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1. Introduction to the TINKER Package 
 
 Welcome to the TINKER molecular modeling package!  TINKER is designed to be an easily used 
and flexible system of programs and routines for molecular mechanics and dynamics as well as other 
energy-based and structural manipulation calculations. It is intended to be modular enough to enable 
development of new computational methods and efficient enough to meet most production calculation 
needs. Rather than incorporating all the functionality in one monolithic program, TINKER provides a set of 
relatively small programs that interoperate to perform complex computations. New programs can be easily 
added by modelers with only limited programming experience. The series of major programs included in 
the distribution system perform the following core tasks: 
 
 (1) building protein and nucleic acid models from sequence 
 (2) energy minimization and structural optimization 
 (3) analysis of energy distribution within a structure 
 (4) molecular dynamics and stochastic dynamics 
 (5) simulated annealing with a choice of cooling schedules 
 (6) normal modes and vibrational frequencies 
 (7) conformational search and global optimization 
 (8) transition state location and conformational pathways 
 (9) fitting of energy parameters to crystal data 
 (10) distance geometry with pairwise metrization 
 (11) molecular volumes and surface areas 
 (12) free energy changes for structural mutations 
 (13) advanced algorithms based on potential smoothing 
 
 Many of the various energy minimization and molecular dynamics computations can be performed 
on full or partial structures, over Cartesian, internal or rigid body coordinates, and including a variety of 
boundary conditions and crystal cell types. Other programs are available to generate timing data and allow 
checking of potential function derivatives for coding errors. Special features are available to facilitate input 
and output of protein and nucleic acid structures. However, the basic core routines have no knowledge of 
biopolymer structure and can be used for general molecular systems. 
 
 Due to its emphasis on ease of modification, TINKER differs from many other currently available 
molecular modeling packages in that the user is expected to be willing to write simple ``front-end'' 
programs and make some alterations at the source code level. The main programs provided should be 
considered as templates for the users to change according to their wishes. All subroutines are internally 
documented and structured programming practices are adhered to throughout. The result, it is hoped, will 
be a calculational system which can be tailored to local needs and desires. 
 
 The core TINKER system consists of nearly 130,000 lines of source written entirely in a portable 
Fortran77 superset. Use is made of only some very common extensions that aid in writing highly structured 
code. The current version of the package has been ported to a wide range of computers with no or 
extremely minimal changes. Tested systems include: Red Hat Linux, Microsoft Windows 9X/NT/2000/XP, 
Apple OS9 and OSX, HP/Compaq/DEC Alphas under Tru64 Unix and OpenVMS, Hewlett-Packard, IBM, 
Silicon Graphics and Sun workstations under each vendor's Unix. At present, our new code is written on 
various Linux platforms, and occasionally tested for compatibility on various of the other machine and OS 
combinations listed above. At present, we are in the process of converting our primary development efforts 
from Fortran77 to a more modern Fortran dialect. A machine-translated C version of TINKER is currently 
available, and a hand-translated optimized C version of a previous TINKER release is available for 
inspection. Conversion to C or C++ is under consideration, but not being actively pursued at this time. 
 
 The basic design of the energy function engine used by the TINKER system allows usage of 
several different parameter sets. At present we are distributing parameters that implement AMBER ff94 
and ff96, CHARMM19 and 27, MM2, MM3, OPLS-UA, OPLS-AA and our own AMOEBA (Atomic 
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Multipole Optimized Energetics for Biomolecular Applications) parameters. In most cases, the source code 
separates the geometric manipulations needed for energy derivatives from the actual form of the energy 
function itself. Several other literature parameter sets are being considered for possible future development 
(ENCAD, MMFF-94, MM4, UFF, etc.), and many of the alternative potential function forms reported in 
the literature can be implemented directly or after minor code changes. 
 
 Much of the software in the TINKER package has been heavily used and well tested, but some 
modules are still in a fairly early stage of development. Further work on the TINKER system is planned in 
three main areas: (1) extension and improvement of the potential energy parameters including additional 
parameterization and testing of our polarizable multipole AMOEBA force field, (2) coding of new 
computational algorithms including additional methods for free energy determination, torsional Monte 
Carlo and molecular dynamics sampling, advanced methods for long range interactions, better transition 
state location, and further application of the potential smoothing paradigm, and (3) further development of 
Force Field Explorer, a Java-based GUI front-end to the TINKER programs that provides for calculation 
setup, launch and control as well as basic visualization. 
 
 Questions and comments regarding the TINKER package, including suggestions for 
improvements and changes should be made to the author: 
 
 Professor Jay William Ponder 
 Biochemistry & Molecular Biophysics, Box 8231 
 Washington University School of Medicine 
 660 South Euclid Avenue 
 Saint Louis, MO  63110  U.S.A. 
 
 office: Center for Computational Biology, Room 208 
 phone: (314) 362-4195 
 fax: (314) 362-7183 
 email: ponder@dasher.wustl.edu 
 
In addition, an Internet web site containing an online version of this User's Guide, the most recent 
distribution version of the full TINKER package and other useful information can be found at 
http://dasher.wustl.edu/tinker, the Home Page for the TINKER Molecular Modeling Package. 
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2. Installing TINKER on your Computer 
 
 The TINKER package is distributed on the Internet via either the web site or the anonymous ftp 
account on dasher.wustl.edu with an IP number of 128.252.208.48. This node is an AlphaServer 4100 file 
server running Tru64 Unix and located in the Ponder lab at Washington University School of Medicine. 
The package is available via the web and standard browsers from the TINKER home page at 
http://dasher.wustl.edu/tinker/. Alternatively TINKER can be downloaded by logging into 
dasher.wustl.edu via anonymous ftp (Username: anonymous, Password: "your email address") and 
downloading the software from the /pub/tinker subdirectory. The complete TINKER distribution as well as 
individual files can be downloaded from this site. 
 
 On dasher.wustl.edu, the TINKER package is present as compressed Unix tar archives, Windows 
zip files, and as a complete set of uncompressed source and data files. Binaries are provided for machines 
running Windows 9X/ME/NT/2000/XP, Linux, and Apple OSX. All of these executables are available in 
standard compressed formats as individual programs or as complete sets of executables. It is expected that 
other Unix users and PC users who need specially customized versions, will build binaries for their specific 
system. Sites with access to the Unix tar, compress and uncompress commands should simply obtain the 
archive file tinker.tar.Z. Alternatively, tinker.tar.gz and tinker.zip containing identical the archives 
compressed to GNU gzip and Windows ZIP format are also provided. If you choose to download individual 
files, you will need at a minimum the contents of the /doc, /source and /params subdirectories. Also 
required are the compile/build scripts from the subdirectory named for your machine type. Other areas 
contain test cases and examples, benchmark results, machine-translated C code, and the Force Field 
Explorer Java GUI for TINKER. The entire TINKER package, after building the executables, will require 
from about 40 to over 150 megabytes of disk space depending on the components installed and the use of 
shared libraries in the executables. 
 
 The documentation for the TINKER programs, including the guide you are currently reading, is 
located in the /pub/tinker/doc subdirectory. The documentation was prepared using the Applixware Words 
and Graphics programs. Portable versions of the documentation are provided as ascii text in .txt files and in 
.ps Postscript and .pdf Adobe Acrobat file formats. Please read and return by mail the TINKER license. In 
particular, we note that TINKER is not ``Open Source'' as users are prohibited from redistribution of 
original or modified TINKER source code or binaries to other parties. While our intent is to distribute the 
TINKER code to anyone who wants it, the Ponder Lab would like to remain the sole distribution site and 
keep track of researchers using the package. The returned license forms also help us justify further 
development of TINKER. When new modules and capabilities become available, and when the almost 
inevitable bugs are uncovered, we will attempt to notify those who have returned a license form. Finally, 
we remind you that this software is copyrighted, and ask that it not be redistributed in any form. 
 
