-2 charge interactions are scaled
c3scale factor by which 1-3 charge interactions are scaled
c4scale factor by which 1-4 charge interactions are scaled
c5scale factor by which 1-5 charge interactions are scaled
neutnbr logical flag governing use of neutral group neighbors
neutcut logical flag governing use of neutral group cutoffs

CHRONO timing statistics for the current program

cputim elapsed cpu time in seconds since start of program

COUPLE near-neighbor atom connectivity lists

maxn13 maximum number of atoms 1-3 connected to an atom
maxn14 maximum number of atoms 1-4 connected to an atom
maxn15 maximum number of atoms 1-5 connected to an atom
n12 number of atoms directly bonded to each atom
i12 atom numbers of atoms 1-2 connected to each atom
n13 number of atoms in a 1-3 relation to each atom
i13 atom numbers of atoms 1-3 connected to each atom
n14 number of atoms in a 1-4 relation to each atom
i14 atom numbers of atoms 1-4 connected to each atom
n15 number of atoms in a 1-5 relation to each atom
i15 atom numbers of atoms 1-5 connected to each atom

CUTOFF cutoff distances for energy interactions

vdwcut cutoff distance for van der Waals interactions
chgcut cutoff distance for charge-charge interactions
dplcut cutoff distance for dipole-dipole interactions
mpolecut cutoff distance for atomic multipole interactions
vdwtaper distance at which van der Waals switching begins
chgtaper distance at which charge-charge switching begins
dpltaper distance at which dipole-dipole switching begins
mpoletaper distance at which atomic multipole switching begins
ewaldcut cutoff distance for direct space Ewald summation
use_ewald logical flag governing use of Ewald summation term
use_lights logical flag to use method of lights neighbors

DERIV Cartesian coordinate derivative components

deb bond stretch Cartesian coordinate derivatives
dea angle bend Cartesian coordinate derivatives
deba stretch-bend Cartesian coordinate derivatives

 131 TINKER User's Guide 131

deub Urey-Bradley Cartesian coordinate derivatives
deaa angle-angle Cartesian coordinate derivatives
deopb out-of-plane bend Cartesian coordinate derivatives
deopd out-of-plane distance Cartesian coordinate derivatives
deid improper dihedral Cartesian coordinate derivatives
deit improper torsion Cartesian coordinate derivatives
det torsional Cartesian coordinate derivatives
debt stretch-torsion Cartesian coordinate derivatives
dett torsion-torsion Cartesian coordinate derivatives
dev van der Waals Cartesian coordinate derivatives
dec charge-charge Cartesian coordinate derivatives
decd charge-dipole Cartesian coordinate derivatives
ded dipole-dipole Cartesian coordinate derivatives
dem multipole Cartesian coordinate derivatives
dep polarization Cartesian coordinate derivatives
der reaction field Cartesian coordinate derivatives
des solvation Cartesian coordinate derivatives
delf metal ligand field Cartesian coordinate derivatives
deg geometric restraint Cartesian coordinate derivatives
dex extra energy term Cartesian coordinate derivatives

DIPOLE atom & bond dipoles for current structure

bdpl magnitude of each of the dipoles (Debyes)
sdpl position of each dipole between defining atoms
ndipole total number of dipoles in the system
idpl numbers of atoms that define each dipole

DISGEO distance geometry bounds and parameters

bnd distance geometry upper and lower bounds matrix
vdwrad hard sphere radii for distance geometry atoms
vdwmax maximum value of hard sphere sum for an atom pair
compact index of local distance compaction on embedding
pathmax maximum value of upper bound after smoothing
use_invert flag to use enantiomer closest to input structure
use_anneal flag to use simulated annealing refinement

DOMEGA derivative components over torsions

teb bond stretch derivatives over torsions
tea angle bend derivatives over torsions
teba stretch-bend derivatives over torsions
teub Urey-Bradley derivatives over torsions
teaa angle-angle derivatives over torsions
teopb out-of-plane bend derivatives over torsions
teopd out-of-plane distance derivatives over torsions
teid improper dihedral derivatives over torsions
teit improper torsion derivatives over torsions
tet torsional derivatives over torsions
tebt stretch-torsion derivatives over torsions
tett torsion-torsion derivatives over torsions
tev van der Waals derivatives over torsions
tec charge-charge derivatives over torsions
tecd charge-dipole derivatives over torsions

 132 TINKER User's Guide 132

ted dipole-dipole derivatives over torsions
tem atomic multipole derivatives over torsions
tep polarization derivatives over torsions
ter reaction field derivatives over torsions
tes solvation derivatives over torsions
telf metal ligand field derivatives over torsions
teg geometric restraint derivatives over torsions
tex extra energy term derivatives over torsions

ENERGI individual potential energy components

eb bond stretch potential energy of the system
ea angle bend potential energy of the system
eba stretch-bend potential energy of the system
eub Urey-Bradley potential energy of the system
eaa angle-angle potential energy of the system
eopb out-of-plane bend potential energy of the system
eopd out-of-plane distance potential energy of the system
eid improper dihedral potential energy of the system
eit improper torsion potential energy of the system
et torsional potential energy of the system
ebt stretch-torsion potential energy of the system
ett torsion-torsion potential energy of the system
ev van der Waals potential energy of the system
ec charge-charge potential energy of the system
ecd charge-dipole potential energy of the system
ed dipole-dipole potential energy of the system
em atomic multipole potential energy of the system
ep polarization potential energy of the system
er reaction field potential energy of the system
es solvation potential energy of the system
elf metal ligand field potential energy of the system
eg geometric restraint potential energy of the system
ex extra term potential energy of the system

EWALD parameters for regular or PM Ewald summation

aewald Ewald convergence coefficient value (Ang-1)
frecip fractional cutoff value for reciprocal sphere
tinfoil flag governing use of tinfoil boundary conditions

EWREG exponential factors for regular Ewald sum

maxvec maximum number of k-vectors per reciprocal axis
ejc exponental factors for cosine along the j-axis
ejs exponental factors for sine along the j-axis
ekc exponental factors for cosine along the k-axis
eks exponental factors for sine along the k-axis
elc exponental factors for cosine along the l-axis
els exponental factors for sine along the l-axis

FACES variables for Connolly area and volume

maxnbr maximum number of neighboring atom pairs

 133 TINKER User's Guide 133

maxtt maximum number of temporary tori
maxt maximum number of total tori
maxp maximum number of probe positions
maxv maximum number of vertices
maxen maximum number of concave edges
maxfn maximum number of concave faces
maxc maximum number of circles
maxep maximum number of convex edges
maxfs maximum number of saddle faces
maxcy maximum number of cycles
mxcyep maximum number of cycle convex edges
maxfp maximum number of convex faces
mxfpcy maximum number of convex face cycles

FIELDS molecular mechanics force field description

biotyp force field atom type of each biopolymer type
forcefield string used to describe the current forcefield

FILES name and number of current structure files

nprior number of previously existing cycle files
ldir length in characters of the directory name
leng length in characters of the base filename
filename base filename used by default for all files
outfile output filename used for intermediate results

FRACS atom distances to molecular center of mass

xfrac fractional coordinate along a-axis of center of mass
yfrac fractional coordinate along b-axis of center of mass
zfrac fractional coordinate along c-axis of center of mass

GROUP partitioning of system into atom groups

grpmass total mass of all the atoms in each group
wgrp weight for each set of group-group interactions
ngrp total number of atom groups in the system
kgrp contiguous list of the atoms in each group
igrp first and last atom of each group in the list
grplist number of the group to which each atom belongs
use_group flag to use partitioning of system into groups
use_intra flag to include only intragroup interactions
use_inter flag to include only intergroup interactions

HESCUT cutoff value for Hessian matrix elements

hesscut magnitude of smallest allowed Hessian element

HESSN Cartesian Hessian elements for a single atom

hessx Hessian elements for x-component of current atom
hessy Hessian elements for y-component of current atom

 134 TINKER User's Guide 134

hessz Hessian elements for z-component of current atom

IMPROP improper dihedrals in the current structure

kprop force constant values for improper dihedral angles
vprop ideal improper dihedral angle value in degrees
niprop total number of improper dihedral angles in the system
iiprop numbers of the atoms in each improper dihedral angle

IMPTOR improper torsions in the current structure

itors1 1-fold amplitude and phase for each improper torsion
itors2 2-fold amplitude and phase for each improper torsion
itors3 3-fold amplitude and phase for each improper torsion
nitors total number of improper torsional angles in the system
iitors numbers of the atoms in each improper torsional angle

INFORM control values for I/O and program flow

digits decimal places output for energy and coordinates
iprint steps between status printing (0=no printing)
iwrite steps between coordinate dumps (0=no dumps)
isend steps between socket communication (0=no sockets)
verbose logical flag to turn on extra information
debug logical flag to turn on full debug printing
holdup logical flag to wait for carriage return on exit
abort logical flag to stop execution at next chance

INTER sum of intermolecular energy components

einter total intermolecular potential energy

IOUNIT Fortran input/output (I/O) unit numbers

iout Fortran I/O unit for major output (default=6)
input Fortran I/O unit for major input (default=5)

KANANG forcefield parameters for angle-angle terms

anan angle-angle cross term parameters for each atom class

KANGS forcefield parameters for bond angle bending

maxna maximum number of harmonic angle bend parameter entries
maxna5 maximum number of 5-membered ring angle bend entries
maxna4 maximum number of 4-membered ring angle bend entries
maxna3 maximum number of 3-membered ring angle bend entries
maxnaf maximum number of Fourier angle bend parameter entries
acon force constant parameters for harmonic angle bends
acon5 force constant parameters for 5-ring angle bends
acon4 force constant parameters for 4-ring angle bends
acon3 force constant parameters for 3-ring angle bends
aconf force constant parameters for Fourier angle bends

 135 TINKER User's Guide 135

ang bond angle parameters for harmonic angle bends
ang5 bond angle parameters for 5-ring angle bends
ang4 bond angle parameters for 4-ring angle bends
ang3 bond angle parameters for 3-ring angle bends
angf phase shift angle and periodicity for Fourier bends
ka string of atom classes for harmonic angle bends
ka5 string of atom classes for 5-ring angle bends
ka4 string of atom classes for 4-ring angle bends
ka3 string of atom classes for 3-ring angle bends
kaf string of atom classes for Fourier angle bends

KATOMS forcefield parameters for the atom types

weight average atomic mass of each atom type
atmcls atom class number for each of the atom types
atmnum atomic number for each of the atom types
ligand number of atoms to be attached to each atom type
symbol modified atomic symbol for each atom type
describe string identifing each of the atom types

KBONDS forcefield parameters for bond stretching

maxnb maximum number of bond stretch parameter entries
maxnb5 maximum number of 5-membered ring bond stretch entries
maxnb4 maximum number of 4-membered ring bond stretch entries
maxnb3 maximum number of 3-membered ring bond stretch entries
maxnel maximum number of electronegativity bond corrections
bcon force constant parameters for harmonic bond stretch
bcon5 force constant parameters for 5-ring bond stretch
bcon4 force constant parameters for 4-ring bond stretch
bcon3 force constant parameters for 3-ring bond stretch
blen bond length parameters for harmonic bond stretch
blen5 bond length parameters for 5-ring bond stretch
blen4 bond length parameters for 4-ring bond stretch
blen3 bond length parameters for 3-ring bond stretch
dlen electronegativity bond length correction parameters
kb string of atom classes for harmonic bond stretch
kb5 string of atom classes for 5-ring bond stretch
kb4 string of atom classes for 4-ring bond stretch
kb3 string of atom classes for 3-ring bond stretch
kel string of atom classes for electronegativity corrections

KCHRGE forcefield parameters for partial charges

chg partial charge parameters for each atom type

KDIPOL forcefield parameters for bond dipoles

maxnd maximum number of bond dipole parameter entries
maxnd5 maximum number of 5-membered ring dipole entries
maxnd4 maximum number of 4-membered ring dipole entries
maxnd3 maximum number of 3-membered ring dipole entries
dpl dipole moment parameters for bond dipoles
dpl5 dipole moment parameters for 5-ring dipoles

 136 TINKER User's Guide 136

dpl4 dipole moment parameters for 4-ring dipoles
dpl3 dipole moment parameters for 3-ring dipoles
pos dipole position parameters for bond dipoles
pos5 dipole position parameters for 5-ring dipoles
pos4 dipole position parameters for 4-ring dipoles
pos3 dipole position parameters for 3-ring dipoles
kd string of atom classes for bond dipoles
kd5 string of atom classes for 5-ring dipoles
kd4 string of atom classes for 4-ring dipoles
kd3 string of atom classes for 3-ring dipoles

KEYS contents of current keyword parameter file

nkey number of nonblank lines in the keyword file
keyline contents of each individual keyword file line

KGEOMS parameters for the geometrical restraints

xpfix x-coordinate target for each restrained position
ypfix y-coordinate target for each restrained position
zpfix z-coordinate target for each restrained position
pfix force constant and flat-well range for each position
dfix force constant and target range for each distance
afix force constant and target range for each angle
tfix force constant and target range for each torsion
gfix force constant and target range for each group distance
chir force constant and target range for chiral centers
depth depth of shallow Gaussian basin restraint
width exponential width coefficient of Gaussian basin
rwall radius of spherical droplet boundary restraint
npfix number of position restraints to be applied
ipfix atom number involved in each position restraint
kpfix flags to use x-, y-, z-coordinate position restraints
ndfix number of distance restraints to be applied
idfix atom numbers defining each distance restraint
nafix number of angle restraints to be applied
iafix atom numbers defining each angle restraint
ntfix number of torsional restraints to be applied
itfix atom numbers defining each torsional restraint
ngfix number of group distance restraints to be applied
igfix group numbers defining each group distance restraint
nchir number of chirality restraints to be applied
ichir atom numbers defining each chirality restraint
use_basin logical flag governing use of Gaussian basin
use_wall logical flag governing use of droplet boundary

KHBOND forcefield parameters for H-bonding terms

maxnhb maximum number of hydrogen bonding pair entries
radhb radius parameter for hydrogen bonding pairs
epshb well depth parameter for hydrogen bonding pairs
khb string of atom types for hydrogen bonding pairs

KIPROP forcefield parameters for improper dihedral

 137 TINKER User's Guide 137

maxndi maximum number of improper dihedral parameter entries
dcon force constant parameters for improper dihedrals
tdi ideal dihedral angle values for improper dihedrals
kdi string of atom classes for improper dihedral angles

KITORS forcefield parameters for improper torsions

maxnti maximum number of improper torsion parameter entries
ti1 torsional parameters for improper 1-fold rotation
ti2 torsional parameters for improper 2-fold rotation
ti3 torsional parameters for improper 3-fold rotation
kti string of atom classes for improper torsional parameters

KMULTI forcefield parameters for atomic multipoles

maxnmp maximum number of atomic multipole parameter entries
multip atomic monopole, dipole and quadrupole values
mpaxis type of local axis definition for atomic multipoles
kmp string of atom types for atomic multipoles

KOPBND forcefield parameters for out-of-plane bend

maxnopb maximum number of out-of-plane bending entries
copb force constant parameters for out-of-plane bending
kaopb string of atom classes for out-of-plane bending

KOPDST forcefield parameters for out-plane distance

maxnopb maximum number of out-of-plane distance entries
copb force constant parameters for out-of-plane distance
kaopb string of atom classes for out-of-plane distance

KORBS forcefield parameters for pisystem orbitals

maxnpi maximum number of pisystem bond parameter entries
electron number of pi-electrons for each atom class
ionize ionization potential for each atom class
repulse repulsion integral value for each atom class
sslope slope for bond stretch vs. pi-bond order
tslope slope for 2-fold torsion vs. pi-bond order
kpi string of atom classes for pisystem bonds

KPOLR forcefield parameters for polarizability

polr dipole polarizability parameters for each atom type
pgrp connected types in polarization group of each atom type

KSTBND forcefield parameters for stretch-bending

stbn stretch-bending parameters for each atom class

 138 TINKER User's Guide 138

KSTTOR forcefield parameters for stretch-torsions

maxnbt maximum number of stretch-torsion parameter entries
btcon force constant parameters for stretch-torsion
kbt string of atom classes for bonds in stretch-torsion

KTORSN forcefield parameters for torsional angles

maxnt maximum number of torsional angle parameter entries
maxnt5 maximum number of 5-membered ring torsion entries
maxnt4 maximum number of 4-membered ring torsion entries
t1 torsional parameters for standard 1-fold rotation
t2 torsional parameters for standard 2-fold rotation
t3 torsional parameters for standard 3-fold rotation
t4 torsional parameters for standard 4-fold rotation
t5 torsional parameters for standard 5-fold rotation
t6 torsional parameters for standard 6-fold rotation
t15 torsional parameters for 1-fold rotation in 5-ring
t25 torsional parameters for 2-fold rotation in 5-ring
t35 torsional parameters for 3-fold rotation in 5-ring
t45 torsional parameters for 4-fold rotation in 5-ring
t55 torsional parameters for 5-fold rotation in 5-ring
t65 torsional parameters for 6-fold rotation in 5-ring
t14 torsional parameters for 1-fold rotation in 4-ring
t24 torsional parameters for 2-fold rotation in 4-ring
t34 torsional parameters for 3-fold rotation in 4-ring
t44 torsional parameters for 4-fold rotation in 4-ring
t54 torsional parameters for 5-fold rotation in 4-ring
t64 torsional parameters for 6-fold rotation in 4-ring
kt string of atom classes for torsional angles
kt5 string of atom classes for 5-ring torsions
kt4 string of atom classes for 4-ring torsions