 The compilation and building of the TINKER executables should be easy for most of the common 
workstation and PC class computers. We provide in the /make area a Unix-style Makefile that with some 
modification can be used to build TINKER on most Unix machines. As a simpler alternative to Makefiles 
for the Unix versions, we also provide machine-specific directories with three separate shell scripts to 
compile the source, build an object library, and link binary executables. Three similar command files are 
provided for Windows, Macintosh and Open VMS systems. Compilation on Unix workstations should use 
the vendor supplied Fortran compiler, if available. The public domain GNU g77 Fortran compiler available 
from http://gcc.gnu.org/ is also capable of building TINKER on Linux and other Unix-based machines. 
The Linux executables we provide are built with the Intel Fortran for Linux 7.0 compiler. The Portland 
Group (PGI) and Absoft ProFortran compilers have also been tested under Linux, both of which generate 
executables roughly comparable in speed to the Intel compiler. On Linux, the g77 executables tend to 
exhibit degraded performance compared with executables from commercial compilers. Some benchmark 
results are provided in a later section of this User's Guide For the Macintosh we distribute executables built 
under Apple OSX 10.2 with the GNU g77 compiler. TINKER also builds on the Macintosh using the 
Absoft ProFortran compiler. For PCs running Windows 9X/NT/2000/XP, the distributed TINKER 
executables are built under the Intel Fortran for Windows 7.0 compiler. Alternative Windows compilers 
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such as Compaq Visual Fortran, Lahey/Fujitsu and The Portland Group compilers, and GNU g77 under 
Cygwin have been tested and shown to build TINKER correctly. Please see the README files in each of 
the machine-specific areas for further information. 
 
 The first step in building TINKER using the script files is to run the appropriate ``compile'' script. 
Next you must use the ``library'' script to create an archive of object code modules. Finally, run the ``link'' 
script to produce the complete set of TINKER executables. The executables can be renamed and moved to 
wherever you like by editing and running the ``rename'' script. 
 
 Regardless of your target machine, only a few small pieces of code can possibly require attention 
prior to building. The first two are the system dependent time and date routines found in clock.f and 
calendar.f respectively. Next is the openend.f routine that facilitates appending data to the end of an 
existing disk file. Please uncomment the sections of these routines needed for your computer type. Version 
of these system dependent routines suitable for each system are also provided in the directory for each 
machine/OS type. The final set of possible source alterations are to the master array dimensions found in 
the include file sizes.i. The most basic limit is on the number of atoms allowed, ``maxatm''. This parameter 
can be set to 10000 or more on most workstations. Personal computers with minimal memory may need a 
lower limit, perhaps 1000 atoms, depending on available memory, swap space and other resources. A 
description of the other parameter values is contained in the header of the file. Note that in order to keep the 
code completely transparent, TINKER does not implement any sort of dynamic memory allocation or heap 
data structure. This requires that sizes.i dimensioning values be set at least as large as the biggest problem 
you intend to run. Obviously, you should not set the array sizes to unnecessarily large values, since this can 
tax your compute resources and may result in performance degradation or overt failure of the executables. 
 
 Specific questions about the building or use of the TINKER package should be directed to 
tinker@dasher.wustl.edu. TINKER related questions or comments of more general interest can be sent to 
the Computational Chemistry List (http://www.ccl.net/) run by Jan Labanowski of The Ohio 
Supercomputer Center. The TINKER developers monitor this list and will respond to the list or the 
individual poster as appropriate.  
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3. Types of Input & Output Files 
 
 This section describes the basic file types used by the TINKER package. Let's say you wish to 
perform a calculation on a particular small organic molecule. Assume that the file name chosen for our 
input and output files is sample. Then all of the TINKER files will reside on the computer under the name 
sample.xxx where .xxx is any of the several extension types to be described below. 
 
SAMPLE.XYZ 
 
The .xyz file is the basic TINKER Cartesian coordinates file type. It contains a title line followed by one 
line for each atom in the structure. Each line contains: the sequential number within the structure, an atomic 
symbol or name, X-, Y-, and Z-coordinates, the force field atom type number of the atom, and a list of the 
atoms connected to the current atom. Except for programs whose basic operation is in torsional space, all 
TINKER calculations are done from some version of the .xyz format. 
 
SAMPLE.INT 
 
The .int file contains an internal coordinates representation of the molecular structure. It consists of a title 
line followed by one line for each atom in the structure. Each line contains: the sequential number within 
the structure, an atomic symbol or name, the force field atom type number of the atom, and internal 
coordinates in the usual Z-matrix format. For each atom the internal coordinates consist of a distance to 
some previously defined atom, and either two bond angles or a bond angle and a dihedral angle to previous 
atoms. The length, angle and dihedral definitions do not have to represent real bonded interactions. 
Following the last atom definition are two optional blank line separated sets of atom number pairs. The first 
list contains pairs of atoms that are covalently bonded, but whose bond length was not used as part of the 
atom definitions. These pairs are typically used to close ring structures. The second list contains ``bonds'' 
that are to be broken, i.e., pairs of atoms that are not covalently bonded, but which were used to define a 
distance in the atom definitions. 
 
SAMPLE.KEY 
 
The keyword parameter file always has the extension .key and is optionally present during TINKER 
calculations. It contains values for any of a wide variety of switches and parameters that are used to change 
the course of the computation from the default. The detailed contents of this file is explained in a latter 
section of this User's Guide. If a molecular system specific keyfile, in this case sample.key, is not present, 
the the TINKER program will look in the same directory for a generic file named tinker.key. 
 
SAMPLE.DYN 
 
The .dyn file contains values needed to restart a molecular or stochastic dynamics computation. It stores 
the current position, current velocity and current and previous accelerations for each atom, as well as the 
size and shape of any periodic box or crystal unit cell. This information can be used to start a new dynamics 
run from the final state of a previous run. Upon startup, the dynamics programs always check for the 
presence of a .dyn file and make use of it whenever possible. The .dyn file is updated concurrent with the 
saving of a new dynamics trajectory snapshot. 
 
SAMPLE.END 
 
The .end file type provides a mechanism to gracefully stop a running TINKER calculation. At appropriate 
checkpoints during a calculation, TINKER will test for the presence of a sample.end file, and if found will 
terminate the calculation after updating the output. The .end file can be created at any time during a 
computation, and will be detected when the next checkpoint is reached. The file may be of zero size, and its 
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contents are unimportant. In the current version of TINKER, the .end mechanism is only available within 
dynamics-based programs. 
 
SAMPLE.001, SAMPLE.002, .... 
 
Several types of computations produce files containing a three or more digit extension (.001 as shown; or 
.002, .137, .5678, etc.). These are referred to as cycle files, and are used to store various types of output 
structures. The cycle files from a given computation are identical in internal structure to either the .xyz or 
.int files described above. For example, the vibrational analysis program can save the tenth normal mode in 
sample.010. A molecular dynamics-based program might save its tenth 0.1 picosecond frame (or an energy 
minimizer its tenth partially minimized intermediate) in a file of the same name. 
 
SAMPLE.LOG 
 
The Force Field Explorer interface to TINKER saves results of all calculations launched from the GUI to a 
log file with the .log suffix. Any output that would normally be directed to the screen after starting a 
program from the command line is appended to this log file by Force Field Explorer. 
 
SAMPLE.ARC 
 
A TINKER archive file is simply a series of .xyz Cartesian coordinate files appended together one after 
another. This file can be used to condense the results from intermediate stages of an optimization, frames 
from a molecular dynamics trajectory, or set of normal mode vibrations into a single file for storage. 
TINKER archive files can be displayed as ``movies'' by the Force Field Explorer modeling program. 
 
SAMPLE.PDB 
 
This file type contains coordinate information in the PDB format developed by the Brookhaven Protein 
Data Bank for deposition of model structures based on macromolecular X-ray diffraction and NMR data. 
Although TINKER itself does not use .pdb files directly for input/output, auxiliary programs are provided 
with the system for interconverting .pdb files with the .xyz format described above. 
 
SAMPLE.SEQ 
 
This file type contains the primary sequence of a biopolymer in the standard one-letter code with 50 
residues per line. The .seq file for a biopolymer is generated automatically when a PDB file is converted to 
TINKER .xyz format or when using the PROTEIN or NUCLEIC programs to build a structure from 
sequence It is required for the reverse conversion of a TINKER file back to PDB format.. 
 
SAMPLE.FRAC 
 
The fractional coordinates corresponding to the asymmetric unit of a crystal unit cell are stored in the .frac 
file. The internal format of this file is identical to the .xyz file; except that the coordinates are fractional 
instead of in Angstrom units. 
 
SAMPLE.XMOL 
 
The ARCHIVE program has the option of converting a series of .xyz cycle files into an XMakemol XYZ 
file. These files can be displayed as a movie using the XMakemol display program. Note that the .xmol file 
format does not contain TINKER atom type information, so it is not possible to convert an .xmol file back 
into a TINKER .xyz file. 
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SAMPLE.CAR 
 
The ARCHIVE program has the option of converting a series of .xyz cycle files into an Accelerys InsightII 
coordinate archive file. These files can be displayed as a movie using the InsightII display program. Note 
that the .car file format does not contain TINKER atom type information, so it is not possible to convert a 
.car file back into a TINKER .XYZ file. 
 