KTRTOR forcefield parameters for torsion-torsions

maxntt maximum number of torsion-torsion parameter entries
maxtgrd maximum dimension of torsion-torsion spline grid
maxtgrd2 maximum number of torsion-torsion spline grid points
ttx angle values for first torsion of spline grid
tty angle values for second torsion of spline grid
tbf function values at points on spline grid
tbx gradient over first torsion of spline grid
tby gradient over second torsion of spline grid
tbxy Hessian cross components over spline grid
tnx number of columns in torsion-torsion spline grid
tny number of rows in torsion-torsion spline grid
ktt string of torsion-torsion atom classes

KURYBR forcefield parameters for Urey-Bradley terms

maxnu maximum number of Urey-Bradley parameter entries
ucon force constant parameters for Urey-Bradley terms
dst13 ideal 1-3 distance parameters for Urey-Bradley terms
ku string of atom classes for Urey-Bradley terms

 139 TINKER User's Guide 139

KVDWPR forcefield parameters for special vdw terms

maxnvp maximum number of special van der Waals pair entries
radpr radius parameter for special van der Waals pairs
epspr well depth parameter for special van der Waals pairs
kvpr string of atom classes for special van der Waals pairs

KVDWS forcefield parameters for van der Waals terms

rad van der Waals radius parameter for each atom class
eps van der Waals well depth parameter for each atom class
rad4 van der Waals radius parameter in 1-4 interactions
eps4 van der Waals well depth parameter in 1-4 interactions
reduct van der Waals reduction factor for each atom class

LIGHT indices for method of lights pair neighbors

nlight total number of sites for method of lights calculation
kbx low index of neighbors of each site in the x-sorted list
kby low index of neighbors of each site in the y-sorted list
kbz low index of neighbors of each site in the z-sorted list
kex high index of neighbors of each site in the x-sorted list
key high index of neighbors of each site in the y-sorted list
kez high index of neighbors of each site in the z-sorted list
locx pointer from x-sorted list into original interaction list
locy pointer from y-sorted list into original interaction list
locz pointer from z-sorted list into original interaction list
rgx pointer from original interaction list into x-sorted list
rgy pointer from original interaction list into y-sorted list
rgz pointer from original interaction list into z-sorted list

LINMIN parameters for line search minimization

stpmin minimum step length in current line search direction
stpmax maximum step length in current line search direction
cappa stringency of line search (0=tight < cappa < 1=loose)
slpmax projected gradient above which stepsize is reduced
angmax maximum angle between search direction and -gradient
intmax maximum number of interpolations during line search

MATH mathematical and geometrical constants

radian conversion factor from radians to degrees
pi numerical value of the geometric constant
sqrtpi numerical value of the square root of Pi
logten numerical value of the natural log of ten
twosix numerical value of the sixth root of two

MDSTUF control of molecular dynamics trajectory

nfree total number of degrees of freedom for a system
velsave flag to save atomic velocity components to a file

 140 TINKER User's Guide 140

uindsave flag to save induced atomic dipoles to a file
integrate type of molecular dynamics integration algorithm

MINIMA general parameters for minimizations

fctmin value below which function is deemed optimized
hguess initial value for the H-matrix diagonal elements
maxiter maximum number of iterations during optimization
nextiter iteration number to use for the first iteration

MOLCUL individual molecules within current system

molmass molecular weight for each molecule in the system
totmass total weight of all the molecules in the system
nmol total number of separate molecules in the system
kmol contiguous list of the atoms in each molecule
imol first and last atom of each molecule in the list
molcule number of the molecule to which each atom belongs

MOLDYN velocity and acceleration on MD trajectory

v current velocity of each atom along the x,y,z-axes
a current acceleration of each atom along x,y,z-axes
aold previous acceleration of each atom along x,y,z-axes

MOMENT components of electric multipole moments

netchg net electric charge for the total system
netdpl dipole moment magnitude for the total system
netqdp diagonal quadrupole (Qxx, Qyy, Qzz) for system
xdpl dipole vector x-component in the global frame
ydpl dipole vector y-component in the global frame
zdpl dipole vector z-component in the global frame
xxqdp quadrupole tensor xx-component in global frame
xyqdp quadrupole tensor xy-component in global frame
xzqdp quadrupole tensor xz-component in global frame
yxqdp quadrupole tensor yx-component in global frame
yyqdp quadrupole tensor yy-component in global frame
yzqdp quadrupole tensor yz-component in global frame
zxqdp quadrupole tensor zx-component in global frame
zyqdp quadrupole tensor zy-component in global frame
zzqdp quadrupole tensor zz-component in global frame

MPLPOT specifics of atomic multipole functions

m2scale factor by which 1-2 multipole interactions are scaled
m3scale factor by which 1-3 multipole interactions are scaled
m4scale factor by which 1-4 multipole interactions are scaled
m5scale factor by which 1-5 multipole interactions are scaled

MPOLE multipole components for current structure

maxpole max components (monopole=1,dipole=4,quadrupole=13)

 141 TINKER User's Guide 141

pole multipole values for each site in the local frame
rpole multipoles rotated to the global coordinate system
npole total number of multipole sites in the system
ipole number of the atom for each multipole site
polsiz number of mutipole components at each multipole site
zaxis number of the z-axis defining atom for each site
xaxis number of the x-axis defining atom for each site
yaxis number of the y-axis defining atom for each site
polaxe local axis type for each multipole site

MUTANT hybrid atoms for free energy perturbation

lambda weighting of initial state in hybrid Hamiltonian
nhybrid number of atoms mutated from initial to final state
ihybrid atomic sites differing in initial and final state
type0 atom type of each atom in the initial state system
class0 atom class of each atom in the initial state system
type1 atom type of each atom in the final state system
class1 atom class of each atom in the final state system
alter true if an atom is to be mutated, false otherwise

NUCLEO parameters for nucleic acid structure

bkbone phosphate backbone angles for each nucleotide
glyco glycosidic torsional angle for each nucleotide
pucker sugar pucker, either 2=2'-endo or 3=3'-endo
dblhlx flag to mark system as nucleic acid double helix
deoxy flag to mark deoxyribose or ribose sugar units
hlxform helix form (A, B or Z) of polynucleotide strands

OMEGA dihedrals for torsional space computations

dihed current value in radians of each dihedral angle
nomega number of dihedral angles allowed to rotate
iomega numbers of two atoms defining rotation axis
zline line number in Z-matrix of each dihedral angle

OPBEND out-of-plane bends in the current structure

kopb force constant values for out-of-plane bending
nopbend total number of out-of-plane bends in the system
iopb bond angle numbers used in out-of-plane bending

OPDIST out-of-plane distances in current structure

kopd force constant values for out-of-plane distance
nopdist total number of out-of-plane distances in the system
iopb numbers of the atoms in each out-of-plane distance

ORBITS orbital energies for conjugated pisystem

q number of pi-electrons contributed by each atom
w ionization potential of each pisystem atom

 142 TINKER User's Guide 142

em repulsion integral for each pisystem atom
nfill number of filled pisystem molecular orbitals

OUTPUT control of coordinate output file format

archive logical flag to save structures in an archive
noversion logical flag governing use of filename versions
overwrite logical flag to overwrite intermediate files inplace
cyclesave logical flag to mark use of numbered cycle files
coordtype selects Cartesian, internal, rigid body or none

PARAMS contents of force field parameter file

nprm number of nonblank lines in the parameter file
prmline contents of each individual parameter file line

PATHS parameters for Elber reaction path method

p0 reactant Cartesian coordinates as variables
p1 product Cartesian coordinates as variables
pmid midpoint between the reactant and product
pvect vector connecting the reactant and product
pstep step per cycle along reactant-product vector
pzet current projection on reactant-product vector
pnorm length of the reactant-product vector
acoeff transformation matrix 'A' from Elber paper
gc gradients of the path constraints

PDB definition of a Protein Data Bank structure

xpdb x-coordinate of each atom stored in PDB format
ypdb y-coordinate of each atom stored in PDB format
zpdb z-coordinate of each atom stored in PDB format
npdb number of atoms stored in Protein Data Bank format
resnum number of the residue to which each atom belongs
npdb12 number of atoms directly bonded to each CONECT atom
ipdb12 atom numbers of atoms connected to each CONECT atom
pdblist list of the Protein Data Bank atom number of each atom
pdbtyp Protein Data Bank record type assigned to each atom
atmnam Protein Data Bank atom name assigned to each atom
resnam Protein Data Bank residue name assigned to each atom

PHIPSI phi-psi-omega-chi angles for a protein

phi value of the phi angle for each amino acid residue
psi value of the psi angle for each amino acid residue
omega value of the omega angle for each amino acid residue
chi values of the chi angles for each amino acid residue
chiral chirality of each amino acid residue (1=L, -1=D)
disulf residue joined to each residue via a disulfide link

PIORBS conjugated system in the current structure

 143 TINKER User's Guide 143

norbit total number of pisystem orbitals in the system
iorbit numbers of the atoms containing pisystem orbitals
reorbit number of evaluations between orbital updates
piperp atoms defining a normal plane to each orbital
npibond total number of bonds affected by the pisystem
pibond bond and piatom numbers for each pisystem bond
npitors total number of torsions affected by the pisystem
pitors torsion and pibond numbers for each pisystem torsion
listpi atom list indicating whether each atom has an orbital

PISTUF bonds and torsions in the current pisystem

bkpi bond stretch force constants for pi-bond order of 1.0
blpi ideal bond length values for a pi-bond order of 1.0
kslope rate of force constant decrease with bond order decrease
lslope rate of bond length increase with a bond order decrease
torspi 2-fold torsional energy barrier for pi-bond order of 1.0

PME parameters for particle mesh Ewald summation

maxfft maximum number of points along each FFT direction
maxorder maximum order of the B-spline approximation
maxtable maximum size of the FFT table array
maxgrid maximum dimension of the PME charge grid array
bsmod1 B-spline moduli along the a-axis direction
bsmod2 B-spline moduli along the b-axis direction
bsmod3 B-spline moduli along the c-axis direction
table intermediate array used by the FFT calculation
nfft1 number of grid points along the a-axis direction
nfft2 number of grid points along the b-axis direction
nfft3 number of grid points along the c-axis direction
bsorder order of the PME B-spline approximation

POLAR polarizabilities and induced dipole moments

polarity dipole polarizability for each multipole site (Ang**3)
pdamp value of polarizability damping factor for each site
uind induced dipole components at each multipole site
uinp induced dipoles in field used for energy interactions
npolar total number of polarizable sites in the system

POLGRP polarizable site group connectivity lists

maxp11 maximum number of atoms in a polarization group
maxp12 maximum number of atoms in groups 1-2 to an atom
maxp13 maximum number of atoms in groups 1-3 to an atom
maxp14 maximum number of atoms in groups 1-4 to an atom
np11 number of atoms in polarization group of each atom
ip11 atom numbers of atoms in same group as each atom
np12 number of atoms in groups 1-2 to each atom
ip12 atom numbers of atoms in groups 1-2 to each atom
np13 number of atoms in groups 1-3 to each atom
ip13 atom numbers of atoms in groups 1-3 to each atom
np14 number of atoms in groups 1-4 to each atom

 144 TINKER User's Guide 144

ip14 atom numbers of atoms in groups 1-4 to each atom

POLPOT specifics of polarization functional form

poleps induced dipole convergence criterion (rms Debyes/atom)
polsor induced dipole SOR convergence acceleration factor
pgamma prefactor in exponential polarization damping term
p2scale field 1-2 scale factor for energy evaluations
p3scale field 1-3 scale factor for energy evaluations
p4scale field 1-4 scale factor for energy evaluations
p5scale field 1-5 scale factor for energy evaluations
d1scale field intra-group scale factor for direct induced
d2scale field 1-2 group scale factor for direct induced
d3scale field 1-3 group scale factor for direct induced
d4scale field 1-4 group scale factor for direct induced
u1scale field intra-group scale factor for mutual induced
u2scale field 1-2 group scale factor for mutual induced
u3scale field 1-3 group scale factor for mutual induced
u4scale field 1-4 group scale factor for mutual induced
poltyp type of polarization potential (direct or mutual)

POTENT usage of each potential energy component

use_bond logical flag governing use of bond stretch potential
use_angle logical flag governing use of angle bend potential
use_strbnd logical flag governing use of stretch-bend potential
use_urey logical flag governing use of Urey-Bradley potential
use_angang logical flag governing use of angle-angle cross term
use_opbend logical flag governing use of out-of-plane bend term
use_opdist logical flag governing use of out-of-plane distance
use_improp logical flag governing use of improper dihedral term
use_imptor logical flag governing use of improper torsion term
use_tors logical flag governing use of torsional potential
use_strtor logical flag governing use of stretch-torsion term
use_tortor logical flag governing use of torsion-torsion term
use_vdw logical flag governing use of vdw der Waals potential
use_charge logical flag governing use of charge-charge potential
use_chgdpl logical flag governing use of charge-dipole potential
use_dipole logical flag governing use of dipole-dipole potential
use_mpole logical flag governing use of multipole potential
use_polar logical flag governing use of polarization term
use_rxnfld logical flag governing use of reaction field term
use_solv logical flag governing use of surface area solvation
use_gbsa logical flag governing use of GB/SA solvation term
use_metal logical flag governing use of ligand field term
use_geom logical flag governing use of geometric restraints
use_extra logical flag governing use of extra potential term
use_orbit logical flag governing use of pisystem computation

PRECIS values of machine precision tolerances

tiny the smallest positive floating point value
small the smallest relative floating point spacing
huge the largest relative floating point spacing

 145 TINKER User's Guide 145

REFER storage of reference atomic coordinate set

xref reference x-coordinate for each atom in the system
yref reference y-coordinate for each atom in the system
zref reference z-coordinate for each atom in the system
nref total number of atoms in the reference system
reftyp atom type for each atom in the reference system
n12ref number of atoms bonded to each reference atom
i12ref atom numbers of atoms 1-2 connected to each atom
refleng length in characters of the reference filename
refltitle length in characters of the reference title string
refnam atom name for each atom in the reference system
reffile base filename for the reference structure
reftitle title used to describe the reference structure

RESDUE standard biopolymer residue abbreviations

amino three-letter abbreviations for amino acids types
nuclz three-letter abbreviations for nucleic acids types
amino1 one-letter abbreviations for amino acids types
nuclz1 one-letter abbreviations for nucleic acids types

RGDDYN velocities and momenta for rigid-body MD

vcm current translational velocity of each rigid-body
wcm current angular velocity of each rigid-body
lm current angular momentum of each rigid-body
linear logical flag to mark group as linear or nonlinear

RIGID rigid body coordinates for atom groups

xrb rigid body reference x-coordinate for each atom
yrb rigid body reference y-coordinate for each atom
zrb rigid body reference z-coordinate for each atom
rbc current rigid body coordinates for each atom group

RING number and location of small ring structures

nring3 total number of 3-membered rings in the system
iring3 numbers of the atoms involved in each 3-ring
nring4 total number of 4-membered rings in the system
iring4 numbers of the atoms involved in each 4-ring
nring5 total number of 5-membered rings in the system
iring5 numbers of the atoms involved in each 5-ring
nring6 total number of 6-membered rings in the system
iring6 numbers of the atoms involved in each 6-ring

ROTATE molecule partitions for rotation of a bond

nrot total number of atoms moving when bond rotates
rot atom numbers of atoms moving when bond rotates
use_short logical flag governing use of shortest atom list

 146 TINKER User's Guide 146

RXNFLD reaction field matrix elements and indices

b1 first reaction field matrix element array
b2 second reaction field matrix element array
ijk indices into the reaction field element arrays

RXNPOT specifics of reaction field functional form

rfsize radius of reaction field sphere centered at origin
rfbulkd bulk dielectric constant of reaction field continuum
rfterms number of terms to use in reaction field summation

SCALES parameter scale factors for optimization

scale multiplicative factor for each optimization parameter
set_scale logical flag to show if scale factors have been set

SEQUEN sequence information for a biopolymer

nseq total number of residues in biopolymer sequences
nchain number of separate biopolymer sequence chains
ichain first and last residue in each biopolymer chain
seqtyp residue type for each residue in the sequence
seq three-letter code for each residue in the sequence
chnnam one-letter identifier for each sequence chain

SHAKE definition of Shake/Rattle constraints

krat ideal distance value for rattle constraint
nrat number of rattle constraints to be applied
irat atom numbers of atoms in a rattle constraint
ratimage flag to use minimum image for rattle constraint
use_rattle logical flag to set use of rattle contraints

SHUNT polynomial switching function coefficients

off distance at which the potential energy goes to zero
off2 square of distance at which the potential goes to zero
cut distance at which switching of the potential begins
cut2 square of distance at which the switching begins
c0 zeroth order coefficient of multiplicative switch
c1 first order coefficient of multiplicative switch
c2 second order coefficient of multiplicative switch
c3 third order coefficient of multiplicative switch
c4 fourth order coefficient of multiplicative switch
c5 fifth order coefficient of multiplicative switch
f0 zeroth order coefficient of additive switch function
f1 first order coefficient of additive switch function
f2 second order coefficient of additive switch function
f3 third order coefficient of additive switch function
f4 fourth order coefficient of additive switch function
f5 fifth order coefficient of additive switch function

 147 TINKER User's Guide 147

f6 sixth order coefficient of additive switch function
f7 seventh order coefficient of additive switch function