PARAMETER FILES 
 
The potential energy parameter files distributed with the TINKER package all end in the extension .prm, 
although this is not required by the programs themselves. Each of these files contains a definition of the 
potential energy functional forms for that force field as well as values for individual energy parameters. For 
example, the mm3pro.prm file contains the energy parameters and definitions needed for a protein-
specific version of the MM3 force field. 
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4. Potential Energy Programs 
 
 This section of the manual contains a brief description of each of the TINKER potential energy 
programs. A detailed example showing how to run each program is included in a later section. The 
programs listed below are all part of the main, supported distribution. Additional source code for various 
unsupported programs can be found in the /other directory of the TINKER distribution. 
 
ALCHEMY 
 
A simple program to perform very basic free energy perturbation calculations. This program is provided 
mostly for demonstration purposes.  For example, we use ALCHEMY in a molecular modeling course 
laboratory exercise to perform such classic mutations as chloride to bromide and ethane to methanol in 
water. The present version uses the perturbation formula and windowing with an explicit mapping of atoms 
involved in the mutation (``AMBER''-style), instead of thermodynamic integration and independent freely 
propagating groups of mutated atoms (``CHARMM''-style). Some of the code specific to this program is 
limited to the AMBER and OPLS potential functional forms, but could be easily generalized to handle 
other potentials. A more general and sophisticated version is currently under development. 
 
ANALYZE 
 
Provides information about a specific molecular structure. The program will ask for the name of a structure 
file, which must be in the TINKER .xyz file format, and the type of analysis desired. Options allow output 
of:  (1) total potential energy of the system, (2) breakdown of the energy by potential function type or over 
individual atoms, (3) computation of the total dipole moment and its components, moments of inertia and 
radius of gyration, (4) listing of the parameters used to compute selected interaction energies, (5) energies 
associated with specified individual interactions. 
 
ANNEAL 
 
Performs a molecular dynamics simulated annealing computation. The program starts from a specified 
input molecular structure in TINKER .xyz format. The trajectory is updated using either a modified 
Beeman or a velocity Verlet integration method. The annealing protocol is implemented by allowing 
smooth changes between starting and final values of the system temperature via the Groningen method of 
coupling to an external bath. The scaling can be linear or sigmoidal in nature. In addition, parameters such 
as cutoff distance can be transformed along with the temperature. The user must input the desired number 
of dynamics steps for both the equilibration and cooling phases, a time interval for the dynamics steps, and 
an interval between coordinate/trajectory saves. All saved coordinate sets along the trajectory are placed in 
sequentially numbered cycle files. 
 
DYNAMIC 
 
Performs a molecular dynamics (MD) or stochastic dynamics (SD) computation. Starts either from a 
specified input molecular structure (an .xyz file) or from a structure-velocity-acceleration set saved from a 
previous dynamics trajectory (a restart from a .dyn file). MD trajectories are propagated using either a 
modified Beeman or a velocity Verlet integration method. SD is implemented via our own derivation of a 
velocity Verlet-based algorithm. In addition the program can perform full crystal calculations, and can 
operate in constant energy mode or with maintenance of a desired temperature and/or pressure using the 
Groningen method of coupling to external baths. The user must input the desired number of dynamics 
steps, a time interval for the dynamics steps, and an interval between coordinate/trajectory saves. 
Coordinate sets along the trajectory can be saved as sequentially numbered cycle files or directly to a 
TINKER archive .arc file. At the same time that a point along the trajectory is saved, the complete 
information needed to restart the trajectory from that point is updated and stored in the .dyn file. 
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GDA 
 
A program to implement Straub's Gaussian Density Annealing algorithm over an effective series of 
analytically smoothed potential energy surfaces. This method can be viewed as an extended stochastic 
version of the diffusion equation method of Scheraga, et al., and also has many similar features to the 
TINKER Potential Smoothing and Search (PSS) series of programs. The current version of GDA is similar 
to but does not exactly reproduce Straub's published method and is limited to argon clusters and other 
simple systems involving only van der Waals interactions; further modification and development of this 
code is currently underway in the Ponder research group. As with other programs involving potential 
smoothing, GDA currently requires use of the smooth.prm force field parameters. 
 
MINIMIZE 
 
The MINIMIZE program performs a limited memory L-BFGS minimization of an input structure over 
Cartesian coordinates using a modified version of the algorithm of Jorge Nocedal. The method requires 
only the potential energy and gradient at each step along the minimization pathway. It requires storage 
space proportional to the number of atoms in the structure. The MINIMIZE procedure is recommended for 
preliminary minimization of trial structures to an rms gradient of 1.0 to 0.1 kcal/mole/Å. It has a relatively 
fast cycle time and is tolerant of poor initial structures, but converges in a slow, linear fashion near the 
minimum. The user supplies the name of the TINKER .xyz coordinates file and a target rms gradient value 
at which the minimization will terminate. Output consists of minimization statistics written to the screen or 
redirected to an output file, and the new coordinates written to updated .xyz files or to cycle files. 
 
MINIROT 
 
The MINIROT program uses the same limited memory L-BFGS method as MINIMIZE, but performs the 
computation in terms of dihedral angles instead of Cartesian coordinates. Output is saved in an updated .int 
file or in cycle files. 
 
MINRIGID 
 
The MINRIGID program is similar to MINIMIZE except that it operates on rigid bodies starting from a 
TINKER .xyz coordinate file and the rigid body group definitions found in the corresponding .key file. 
Output is saved in an updated .xyz file or in cycle files. 
 
MONTE 
 
The MONTE program implements the Monte Carlo Minimization algorithm developed by Harold 
Scheraga's group and others. The procedure takes Monte Carlo steps for either a single atom or a single 
torsional angle, then performs a minimization before application of the Metropolis sampling method. This 
results in effective sampling of a modified potential surface where the only possible energy levels are those 
of local minima on the original surface. The program can be easily modified to elaborate on the available 
move set. 
 
NEWTON 
 
A truncated Newton minimization method which requires potential energy, gradient and Hessian 
information. This procedure has significant advantages over standard Newton methods, and is able to 
minimize very large structures completely. Several options are provided with respect to minimization 
method and preconditioning of the Newton equations. The default options are recommended unless the user 
is familiar with the math involved. This program operates in Cartesian coordinate space and is fairly 
tolerant of poor input structures. Typical algorithm iteration times are longer than with nonlinear conjugate 
gradient or variable metric methods, but many fewer iterations are required for complete minimization. 
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NEWTON is usually the best choice for minimizations to the 0.01 to 0.000001 kcal/mole/Å level of rms 
gradient convergence. Tests for directions of negative curvature can be removed, allowing NEWTON to be 
used for optimization to conformational transition state structures (this only works if the starting point is 
very close to the transition state). Input consists of a TINKER .xyz coordinates file; output is an updated set 
of minimized coordinates and minimization statistics. 
 
NEWTROT 
 
The NEWTROT program is similar to NEWTON except that it requires a .int file as input and then 
operates in terms of dihedral angles as the minimization variables. Since the dihedral space Hessian matrix 
of an arbitrary structure is often indefinite, this method will often not perform as well as the other, simpler 
dihedral angle based minimizers. 
 
OPTIMIZE 
 
The OPTIMIZE program performs a optimally conditioned variable metric minimization of an input 
structure over Cartesian coordinates using an algorithm due to William Davidon. The method does not 
perform line searches, but requires computation of energies and gradients as well as storage for an estimate 
of the inverse Hessian matrix. The program operates on Cartesian coordinates from a TINKER .xyz file. 
OPTIMIZE will typically converge somewhat faster and more completely than MINIMIZE. However, the 
need to store and manipulate a full inverse Hessian estimate limits its use to structures containing less than 
a few hundred atoms on workstation class machines. As with the other minimizers, OPTIMIZE needs input 
coordinates and an rms gradient cutoff criterion. The output coordinates are saved in updated .xyz files or 
as cycle files. 
 
OPTIROT 
 
The OPTIROT program is similar to OPTIMIZE except that it operates on dihedral angles starting from a 
TINKER .int internal coordinate file. This program is usually the preferred method for most dihedral angle 
optimization problems since Truncated Newton methods appear, in our hands, to lose some of their efficacy 
in moving from Cartesian to torsional coordinates. 
 
OPTRIGID 
 
The OPTRIGID program is similar to OPTIMIZE except that it operates on rigid bodies starting from a 
TINKER .xyz coordinate file and the rigid body atom group definitions found in the corresponding .key 
file. Output is saved in an updated .xyz file or in cycle files. 
 
PATH 
 
A program that implements a variant of Elber's Lagrangian multiplier-based reaction path following 
algorithm. The program takes as input a pair of structural minima as TINKER .xyz files, and then generates 
a user specified number of points along a path through conformational space connecting the input 
structures. The intermediate structures are output as TINKER cycle files, and the higher energy 
intermediates can be used as input to a Newton-based optimization to locate conformational transition 
states. 
 