SIZES parameter values to set array dimensions

"sizes.i" sets values for critical array dimensions used throughout the software; these parameters will fix the
size of the largest systems that can be handled; values too large for the computer's memory and/or
swap space to accomodate will result in poor performance or outright failure

parameter: maximum allowed number of:

maxatm atoms in the molecular system
maxval atoms directly bonded to an atom
maxgrp user-defined groups of atoms
maxtyp force field atom type definitions
maxclass force field atom class definitions
maxkey lines in the keyword file
maxrot bonds for torsional rotation
maxvar optimization variables (vector storage)
maxopt optimization variables (matrix storage)
maxhess off-diagonal Hessian elements
maxlight sites for method of lights neighbors
maxvib vibrational frequencies
maxgeo distance geometry points
maxcell unit cells in replicated crystal
maxring 3-, 4-, or 5-membered rings
maxfix geometric restraints
maxbio biopolymer atom definitions
maxres residues in the macromolecule
maxamino amino acid residue types
maxnuc nucleic acid residue types
maxbnd covalent bonds in molecular system
maxang bond angles in molecular system
maxtors torsional angles in molecular system
maxbitor bitorsions in molecular system
maxpi atoms in conjugated pisystem
maxpib covalent bonds involving pisystem
maxpit torsional angles involving pisystem

SOCKET control parameters for socket communication

sktpid process ID number of the Spm socket daemon
use_socket logical flag governing use of external sockets

SOLUTE parameters for continuum solvation models

rsolv atomic radius of each atom for continuum solvation
vsolv atomic volume of each atom for continuum solvation
asolv atomic solvation parameters (kcal/mole/Ang**2)
rborn Born radius of each atom for GB/SA solvation
drb solvation derivatives with respect to Born radii
doffset dielectric offset to continuum solvation atomic radii
p1 single-atom scale factor for analytical Still GB/SA
p2 1-2 interaction scale factor for analytical Still GB/SA

 148 TINKER User's Guide 148

p3 1-3 interaction scale factor for analytical Still GB/SA
p4 nonbonded scale factor for analytical Still GB/SA
p5 soft cutoff parameter for analytical Still GB/SA
gpol polarization self-energy values for each atom
shct overlap scaling factors for Hawkins-Cramer-Truhlar GB/SA
wace "omega" values for atom class pairs for use with ACE
s2ace "sigma^2" values for atom class pairs for use with ACE
uace "mu" values for atom class pairs for use with ACE
solvtyp solvation model (ASP, SASA, ONION, STILL, HCT, ACE)

STODYN frictional coefficients for SD trajectory

friction global frictional coefficient for exposed particle
gamma atomic frictional coefficients for each atom
use_sdarea logical flag to use surface area friction scaling

STRBND stretch-bends in the current structure

ksb force constant for stretch-bend terms
nstrbnd total number of stretch-bend interactions
isb angle and bond numbers used in stretch-bend

STRTOR stretch-torsions in the current structure

kst 1-, 2- and 3-fold stretch-torsion force constants
nstrtor total number of stretch-torsion interactions
ist torsion and bond numbers used in stretch-torsion

SYNTRN definition of synchronous transit path

t value of the path coordinate (0=reactant, 1=product)
pm path coordinate for extra point in quadratic transit
xmin1 reactant coordinates as array of optimization variables
xmin2 product coordinates as array of optimization variables
xm extra coordinate set for quadratic synchronous transit

TITLES title for the current molecular system

ltitle length in characters of the nonblank title string
title title used to describe the current structure

TORPOT specifics of torsional functional forms

idihunit convert improper dihedral energy to kcal/mole
itorunit convert improper torsion amplitudes to kcal/mole
torsunit convert torsional parameter amplitudes to kcal/mole
storunit convert stretch-torsion energy to kcal/mole
ttorunit convert torsion-torsion energy to kcal/mole

TORS torsional angles within the current structure

tors1 1-fold amplitude and phase for each torsional angle
tors2 2-fold amplitude and phase for each torsional angle

 149 TINKER User's Guide 149

tors3 3-fold amplitude and phase for each torsional angle
tors4 4-fold amplitude and phase for each torsional angle
tors5 5-fold amplitude and phase for each torsional angle
tors6 6-fold amplitude and phase for each torsional angle
ntors total number of torsional angles in the system
itors numbers of the atoms in each torsional angle

TORTOR torsion-torsions in the current structure

ntortor total number of torsion-torsion interactions
itt atoms and parameter indices for torsion-torsion

TREE potential smoothing & search tree levels

maxpss maximum number of potential smoothing levels
etree energy reference value at the top of the tree
ilevel smoothing deformation value at each tree level
nlevel number of levels of potential smoothing used

UNITS physical constants and unit conversions

avogadro Avogadro's number (N) in particles/mole
boltzmann Boltzmann constant (kB) in g*Ang**2/ps**2/K/mole
gasconst ideal gas constant (R) in kcal/mole/K
lightspd speed of light in vacuum (c) in cm/ps
bohr conversion from Bohrs to Angstroms
joule conversion from calories to joules
evolt conversion from Hartree to electron-volts
hartree conversion from Hartree to kcal/mole
electric conversion from electron**2/Ang to kcal/mole
debye conversion from electron-Ang to Debyes
prescon conversion from kcal/mole/Ang**3 to Atm
convert conversion from kcal to g*Ang**2/ps**2

UREY Urey-Bradley interactions in the structure

uk Urey-Bradley force constants (kcal/mole/Ang**2)
ul ideal 1-3 distance values in Angstroms
nurey total number of Urey-Bradley terms in the system
iury numbers of the atoms in each Urey-Bradley interaction

URYPOT specifics of Urey-Bradley functional form

cury cubic coefficient in Urey-Bradley potential
qury quartic coefficient in Urey-Bradley potential
ureyunit convert Urey-Bradley energy to kcal/mole

USAGE atoms active during energy computation

nuse number of active atoms used in energy calculation
use true if an atom is active, false if inactive

VDW van der Waals parameters for current structure

 150 TINKER User's Guide 150

radmin minimum energy distance for each atom class pair
epsilon well depth parameter for each atom class pair
radmin4 minimum energy distance for 1-4 interaction pairs
epsilon4 well depth parameter for 1-4 interaction pairs
radhbnd minimum energy distance for hydrogen bonding pairs
epshbnd well depth parameter for hydrogen bonding pairs
kred value of reduction factor parameter for each atom
ired attached atom from which reduction factor is applied
nvdw total number van der Waals active sites in the system
ivdw number of the atom for each van der Waals active site

VDWPOT specifics of van der Waals functional form

abuck value of "A" constant in Buckingham vdw potential
bbuck value of "B" constant in Buckingham vdw potential
cbuck value of "C" constant in Buckingham vdw potential
ghal value of "gamma" in buffered 14-7 vdw potential
dhal value of "delta" in buffered 14-7 vdw potential
v2scale factor by which 1-2 vdw interactions are scaled
v3scale factor by which 1-3 vdw interactions are scaled
v4scale factor by which 1-4 vdw interactions are scaled
v5scale factor by which 1-5 vdw interactions are scaled
igauss coefficients of Gaussian fit to vdw potential
ngauss number of Gaussians used in fit to vdw potential
vdwtyp type of van der Waals potential energy function
radtyp type of parameter (sigma or R-min) for atomic size
radsiz atomic size provided as radius or diameter
radrule combining rule for atomic size parameters
epsrule combining rule for vdw well depth parameters
gausstyp type of Gaussian fit to van der Waals potential

VIRIAL components of internal virial tensor

vir total internal virial Cartesian tensor components

WARP parameters for potential surface smoothing

m2 second moment of the GDA gaussian for each atom
deform value of the smoothing deformation parameter
difft diffusion coefficient for torsional potential
diffv diffusion coefficient for van der Waals potential
diffc diffusion coefficient for charge-charge potential
use_smooth flag to use a potential energy smoothing method
use_dem flag to use diffusion equation method potential
use_gda flag to use gaussian density annealing potential
use_tophat flag to use analytical tophat smoothed potential
use_stophat flag to use shifted tophat smoothed potential

XTALS crystal structures for parameter fitting

e0_lattice ideal lattice energy for the current crystal
moment_0 ideal dipole moment for monomer from crystal
nxtal number of crystal structures to be stored

 151 TINKER User's Guide 151

nvary number of potential parameters to optimize
ivary index for the types of potential parameters
vary atom numbers involved in potential parameters
iresid crystal structure to which each residual refers
rsdtyp experimental variable for each of the residuals
vartyp type of potential parameter to be optimized

ZCLOSE ring openings and closures for Z-matrix

nadd number of added bonds between Z-matrix atoms
iadd numbers of the atom pairs defining added bonds
ndel number of bonds between Z-matrix bonds to delete
idel numbers of the atom pairs defining deleted bonds

ZCOORD Z-matrix internal coordinate definitions

zbond bond length used to define each Z-matrix atom
zang bond angle used to define each Z-matrix atom
ztors angle or torsion used to define Z-matrix atom
iz defining atom numbers for each Z-matrix atom

 152 TINKER User's Guide 152

11. Index of Function & Subroutine Calls

 This section contains an alphabetical cross index listing of the routines called by each TINKER
program, subroutine and function. Routines not present in the left hand column do not make calls to any
other portion of the TINKER package.

Routine List of Source Code Units called by this Routine

ACTIVE GETTEXT UPCASE

ADDBASE ADDBOND FINDATM JACOBI NEWATM OLDATM
 OVERLAP PIALTER PIMOVE PITILT

ADDSIDE ADDBASE ADDBOND FATAL FINDATM FREEUNIT
 JACOBI NEWATM OLDATM OVERLAP PIALTER
 PIMOVE PITILT PRTSEQ VERSION

AGDA DIFFEQ FREEUNIT GDASTAT GETXYZ INITIAL
 MECHANIC NEXTARG NUMERAL PRTXYZ RANDOM
 TNCG UPCASE VERSION

ALCHEMY ENERGY FINAL FREEUNIT GETTEXT GETXYZ
 HATOM HYBRID INITIAL MECHANIC NUMERAL
 READXYZ UPCASE VERSION

ANALYSIS BOUNDS EANGANG3 EANGLE3 EBOND3 EBUCK3
 ECHARGE3 ECHGDPL3 EDIPOLE3 EGAUSS3 EGEOM3
 EHAL3 EIMPROP3 EIMPTOR3 ELJ3 EMETAL3
 EMM3HB3 EMPOLE3 EOPBEND3 EOPDIST3 ERXNFLD3
 ESOLV3 ESTRBND3 ESTRTOR3 ETORS3 ETORTOR3
 EUREY3 EXTRA3 PISCF REPLICA

ANALYZE ANALYZ4 ANALYZ6 ANALYZ8 ATOMYZE ENRGYZE
 FINAL FREEUNIT GETXYZ INITIAL MECHANIC
 NEXTARG PARAMYZE PROPYZE READXYZ SUFFIX
 TRIMTEXT UPCASE VERSION

ANGLES FATAL

ANNEAL BEEMAN FINAL GETTEXT GETXYZ INITIAL
 MDINIT MDREST MECHANIC NEXTARG RGDSTEP
 SDSTEP SHAKEUP SIGMOID SKTSEND UPCASE
 VERLET

ARCHIVE ACTIVE BASEFILE FINAL FREEUNIT GETTEXT
 INITIAL NEXTARG NUMERAL PRTARC PRTCAR
 PRTXMOL PRTXYZ READXYZ SUFFIX TRIMTEXT
 UPCASE VERSION

ATTACH FATAL SORT

BASEFILE CONTROL GETKEY TRIMTEXT

 153 TINKER User's Guide 153

BCUINT BCUCOF

BCUINT1 BCUCOF

BCUINT2 BCUCOF

BEEMAN GRADIENT KINETIC MDSAVE MDSTAT PRESSURE
 RATTLE RATTLE2 TEMPER

BETAI BETACF GAMMLN

BIGBLOCK CELLATOM

BITORS FATAL

BONDS FATAL

BORN SURFATOM

BSET BMAX

BSSTEP FATAL MMID PZEXTR

CALENDAR IDATE ITIME

CERROR FATAL TRIMTEXT

CFFTB CFFTB1

CFFTB1 PASSB PASSB2 PASSB3 PASSB4 PASSB5

CFFTF CFFTF1

CFFTF1 PASSF PASSF2 PASSF3 PASSF4 PASSF5

CFFTI CFFTI1

CHKTREE LOCALXYZ

CIRPLN ANORM DOT VCROSS VNORM

CLIMBER ENERGY GETREF LOCALMIN MAKEINT MAKEXYZ

CLIMBRGD ENERGY LOCALRGD RIGIDXYZ

CLIMBROT ENERGY LOCALROT MAKEXYZ

CLIMBTOR CHKTREE ENERGY GETREF LOCALXYZ MAKEINT
 MAKEXYZ

 154 TINKER User's Guide 154

CLIMBXYZ CHKTREE ENERGY GETREF LOCALXYZ

CLUSTER CUTOFFS FATAL GETNUMB GETTEXT SORT
 SORT3 UPCASE

COMMAND GETARG UPCASE

COMPRESS CERROR GETTOR

CONNECT SORT

CONNOLLY COMPRESS CONTACT NEIGHBOR PLACE SADDLES
 TORUS VAM

CONTACT ANORM CERROR PTINCY

CONTROL GETTEXT UPCASE

COORDS GYRATE RMSERROR

CORRELATE FINAL INITIAL NEXTARG PROPERTY READBLK
 TRIMTEXT

CRYSTAL BIGBLOCK BOUNDS FIELD FINAL FREEUNIT
 GETTEXT GETXYZ INITIAL KATOM LATTICE
 MOLECULE NEXTARG PRTXYZ SYMMETRY UNITCELL
 UPCASE VERSION

CUTOFFS GETTEXT UPCASE

CYTSY CYTSYP CYTSYS

DEPTH DOT VCROSS VNORM

DIAGQ GETIME SETIME

DIFFEQ BSSTEP DERIVS GDASTAT

DIFFUSE BASEFILE FATAL FIELD FINAL FREEUNIT
 GETWORD INITIAL KATOM MOLECULE NEXTARG
 READXYZ SUFFIX UNITCELL VERSION

DISTGEOM ACTIVE ANGLES ATTACH BONDS EMBED
 FATAL FINAL FREEUNIT GEODESIC GETIME
 GETTEXT GETXYZ GRAFIC IMPOSE INITIAL
 KCHIRAL KGEOM MAKEREF NEXTARG NUMERAL
 PRTXYZ SETIME TORSIONS TRIFIX UPCASE
 VERSION

DMDUMP GRAFIC

 155 TINKER User's Guide 155

DOCUMENT FINAL FREEUNIT GETPRM GETTEXT GETWORD
 INITIAL LOWCASE NEXTARG NEXTTEXT PRTPRM
 SORT6 SORT7 SORT9 SUFFIX TRIMTEXT
 UPCASE VERSION

DSTMAT GETIME GETNUMB GETTEXT INVBETA LOWCASE
 RANDOM SETIME SORT2 TRIFIX UPCASE

DYNAMIC BEEMAN FINAL GETXYZ INITIAL MDINIT
 MDREST MECHANIC NEXTARG RGDSTEP SDSTEP
 SHAKEUP SKTSEND VERLET

EANGANG GROUPS IMAGE

EANGANG1 GROUPS IMAGE

EANGANG2 EANGANG2A GROUPS

EANGANG2A IMAGE

EANGANG3 GROUPS IMAGE

EANGLE GROUPS IMAGE

EANGLE1 GROUPS IMAGE

EANGLE2 EANGLE2A EANGLE2B GROUPS

EANGLE2A GROUPS IMAGE

EANGLE2B IMAGE

EANGLE3 GROUPS IMAGE

EBOND GROUPS IMAGE

EBOND1 GROUPS IMAGE

EBOND2 GROUPS IMAGE

EBOND3 GROUPS IMAGE

EBUCK EBUCK0A EBUCK0B EBUCK0C FATAL

EBUCK0A GROUPS IMAGE SWITCH

EBUCK0B GROUPS LIGHTS SWITCH

EBUCK0C EGAUSS

 156 TINKER User's Guide 156

EBUCK1 EBUCK1A EBUCK1B EBUCK1C FATAL

EBUCK1A GROUPS IMAGE SWITCH

EBUCK1B GROUPS LIGHTS SWITCH

EBUCK1C EGAUSS1

EBUCK2 EBUCK2A EBUCK2B FATAL

EBUCK2A GROUPS IMAGE SWITCH

EBUCK2B EGAUSS2

EBUCK3 EBUCK3A EBUCK3B EBUCK3C FATAL

EBUCK3A GROUPS IMAGE SWITCH

EBUCK3B GROUPS LIGHTS SWITCH

EBUCK3C EGAUSS3

ECHARGE ECHARGE0A ECHARGE0B ECHARGE0C ECHARGE0D
 ECHARGE0E

ECHARGE0A GROUPS IMAGE SWITCH

ECHARGE0B GROUPS LIGHTS SWITCH

ECHARGE0C ERF GROUPS

ECHARGE0D EPME ERFC GROUPS IMAGE SWITCH

ECHARGE0E EPME ERFC GROUPS LIGHTS SWITCH

ECHARGE1 ECHARGE1A ECHARGE1B ECHARGE1C ECHARGE1D

ECHARGE1A GROUPS IMAGE SWITCH

ECHARGE1B GROUPS LIGHTS SWITCH

ECHARGE1C ERF GROUPS

ECHARGE1D EPME1 ERFC GROUPS IMAGE SWITCH

ECHARGE2 ECHARGE2A ECHARGE2B ECHARGE2C

ECHARGE2A GROUPS IMAGE SWITCH

ECHARGE2B ERF GROUPS

 157 TINKER User's Guide 157

ECHARGE2C ERFC GROUPS IMAGE

ECHARGE3 ECHARGE3A ECHARGE3B ECHARGE3C ECHARGE3D
 ECHARGE3E

ECHARGE3A GROUPS IMAGE SWITCH

ECHARGE3B GROUPS LIGHTS SWITCH

ECHARGE3C ERF GROUPS

ECHARGE3D EPME3 ERFC GROUPS IMAGE SWITCH

ECHARGE3E EPME3 ERFC GROUPS LIGHTS SWITCH

ECHGDPL GROUPS IMAGE SWITCH

ECHGDPL1 GROUPS IMAGE SWITCH

ECHGDPL2 GROUPS IMAGE SWITCH

ECHGDPL3 GROUPS IMAGE SWITCH

EDIPOLE GROUPS IMAGE SWITCH

EDIPOLE1 GROUPS IMAGE SWITCH

EDIPOLE2 GROUPS IMAGE SWITCH

EDIPOLE3 GROUPS IMAGE SWITCH

EGAUSS EGAUSS0A EGAUSS0B

EGAUSS0A GROUPS SWITCH

EGAUSS0B ERF GROUPS

EGAUSS1 EGAUSS1A EGAUSS1B

EGAUSS1A GROUPS SWITCH

EGAUSS1B ERF GROUPS

EGAUSS2 EGAUSS2A EGAUSS2B

EGAUSS2A GROUPS SWITCH

EGAUSS2B GROUPS

 158 TINKER User's Guide 158

EGAUSS3 EGAUSS3A EGAUSS3B

EGAUSS3A GROUPS SWITCH

EGAUSS3B ERF GROUPS

EGBSA0A GROUPS SWITCH

EGBSA0B ERF GROUPS

EGBSA1A GROUPS SWITCH

EGBSA1B ERF GROUPS

EGBSA2A SWITCH

EGBSA2B ERF

EGBSA3A GROUPS SWITCH

EGBSA3B ERF GROUPS

EGEOM GROUPS IMAGE

EGEOM1 GROUPS IMAGE

EGEOM2 GROUPS IMAGE

EGEOM3 GROUPS IMAGE

EHAL EHAL0A EHAL0B

EHAL0A GROUPS IMAGE SWITCH

EHAL0B GROUPS LIGHTS SWITCH

EHAL1 EHAL1A EHAL1B

EHAL1A GROUPS IMAGE SWITCH

EHAL1B GROUPS LIGHTS SWITCH

EHAL2 GROUPS IMAGE SWITCH

EHAL3 EHAL3A EHAL3B

EHAL3A GROUPS IMAGE SWITCH

EHAL3B GROUPS LIGHTS SWITCH

 159 TINKER User's Guide 159

EIGEN GETIME POWER SETIME

EIGENCART DIAGQ HESSIAN

EIGENRGD DIAGQ HESSRGD

EIGENROT DIAGQ HESSROT

EIGENTOR DIAGQ HESSROT

EIGENXYZ DIAGQ HESSIAN

EIMPROP GROUPS IMAGE

EIMPROP1 GROUPS IMAGE

EIMPROP2 GROUPS IMAGE

EIMPROP3 GROUPS IMAGE

EIMPTOR GROUPS IMAGE

EIMPTOR1 GROUPS IMAGE

EIMPTOR2 GROUPS IMAGE

EIMPTOR3 GROUPS IMAGE

ELJ ELJ0A ELJ0B ELJ0C ELJ0D

ELJ0A GROUPS IMAGE SWITCH

ELJ0B GROUPS LIGHTS SWITCH

ELJ0C EGAUSS

ELJ0D GROUPS

ELJ1 ELJ1A ELJ1B ELJ1C ELJ1D

ELJ1A GROUPS IMAGE SWITCH

ELJ1B GROUPS LIGHTS SWITCH

ELJ1C EGAUSS1

ELJ1D GROUPS

ELJ2 ELJ2A ELJ2B

 160 TINKER User's Guide 160

ELJ2A GROUPS IMAGE SWITCH

ELJ2B EGAUSS2

ELJ2C GROUPS

ELJ3 ELJ3A ELJ3B ELJ3C ELJ3D

ELJ3A GROUPS IMAGE SWITCH

ELJ3B GROUPS LIGHTS SWITCH

ELJ3C EGAUSS3

ELJ3D GROUPS

EMBED BNDERR CHIRER CHKSIZE COORDS DMDUMP
 DSTMAT EIGEN EXPLORE FRACDIST FREEUNIT
 GETIME GYRATE IMPOSE LOCERR MAJORIZE
 METRIC NUMERAL PRTXYZ REFINE RMSERROR
 SETIME TORSER VDWERR

EMETAL FATAL

EMETAL1 FATAL

EMETAL3 EMETAL

EMM3HB EMM3HB0A EMM3HB0B

EMM3HB0A GROUPS IMAGE SWITCH

EMM3HB0B GROUPS LIGHTS SWITCH

EMM3HB1 EMM3HB1A EMM3HB1B

EMM3HB1A GROUPS IMAGE SWITCH

EMM3HB1B GROUPS LIGHTS SWITCH

EMM3HB2 GROUPS IMAGE SWITCH

EMM3HB3 EMM3HB3A EMM3HB3B

EMM3HB3A GROUPS IMAGE SWITCH

EMM3HB3B GROUPS LIGHTS SWITCH

EMPOLE EMPOLE0A EMPOLE0B

EMPOLE0A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE

 161 TINKER User's Guide 161

 SWITCH

EMPOLE0B CHKPOLE EREAL ERECIP INDUCE ROTPOLE

EMPOLE1 EMPOLE1A EMPOLE1B

EMPOLE1A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE
 SWITCH TORQUE TORQUE1

EMPOLE1B CHKPOLE EREAL1 ERECIP1 INDUCE ROTPOLE
 TORQUE

EMPOLE2 EMPOLE2A

EMPOLE2A GROUPS IMAGE SWITCH TORQUE

EMPOLE3 EMPOLE3A EMPOLE3B

EMPOLE3A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE
 SWITCH

EMPOLE3B CHKPOLE EREAL3 ERECIP3 INDUCE ROTPOLE

ENERGY BOUNDS EANGANG EANGLE EBOND EBUCK
 ECHARGE ECHGDPL EDIPOLE EGAUSS EGEOM
 EHAL EIMPROP EIMPTOR ELJ EMETAL
 EMM3HB EMPOLE EOPBEND EOPDIST ERXNFLD
 ESOLV ESTRBND ESTRTOR ETORS ETORTOR
 EUREY EXTRA PISCF REPLICA

ENRGYZE ANALYSIS

EOPBEND GROUPS IMAGE

EOPBEND1 GROUPS IMAGE

EOPBEND2 EOPBEND2A GROUPS

EOPBEND2A IMAGE

EOPBEND3 GROUPS IMAGE

EOPDIST GROUPS IMAGE

EOPDIST1 GROUPS IMAGE

EOPDIST2 GROUPS IMAGE

EOPDIST3 GROUPS IMAGE

EPME BSPLINE FFTFRONT

 162 TINKER User's Guide 162

EPME1 BSPLINE1 FFTBACK FFTFRONT

EPME3 BSPLINE FFTFRONT

EPUCLC ANORM

EREAL ERFC IMAGE SWITCH

EREAL1 ERFC IMAGE SWITCH TORQUE TORQUE1

EREAL3 ERFC IMAGE SWITCH

ERECIP1 TORQUE

ERF ERFCORE

ERFC ERFCORE

ERFIK D1D2 RFINDEX

ERFINV ERF FATAL

ERXNFLD CHKPOLE ERFIK IJKPTS ROTPOLE SWITCH

ERXNFLD3 CHKPOLE ERFIK IJKPTS ROTPOLE SWITCH

ESOLV BORN EGBSA0A EGBSA0B SURFACE

ESOLV1 BORN BORN1 EGBSA1A EGBSA1B SURFACE

ESOLV2 EGBSA2A EGBSA2B

ESOLV3 BORN EGBSA3A EGBSA3B SURFACE

ESTRBND GROUPS IMAGE

ESTRBND1 GROUPS IMAGE

ESTRBND2 GROUPS IMAGE

ESTRBND3 GROUPS IMAGE

ESTRTOR GROUPS IMAGE

ESTRTOR1 GROUPS IMAGE

ESTRTOR2 GROUPS IMAGE

ESTRTOR3 GROUPS IMAGE

 163 TINKER User's Guide 163

ETORS ETORS0A ETORS0B

ETORS0A GROUPS IMAGE

ETORS0B GROUPS

ETORS1 ETORS1A ETORS1B

ETORS1A GROUPS IMAGE

ETORS1B GROUPS

ETORS2 ETORS2A ETORS2B

ETORS2A GROUPS IMAGE

ETORS2B GROUPS

ETORS3 ETORS3A ETORS3B

ETORS3A GROUPS IMAGE

ETORS3B GROUPS

ETORTOR BCUINT GROUPS IMAGE

ETORTOR1 BCUINT1 GROUPS IMAGE

ETORTOR2 BCUINT2 GROUPS IMAGE

ETORTOR3 BCUINT GROUPS IMAGE

EUREY GROUPS IMAGE

EUREY1 GROUPS IMAGE

EUREY2 GROUPS IMAGE

EUREY3 GROUPS IMAGE

EWALDCOF ERFC

EXPLORE INITERR MIDERR SIGMOID TOTERR

FFTBACK CFFTB

FFTFRONT CFFTF

FFTSETUP CFFTI

 164 TINKER User's Guide 164

FIELD GETPRM PRMKEY

FINAL SKTKILL

FRACDIST DIST2 TRIMTEXT

FREEUNIT FATAL

GDA DIFFEQ FINAL FREEUNIT GDASTAT GETTEXT
 GETXYZ INITIAL MECHANIC NEXTARG NUMERAL
 PRTXYZ RANDOM TNCG UPCASE VERSION

GDA1 GRADIENT HESSIAN

GDA2 GRADIENT

GDA3 HESSIAN

GDASTAT ENERGY GYRATE STAT TNCG WRITEOUT

GEODESIC MINPATH SORT3

GETBASE PDBATM

GETIME CLOCK

GETINT BASEFILE CHKXYZ CONNECT FATAL FREEUNIT
 MAKEXYZ NEXTARG READINT SUFFIX VERSION

GETKEY FATAL FREEUNIT GETTEXT SUFFIX TRIMTEXT
 UPCASE

GETMOL2 BASEFILE FREEUNIT NEXTARG READMOL2 SUFFIX
 VERSION

GETNUCH PDBATM

GETNUMB TRIMTEXT

GETPDB BASEFILE FREEUNIT NEXTARG READPDB SUFFIX
 VERSION

GETPRB DIST2 DOT GETTOR VCROSS

GETPRM FREEUNIT GETTEXT INITPRM NEXTARG READPRM
 SUFFIX UPCASE VERSION

GETPROH PDBATM

GETSEQ GETWORD TRIMTEXT UPCASE

 165 TINKER User's Guide 165

GETSEQN GETTEXT GETWORD TRIMTEXT UPCASE

GETSIDE PDBATM

GETTOR DIST2

GETXYZ BASEFILE FATAL FREEUNIT NEXTARG READXYZ
 SUFFIX VERSION

GRADIENT BOUNDS EANGANG1 EANGLE1 EBOND1 EBUCK1
 ECHARGE1 ECHGDPL1 EDIPOLE1 EGAUSS1 EGEOM1
 EHAL1 EIMPROP1 EIMPTOR1 ELJ1 EMETAL1
 EMM3HB1 EMPOLE1 EOPBEND1 EOPDIST1 ERXNFLD1
 ESOLV1 ESTRBND1 ESTRTOR1 ETORS1 ETORTOR1
 EUREY1 EXTRA1 PISCF REPLICA

GRADRGD GRADIENT

GRADROT GRADIENT ROTLIST

HANGLE NUMERAL

HBOND NUMERAL

HDIPOLE NUMERAL

HESSIAN BORN BOUNDS CHKPOLE EANGANG2 EANGLE2
 EBOND2 EBUCK2 ECHARGE2 ECHGDPL2 EDIPOLE2
 EGAUSS2 EGEOM2 EHAL2 EIMPROP2 EIMPTOR2
 ELJ2 EMETAL2 EMM3HB2 EMPOLE2 EOPBEND2
 EOPDIST2 ERXNFLD2 ESOLV2 ESTRBND2 ESTRTOR2
 ETORS2 ETORTOR2 EUREY2 EXTRA2 FATAL
 INDUCE PISCF REPLICA ROTPOLE

HESSRGD GRADRGD RIGIDXYZ

HESSROT GRADROT MAKEXYZ

HIMPTOR NUMERAL

HSTRTOR NUMERAL

HTORS NUMERAL

HYBRID HANGLE HATOM HBOND HCHARGE HDIPOLE
 HIMPTOR HSTRBND HSTRTOR HTORS HVDW

IMPOSE CENTER QUATFIT RMSFIT

INDUCE INDUCE0A INDUCE0B

 166 TINKER User's Guide 166

INDUCE0A FATAL GROUPS IMAGE PRTERR SWITCH

INDUCE0B FATAL PRTERR UDIRECT1 UDIRECT2 UMUTUAL1
 UMUTUAL2

INEDGE CERROR

INERTIA JACOBI

INITERR LOCERR TORSER

INITIAL COMMAND INITRES PRECISE PROMO SKTINIT

INITROT FATAL NEXTARG ROTCHECK ROTLIST

INTEDIT FIELD FINAL FREEUNIT GEOMETRY GETINT
 GETWORD INITIAL MAKEXYZ NUMBER PRTINT
 TRIMTEXT UPCASE VERSION ZHELP ZVALUE

INTXYZ FINAL FREEUNIT GETINT INITIAL PRTXYZ
 VERSION

INVBETA BETAI GAMMLN

INVERT FATAL

IPEDGE CERROR

ISPLPE CYTSY CYTSYS

KANGANG GETTEXT UPCASE

KANGLE GETTEXT NUMERAL UPCASE

KATOM GETNUMB GETSTRING GETTEXT UPCASE

KBOND GETTEXT KENEG NUMERAL UPCASE

KCHARGE GETTEXT UPCASE

KDIPOLE GETTEXT NUMERAL UPCASE

KENEG GETTEXT NUMERAL UPCASE

KEWALD EWALDCOF FATAL FFTSETUP GETTEXT MODULI
 UPCASE

KGEOM FATAL GEOMETRY GETTEXT GETWORD IMAGE
 UPCASE

 167 TINKER User's Guide 167

KIMPROP GETTEXT NUMERAL UPCASE

KIMPTOR GETTEXT NUMERAL TORPHASE UPCASE

KMPOLE CHKPOLE GETTEXT NUMBER NUMERAL RANDOM
 SORT3 UPCASE

KOPBEND GETTEXT NUMBER NUMERAL UPCASE

KOPDIST GETTEXT NUMERAL UPCASE

KORBIT GETTEXT NUMERAL UPCASE

KPOLAR CHKPOLE GETTEXT POLARGRP UPCASE

KSOLV GETTEXT GETWORD KANGLE KBOND UPCASE

KSTRBND GETTEXT UPCASE

KSTRTOR GETTEXT NUMERAL UPCASE

KTORS GETTEXT NUMERAL TORPHASE UPCASE

KTORTOR GETTEXT ISPLPE NUMERAL UPCASE

KUREY GETTEXT NUMERAL UPCASE

KVDW GETTEXT NUMBER NUMERAL UPCASE

LBFGS GETTEXT SEARCH UPCASE WRITEOUT

LIGASE FINDATM

LIGHTS FATAL SORT2 SORT5

LMSTEP PRECISE QRSOLVE

LOCALMIN GRADIENT TNCG

LOCALRGD OCVM

LOCALROT OCVM

LOCALXYZ TNCG

LOCLMIN LBFGS

LOCLSRCH CLIMBER EIGENCART GETREF IMPOSE MAKEREF

MAJORIZE GETIME GYRATE RMSERROR SETIME

 168 TINKER User's Guide 168

MAKEINT ADJACENT FATAL GEOMETRY GETTEXT UPCASE

MAKEPDB ATTACH FREEUNIT GETBASE GETNUCH GETPROH
 GETSIDE NUMERAL PDBATM READSEQ VERSION

MAKEXYZ XYZATM

MAPCHECK FREEUNIT NUMERAL PRTXYZ VERSION

MAXWELL ERFINV RANDOM

MCM1 GRADIENT

MCM2 HESSIAN

MCMSTEP TNCG

MDINIT FREEUNIT GETTEXT GETWORD GRADIENT GRPLINE
 LATTICE MAXWELL MDREST NUMERAL RANVEC
 READDYN UPCASE VERSION

MDREST INVERT

MDSAVE FATAL FREEUNIT NUMERAL OPENEND PRTDYN
 PRTXYZ SUFFIX VERSION

MEASFN CERROR TRIPLE VCROSS VECANG VNORM

MEASFP CERROR DOT VCROSS VECANG VNORM

MEASFS CERROR DOT VECANG VNORM

MEASPM VCROSS

MECHANIC ACTIVE ANGLES ATTACH BITORS BONDS
 CLUSTER CUTOFFS FATAL FIELD KANGANG
 KANGLE KATOM KBOND KCHARGE KDIPOLE
 KEWALD KGEOM KIMPROP KIMPTOR KMETAL
 KMPOLE KOPBEND KOPDIST KORBIT KPOLAR
 KSOLV KSTRBND KSTRTOR KTORS KTORTOR
 KUREY KVDW LATTICE MOLECULE MUTATE
 ORBITAL POLYMER RINGS SMOOTH TORSIONS
 UNITCELL