PSS 
 
Implements our version of a potential smoothing and search algorithm for the global optimization of 
molecular conformation. An initial structure in .xyz format is first minimized in Cartesian coordinates on a 
series of increasingly smoothed potential energy surfaces. Then the smoothing procedure is reversed with 
minimization on each successive surface starting from the coordinates of the minimum on the previous 
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surface. A local search procedure is used during the backtracking to explore for alternative minima better 
than the one found during the current minimization. The final result is usually a very low energy 
conformation or, in favorable cases, the global energy minimum conformation. The minimum energy 
coordinate sets found on each surface during both the forward smoothing and backtracking procedures are 
placed in sequentially numbered cycle files. 
 
PSSRIGID 
 
This program implements the potential smoothing and search method as described above for the PSS 
program, but performs the computation in terms of keyfile-defined rigid body atom groups instead of 
Cartesian coordinates. Output is saved in numbered cycle files with the .xyz file format. 
 
PSSROT 
 
This program implements the potential smoothing and search method as described above for the PSS 
program, but performs the computation in terms of a set of user-specified dihedral angles instead of 
Cartesian coordinates. Output is saved in numbered cycle files with the .int file format. 
 
SADDLE 
 
A program for the location of a conformational transition state between two potential energy minima. 
SADDLE uses a conglomeration of ideas from the Bell-Crighton quadratic path and the Halgren-Lipscomb 
synchronous transit methods. The basic idea is to perform a nonlinear conjugate gradient optimization in a 
subspace orthogonal to a suitably defined reaction coordinate. The program requires as input the 
coordinates (TINKER .xyz files) of the two minima and an rms gradient convergence criterion for the 
optimization. The current estimate of the transition state structure is written to the file TSTATE.XYZ. 
Crude transition state structures generated by SADDLE can sometimes be refined using the NEWTON 
program. Optionally, a scan of the interconversion pathway can be made at each major iteration. 
 
SCAN 
 
A program for general conformational search of an entire potential energy surface via a basin hopping 
method. The program takes as input a TINKER .xyz coordinates file which is then minimized to find the 
first local minimum for a search list. A series of activations along various normal modes from this initial 
minimum are used as seed points for additional minimizations. Whenever a previously unknown local 
minimum is located it is added to the search list. When all minima on the search list have been subjected to 
the normal mode activation without locating additional new minima, the program terminates. The 
individual local minima are written to cycle files as they are discovered. While the SCAN program can be 
used on standard undeformed potential energy surfaces, we have found it to be most useful for quickly 
``scanning'' a smoothed energy surface to enumerate the major basins of attraction spaning the entire 
surface. 
 
SNIFFER 
 
A program that implements the Sniffer global optimization algorithm of Butler and Slaminka, a discrete 
version of Griewank's global search trajectory method. The program takes an input TINKER .xyz 
coordinates file and shakes it vigorously via a modified dynamics trajectory before, hopefully, settling into 
a low lying minimum. Some trial and error is often required as the current implementation is sensitive to 
various parameters and tolerances that govern the computation. At present, these parameters are not user 
accessible, and must be altered in the source code. However, this method can do a good job of quickly 
optimizing conformation within a limited range of convergence. 
 
TESTGRAD 
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The TESTGRAD program computes and compares the analytical and numerical first derivatives (i.e., the 
gradient vector) of the potential energy for a Cartesian coordinate input structure. The output can be used to 
test or debug the current potential or any added user defined energy terms. 
 
TESTHESS 
 
The TESTHESS program computes and compares the analytical and numerical second derivatives (i.e., the 
Hessian matrix) of the potential energy for a Cartesian coordinate input structure. The output can be used to 
test or debug the current potential or any added user defined energy terms. 
 
TESTLIGHT 
 
A program to compare the efficiency of different nonbonded neighbor methods for the current molecular 
system. The program times the computation of energy and gradient for the van der Waals and charge-
charge electrostatic potential terms using a simple double loop over all interactions and using the Method 
of Lights algorithm to select neighbors. The results can be used to decide whether the Method of Lights has 
any CPU time advantage for the current structure. Both methods should give exactly the same answer in all 
cases, since the identical individual interactions are computed by both methods. The default double loop 
method is faster when cutoffs are not used, or when the cutoff sphere contains about half or more of the 
total system of unit cell. In cases where the cutoff sphere is much smaller than the system size, the Method 
of Lights can be much faster since it avoids unnecessary calculation of distances beyond the cutoff range. 
 
TESTROT 
 
The TESTROT program computes and compares the analytical and numerical first derivatives (i.e., the 
gradient vector) of the potential energy with respect to dihedral angles. Input is a TINKER .int internal 
coordinate file. The output can be used to test or debug the current potential functions or any added user 
defined energy terms. 
 
TIMER 
 
A simple program to provide timing statistics for energy function calls within the TINKER package. 
TIMER requires an input .xyz file and outputs the CPU time (wall clock time on some machine types) 
needed to perform a specified number of energy, gradient and Hessian evaluations. 
 
TIMEROT 
 
This program is similar to TIMER, only it operates over dihedral angles via input of a TINKER .int 
internal coordinate file. In the current version, the torsional Hessian is computed numerically from the 
analytical torsional gradient. 
 
VIBRATE 
 
A program to perform vibrational analysis by computing and diagonalizing the full Hessian matrix (i.e., the 
second partial derivatives) for an input structure (a TINKER .xyz file). Eigenvalues and eigenvectors of the 
mass weighted Hessian (i.e., the vibrational frequencies and normal modes) are also calculated. Structures 
corresponding to individual normal mode motions can be saved in cycle files. 
 
VIBROT 
 
The program VIBROT forms the torsional Hessian matrix via numerical differentiation of the analytical 
torsional gradient. The Hessian is then diagonalized and the eigenvalues are output. The present version 
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does not compute the kinetic energy matrix elements needed to convert the Hessian into the torsional 
normal modes; this will be added in a later version. The required input is a TINKER .int internal coordinate 
file. 
 
XTALFIT 
 
The XTALFIT program is of use in the automated fitting of potential parameters to crystal structure and 
thermodynamic data. XTALFIT takes as input several crystal structures (TINKER .xyz files with unit cell 
parameters in corresponding keyfiles) as well as information on lattice energies and dipole moments of 
monomers. The current version uses a nonlinear least squares optimization to fit van der Waals and 
electrostatic parameters to the input data. Bounds can be placed on the values of the optimization 
parameters. 
 
XTALMIN 
 
A program to perform full crystal minimizations. The program takes as input the structure coordinates and 
unit cell lattice parameters. It then alternates cycles of Newton-style optimization of the structure and 
conjugate gradient optimization of the crystal lattice parameters. This alternating minimization is slower 
than more direct optimization of all parameters at once, but is somewhat more robust in our hands. The 
symmetry of the original crystal is not enforced, so interconversion of crystal forms may be observed in 
some cases. 
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5. Structure Manipulation Programs 
 
 This section of the manual contains a brief description of each of the TINKER structure 
manipulation, geometric calculation and auxiliary programs. A detailed example showing how to run each 
program is included in a later section. The programs listed below are all part of the main, supported 
distribution. Additional source code for various unsupported programs can be found in the /other directory 
of the TINKER distribution. 
 
ARCHIVE 
 
A program for concatenating TINKER cycle files into a single archive file; useful for storing the 
intermediate results of minimizations, dynamics trajectories, and so on. The archive file can be written in 
TINKER format, or in formats usable with MSI's InsightII (their CAR file with .msi extension) or with 
XMakemol (their file format with .xmol extension). Only active atoms are written into the InsightII and 
XMakemol output files, allowing display of partial structures. The program can also extract individual 
cycle files from a TINKER archive. 
 
CORRELATE 
 
A program to compute time correlation functions from collections of TINKER cycle files. Its use requires a 
user supplied function property that computes the value of the property for which a time correlation is 
desired for two input structures. A sample routine is supplied that computes either a velocity 
autocorrelation function or an rms structural superposition as a function of time. The main body of the 
program organizes the overall computation in an efficient manner and outputs the final time correlation 
function. 
 
CRYSTAL 
 
A program for the manipulation of crystal structures including interconversion of fractional and Cartesian 
coordinates, generation of the unit cell from an asymmetric unit, and building of a crystalline block of 
specified size via replication of a single unit cell. The present version can handle about 25 of the most 
common space groups, others can easily be added as needed by modification of the routine symmetry. 
 