MERGE FATAL GETREF

MIDERR BNDERR CHIRER LOCERR TORSER

MINIMIZ1 GRADIENT

 169 TINKER User's Guide 169

MINIMIZE FINAL FREEUNIT GETTEXT GETXYZ GRADIENT
 INITIAL LBFGS MECHANIC NEXTARG PRTXYZ
 UPCASE VERSION

MINIROT FINAL FREEUNIT GETINT GETTEXT GRADROT
 INITIAL INITROT LBFGS MECHANIC NEXTARG
 PRTINT UPCASE VERSION

MINIROT1 GRADROT MAKEXYZ

MINRIGID FINAL FREEUNIT GETTEXT GETXYZ GRADRGD
 INITIAL LBFGS MECHANIC NEXTARG ORIENT
 PRTXYZ UPCASE VERSION

MINRIGID1 GRADRGD RIGIDXYZ

MMID DERIVS

MODECART CLIMBXYZ EIGENXYZ GETREF IMPOSE MAKEREF

MODEROT CLIMBROT EIGENROT MAKEXYZ

MODESRCH CLIMBER EIGENROT MAKEINT MAKEREF MAPCHECK

MODETORS CLIMBTOR EIGENTOR GETREF IMPOSE MAKEINT
 MAKEREF

MODULI BSPLINE DFTMOD

MOLECULE SORT SORT3

MOLUIND UFIELD

MOMENTS CHKPOLE INDUCE JACOBI ROTPOLE

MONTE CHKCLASH FREEUNIT GETREF GETTEXT GETXYZ
 INITIAL INITROT MAKEINT MAKEREF MAKEXYZ
 MCMSTEP MECHANIC NEXTARG PRTXYZ RANDOM
 RANVEC UPCASE VERSION

MUTATE GETTEXT UPCASE

NEIGHBOR CERROR DIST2

NEWATM ADDBOND XYZATM

NEWTON FINAL FREEUNIT GETTEXT GETXYZ GRADIENT
 INITIAL MECHANIC NEXTARG PRTXYZ TNCG
 UPCASE VERSION

NEWTON1 GRADIENT

 170 TINKER User's Guide 170

NEWTON2 HESSIAN

NEWTROT FINAL FREEUNIT GETINT GETTEXT GRADROT
 INITIAL INITROT MECHANIC NEXTARG PRTINT
 TNCG UPCASE VERSION

NEWTROT1 GRADROT MAKEXYZ

NEWTROT2 HESSROT MAKEXYZ

NORMAL RANDOM

NUCBASE OCVM ORIENT POTOFF ZATOM

NUCCHAIN NUCBASE OCVM ORIENT ZATOM

NUCLEIC BASEFILE CONNECT DELETE FIELD FREEUNIT
 GETKEY GETSEQN INITIAL MAKEINT MAKEXYZ
 MOLECULE NEXTARG NUCCHAIN PRTINT PRTSEQ
 PRTXYZ TRIMTEXT VERSION WATSON

NUMBER TRIMTEXT

OCVM GETTEXT PRECISE UPCASE WRITEOUT

OLDATM ADDBOND FATAL

OPTIMIZ1 GRADIENT

OPTIMIZE FATAL FINAL FREEUNIT GETTEXT GETXYZ
 GRADIENT INITIAL MECHANIC NEXTARG OCVM
 PRTXYZ UPCASE VERSION

OPTIROT FATAL FINAL FREEUNIT GETINT GETTEXT
 GRADROT INITIAL INITROT MECHANIC NEXTARG
 OCVM PRTINT UPCASE VERSION

OPTIROT1 GRADROT MAKEXYZ

OPTRIGID FATAL FINAL FREEUNIT GETTEXT GETXYZ
 GRADRGD INITIAL MECHANIC NEXTARG OCVM
 ORIENT PRTXYZ UPCASE VERSION

OPTRIGID1 GRADRGD RIGIDXYZ

ORBITAL FATAL GETTEXT PIPLANE UPCASE

ORIENT XYZRIGID

OVERLAP SLATER

 171 TINKER User's Guide 171

PATH FINAL GETXYZ IMPOSE INITIAL INVERT
 LBFGS MECHANIC NEXTARG ORTHOG POTNRG
 WRITEOUT

PATH1 POTNRG

PATHPNT OCVM

PATHSCAN PATHPNT SADDLE1 TANGENT

PATHVAL IMPOSE

PDBXYZ CHKXYZ DELETE FIELD FINAL FREEUNIT
 GETNUMB GETPDB INITIAL LIGASE PRTXYZ
 RIBOSOME SORT UPCASE VERSION

PIPLANE FATAL

PISCF NEWATM

PITILT OLDATM

PLACE CERROR DIST2 GETPRB GETTOR INEDGE

POLARGRP SORT SORT8

POLARIZE FATAL GETXYZ INITIAL JACOBI MECHANIC
 MOLUIND

POLYMER FATAL GETTEXT IMAGE UPCASE

POTNRG GRADIENT

POWER RANDOM

PRECOND CHOLESKY COLUMN

PRESSURE LATTICE

PRMKEY GETTEXT GETWORD POTOFF UPCASE

PROCHAIN GETTEXT PROSIDE UPCASE ZATOM

PROJCT DOT

PROPYZE GRADIENT GYRATE INERTIA MOMENTS

PROSIDE FREEUNIT PRTINT PRTXYZ VERSION ZATOM

PROTEIN BASEFILE CHKXYZ CONNECT DELETE FIELD

 172 TINKER User's Guide 172

 FINAL FREEUNIT GETKEY GETSEQ INITIAL
 MAKEINT MAKEXYZ NEXTARG PROCHAIN PRTINT
 PRTSEQ PRTXYZ TRIMTEXT VERSION

PRTARC VERSION

PRTCAR VERSION

PRTDYN ZATOM

PRTERR ZATOM

PRTINT VERSION

PRTMOL2 NUMBER VERSION

PRTPDB VERSION

PRTPRM NUMBER

PRTSEQ VERSION

PRTXMOL VERSION

PRTXYZ VERSION

PSS ACTIVE FINAL GETTEXT GETXYZ IMPOSE
 INITIAL INITROT LOCALXYZ MAKEINT MAKEREF
 MECHANIC MODECART MODETORS NEXTARG PSSWRITE
 SIGMOID UPCASE

PSS1 GRADIENT

PSS2 HESSIAN

PSSRGD1 GRADRGD RIGIDXYZ

PSSRIGID FINAL FREEUNIT GETTEXT GETXYZ IMPOSE
 INITIAL MAKEREF MECHANIC NEXTARG NUMERAL
 OCVM ORIENT PRTXYZ RGDSRCH RIGIDXYZ
 SIGMOID UPCASE VERSION

PSSROT FINAL FREEUNIT GETTEXT GETXYZ IMPOSE
 INITIAL INITROT MAKEREF MAKEXYZ MECHANIC
 MODEROT NEXTARG NUMERAL OCVM PRTXYZ
 UPCASE VERSION

PSSROT1 GRADROT MAKEXYZ

PSSWRITE FREEUNIT NUMERAL PRTXYZ VERSION

 173 TINKER User's Guide 173

PTINCY DOT EPUCLC PROJCT ROTANG

QUATFIT JACOBI

RADIAL BASEFILE FINAL FREEUNIT GETWORD IMAGE
 INITIAL LATTICE MOLECULE NEXTARG READXYZ
 SUFFIX TRIMTEXT UNITCELL VERSION

RANDOM CALENDAR GETTEXT UPCASE

RANVEC RANDOM

RATTLE FATAL IMAGE PRTERR

RATTLE2 FATAL IMAGE PRTERR

READBLK FATAL FREEUNIT GETWORD NUMERAL

READDYN FATAL VERSION

READINT FATAL GETTEXT GETWORD NEXTTEXT TRIMTEXT
 VERSION

READMOL2 FATAL GETTEXT GETWORD SORT TRIMTEXT
 UPCASE VERSION

READPDB FATAL FIXPDB GETTEXT NEXTARG TRIMTEXT
 UPCASE VERSION

READPRM FATAL GETNUMB GETSTRING GETTEXT GETWORD
 NUMERAL PRMKEY TORPHASE TRIMTEXT UPCASE

READSEQ FATAL GETNUMB GETTEXT GETWORD TRIMTEXT
 VERSION

READXYZ CHKXYZ FATAL GETTEXT GETWORD NEXTTEXT
 SORT TRIMTEXT VERSION

REFINE LBFGS

REPLICA FATAL

RGDSRCH CLIMBRGD EIGENRGD RIGIDXYZ

RGDSTEP CHOLESKY GRADIENT LINGROUP MDSAVE MDSTAT
 PRESSURE ROTCRD ROTRGD TEMPER

RIBOSOME ADDBOND ADDSIDE FATAL FINDATM FREEUNIT
 NEWATM OLDATM PRTSEQ VERSION

RINGS ANGLES BITORS BONDS FATAL TORSIONS

 174 TINKER User's Guide 174

RMSERROR TRIMTEXT

ROTANG DOT VCROSS

ROTCHECK ROTLIST

ROTLIST FATAL

ROTPOLE ROTMAT ROTSITE

SADDLE FATAL FINAL FREEUNIT GETTEXT GETXYZ
 IMPOSE INITIAL MAKEINT MAKEXYZ MECHANIC
 NEXTARG PATHPNT PATHSCAN PATHVAL PRTXYZ
 READXYZ SADDLE1 SEARCH TANGENT UPCASE
 VERSION

SADDLE1 GRADIENT

SADDLES CERROR IPEDGE TRIPLE

SCAN ACTIVE FINAL FREEUNIT GETXYZ INITIAL
 INITROT LOCALMIN MAKEINT MAPCHECK MECHANIC
 MODESRCH NEXTARG NUMERAL READXYZ VERSION

SCAN1 GRADIENT

SCAN2 HESSIAN

SDAREA SURFATOM

SDSTEP GRADIENT KINETIC MDSAVE MDSTAT PRESSURE
 RATTLE RATTLE2 SDTERM

SDTERM NORMAL SDAREA

SENDOUT COMMUNICATE

SETIME CLOCK

SHAKEUP CHKRING GETNUMB GETTEXT GETWORD UPCASE

SKTCLOSE SKTCALL

SKTINIT SPMDAEMON

SKTKILL KILL SKTCALL

SKTSEND SKTCALL SKTCLOSE

SLATER ASET BSET CJKM POLYP

 175 TINKER User's Guide 175

SMOOTH GETTEXT GETWORD NEXTARG UPCASE

SNIFFER FINAL FREEUNIT GETREF GETXYZ GRADIENT
 INITIAL MAKEREF MECHANIC NEXTARG PRTXYZ
 SNIFFER1 VERSION WRITEOUT

SNIFFER1 GRADIENT

SOAK DELETE FREEUNIT IMAGE LATTICE MAKEREF
 MERGE MOLECULE READXYZ SUFFIX UNITCELL
 VERSION

SPACEFILL ACTIVE CONNOLLY FIELD FINAL FREEUNIT
 GETTEXT GETXYZ INITIAL KATOM KVDW
 NEXTARG READXYZ SUFFIX UPCASE VERSION

SPECTRUM BASEFILE FREEUNIT INITIAL NEXTARG SUFFIX
 VERSION

SQUARE GETTEXT LMSTEP PRECISE QRFACT RSDVALUE
 TRUST UPCASE WRITEOUT

SUFFIX TRIMTEXT

SUPERPOSE FIELD FINAL FREEUNIT GETTEXT GETXYZ
 IMPOSE INITIAL KATOM NEXTARG PRTXYZ
 READXYZ SUFFIX TRIMTEXT UPCASE VERSION

SURFACE FATAL SORT2

SURFATOM FATAL SORT2

SWITCH REPLICA

SYBYLXYZ FINAL FREEUNIT GETMOL2 INITIAL PRTXYZ
 VERSION

SYMMETRY CELLATOM

TANGENT PATHPNT SADDLE1

TEMPER MAXWELL RANDOM RANVEC

TESTGRAD ENERGY FINAL GETTEXT GETXYZ GRADIENT
 INITIAL MECHANIC NEXTARG UPCASE

TESTHESS FINAL FREEUNIT GETTEXT GETXYZ GRADIENT
 HESSIAN INITIAL MECHANIC NEXTARG NUMGRAD
 UPCASE VERSION

TESTLIGHT EBUCK EBUCK1 ECHARGE ECHARGE1 EGAUSS

 176 TINKER User's Guide 176

 EGAUSS1 EHAL EHAL1 ELJ ELJ1
 EMM3HB EMM3HB1 FINAL GETIME GETXYZ
 INITIAL LIGHTS MECHANIC NEXTARG SETIME

TESTROT ENERGY FINAL GETINT GRADROT INITIAL
 INITROT MAKEXYZ MECHANIC NEXTARG

TIMER ENERGY FINAL GETIME GETTEXT GETXYZ
 GRADIENT HESSIAN INITIAL MECHANIC NEXTARG
 SETIME UPCASE

TIMEROT ENERGY FINAL GETIME GETINT GETTEXT
 GRADROT HESSROT INITIAL INITROT MECHANIC
 NEXTARG SETIME UPCASE

TNCG GETTEXT HMATRIX PISCF SEARCH TNSOLVE
 UPCASE WRITEOUT

TNSOLVE PRECOND

TORSIONS FATAL

TORUS CERROR GETTOR

TOTERR BNDERR CHIRER LOCERR TORSER VDWERR

TRIANGLE FATAL

TRIPLE DOT VCROSS

TRUST PRECISE RSDVALUE

UDIRECT2 ERFC IMAGE SWITCH

UMUTUAL2 ERFC IMAGE SWITCH

UNITCELL FATAL GETTEXT GETWORD UPCASE

VAM CERROR CIRPLN DEPTH DIST2 DOT
 GENDOT MEASFN MEASFP MEASFS MEASPM
 TRIPLE VCROSS VNORM

VDWERR LIGHTS

VECANG ANORM DOT TRIPLE

VERLET GRADIENT KINETIC MDSAVE MDSTAT PRESSURE
 RATTLE RATTLE2 TEMPER

VERSION LOWCASE NEXTARG TRIMTEXT

 177 TINKER User's Guide 177

VIBRATE DIAGQ FATAL FINAL FREEUNIT GETXYZ
 HESSIAN INITIAL MECHANIC NEXTARG NUMERAL
 PRTXYZ VERSION

VIBRIGID DIAGQ FINAL GETXYZ HESSRGD INITIAL
 MECHANIC ORIENT

VIBROT DIAGQ FINAL GETINT HESSROT INITIAL
 INITROT MECHANIC

VNORM ANORM

VOLUME CONNOLLY

VOLUME1 FATAL

VOLUME2 FATAL

WATSON ZATOM

WATSON1 GRADRGD RIGIDXYZ

WRITEOUT FREEUNIT MAKEXYZ NUMERAL PRTINT PRTXYZ
 SKTSEND VERSION

XTALERR ENERGY XTALMOVE XTALPRM

XTALFIT FINAL GETXYZ INITIAL MECHANIC NEXTARG
 POTOFF SQUARE XTALPRM

XTALLAT1 ENERGY LATTICE

XTALMIN FINAL FREEUNIT GETXYZ GRADIENT INITIAL
 LATTICE MECHANIC NEXTARG OCVM PRTXYZ
 TNCG VERSION XTALLAT1

XTALMOL1 GRADIENT

XTALMOL2 HESSIAN

XTALMOVE LATTICE

XTALPRM BOUNDS LATTICE MOLECULE

XYZEDIT ACTIVE BOUNDS CUTOFFS DELETE FIELD
 FINAL FREEUNIT GETXYZ IMAGE INERTIA
 INITIAL INSERT KATOM LATTICE MAKEREF
 MERGE MOLECULE PRTXYZ RANDOM SOAK
 SORT SORT4 UNITCELL VERSION

XYZINT FINAL FREEUNIT GETTEXT GETXYZ INITIAL

 178 TINKER User's Guide 178

 MAKEINT NEXTARG PRTINT READINT UPCASE
 VERSION

XYZPDB FIELD FINAL FREEUNIT GETXYZ INITIAL
 KATOM MAKEPDB MOLECULE PRTPDB VERSION

XYZRIGID JACOBI ROTEULER

XYZSYBYL BONDS FINAL FREEUNIT GETXYZ INITIAL
 PRTMOL2 VERSION

ZATOM FATAL

ZVALUE MAKEXYZ TRIMTEXT

 179 TINKER User's Guide 179

12. Examples using the TINKER Package

 This section contains brief descriptions of the sample calculations found in the EXAMPLE
subdirectory of the TINKER distribution. These examples exercise several of the current TINKER
programs and are intended to provide a flavor of the capabilities of the package.

ANION Example

Computes an estimation of the free energy of hydration of Cl- anion vs. Br- anion via a 2 picosecond
simulation on a ``hybrid'' anion in a box of water followed by a free energy perturbation calculation

ARGON Example

Performs an initial energy minimization on a periodic box containing 150 argon atoms followed by 6
picoseconds of a molecular dynamics using a modified Beeman integration algorithm and a Bersedsen
thermostat

CLUSTER Example

Performs a set of 10 Gaussian density annealing (GDA) trials on a cluster of 13 argon atoms in an attempt
to locate the global minimum energy structure

CRAMBIN Example

Generates a TINKER file from a PDB file, followed by a single point energy computation and
determination of the molecular volume and surface area

CYCLOHEX Example

First approximately locates the transition state between chair and boat cyclohexane, followed by
subsequent refinement of the transition state and a final vibrational analysis to show that a single negative
frequency is associated with the saddle point

ENKEPHALIN Example

Produces coordinates from the met-enkephalin amino acid sequence and phi/psi angles, followed by
truncated Newton energy minimization and determination of the lowest frequency normal mode

FORMAMIDE Example

Converts to a unit cell from fractional coordinates, followed by full crystal energy minimization and
determination of optimal carbonyl oxygen energy parameters from a fit to lattice energy and structure

HELIX Example

Performs a rigid-body optimization of the packing of two idealized polyalanine helices using only van der
Waals interactions

SALT Example

 180 TINKER User's Guide 180

Converts a sodium chloride assymetric unit to the corresponding unit cell, then runs a crystal minimization
starting from the initial diffraction structure using Ewald summation to model the long-range electrostatic
interactions.

 181 TINKER User's Guide 181

13. Benchmark Results

 The tables in this section provide CPU benchmarks for basic TINKER energy and derivative
evaluations, vibrational analysis and molecular dynamics. All times are in seconds and were measured with
TINKER executables dimensioned to maxatm of 10000 and maxhess of 1000000 in the source file sizes.i.
All calculations were run twice in rapid succession on a quiet machine. The times reported for each
benchmark are the results from the second run. If you have built TINKER on an alternative machine type
and are able to run the benchmarks on the additional machine type, please send the results for inclusion in a
future listing.

BENCHMARK #1: Calmodulin Energy Evaluation

The system is an isolated molecule of the 148-residue protein calmodulin with 2264 atoms using the Amber
ff94 force field. All interactions are computed with no use of cutoffs. Times listed are for calculation setup
followed by a single energy, energy/gradient and Hessian evaluation.

MACHINE-OS-COMPILER TYPE MHz SETUP ENERGY GRAD HESS

Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 0.20 0.29 0.60 3.29
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 0.19 0.28 0.67 3.60
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 0.26 0.42 0.86 5.35
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 0.25 0.41 0.96 6.00
Athlon Classic (RH 8.0, Intel 7.1) 950 0.30 0.63 1.41 7.28
Athlon Classic (RH 8.0, g77 3.2) 950 0.33 0.65 1.54 7.99
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 0.17 0.38 0.72 2.63
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 0.17 0.34 0.90 3.67
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 0.19 0.45 0.88 3.19
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 0.33 0.41 1.08 4.36
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 0.19 0.42 0.79 3.03
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 0.16 0.40 1.08 4.45
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 0.43 1.94 3.86 14.63
Compaq AlphaServer DS10 (Tru64 5.0) 466 0.36 1.53 2.64 8.86
Compaq AlphaServer 4100 (Tru64 5.1A) 400 0.61 2.51 4.73 17.14
SGI IndigoII R10K (Irix 6.5, MIPS) 195 1.17 3.49 6.35 23.03

BENCHMARK #2: Crambin Crystal Energy Evaluation

The system is a unit cell of the 46-residue protein crambin containing 2 polypeptide chains, 2 ethanol and
178 water molecules for a total of 1360 atoms using the OPLS-UA force field. Periodic boundaries are used
with particle mesh Ewald for electrostatics and a 9.0 Å cutoff for vdW interactions. Times listed are for
calculation setup followed by a single energy, energy/ gradient and Hessian evaluation.

MACHINE-OS-COMPILER TYPE MHz SETUP ENERGY GRAD HESS

Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 0.17 0.12 0.23 0.69
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 0.16 0.13 0.24 0.70
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 0.20 0.17 0.32 0.98
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 0.21 0.18 0.33 1.04
Athlon Classic (RH 8.0, Intel 7.1) 950 0.25 0.26 0.47 1.51
Athlon Classic (RH 8.0, g77 3.2) 950 0.27 0.26 0.50 1.57
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 0.14 0.12 0.23 0.56
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 0.14 0.16 0.30 0.72

 182 TINKER User's Guide 182

Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 0.15 0.14 0.29 0.69
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 0.27 0.20 0.38 0.97
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 0.18 0.16 0.28 0.67
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 0.12 0.22 0.52 1.16
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 0.34 0.42 0.81 2.43
Compaq AlphaServer DS10 (Tru64 5.0) 466 0.29 0.40 0.70 1.93
Compaq AlphaServer 4100 (Tru64 5.1A) 400 0.49 0.69 1.17 3.59
SGI IndigoII R10K (Irix 6.5, MIPS) 195 0.92 0.74 1.41 3.89

BENCHMARK #3: Peptide Normal Mode Calculation

The system is a minimum energy conformation of a 20-residue peptide containing one of each of the
standard amino acids for a total of 328 atoms using the OPLS-AA force field without cutoffs. The time
reported is for computation of the Hessian and calculation of the normal modes of the Hessian matrix and
the vibration frequencies requiring two separate matrix diagonalization steps.

MACHINE-OS-COMPILER TYPE MHz NORMAL MODES

Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 25
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 25
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 32
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 34
Athlon Classic (RH 8.0, Intel 7.1) 950 48
Athlon Classic (RH 8.0, g77 3.2) 950 50
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 15
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 16
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 18
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 19
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 19
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 20
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 64
Compaq AlphaServer DS10 (Tru64 5.0) 466 40
Compaq AlphaServer 4100 (Tru64 5.1A) 400 75
SGI IndigoII R10K (Irix 6.5, MIPS) 195 144

 BENCHMARK #4: TIP3P Water Box Molecular Dynamics

The system consists of 216 rigid TIP3P water molecules in a 18.643 Å periodic box, 9.0 Å shifted energy
switch cutoffs for nonbonded interactions. The time reported is for 1000 dynamics steps of 1.0 fs each
using the modified Beeman integrator and Rattle constraints on all bond lengths.

MACHINE-OS-COMPILER TYPE MHz DYNAMICS

Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 39
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 50
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 55
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 71
Athlon Classic (RH 8.0, Intel 7.1) 950 80
Athlon Classic (RH 8.0, g77 3.2) 950 85
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 44
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 56

 183 TINKER User's Guide 183

Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 53
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 65
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 55
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 94
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 170
Compaq AlphaServer DS10 (Tru64 5.0) 466 133
Compaq AlphaServer 4100 (Tru64 5.1A) 400 230
SGI IndigoII R10K (Irix 6.5, MIPS) 195 280

BENCHMARK #5: TINKER Water Box Molecular Dynamics

The system consists of 216 AMOEBA flexible polarizable atomic multipole water molecules in a 18.643 Å
periodic box using regular Ewald summation for the electrostatics and a 12.0 Å switched cutoff for vdW
interactions. The time reported is for 100 dynamics steps of 1.0 fs each using the modified Beeman
integrator and 0.01 Debye rms convergence for induced dipole moments.

MACHINE-OS-COMPILER TYPE MHz DYNAMICS

Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 114
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 126
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 161
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 184
Athlon Classic (RH 8.0, Intel 7.1) 950 275
Athlon Classic (RH 8.0, g77 3.2) 950 297
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 134
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 171
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 162
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 212
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 161
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 263
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 492
Compaq AlphaServer DS10 (Tru64 5.0) 466 356
Compaq AlphaServer 4100 (Tru64 5.1A) 400 639
SGI IndigoII R10K (Irix 6.5, MIPS) 195 868

 184 TINKER User's Guide 184

14. Collaborators & Acknowledgments

 The TINKER package has developed over a period of many years, very slowly during the late-
1980's, and more rapidly since the mid-1990's in Jay Ponder's research group at the Washington University
School of Medicine in St. Louis. Many people have played significant roles in the development of the
package into its current form. The major contributors are listed below:

Stew Rubenstein coordinate interconversions; original optimization methods
 and torsional angle manipulation

Craig Kundrot molecular surface area & volume and their derivatives

Shawn Huston original AMBER/OPLS implementation; free energy
 calculations; time correlation functions

Mike Dudek initial multipole models for peptides and proteins

Yong "Mike" Kong multipole electrostatics; dipole polarization; reaction field
 treatment; TINKER water model

Reece Hart potential smoothing methodology; Scheraga's DEM,
 Straub's GDA and extensions

Mike Hodsdon extension of the TINKER distgeom program and its
 application to NMR NOE structure determination

Rohit Pappu potential smoothing methodology and PSS algorithms;
 rigid body optimization; GB/SA solvation derivatives

Wijnand Mooij MM3 directional hydrogen bonding term; crystal lattice
 minimization code

Gerald Loeffler stochastic/Langevin dynamics implementation

Marina Vorobieva nucleic acid building module and parameter translation
Nina Sokolova

Peter Bagossi AMOEBA force field parameters for alkanes and diatomics

Pengyu Ren Ewald summation for polarizable atomic multipoles;
 AMOEBA force field for water, organics and peptides

Anders Carlsson ligand field potential energy term for transition metals

Andrey Kutepov integrator for rigid-body dynamics trajectories

Alan Grossfield Monte Carlo minimization; tophat potential smoothing;
 weighted histogram analysis (distributed separately)

Michael Schnieders Force Field Explorer, a Java GUI for TINKER

 185 TINKER User's Guide 185

In addition, we would like to thank Tom Darden for making his particle mesh Ewald code generally
available to the simulation community.

It is critically important that TINKER's distributed force field parameter sets exactly reproduce the intent of
the original force field authors. We would like to thank Julian Tirado-Rives (OPLS-AA), Alex
MacKerell (CHARMM27), and Adrian Roitberg and Carlos Simmerling (AMBER) for their help in
testing TINKER's results against those given by the authentic programs and parameter sets. Lou Allinger
has provided updated parameters for MM2 and MM3 on several occasions. His very successful methods
provided the original inspiration for the development of TINKER.

Still other workers have devoted considerable time in developing code that will hopefully be incorporated
into future TINKER versions; for example, Jim Kress (UFF implementation) and Michael Sheets
(neighbor lists, thermodynamic integration). Finally, we wish to thank the many users of the TINKER
package for their suggestions and comments, praise and criticism, which have resulted in a variety of
improvements.

 186 TINKER User's Guide 186

15. References & Suggested Reading

 This section contains a list of the references to general theory, algorithms and implementation
details which have been of use during the development of the TINKER package. Methods described in
some of the references have been implemented in detail within the TINKER source code. Other references
contain useful background information although the algorithms themselves are now obsolete. Still other
papers contain ideas or extensions planned for future inclusion in TINKER. References for specific force
field parameter sets are provided in an earlier section of this User's Guide. This list is heavily skewed
toward biomolecules in general and proteins in particular. This bias reflects our group's major interests;
however an attempt has been made to include methods which should be generally applicable.

PARTIAL LIST OF MOLECULAR MECHANICS SOFTWARE PACKAGES

AMBER Peter Kollman, University of California, San Francisco
AMMP Rob Harrison, Thomas Jefferson University, Philadelphia
ARGOS Andy McCammon, University of California, San Diego
BOSS William Jorgensen, Yale University
BRUGEL Shoshona Wodak, Free University of Brussels
CFF Shneior Lifson, Weizmann Institute
CHARMM Martin Karplus, Harvard University
CHARMM/GEMM Bernard Brooks, National Institutes of Health, Bethesda
DELPHI Bastian van de Graaf, Delft University of Technology
DISCOVER Molecular Simulations Inc., San Diego
DL_POLY W. Smith & T. Forester, CCP5, Daresbury Laboratory
ECEPP Harold Scheraga, Cornell University
ENCAD Michael Levitt, Stanford University
FANTOM Werner Braun, University of Texas, Galveston
FEDER/2 Nobuhiro Go, Kyoto University
GROMACS Herman Berendsen, University of Groningen
GROMOS Wilfred van Gunsteren, BIOMOS and ETH, Zurich
IMPACT Ronald Levy, Rutgers University
MACROMODEL Schodinger, Inc., Jersey City, New Jersey
MM2/MM3/MM4 N. Lou Allinger, University of Georgia
MMC Cliff Dykstra, Indiana Univ.-Purdue Univ. at Indianapolis
MMFF Tom Halgren, Merck Research Laboratories, Rahway
MMTK Konrad Hinsen, Inst. of Structural Biology, Grenoble
MOIL Ron Elber, Cornell University
MOLARIS Arieh Warshal, University of Southern California
MOLDY Keith Refson, Oxford University
MOSCITO Dietmar Paschek & Alfons Geiger, Universität Dortmund
NAMD Klaus Schulten, University of Illinois, Urbana
OOMPAA Andy McCammon, University of California, San Diego
ORAL Karel Zimmerman, INRA, Jouy-en-Josas, France
ORIENT Anthony Stone, Cambridge University
PCMODEL Kevin Gilbert, Serena Software, Bloomington, Indiana
PEFF Jan Dillen, University of Pretoria, South Africa
Q Johan Åqvist, Uppsala University
SIBFA Nohad Gresh, INSERM, CNRS, Paris
SIGMA Jan Hermans, University of North Carolina
SPASIBA Gerard Vergoten, Université de Lille
SPASMS David Spellmeyer and the Kollman Group, UCSF
TINKER Jay Ponder, Washington University, St. Louis
XPLOR/CNS Axel Brünger, Stanford University
YAMMP Stephen Harvey, University of Alabama, Birmingham

 187 TINKER User's Guide 187

YASP Florian Mueller-Plathe, ETH Zentrum, Zurich
YETI Angelo Vedani, Biografik-Labor 3R, Basel

AMBER D. A Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt, D.
Ferguson, G. Seibel and P. Kollman, AMBER, a Package of Computer Programs for Applying Molecular
Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the
Structural and Energetic Properties of Molecules, Comp. Phys. Commun., 91, 1-41 (1995)

ARGOS T. P. Straatsma and J. A. McCammon, ARGOS, a Vectorized General Molecular Dynamics
Program, J. Comput. Chem., 11, 943-951 (1990)

CHARMM B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus,
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations, J.
Comput. Chem., 4, 187-217 (1983)

ENCAD M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, Potential Energy Function and Parameters
for Simulations for the Molecular Dynamics of Proteins and Nucleic Acids in Solution, Comp. Phys.
Commun., 91, 215-231 (1995)

FANTOM T. Schaumann, W. Braun and K. Wurtrich, The Program FANTOM for Energy Refinement
of Polypeptides and Proteins Using a Newton-Raphson Minimizer in Torsion Angle Space, Biopolymers,
29, 679-694 (1990)

FEDER/2 H. Wako, S. Endo, K. Nagayama and N. Go, FEDER/2: Program for Static and Dynamic
Conformational Energy Analysis of Macro-molecules in Dihedral Angle Space, Comp. Phys. Commun.,
91, 233-251 (1995)

GROMACS H. J. C. Berendsen, D. van der Spoel and R. van Drunen, GROMACS: A Message-passing
Parallel Molecular Dynamics Implementation, Comp. Phys. Commun., 91, 43-56 (1995)

GROMOS W. R. P. Scott, P. H. Hunenberger , I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E.
Torda, T. Huber, P. Kruger, W. F. van Gunsteren, The GROMOS Biomolecular Simulation Program
Package, J. Phys. Chem. A, 103, 3596-3607 (1999)

IMPACT D. B. Kitchen, F. Hirata, J. D. Westbrook, R. Levy, D. Kofke and M. Yarmush, Conserving
Energy during Molecular Dynamics Simulations of Water, Proteins, and Proteins in Water, J. Comput.
Chem., 10, 1169-1180 (1990)

MACROMODEL F. Mahamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield,
G. Chang, T. Hendrickson and W. C. Still, MacroModel-An Integrated Software System for Modeling
Organic and Bioorganic Molecules Using Molecular Mechanics, J. Comput. Chem., 11, 440-467 (1990)

MM2 N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and
V2 Torsional Terms, J. Am. Chem. Soc., 99, 8127-8134 (1977)

MM3 N. L. Allinger, Y. H. Yuh and J.-H. Lii, Molecular Mechanics. The MM3 Force Field for
Hydrocarbons, J. Am. Chem. Soc., 111, 8551-8566 (1989)

MM4 N. L. Allinger, K. Chen and J.-H. Lii, An Improved Force Field (MM4) for Saturated
Hydrocarbons, J. Comput. Chem., 17, 642-668 (1996)

 188 TINKER User's Guide 188

MMC C. E. Dykstra, Molecular Mechanics for Weakly Interacting Assemblies of Rare Gas Atoms and
Small Molecules, J. Am. Chem. Soc., 111, 6168-6174 (1989)

MMFF T. A. Halgren, Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and
Performance of MMFF94, J. Comput. Chem., 17, 490-516 (1996)

MOIL R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Li, G. Verkhiver, C. Keasar, J. Zhang and
A. Ulitsky, MOIL: A Program for Simulations of Macromolecules, Comp. Phys. Commun., 91, 159-189
(1995)

MOSCITO See the web site at http:/ganter.chemie.uni-dortmund.de/~pas/moscito.html

NAMD L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan and K. Schulten, NAMD2: Greater Scalability for Parallel Molecular Dynamics, J.
Comput. Phys., 151, 283-312 (1999)

OOMPAA G. A. Huber and J. A. McCammon, OOMPAA-Object-oriented Model for Probing
Assemblages of Atoms, J. Comput. Phys., 151, 264-282 (1999)