DIFFUSE 
 
A program to compute the self-diffusion constant for a homogeneous liquid via the Einstein equation. A 
previously saved dynamics trajectory is read in and ``unfolded'' to reverse translation of molecules due to 
use of periodic boundary conditions. The average motion over all molecules is then used to compute the 
self-diffusion constant. While the current program assumes a homogeneous system, it should be easy to 
modify the code to handle diffusion of individual molecules or other desired effects. 
 
DISTGEOM 
 
A program to perform distance geometry calculations using variations on the classic metric matrix method. 
A user specified number of structures consistent with keyfile input distance and dihedral restraints is 
generated. Bond length and angle restraints are derived from the input structure. Trial distances between the 
triangle smoothed lower and upper bounds can be chosen via any of several metrization methods, including 
a very effective partial random pairwise scheme. The correct radius of gyration of the structure is 
automatically maintained by choosing trial distances from Gaussian distributions of appropriate mean and 
width. The initial embedded structures can be further refined against a geometric restraint-only potential 
using either a sequential minimization protocol or simulated annealing. 
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DOCUMENT 
 
The DOCUMENT program is provided as a minimal listing and documentation tool. It operates on the 
TINKER source code, either individual files or the complete source listing produced by the command script 
listing.make, to generate lists of routines, common blocks or valid keywords. In addition, the program has 
the ability to output a formatted parameter listing from the standard TINKER parameter files. 
 
INTEDIT 
 
A program to allow interactive inspection and alteration of the internal coordinate definitions and values of 
a TINKER structure. If the structure is altered, the user has the option to write out a new internal 
coordinates file upon exit. 
 
INTXYZ 
 
A program to convert a TINKER .int internal coordinates formatted file into a TINKER .xyz Cartesian 
coordinates formatted file. 
 
NUCLEIC 
 
A program for automated building of nucleic acid structures. Upon interactive input of a nucleotide 
sequence with optional phosphate backbone angles, the program builds internal and Cartesian coordinates. 
Standard bond lengths and angles are used. Both DNA and RNA sequences are supported as are A-, B- and 
Z-form structures. Double helixes of complementary sequence can be automatically constructed via a rigid 
docking of individual strands. 
 
PDBXYZ 
 
A program for converting a Brookhaven Protein Data Bank file (a PDB file) into a TINKER .xyz Cartesian 
coordinate file. If the PDB file contains only protein/peptide amino acid residues, then standard protein 
connectivity is assumed, and transferred to the .xyz file. For non-protein portions of the PDB file, atom 
connectivity is determined by the program based on interatomic distances. The program also has the ability 
to add or remove hydrogen atoms from a protein as required by the force field specified during the 
computation. 
 
POLARIZE 
 
A program for computing molecular polarizability from an atom-based distributed model of polarizability. 
A damped interaction model due to Thole is optionally via keyfile settings. A TINKER .xyz file is required 
as input. The output consists of the overall polarizability tensor in the global coordinates and its 
eigenvalues. 
 
PROTEIN 
 
A program for automated building of peptide and protein structures. Upon interactive input of an amino 
acid sequence with optional phi/psi/omega/chi angles, D/L chirality, etc., the program builds internal and 
Cartesian coordinates. Standard bond lengths and angles are assumed for the peptide. The program will 
optionally convert the structure to a cyclic peptide, or add either or both N- and C-terminal capping groups. 
Atom type numbers are automatically assigned for the specified force field. The final coordinates and a 
sequence file are produced as the output. 
 
RADIAL 
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A program to compute the pair radial distribution function between two atom types. The user supplies the 
two atom names for which the distribution function is to be computed, and the width of the distance bins 
for data analysis. A previously saved dynamics trajectory is read as input. The raw radial distribution and a 
spline smoothed version are then output from zero to a distance equal to half the minimum periodic box 
dimension. The atom names are matched to the atom name column of the TINKER .xyz file, independent 
of atom type. 
 
SPACEFILL 
 
A program to compute the volume and surface areas of molecules. Using a modified version of Connolly's 
original analytical description of the molecular surface, the program determines either the van der Waals, 
accessible or molecular (contact/reentrant) volume and surface area. Both surface area and volume are 
broken down into their geometric components, and surface area is decomposed into the convex contribution 
for each individual atom. The probe radius is input as a user option, and atomic radii can be set via the 
keyword file. If TINKER archive files are used as input, the program will compute the volume and surface 
area of each structure in the input file. 
 
SPECTRUM 
 
A program to compute a power spectrum from velocity autocorrelation data. As input, this program 
requires a velocity autocorrelation function as produced by the CORRELATE program. This data, along 
with a user input time step, are Fourier transformed to generate the spectral intensities over a wavelength 
range. The result is a power spectrum, and the positions of the bands are those predicted for an infrared or 
Raman spectrum. However, the data is not weighted by molecular dipole moment derivatives as would be 
required to produce correct IR intensities. 
 
SUPERPOSE 
 
A program to superimpose two molecular structures in 3-dimensions. A variety of options for input of the 
atom sets to be used during the superposition are presented interactively to the user. The superposition can 
be mass-weighted if desired, and the coordinates of the second structure superimposed on the first structure 
are optionally output. If TINKER archive files are used as input, the program will compute all pairwise 
superpositions between structures in the input files. 
 
SYBYLXYZ 
 
A program for converting a TRIPOS Sybyl MOL2 file into a TINKER .xyz Cartesian coordinate file. The 
current version of the program does not attempt to convert the Sybyl atoms types into the active TINKER 
force field types, i.e., all atoms types are simply set to zero. 
 
TVIEW 
 
This is a molecule viewing program derived from the well-know Rasmol program of Roger Sayle. TVIEW 
is modified to remove most of the protein-specific options and to directly read the TINKER .xyz file 
format. The original RasMol program has been altered to allow selection and specification by atoms instead 
of residues. We hope to provide additional functionality in future versions of TVIEW, especially the ability 
to animate the viewing of sequences of coordinate snapshots from a minimization or dynamic trajectory. 
 
XYZEDIT 
 
A program that performs and of a variety of manipulations on an input TINKER .xyz Cartesian coordinates 
formatted file. The present version of the program has the following interactively selectable options: (1) 
Offset the Numbers of the Current Atoms, (2) Deletion of Individual Specified Atoms, (3) Deletion of 
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Specified Types of Atoms, (4) Deletion of Atoms outside Cutoff Range, (5) Insertion of Individual 
Specified Atoms, (6) Replace Old Atom Type with a New Type, (7) Assign Connectivities based on 
Distance, (8) Convert Units from Bohrs to Angstroms, (9) Invert thru Origin to give Mirror Image, (10) 
Translate Center of Mass to the Origin, (11) Translate a Specified Atom to the Origin, (12) Translate and 
Rotate to Inertial Frame, (13) Move to Specified Rigid Body Coordinates, (14) Create and Fill a Periodic 
Boundary Box, (15) Soak Current Molecule in Box of Solvent, (16) Append another XYZ file to Current 
One. In most cases, multiply options can be applied sequentially to an input file. At the end of the editing 
process, a new version of the original .xyz file is written as output. 
 
XYZINT 
 
A program for converting a TINKER .xyz Cartesian coordinate formatted file into a TINKER .int internal 
coordinates formatted file. 
 
XYZPDB 
 
A program for converting a TINKER .xyz Cartesian coordinate file into a Brookhaven Protein Data Bank 
file (a PDB file). 
 
XYZSYBYL 
 
A program to convert a TINKER .xyz Cartesian coordinates file into a TRIPOS Sybyl MOL2 file. The 
conversion generates only the MOLECULE, ATOM, BOND and SUBSTRUCTURE record type in the 
MOL2 file. Generic Sybyl atom types are used in most cases; while these atom types may need to be 
altered in some cases, Sybyl is usually able to correctly display the resulting MOL2 file. 
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6. Force Field Parameter Sets 
 
 The TINKER package is distributed with several force field parameter sets, implementing a 
selection of widely used literature force fields as well as the TINKER force field currently under 
construction in the Ponder lab. We try to exactly reproduce the intent of the original authors of our 
distributed, third-party force fields. In all cases the parameter sets have been validated against literature 
reports, results provided by the original developers, or calculations made with the authentic programs. With 
the few exceptions noted below, TINKER calculations can be treated as authentic results from the genuine 
force fields. A brief description of each parameter set, including some still in preparation and not 
distributed with the current version, is provided below with lead literature references for the force field: 
 
AMOEBA.PRM 
 
Preliminary parameters for the TINKER polarizable atomic multipole force field. As the release of 
TINKER 4.0 we have completed parametrization for a large number of small molecule systems. Work on a 
full protein force field is also essentially complete. The currently distributed file contains a sample of small 
molecule parameters. For further information, or if you are interested in testing other small molecules or 
the protein parameter set, please contact the TINKER developers. 
 