ORAL K. Zimmermann, ORAL: All Purpose Molecular Mechanics Simulator and Energy Minimizer, J.
Comput. Chem., 12, 310-319 (1991)

PCMODEL See the web site at http:/www.serenasoft.com

PEFF J. L. M. Dillen, PEFF: A Program for the Development of Empirical Force Fields, J. Comput.
Chem., 13, 257-267 (1992)

Q See the web site at http://aqvist.bmc.uu.se/Q

SIBFA N. Gresh, Inter- and Intramolecular Interactions. Inception and Refinements of the SIBFA,
Molecular Mechanics (SMM) Procedure, a Separable, Polarizable Methodology Grounded on ab Initio
SCF/MP2 Computations. Examples of Applications to Molecular Recognition Problems, J. Chim. Phys.
PCB, 94, 1365-1416 (1997)

SIGMA See the web site at http://femto.med.unc.edu/SIGMA

SPASIBA P. Derreumaux and G. Vergoten, A New Spectroscopic Molecular Mechanics Force-Field -
Parameters For Proteins, J. Chem. Phys., 102, 8586-8605 (1995)

TINKER See the web site at http://dasher.wustl.edu/tinker

YAMMP R. K.-Z. Tan and S. C. Harvey, Yammp: Development of a Molecular Mechanics Program
Using the Modular Programming Method, J. Comput. Chem., 14, 455-470 (1993)

YETI A. Vedani, YETI: An Interactive Molecular Mechanics Program for Small-Molecule Protein
Complexes, J. Comput. Chem., 9, 269-280 (1988)

MOLECULAR MECHANICS

U. Burkert and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, D.C.,
1982

 189 TINKER User's Guide 189

K. Rasmussen, Potential Energy Functions in Conformational Analysis (Lecture Notes in Chemistry,
Vol. 27), Springer-Verlag, Berlin, 1985

A. K. Rappé and C. J. Casewit, Molecular Mechanics across Chemistry, University Science Books,
Sausalito, CA, 1997

K. Machida, Principles of Molecular Mechanics, Kodansha/John Wiley & Sons, Tokyo/New York, 1999

P. Comba and T. W. Hambley, Molecular Modeling of Inorganic Compounds, VCH, New York, 1995

COMPUTER SIMULATION METHODS

M. J. Field, A Practical Introduction to the Simulation of Molecular Systems, Cambridge Univ. Press,
Cambridge, 1999

A. R. Leach, Molecular Modelling: Principles and Applications, Addison Wesley Longman, Essex,
England, 1996

D. Frankel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications,
Academic Press, San Diego, CA, 1996

D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge,
1995

J. M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York, 1992

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987

T. Schlick, R. D. Skeel, A. T. Brünger, L. V. Kale, J. A. Board, J. Hermans and K. Schulten, Algorithmic
Challenges in Computational Molecular Biophysics, J. Comput. Phys., 151, 9-48 (1999)

MODELING OF BIOLOGICAL MACROMOLECULES

J. A. McCammon and S. Harvey, Dynamics of Proteins and Nucleic Acids, Cambridge University Press,
Cambridge, 1987

C. L. Brooks III, M. Karplus and B. M. Pettitt, Proteins: A Theoretical Perspective of Dynamics,
Structure, and Thermodynamics, John Wiley and Sons, New York, 1988

W. F. van Gunsteren, P. K. Weiner and A. J. Wilkinson, Computer Simulation of Biomolecular Systems,
Vol. 1-3, Kluwer Academic Publishers, Dordrecht, 1989-1997

T. E. Cheatham and B. R. Brooks, Recent Advances in Molecular Dynamics Simulation towards the
Realistic Representation of Biomolecules in Solution, Theor. Chem. Acc., 99, 279-288 (1998)

CONJUGATE GRADIENT AND QUASI-NEWTON OPTIMIZATION

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999

S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York, 1996

 190 TINKER User's Guide 190

R. Fletcher, Practical Methods of Optimization, John Wiley & Sons Ltd., Chichester, 1987

D. G. Luenberger, Linear and Nonlinear Programming, 2nd Ed., Addison-Wesley, Reading, MA, 1984

P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, New York, 1981

J. Nocedal, Updating Quasi-Newton Matrices with Limited Storage, Math. Comp., 773-782 (1980)

S. J. Watowich, E. S. Meyer, R. Hagstrom and R. Josephs, A Stable, Rapidly Converging Conjugate
Gradient Method for Energy Minimization, J. Comput. Chem., 9, 650-661 (1988)

W. C. Davidon, Optimally Conditioned Optimization Algorithms without Line Searches, Math. Prog., 9, 1-
30 (1975)

TRUNCATED NEWTON OPTIMIZATION

J. W. Ponder and F. M. Richards, An Efficient Newton-like Method for Molecular Mechanics Energy
Minimization of Large Molecules, J. Comput. Chem., 8, 1016-1024 (1987)

R. S. Dembo and T. Steihaug, Truncated-Newton Algorithms for Large-Scale Unconstrained Optimization,
Math. Prog., 26, 190-212 (1983)

S. C. Eisenstat and H. F. Walker, Choosing the Forcing Terms in an Inexact Newton Method, SIAM J. Sci.
Comput., 17, 16-32 (1996)

T. Schlick and M. Overton, A Powerful Truncated Newton Method for Potential Energy Minimization, J.
Comput. Chem., 8, 1025-1039 (1987)

D. S. Kershaw, The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems
of Linear Equations, J. Comput. Phys., 26, 43-65 (1978)

T. A. Manteuffel, An Incomplete Factorization Technique for Positive Definite Linear Systems, Math.
Comp., 34, 473-497 (1980)

P. Derreumaux, G. Zhang and T. Schlick and B. R. Brooks, A Truncated Newton Minimizer Adapted for
CHARMM and Biomolecular Applications, J. Comput. Chem., 15, 532-552 (1994)

I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press,
Oxford, 1986

POTENTIAL ENERGY SMOOTHING

R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing
Methods for Global Optimization, J. Phys. Chem. B, 102, 9725-9742 (1998)

L. Piela, J. Kostrowicki and H. A. Scheraga, The Multiple-Minima Problem in the Conformational
Analysis of Molecules. Deformation of the Potential Energy Hypersurface by the Diffusion Equation
Method, J. Phys. Chem., 93, 3339-3346 (1989)

J. Ma and J. E. Straub, Simulated Annealing Using the Classical Density Distribution, J. Chem. Phys., 101,
533-541 (1994)

 191 TINKER User's Guide 191

C. Tsoo and C. L. Brooks, Cluster Structure Determination Using Gaussian Density Distribution Global
Minimization Methods, J. Chem. Phys., 101, 6405-6411 (1994)

S. Nakamura, H. Hirose, M. Ikeguchi and J. Doi, Conformational Energy Minimization Using a Two-Stage
Method, J. Phys. Chem., 99, 8374-8378 (1995)

T. Huber, A. E. Torda and W. F. van Gunsteren, Structure Optimization Combining Soft-Core Interaction
Functions, the Diffusion Equation Method, and Molecular Dynamics, J. Phys. Chem. A, 101, 5926-5930
(1997)

S. Schelstraete and H. Verschelde, Finding Minimum-Energy Configurations of Lennard-Jones Clusters
Using an Effective Potential, J. Phys. Chem. A, 101, 310-315 (1998)

I. Andricioaei and J. E. Straub, Global Optimization Using Bad Derivatives: Derivative-Free Method for
Molecular Energy Minimization, J. Comput. Chem., 19, 1445-1455 (1998)

L. Piela, Search for the Most Stable Structures on Potential Energy Surfaces, Coll. Czech. Chem.
Commun., 63, 1368-1380 (1998)

``SNIFFER'' GLOBAL OPTIMIZATION

A. O. Griewank, Generalized Descent for Global Optimization, J. Opt. Theor. Appl., 34, 11-39 (1981)

R. A. R. Butler and E. E. Slaminka, An Evaluation of the Sniffer Global Optimization Algorithm Using
Standard Test Functions, J. Comput. Phys., 99, 28-32 (1993)

J. W. Rogers and R. A. Donnelly, Potential Transformation Methods for Large-Scale Global Optimization,
SIAM J. Optim., 5, 871-891 (1995)

INTEGRATION METHODS FOR MOLECULAR DYNAMICS

D. Beeman, Some Multistep Methods for Use in Molecular Dynamics Calculations, J. Comput. Phys., 20,
130-139 (1976)

M. Levitt and H. Meirovitch, Integrating the Equations of Motion, J. Mol. Biol., 168, 617-620 (1983)

J. Aqvist, W. F. van Gunsteren, M. Leijonmarck and O. Tapia, A Molecular Dynamics Study of the C-
Terminal Fragment of the L7/L12 Ribosomal Protein, J. Mol. Biol., 183, 461-477 (1985)

W. C. Swope, H. C. Andersen, P. H. Berens and K. R. Wilson, A Computer Simulation Method for the
Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to
Small Water Clusters, J. Chem. Phys., 76, 637-649 (1982)

CONSTRAINT DYNAMICS

W. F. van Gunsteren and H. J. C. Berendsen, Algorithms for Macromolecular Dynamics and Constraint
Dynamics, Mol. Phys., 34, 1311-1327 (1977)

G. Ciccotti, M. Ferrario and J.-P. Ryckaert, Molecular Dynamics of Rigid Systems in Cartesian
Coordinates: A General Formulation, Mol. Phys., 47, 1253-1264 (1982)

 192 TINKER User's Guide 192

H. C. Andersen, Rattle: A ``Velocity'' Version of the Shake Algorithm for Molecular Dynamics
Calculations, J. Comput. Phys., 52, 24-34 (1983)

R. Kutteh, RATTLE Recipe for General Holonomic Constraints: Angle and Torsion Constraints, CCP5
Newsletter, 46, 9-17 (1998) [available from the web site at
http://www.dl.ac.uk/CCP/CCP5/newsletter_index.html]

B. J. Palmer, Direct Application of SHAKE to the Velocity Verlet Algorithm, J. Comput. Phys., 104, 470-
472 (1993)

S. Miyamoto and P. A. Kollman, SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm
for Rigid Water Models, J. Comput. Chem., 13, 952-962 (1992)

B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, LINCS: A Linear Constraint Solver for
Molecular Simulations, J. Comput. Chem., 18, 1463-1472 (1997)

J. T. Slusher and P. T. Cummings, Non-Iterative Constraint Dynamics using Velocity-Explicit Verlet
Methods, Mol. Simul., 18, 213-224 (1996)

LANGEVIN, BROWNIAN AND STOCHASTIC DYNAMICS

M. P. Allen, Brownian Dynamics Simulation of a Chemical Reaction in Solution, Mol. Phys., 40, 1073-
1087 (1980)

W. F. van Gunsteren and H. J. C. Berendsen, Algorithms for Brownian Dynamics, Mol. Phys., 45, 637-647
(1982)

F. Guarnieri and W. C. Still, A Rapidly Convergent Simulation Method: Mixed Monte Carlo/Stochastic
Dynamics, J. Comput. Chem., 15, 1302-1310 (1994)

M. G. Paterlini and D. M. Ferguson, Constant Temperature Simulations using the Langevin Equation with
Velocity Verlet Integration, Chem. Phys., 236, 243-252 (1998)

CONSTANT TEMPERATURE AND PRESSURE DYNAMICS

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, Molecular Dynamics
with Coupling to an External Bath, J. Chem. Phys., 81, 3684-3690 (1984)

W. G. Hoover, Canonical Dynamics: Equilibrium Phase-space Distributions, Phys. Rev. A, 31, 1695-1697
(1985)

J. J. Morales, S. Toxvaerd and L. F. Rull, Computer Simulation of a Phase Transition at Constant
Temperature and Pressure, Phys. Rev. A, 34, 1495-1498 (1986)

B. R. Brooks, Algorithms for Molecular Dynamics at Constant Temperature and Pressure, Internal Report
of Division of Computer Research and Technology, National Institutes of Health, 1988.

M. Levitt, Molecular Dynamics of Native Protein: Computer Simulation of Trajectories, J. Mol. Biol., 168,
595-620 (1983)

OUT-OF-PLANE DEFORMATION TERMS

 193 TINKER User's Guide 193

J. R. Maple, U. Dinar and A. T. Hagler, Derivation of Force Fields for Molecular Mechanics and Dynamics
from ab initio Energy Surfaces, Proc. Natl. Acad. Sci. USA, 85, 5350-5354 (1988)

S.-H. Lee, K. Palmo and S. Krimm, New Out-of-Plane Angle and Bond Angle Internal Coordinates and
Related Potential Energy Functions for Molecular Mechanics and Dynamics Simulations, J. Comput.
Chem., 20, 1067-1084 (1999)

ANALYTICAL DERIVATIVES OF POTENTIAL FUNCTIONS

K. J. Miller, R. J. Hinde and J. Anderson, First and Second Derivative Matrix Elements for the Stretching,
Bending, and Torsional Energy, J. Comput. Chem., 10, 63-76 (1989)

D. H. Faber and C. Altona, UTAH5: A Versatile Programme Package for the Calculation of Molecular
Properties by Force Field Methods, Computers & Chemistry, 1, 203-213 (1977)

W. C. Swope and D. M. Ferguson, Alternative Expressions for Energies and Forces Due to Angle Bending
and Torsional Energy, Report G320-3561, J. Comput. Chem., 13, 585-594 (1992)

A. Blondel and M. Karplus, New Formulation for Derivatives of Torsion Angles and Improper Torsion
Angles in Molecular Mechanics: Elimination of Singularities, J. Comput. Chem., 17, 1132-1141 (1996)

R. E. Tuzun, D. W. Noid and B. G. Sumpter, Efficient Treatment of Out-of-Plane Bend and Improper
Torsion Interactions in MM2, MM3, and MM4 Molecular Mechanics Calculations, J. Comput. Chem., 18,
1804-1811 (1997)

TORSIONAL SPACE DERIVATIVES AND NORMAL MODES

M. Levitt, C. Sander and P. S. Stern, Protein Normal-mode Dynamics: Trypsin Inhibitor, Crambin,
Ribonuclease and Lysozyme, J. Mol. Biol., 181, 423-447 (1985)

M. Levitt, Protein Folding by Restrained Energy Minimization and Molecular Dynamics, J. Mol. Biol.,
170, 723-764 (1983)

H. Wako and N. Go, Algorithm for Rapid Calculation of Hessian of Conformational Energy Function of
Proteins by Supercomputer, J. Comput. Chem., 8, 625-635 (1987)

H. Abe, W. Braun, T. Noguti and N. Go, Rapid Calculation of First and Second Derivatives of
Conformational Energy with Respect to Dihedral Angles for Proteins: General Recurrent Equations,
Computers & Chemistry, 8, 239-247 (1984)

T. Noguti and N. Go, A Method of Rapid Calculation of a Second Derivative Matrix of Conformational
Energy for Large Molecules, J. Phys. Soc. Japan, 52, 3685-3690 (1983)

ANALYTICAL SURFACE AREA AND VOLUME

M. L. Connolly, Analytical Molecular Surface Calculation, J. Appl. Cryst., 16, 548-558 (1983)

M. L. Connolly, Computation of Molecular Volume, J. Am. Chem. Soc., 107, 1118-1124 (1985)

M. L. Connolly, Molecular Surfaces: A Review, available from the web site at
http://www.netsci.org/Science/Compchem/feature14.html

 194 TINKER User's Guide 194

C. E. Kundrot, J. W. Ponder and F. M. Richards, Algorithms for Calculating Excluded Volume and Its
Derivatives as a Function of Molecular Conformation and Their Use in Energy Minimization, J. Comput.
Chem., 12, 402-409 (1991)

T. J. Richmond, Solvent Accessible Surface Area and Excluded Volume in Proteins, J. Mol. Biol., 178, 63-
89 (1984)

L. Wesson and D. Eisenberg, Atomic Solvation Parameters Applied to Molecular Dynamics of Proteins in
Solution, Protein Science, 1, 227-235 (1992)

V. Gononea and E. Osawa, Implementation of Solvent Effect in Molecular Mechanics, Part 3. The First-
and Second-order Analytical Derivatives of Excluded Volume, J. Mol. Struct. (Theochem), 311 305-324
(1994)

K. D. Gibson and H. A. Scheraga, Exact Calculation of the Volume and Surface Area of Fused Hard-sphere
Molecules with Unequal Atomic Radii, Mol. Phys., 62, 1247-1265 (1987)

K. D. Gibson and H. A. Scheraga, Surface Area of the Intersection of Three Spheres with Unequal Radii: A
Simplified Analytical Formula, Mol. Phys., 64, 641-644 (1988)

S. Sridharan, A. Nichols and K. A. Sharp, A Rapid Method for Calculating Derivatives of Solvent
Accessible Surface Areas of Molecules, J. Comput, Chem., 16, 1038-1044 (1995)

APPROXIMATE SURFACE AREA AND VOLUME

S. J. Wodak and J. Janin, Analytical Approximation to the Accessible Surface Area of Proteins, Proc. Natl.
Acad. Sci. USA, 77, 1736-1740 (1980)

W. Hasel, T. F. Hendrickson and W. C. Still, A Rapid Approximation to the Solvent Accessible Surface
Areas of Atoms, Tetrahedron Comput. Method., 1, 103-116 (1988)

J. Weiser, P. S. Shenkin and W. C. Still, Approximate Solvent-Accessible Surface Areas from
Tetrahedrally Directed Neighber Densities, Biopolymers, 50, 373-380 (1999)

BOUNDARY CONDITIONS AND NEIGHBOR METHODS

W. F. van Gunsteren, H. J. C. Berendsen, F. Colonna, D. Perahia, J. P. Hollenberg and D. Lellouch, On
Searching Neighbors in Computer Simulations of Macromolecular Systems, J. Comput. Chem., 5, 272-279
(1984)

F. Sullivan, R. D. Mountain and J. O'Connell, Molecular Dynamics on Vector Computers, J. Comput.
Phys., 61, 138-153 (1985)

J. Boris, A Vectorized ``Near Neighbors'' Algorithm of Order N Using a Monotonic Logical Grid, J.
Comput. Phys., 66, 1-20 (1986)

S. G. Lambrakos and J. P. Boris, Geometric Properties of the Monotonic Lagrangian Grid Algorithm for
Near Neighbors Calculations, J. Comput. Phys., 73, 183-202 (1987)

T. A. Andrea, W. C. Swope and H. C. Andersen, The Role of Long Ranged Forces in Determining the
Structure and Properties of Liquid Water, J. Chem. Phys., 79, 4576-4584 (1983)

 195 TINKER User's Guide 195

D. N. Theodorou and U. W. Suter, Geometrical Considerations in Model Systems with Periodic Boundary
Conditions, J. Chem. Phys., 82, 955-966 (1985)

J. Barnes and P. Hut, A Hierarchical O(NlogN) Force-calculation Algorithm, Nature, 234, 446-449 (1986)

CUTOFF AND TRUNCATION METHODS

P. J. Steinbach and B. R. Brooks, New Spherical-Cutoff Methods for Long-Range Forces in
Macromolecular Simulation, J. Comput. Chem., 15, 667-683 (1993)

R. J. Loncharich and B. R. Brooks, The Effects of Truncating Long-Range Forces on Protein Dynamics,
Proteins, 6, 32-45 (1989)

C. L. Brooks III, B. M. Pettitt and M. Karplus, Structural and Energetic Effects of Truncating Long Ranged
Interactions in Ionic and Polar Fluids, J. Chem. Phys., 83, 5897-5908 (1985)

EWALD SUMMATION TECHNIQUES

A. Y. Toukmaji and J. A. Board, Jr., Ewald Summation Techniques in Perspective: A Survey, Comp. Phys.
Commun., 95, 73-92 (1996)

T. Darden, L. Perera, L. Li and L. Pedersen, New Tricks for Modelers from the Crystallography Toolkit:
The Particle Mesh Ewald Algorithm and its Use in Nucleic Acid Simulations, Structure, 7, R550-R60
(1999)

T. Darden, D. York and L. G. Pedersen, Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in
Large Systems, J. Chem. Phys., 98, 10089-10092 (1993)

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, A Smooth Particle Mesh
Ewald Method, J. Chem. Phys., 103, 8577-8593 (1995)

W. Smith, Point Multipoles in the Ewald Summation (Revisited), CCP5 Newsletter, 46, 18-30 (1998)
[available from http://www.dl.ac.uk/CCP/CCP5/newsletter_index.html]

S. E. Feller, R. W. Pastor, A. Rojnuckarin, S. Bogusz and B. R. Brooks, Effect of Electrostatic Force
Truncation on Interfacial and Transport Properties of Water, J. Phys. Chem., 100, 17011-17020 (1996)

W. Weber, P. H. Hünenberger and J. A. McCammon, Molecular Dynamics Simulations of a Polyalanine
Octapeptide under Ewald Boundary Conditions: Influence of Artificial Periodicity on Peptide
Conformation, J. Phys. Chem. B, 104, 3668-3675 (2000)

CONJUGATED AND AROMATIC SYSTEMS

N. L. Allinger, F. Li, L. Yan and J. C. Tai, Molecular Mechanics (MM3) Calculations on Conjugated
Hydrocarbons, J. Comput. Chem., 11, 868-895 (1990)

J. T. Sprague, J. C. Tai, Y. Yuh and N. L. Allinger, The MMP2 Calculational Method, J. Comput. Chem.,
8, 581-603 (1987)

J. Kao, A Molecular Orbital Based Molecular Mechanics Approach to Study Conjugated Hydrocarbons, J.
Am. Chem. Soc., 109, 3818-3829 (1987)

 196 TINKER User's Guide 196

J. Kao and N. L. Allinger, Conformational Analysis: Heats of Formation of Conjugated Hydrocarbons by
the Force Field Method, J. Am. Chem. Soc., 99, 975-986 (1977)

D. H. Lo and M. A. Whitehead, Accurate Heats of Atomization and Accurate Bond Lengths: Benzenoid
Hydrocarbons, Can. J. Chem., 46, 2027-2040 (1968)

G. D. Zeiss and M. A. Whitehead, Hetero-atomic Molecules: Semi-empirical Molecular Orbital
Calculations and Prediction of Physical Properties, J. Chem. Soc. A, 1727-1738 (1971)

FREE ENERGY SIMULATION METHODS

P. Kollman, Free Energy Calculations: Applications to Chemical and Biochemical Phenomena, Chem.
Rev., 93, 2395-2417 (1993)

B. L. Tembe and J. A. McCammon, Ligand-Receptor Interactions, Computers & Chemistry, 8, 281-283
(1984)

W. L. Jorgensen and C. Ravimohan, Monte Carlo Simulation of Differences in Free Energy of Hydration,
J. Chem. Phys., 83, 3050-3054 (1985)

W. L. Jorgensen, J. K. Buckner, S. Boudon and J. Tirado-Rives, Efficient Computation of Absolute Free
Energies of Binding by Computer Simulations: Application to the Methane Dimer in Water, J. Chem.
Phys., 89, 3742-3746 (1988)

S. H. Fleischman and C. L. Brooks III, Thermodynamics of Aqueous Solvation: Solution Properties of
Alcohols and Alkanes, J. Chem. Phys., 87, 3029-3037 (1987)

U. C. Singh, F. K. Brown, P. A. Bash and P. A. Kollman, An Approach to the Application of Free Energy
Perturbation Methods Using Molecular Dynamics, J. Am. Chem. Soc., 109, 1607-1614 (1987)

D. A. Pearlman and P. A. Kollman, A New Method for Carrying out Free Energy Perturbation
Calculations: Dynamically Modified Windows, J. Chem. Phys., 90, 2460-2470 (1989)

T. P. Straatsma, H. J. C. Berendsen and J. P. M. Postma, Free Energy of Hydrophobic Hydration: A
Molecular Dynamics Study of Noble Gases in Water, J. Chem. Phys., 85, 6720-6727 (1986)

T. P. Straatsma and H. J. C. Berendsen, Free Energy of Ionic Hydration: Analysis of a Thermodynamic
Integration Technique to Evaluate Free Energy Differences by Molecular Dynamics Simulations, J. Chem.
Phys., 89, 5876-5886 (1988)

M. Mezei, The Finite Difference Thermodynamic Integration, Tested on Calculating the Hydration Free
Energy Difference between Acetone and Dimethylamine in Water, J. Chem. Phys., 86, 7084-7088 (1987)

A. E. Mark and W. F. van Gunsteren, Decomposition of the Free Energy of a System in Terms of Specific
Interactions, J. Mol. Biol., 240, 167-176 (1994)

S. Boresch and M. Karplus, The Meaning of Copmponent Analysis: Decomposition of the Free Energy in
Terms of Specific Interactions, J. Mol. Biol., 254, 801-807 (1995)

METHODS FOR PARAMETER DETERMINATION

 197 TINKER User's Guide 197

N. L. Allinger, X. Zhou and J. Bergsma, Molecular Mechanics Parameters, J. Mol. Struct. (THEOCHEM),
312, 69-83 (1994)

A. J. Pertsin and A. I. Kitaigorodsky, The Atom-Atom Potential Method: Application to Organic
Molecular Solids, Springer-Verlag, Berlin, 1987

D. E. Williams, Transferable Empirical Nonbonded Potential Functions, in Crystal Cohesion and
Conformational Energies, Ed. by R. M. Metzger, Springer-Verlag, Berlin, 1981

A. T. Hagler and S. Lifson, A Procedure for Obtaining Energy Parameters from Crystal Packing, Acta
Cryst., B30, 1336-1341 (1974)

A. T. Hagler, S. Lifson and P. Dauber, Consistent Force Field Studies of Intermolecular Forces in
Hydrogen-Bonded Crystals: A Benchmark for the Objective Comparison of Alternative Force Fields, J.
Am. Chem. Soc., 101, 5122-5130 (1979)

W. L. Jorgensen, J. D. Madura and C. J. Swenson, Optimized Intermolecular Potential Functions for Liquid
Hydrocarbons, J. Am. Chem. Soc., 106, 6638-6646 (1984)

W. L. Jorgensen and C. J. Swenson, Optimized Intermolecular Potential Functions for Amides and
Peptides: Structure and Properties of Liquid Amides, J. Am. Chem. Soc., 107, 569-578 (1985)

J. R. Maple, U. Dinur and A. T. Hagler, Derivation of Force Fields for Molecular Mechanics and Dynamics
from ab Initio Surfaces, Proc. Nat. Acad. Sci. USA, 85, 5350-5354 (1988)

U. Dinur and A. T. Hagler, Direct Evaluation of Nonbonding Interactions from ab Initio Calculations, J.
Am. Chem. Soc., 111, 5149-5151 (1989)

ELECTROSTATIC INTERACTIONS

S. L. Price, Towards More Accurate Model Intermolecular Potentials for Organic Molecules, Rev. Comput.
Chem., 14, 225-289 (2000)

C. H. Faerman and S. L. Price, A Transferable Distributed Multipole Model for the Electrostatic
Interactions of Peptides and Amides, J. Am. Chem. Soc., 112, 4915-4926 (1990)

C. E. Dykstra, Electrostatic Interaction Potentials in Molecular Force Fields, Chem. Rev., 93, 2339-2353
(1993)

M. J. Dudek and J. W. Ponder, Accurate Modeling of the Intramolecular Electrostatic Energy of Proteins,
J. Comput. Chem., 16, 791-816 (1995)

U. Koch and E. Egert, An Improved Description of the Molecular Charge Density in Force Fields with
Atomic Multipole Moments, J. Comput. Chem., 16, 937-944 (1995)

D. E. Williams, Representation of the Molecular Electrostatic Potential by Atomic Multipole and Bond
Dipole Models, J. Comput. Chem., 9, 745-763 (1988)

F. Colonna, E. Evleth and J. G. Angyan, Critical Analysis of Electric Field Modeling: Formamide, J.
Comput. Chem., 13, 1234-1245 (1992)

POLARIZATION EFFECTS

 198 TINKER User's Guide 198

S. Kuwajima and A. Warshel, Incorporating Electric Polarizabilities in Water-Water Interaction Potentials,
J. Phys. Chem., 94, 460-466 (1990)

J. W. Caldwell and P. A. Kollman, Structure and Properties of Neat Liquids Using Nonadditive Molecular
Dynamics: Water, Methanol, and N-Methylacetamide, J. Phys. Chem., 99, 6208-6219 (1995)

D. N. Bernardo, Y. Ding, K. Kroegh-Jespersen and R. M. Levy, An Anisotropic Polarizable Water Model:
Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields, J. Phys. Chem., 98,
4180-4187 (1994)

P. T. van Duijnen and M. Swart, Molecular and Atomic Polarizabilities: Thole's Model Revisited, J. Phys.
Chem. A, 102, 2399-2407 (1998)

K. J. Miller, Calculation of the Molecular Polarizability Tensor, J. Am. Chem. Soc., 112, 8543-8551 (1990)

J. Applequist, J. R. Carl and K.-K. Fung, An Atom Dipole Interaction Model for Molecular Polarizability.
Application to Polyatomic Molecules and Determination of Atom Polarizabilities, J. Am. Chem. Soc., 94,
2952-2960 (1972)

J. Applequist, Atom Charge Transfer in Molecular Polarizabilities. Application of the Olson-Sundberg
Model to Aliphatic and Aromatic Hydrocarbons, J. Phys. Chem., 97, 6016-6023 (1993)

A. J. Stone, Distributed Polarizabilities, Mol. Phys., 56, 1065-1082 (1985)

J. M. Stout and C. E. Dykstra, A Distributed Model of the Electrical Response of Organic Molecules, J.
Phys. Chem. A, 102, 1576-1582 (1998)

MACROSCOPIC TREATMENT OF SOLVENT

C. J. Cramer and D. G. Truhlar, Continuum Solvation Models: Classical and Quantum Mechanical
Implementations, Rev. Comput. Chem., 6, 1-72 (1995)

B.Roux and T. Simonson, Implicit Solvation Models, Biophys. Chem., 78, 1-20 (1999)

M. K. Gilson, Introduction to Continuum Electrostatics with Molecular Applications, available from
http://gilsonlab.umbi.umd.edu

SURFACE AREA-BASED SOLVATION MODELS

D. Eisenberg and A. D. McLachlan, Solvation Energy in Protein Folding and Binding, Nature, 319, 199-
203 (1986)

L. Wesson and D. Eisenberg, Atomic Solvation Parameters Applied to Molecular Dynamics of Proteins in
Solution, Prot. Sci., 1, 227-235 (1992)

T. Ooi, M. Oobatake, G. Nemethy and H. A. Scheraga, Accessible Surface Areas as a Measure of the
Thermodynamic Parameters of Hydration of Peptides, Proc. Natl. Acad. Sci. USA, 84, 3086-3090 (1987)

J. D. Augspurger and H. A. Scheraga, An Efficient, Differentiable Hydration Potential for Peptides and
Proteins, J. Comput. Chem., 17, 1549-1558 (1996)

 199 TINKER User's Guide 199

GENERALIZED BORN SOLVATION MODELS

W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, A Semiempirical Treatment of Solvation for
Molecular Mechanics and Dynamics, J. Am. Chem. Soc., 112, 6127-6129 (1990)

D. Qiu, P. S. Shenkin, F. P. Hollinger and W. C. Still, The GB/SA Continuum Model for Solvation. A Fast
Analytical Method for the Calculation of Approximate Born Radii, J. Phys. Chem. A, 101, 3005-3014
(1997)

G. D. Hawkins, C. J. Cramer and D. G. Truhlar, Pairwise Solute Descreening of Solute Charges from a
Dielectric Medium, Chem. Phys. Lett., 246, 122-129 (1995)

G. D. Hawkins, C. J. Cramer and D. G. Truhlar, Parametrized Models of Aqueous Free Energies of
Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium, J. Phys.
Chem., 100, 19824-19839 (1996)

A. Onufriev, D. Bashford and D. A. Case, Modification of the Generalized Born Model Suitable for
Macromolecules, J. Phys. Chem. B, 104, 3712-3720 (2000)

M. Schaefer and M. Karplus, A Comprehensive Analytical Treatment of Continuum Electrostatics, J. Phys.
Chem., 100, 1578-1599 (1996)

M. Schaefer, C. Bartels and M. Karplus, Solution Conformations and Thermodynamics of Structured
Peptides: Molecular Dynamics Simulation with an Implicit Solvation Model, J. Mol. Biol., 284, 835-848
(1998)

SUPERPOSITION OF COORDINATE SETS

S. J. Kearsley, An Algorithm for the Simultaneous Superposition of a Structural Series, J. Comput. Chem.,
11, 1187-1192 (1990)

R. Diamond, A Note on the Rotational Superposition Problem, Acta Cryst., A44, 211-216 (1988)

A. D. McLachlan, Rapid Comparison of Protein Structures, Acta Cryst., A38, 871-873 (1982)

S. C. Nyburg, Some Uses of a Best Molecular Fit Routine, Acta Cryst., B30, 251-253 (1974)

LOCATION OF TRANSITION STATES

R. Czerminski and R. Elber, Reaction Path Study of Conformational Transitions and Helix Formation in a
Tetrapeptide, Proc. Nat. Acad. Sci. USA, 86, 6963 (1989)

R. S. Berry, H. L. Davis and T. L. Beck, Finding Saddles on Multidimensional Potential Surfaces, Chem.
Phys. Lett., 147, 13 (1988)

K. Muller, Reaction Paths on Multidimensional Energy Hypersurfaces, Ang. Chem. Int. Ed. Engl., 19, 1-
13 (1980)

S. Bell and J. S. Crighton, Locating Transition States, J. Chem. Phys., 80, 2464-2475 (1984)

 200 TINKER User's Guide 200

S. Fischer and M. Karplus, Conjugate Peak Refinement: An Algorithm for Finding Reaction Paths and
Accurate Transition States in Systems with Many Degrees of Freedom, Chem. Phys. Lett., 194, 252-261
(1992)

J. E. Sinclair and R. Fletcher, A New Method of Saddle-Point Location for the Calculation of Defect
Migration Energies, J. Phys. C, 7, 864-870 (1974)

R. Elber and M. Karplus, A Method for Determining Reaction Paths in Large Molecules: Application to
Myoglobin, Chem. Phys. Lett., 139, 375-380 (1987)

D. T. Nguyen and D. A. Case, On Finding Stationary States on Large-Molecule Potential Energy Surfaces,
J. Phys. Chem., 89, 4020-4026 (1985)

T. A. Halgren and W. N. Lipscomb, The Synchronous-Transit Method for Determining Reaction Pathways
and Locating Molecular Transition States, Chem. Phys. Lett., 49, 225-232 (1977)

G. T. Barkema and N. Mousseau, Event-Based Relaxation of Continuous Disordered Systems, Phys. Rev.
Lett., 77, 4358-4361 (1996)