AMBER94.PRM 
 
AMBER ff94 parameters for proteins and nucleic acids. Note that with their ``Cornell'' force field, the 
Kollman group has devised separate, fully independent partial charge values for each of the N- and C-
terminal amino acid residues. At present, the terminal residue charges for TINKER's version maintain the 
correct formal charge, but redistributed somewhat at the alpha carbon atoms from the Kollman group 
values. The total magnitude of the redistribution is less than 0.01 electrons in most cases. The file provided 
with TINKER reproduces the original ff94 set; torsional parameter changes for ff96 are noted in that 
section of the file. The newer ff99 and polarizable ff02 parameter sets are not distributed with TINKER at 
the present time. 
 
W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. 
Fox, J. W. Caldwell and P. A. Kollman, A Second Generation Force Field for the Simulation of Proteins, 
Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc., 117, 5179-5197 (1995)  [PARM94] 
 
P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot and A. Pohorille, The Development/ Application of a 
'Minimalist' Organic/Biochemical Molecular Mechanic Force Field using a Combination of ab Initio 
Calculations and Experimental Data, in Computer Simulation of Biomolecular Systems, W. F. van 
Gunsteren, P. K. Weiner, A. J. Wilkinson, eds., Volume 3, 83-96 (1997)  [PARM96] 
 
G. Moyna, H. J. Williams, R. J. Nachman and A. I. Scott, Conformation in Solution and Dynamics of a 
Structurally Constrained Linear Insect Kinin Pentapeptide Analogue, Biopolymers, 49, 403-413 (1999)  
[AIB charges] 
 
W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy 
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994)   [alkali metal ions] 
 
J. Aqvist, Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J. Phys. 
Chem., 94, 8021-8024, 1990  [alkaline earth Ions, radii adapted for AMBER combining rule] 
 
Current force field parameter values and suggested procedures for development of parameters for 
additional molecules are available from the AMBER web site at UCSF, 
http://www.amber.ucsf.edu/amber/amber.html/ 
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CHARMM19.PRM 
 
CHARMM19 united-atom parameters for proteins. The nucleic acid parameter are not yet implemented. 
There are some differences between authentic CHARMM19 and the TINKER version due to replacement 
of CHARMM impropers by torsions for cases that involve atoms not bonded to the trigonal atom and 
TINKER's use of all possible torsions across a bond instead of a single torsion per bond. 
 
E. Neria, S. Fischer and M. Karplus, Simulation of Activation Free Energies in Molecular Systems, J. 
Chem. Phys., 105, 1902-1921 (1996) 
 
L. Nilsson and M. Karplus, Empirical Energy Functions for Energy Minimizations and Dynamics of 
Nucleic Acids, J. Comput. Chem., 7, 591-616 (1986) 
 
W. E. Reiher III, Theoretical Studies of Hydrogen Bonding, Ph.D. Thesis, Department of Chemistry, 
Harvard University, Cambridge, MA, 1985 
 
CHARMM27.PRM 
 
CHARMM27 all-atom parameters for proteins and lipids. Most of the nucleic acid and small model 
compound parameters are not yet implemented. We plan to provide these additional parameters in due 
course. 
 
N. Foloppe and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 1) Parameter 
Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data, J. Comput. 
Chem., 21, 86-104 (2000)  [CHARMM27] 
 
N. Banavali and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 2) Application to 
Molecular Dynamics Simulations of DNA and RNA in Solution, J. Comput. Chem., 21, 105-120 (2000) 
 
A. D. MacKerrell, Jr., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies 
of Proteins, J. Phys. Chem. B, 102, 3586-3616 (1998)  [CHARMM22] 
 
A. D. MacKerell, Jr., J. Wiorkeiwicz-Kuczera and M. Karplus, An All-Atom Empirical Energy Function 
for the Simulation of Nucleic Acids, J. Am. Chem. Soc., 117, 11946-11975 (1995) 
 
S. E. Feller, D. Yin, R. W. Pastor and A. D. MacKerell, Jr., Molecular Dynamics Simulation of Unsaturated 
Lipids at Low Hydration: Parametrization and Comparison with Diffraction Studies, Biophysical Journal, 
73, 2269-2279 (1997)  [alkenes] 
 
R. H. Stote and M. Karplus, Zinc Binding in Proteins and Solution - A Simple but Accurate Nonbonded 
Representation, Proteins, 23, 12-31 (1995)  [zinc ion] 
 
Current and legacy parameter values are available from the CHARMM force field web site on Alex 
MacKerell's  Research Interests page at the University of Maryland School of Pharmacy, 
https://rxsecure.umaryland.edu/research/amackere/research.html/ 
 
DUDEK.PRM 
 
Protein-only parameters for the early 1990's TINKER force field with multipole values of Dudek and 
Ponder. The current file contains only the multipole values from the 1995 paper by Dudek and Ponder. This 
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set is now superceeded by the more recent TINKER force field developed by Pengyu Ren (see 
WATER.PRM, below). 
 
M. J. Dudek and J. W. Ponder, Accurate Electrostatic Modelling of the Intramolecular Energy of Proteins, 
J. Comput. Chem., 16, 791-816 (1995) 
 
ENCAD.PRM 
 
ENCAD parameters for proteins and nucleic acids.  (in preparation) 
 
M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, Potential Energy Function and Parameters for 
Simulations of the Molecular Dynamics of Protein and Nucleic Acids in Solution, Comp. Phys. Commun., 
91, 215-231 (1995) 
 
M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Daggett, Calibration and Testing of a Water 
Model for Simulation of the Molecular Dynamics of Protein and Nucleic Acids in Solution, J. Phys. Chem. 
B, 101, 5051-5061 (1997)  [F3C water] 
 
HOCH.PRM 
 
Simple NMR-NOE force field of Hoch and Stern. 
 
J. C. Hoch and A. S. Stern, A Method for Determining Overall Protein Fold from NMR Distance 
Restraints, J. Biomol. NMR, 2, 535-543 (1992) 
 
MM2.PRM 
 
Full MM2(1991) parameters including •-systems. The anomeric and electronegativity correction terms 
included in some later versions of MM2 are not implemented. 
 
N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 
Torsional Terms, J. Am. Chem. Soc., 99, 8127-8134 (1977) 
 
J. T. Sprague, J. C. Tai, Y. Yuh and N. L. Allinger, The MMP2 Calculational Method, J. Comput. Chem., 
8, 581-603 (1987) 
 
J. C. Tai and N. L. Allinger, Molecular Mechanics Calculations on Conjugated Nitrogen-Containing 
Heterocycles, J. Am. Chem. Soc., 110, 2050-2055 (1988) 
 
J. C. Tai, J.-H. Lii and N. L. Allinger, A Molecular Mechanics (MM2) Study of Furan, Thiophene, and 
Related Compounds, J. Comput. Chem., 10, 635-647 (1989) 
 
N. L. Allinger, R. A. Kok and M. R. Imam, Hydrogen Bonding in MM2, J. Comput. Chem., 9, 591-595 
(1988) 
 
L. Norskov-Lauritsen and N. L. Allinger, A Molecular Mechanics Treatment of the Anomeric Effect, J. 
Comput. Chem., 5, 326-335 (1984) 
 
All parameters distributed with TINKER are from the ``MM2 (1991) Parameter Set'', as provided by N. L. 
Allinger, University of Georgia 
 
MM3.PRM 
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Full MM3(2000) parameters including pi-systems. The directional hydrogen bonding term and 
electronegativity bond length corrections are implemented, but the anomeric and Bohlmann correction 
terms are not implemented. 
 
N. L. Allinger, Y. H. Yuh and J.-H. Lii, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1, 
J. Am. Chem. Soc., 111, 8551-8566 (1989) 
 
J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational 
Frequencies and Thermodynamics, J. Am. Chem. Soc., 111, 8566-8575 (1989) 
 
J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der 
Waals' Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons, J. Am. Chem. Soc., 111, 
8576-8582 (1989) 
 
N. L. Allinger, H. J. Geise, W. Pyckhout, L. A. Paquette and J. C. Gallucci, Structures of Norbornane and 
Dodecahedrane by Molecular Mechanics Calculations (MM3), X-ray Crystallography, and Electron 
Diffraction, J. Am. Chem. Soc., 111, 1106-1114 (1989)  [stretch-torsion cross term] 
 
N. L. Allinger, F. Li and L. Yan, Molecular Mechanics. The MM3 Force Field for Alkenes, J. Comput. 
Chem., 11, 848-867 (1990) 
 
N. L. Allinger, F. Li, L. Yan and J. C. Tai, Molecular Mechanics (MM3) Calculations on Conjugated 
Hydrocarbons, J. Comput. Chem., 11, 868-895 (1990) 
 
J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. I, J. Phys. Org. 
Chem., 7, 591-609 (1994) 
 
J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. II, J. Comput. Chem., 
19, 1001-1016 (1998) 
 
All parameters distributed with TINKER are from the ``MM3 (2000) Parameter Set'', as provided by N. L. 
Allinger, University of Georgia, August 2000 
 
MM3PRO.PRM 
 
Protein-only version of the MM3 parameters. 
 
J.-H. Lii and N. L. Allinger, The MM3 Force Field for Amides, Polypeptides and Proteins, J. Comput. 
Chem., 12, 186-199 (1991) 
 
OPLSUA.PRM 
 
Complete OPLS-UA with united-atom parameters for proteins and many classes of organic molecules. 
Explicit hydrogens on polar atoms and aromatic carbons. 
 
W. L. Jorgensen and J. Tirado-Rives, The OPLS Potential Functions for Proteins. Energy Minimizations 
for Crystals of Cyclic Peptides and Crambin, J. Am. Chem. Soc., 110, 1657-1666 (1988)  [peptide and 
proteins] 
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W. L. Jorgensen and D. L. Severance, Aromatic-Aromatic Interactions: Free Energy Profiles for the 
Benzene Dimer in Water, Chloroform, and Liquid Benzene, J. Am. Chem. Soc., 112, 4768-4774 (1990)  
[aromatic hydrogens] 
 
S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and P. Weiner, A 
New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem. Soc., 
106, 765-784 (1984)  [united-atom ``AMBER/OPLS'' local geometry] 
 
S. J. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case, An All Atom Force Field for Simulations of 
Proteins and Nucleic Acids, J. Comput. Chem., 7, 230-252 (1986)  [all-atom "AMBER/OPLS" local 
geometry] 
 
L. X. Dang and B. M. Pettitt, Simple Intramolecular Model Potentials for Water, J. Phys. Chem., 91, 3349-
3354 (1987)  [flexible TIP3P and SPC water] 
 
W. L. Jorgensen, J. D. Madura and C. J. Swenson, Optimized Intermolecular Potential Functions for Liquid 
Hydrocarbons, J. Am. Chem. Soc., 106, 6638-6646 (1984)  [hydrocarbons] 
 
W. L. Jorgensen, E. R. Laird, T. B. Nguyen and J. Tirado-Rives, Monte Carlo Simulations of Pure Liquid 
Substituted Benzenes with OPLS Potential Functions, J. Comput. Chem., 14, 206-215 (1993)  [substituted 
benzenes] 
 
E. M. Duffy, P. J. Kowalczyk and W. L. Jorgensen, Do Denaturants Interact with Aromatic Hydrocarbons 
in Water?, J. Am. Chem. Soc., 115, 9271-9275 (1993)  [benzene, naphthalene, urea, guanidinium, 
tetramethyl ammonium] 
 
W. L. Jorgensen and C. J. Swenson, Optimized Intermolecular Potential Functions for Amides and 
Peptides. Structure and Properties of Liquid Amides, J. Am. Chem. Soc., 106, 765-784 (1984)  [amides] 
 
W. L. Jorgensen, J. M. Briggs and M. L. Contreras, Relative Partition Coefficients for Organic Solutes 
form Fluid Simulations, J. Phys. Chem., 94, 1683-1686 (1990)  [chloroform, pyridine, pyrazine, 
pyrimidine] 
 
J. M. Briggs, T. B. Nguyen and W. L. Jorgensen, Monte Carlo Simulations of Liquid Acetic Acid and 
Methyl Acetate with the OPLS Potential Functions, J. Phys. Chem., 95, 3315-3322 (1991)  [acetic acid, 
methyl acetate] 
 
H. Liu, F. Muller-Plathe and W. F. van Gunsteren, A Force Field for Liquid Dimethyl Sulfoxide and 
Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation, J. 
Am. Chem. Soc., 117, 4363-4366 (1995)  [dimethyl sulfoxide] 
 
J. Gao, X. Xia and T. F. George, Importance of Bimolecular Interactions in Developing Empirical Potential 
Functions for Liquid Ammonia, J. Phys. Chem., 97, 9241-9246 (1993)  [ammonia] 
 
J. Aqvist, Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J. Phys. 
Chem., 94, 8021-8024 (1990)  [metal ions] 
 
W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy 
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994)  [alkali metal ions] 
 
J. Chandrasekhar, D. C. Spellmeyer and W. L. Jorgensen, Energy Component Analysis for Dilute Aqueous 
Solutions of Li+, Na+, F-, and Cl- Ions, J. Am. Chem. Soc., 106, 903-910 (1984)  [halide ions] 
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Most parameters distributed with TINKER are from ``OPLS and OPLS-AA Parameters for Organic 
Molecules, Ions, and Nucleic Acids'' as provided by W. L. Jorgensen, Yale University, October 1997 
 
OPLSAA.PRM 
 
OPLS-AA with all-atom parameters for proteins and many general classes of organic molecules. 
 
W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and Testing of the OPLS All-Atom 
Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 117, 
11225-11236 (1996) 
 
W. L. Jorgensen and N. A. McDonald, Development of an All-Atom Force Field for Heterocycles. 
Properties of Liquid Pyridine and Diazenes, THEOCHEM-J. Mol. Struct., 424, 145-155 (1998) 
 
N. A. McDonald and W. L. Jorgensen, Development of an All-Atom Force Field for Heterocycles. 
Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles, J. Phys. Chem. B, 102, 8049-8059 (1998) 
 
All parameters distributed with TINKER are from ``OPLS and OPLS-AA Parameters for Organic 
Molecules, Ions, and Nucleic Acids'' as provided by W. L. Jorgensen, Yale University, October 1997 
 
SMOOTH.PRM 
 
Version of OPLS-UA for use with potential smoothing. Largely adapted largely from standard OPLS-UA 
parameters with modifications to the vdw and improper torsion terms. 
 
R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing and 
Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998)  [smoothing 
modifications] 
 
SMOOTHAA.PRM 
 
Version of OPLS-AA for use with potential smoothing. Largely adapted largely from standard OPLS-AA 
parameters with modifications to the vdw and improper torsion terms. 
 
R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing and 
Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998)  [smoothing 
modifications] 
 
WATER.PRM 
 
The AMOEBA water parameters for a polarizable atomic multipole electrostatics model. This model is 
equal or better to the best available water models for many bulk and cluster properties. 
 
P. Ren and J. W. Ponder, A Polarizable Atomic Multipole Water Model for Molecular Mechanics 
Simulation, J. Phys. Chem. B, 107, xxx-xxx (2003)  [in press] 
 
An earlier version the AMOEBA water model is described in: Yong Kong, Multipole Electrostatic Methods 
for Protein Modeling with Reaction Field Treatment, Biochemistry & Molecular Biophysics, Washington 
University, St. Louis, August, 1997 [available from http://dasher.wustl.edu/ponder/] 
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7. Use of the Keyword Control File 
 
 This section contains a description of the keyword parameters which may be used to define or 
alter the course of a TINKER calculation. The keyword control file is optional in the sense that all of the 
TINKER programs will run in the absence of a keyfile and will simply use default values or query the user 
for needed information. However, the keywords allow use of a wide variety of algorithmic and procedural 
options, many of which are unavailable interactively. 
 
 Keywords are read from the keyword control file. All programs look first for a keyfile with the 
same base name as the input molecular system and ending in the extension .key. If this file does not exist, 
then TINKER tries to use a generic keyfile with the name tinker.key and located in the same directory as 
the input system. If neither a system specific nor a generic keyfile is present, TINKER will continue by 
using default values for keyword options and asking interactive questions as necessary. 
 
 TINKER searches the keyfile during the course of a calculation for relevant keywords that may be 
present. All keywords must appear as the first word on the line. Any blank space to the left of the keyword 
is ignored, and all contents of the keyfiles are case insensitive. Some keywords take modifiers; i.e., 
TINKER looks further on the same line for additional information, such as the value of some parameter 
related to the keyword. Modifier information is read in free format, but must be completely contained on 
the same line as the original keyword. Any lines contained in the keyfile which do not qualify as valid 
keyword lines are treated as comments and are simply ignored. 
 
 Several keywords take a list of integer values (atom numbers, for example) as modifiers. For these 
keywords the integers can simply be listed explicitly and separated by spaces, commas or tabs. If a range of 
numbers is desired, it can be specified by listing the negative of the first number of the range, followed by a 
separator and the last number of the range. For example, the keyword line ACTIVE 4 -9 17 23 could be 
used to add atoms 4, 9 through 17, and 23 to the set of active atoms during a TINKER calculation. 
 
 Listed below are the valid TINKER keywords sorted into groups by general function. The section 
ends with an alphabetical listing of the individual keywords along with brief descriptions of their action and 
possible modifiers, and examples of usage. 
 
 
Keywords Grouped by Functionality 
 
OUTPUT CONTROL KEYWORDS 
 
ARCHIVE DEBUG DIGITS 
ECHO EXIT-PAUSE NOVERSION 
OVERWRITE PRINTOUT SAVE-CYCLE 
SAVE-INDUCED SAVE-VELOCITY VERBOSE 
WRITEOUT  
 
FORCE FIELD SELECTION KEYWORDS 
 
FORCEFIELD PARAMETERS 
 
POTENTIAL FUNCTION SELECTION KEYWORDS 
 
ANGANGTERM ANGLETERM BONDTERM 
CHARGETERM CHGDPLTERM DIPOLETERM 
EXTRATERM IMPROPTERM IMPTORSTERM 
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METALTERM MPOLETERM OPBENDTERM 
OPDISTTERM POLARIZETERM RESTRAINTERM 
RXNFIELDTERM SOLVATETERM STRBNDTERM 
STRTORTERM TORSIONTERM TORTORTERM 
UREYTERM VDWTERM 
  
POTENTIAL FUNCTION PARAMETER KEYWORDS 
 
ANGANG ANGLE ANGLE3 
ANGLE4 ANGLE5 ANGLEF 
ATOM BIOTYPE BOND 
BOND3 BOND4 BOND5 
CHARGE DIPOLE DIPOLE3 
DIPOLE4 DIPOLE5 ELECTNEG 
HBOND IMPROPER IMPTORS 
METAL MULTIPOLE OPBEND 
OPDIST PIATOM PIBOND 
POLARIZE SOLVATE STRBND 
STRTORS TORSION TORSION4 
TORSION5 TORTOR UREYBRAD 
VDW VDW14 VDWPR 
 
ENERGY UNIT CONVERSION KEYWORDS 
 
ANGLEUNIT ANGANGUNIT BONDUNIT 
IMPROPUNIT IMPTORUNIT OPBENDUNIT 
OPDISTUNIT STRBNDUNIT STRTORUNIT 
TORSIONUNIT TORTORUNIT UREYUNIT 
 
LOCAL GEOMETRY FUNCTIONAL FORM KEYWORDS 
 
ANGLE-CUBIC ANGLE-QUARTIC ANGLE-PENTIC 
ANGLE-SEXTIC BOND-CUBIC BOND-QUARTIC 
BONDTYPE MM2-STRBND PISYSTEM 
UREY-CUBIC UREY-QUARTIC 
 
VAN DER WAALS FUNCTIONAL FORM KEYWORDS 
 
A-EXPTERM B-EXPTERM C-EXPTERM 
DELTA-HALGREN EPSILONRULE GAMMA-HALGREN 
GAUSSTYPE RADIUSRULE RADIUSSIZE 
RADIUSTYPE VDW-12-SCALE VDW-13-SCALE 
VDW-14-SCALE VDW-15-SCALE VDWTYPE 
 
ELECTROSTATICS FUNCTIONAL FORM KEYWORDS 
 
CHG-12-SCALE CHG-13-SCALE CHG-14-SCALE 
CHG-15-SCALE DIELECTRIC DIRECT-11-SCALE 
DIRECT-12-SCALE DIRECT-13-SCALE DIRECT-14-SCALE 
MPOLE-12-SCALE MPOLE-13-SCALE MPOLE-14-SCALE 
MPOLE-15-SCALE MUTUAL-11-SCALE MUTUAL-12-SCALE 
MUTUAL-13-SCALE MUTUAL-14-SCALE POLAR-12-SCALE 
POLAR-13-SCALE POLAR-14-SCALE POLAR-15-SCALE 
POLAR-DAMP POLAR-EPS POLAR-OLD 
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POLAR-SOR POLARIZATION REACTIONFIELD 
 
NONBONDED CUTOFF KEYWORDS 
 
CHG-CUTOFF CHG-TAPER CUTOFF 
DPL-CUTOFF DPL-TAPER HESS-CUTOFF 
LIGHTS MPOLE-CUTOFF MPOLE-TAPER 
NEIGHBOR-GROUPS NEUTRAL-GROUPS POLYMER-CUTOFF 
TAPER TRUNCATE VDW-CUTOFF 
VDW-TAPER 
 
EWALD SUMMATION KEYWORDS 
 
EWALD EWALD-ALPHA EWALD-BOUNDARY 
EWALD-CUTOFF EWALD-FRACTION PME-GRID 
PME-ORDER 
 
CRYSTAL LATTICE & PERIODIC BOUNDARY KEYWORDS 
 
A-AXIS B-AXIS C-AXIS 
ALPHA BETA GAMMA 
OCTAHEDRON SPACEGROUP 
 
OPTIMIZATION KEYWORDS 
 
ANGMAX CAPPA FCTMIN 
HGUESS INTMAX LBFGS-VECTORS 
MAXITER NEWHESS NEXTITER 
SLOPEMAX STEEPEST-DESCENT STEPMAX 
STEPMIN 
 
DYNAMICS KEYWORDS 
 
COLLISION COMPRESS FRICTION 
FRICTION-SCALING INTEGRATE NOSE-MASS 
TAU-PRESSURE TAU-TEMPERATURE THERMOSTAT 
 
TRANSITION STATE KEYWORDS 
 
DIVERGE GAMMAMIN REDUCE 
SADDLEPOINT 
 
DISTANCE GEOMETRY KEYWORDS 
 
TRIAL-DISTANCE TRIAL-DISTRIBUTION 
 
RANDOM NUMBER KEYWORDS 
 
RANDOMSEED 
 
FREE ENERGY PERTURBATION KEYWORDS 
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LAMBDA MUTATE 
 
PARTIAL STRUCTURE KEYWORDS 
 
ACTIVE GROUP GROUP-INTER 
GROUP-INTRA GROUP-MOLECULE GROUP-SELECT 
INACTIVE 
 
CONSTRAINT & RESTRAINT KEYWORDS 
 
BASIN ENFORCE-CHIRALITY RATTLE 
RATTLE-DISTANCE RESTRAIN-ANGLE RESTRAIN-DISTANCE 
RESTRAIN-GROUPS RESTRAIN-POSITION RESTRAIN-TORSION 
SPHERE WALL 
 
POTENTIAL SMOOTHING KEYWORDS 
 
DEFORM DIFFUSE-CHARGE DIFFUSE-TORSION 
DIFFUSE-VDW SMOOTHING 
 
 
Description of Individual Keywords 
 
The following is an alphabetical list of the TINKER keywords along with a brief description of the action 
of each keyword and required or optional parameters that can be used to extend or modify each keyword. 
The form of possible modifiers, if any, is shown in brackets following each keyword. 
 
A-AXIS [real]     Sets the value of the a-axis length for a crystal unit cell, or, equivalently,  the X-axis 
length for a periodic box. The length value in Angstroms is listed after the keyword. 
 
A-EXPTERM [real]     Sets the value of the ``A'' premultiplier term in the Buckingham van der Waals 
function, i.e., the value of A in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }. 
 
ACTIVE [integer list]     Sets the list of active atoms during a TINKER computation. Individual potential 
energy terms are computed when at least one atom involved in the term is active. For Cartesian space 
calculations, active atoms are those allowed to move. For torsional space calculations, rotations are allowed 
when all atoms on one side of the rotated bond are active. Multiple ACTIVE lines can be present in the 
keyfile and are treated cumulatively.  On each line the keyword can be followed by one or more atom 
numbers or atom ranges. The presence of any ACTIVE keyword overrides any INACTIVE keywords in the 
keyfile. 
 
ALPHA [real]     Sets the value of the • angle of a crystal unit cell, i.e., the angle between the b-axis and c-
axis of a unit cell, or, equivalently, the angle between the Y-axis and Z-axis of a periodic box. The default 
value in the absence of the ALPHA keyword is 90 degrees. 
 
ANGANG [1 integer & 3 reals]     This keyword provides the values for a single angle-angle cross term 
potential parameter. 
 
ANGANGTERM [NONE/ONLY]     This keyword controls use of the angle-angle cross term potential 
energy. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option 
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for 
this one. 
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ANGANGUNIT [real]     Sets the scale factor needed to convert the energy value computed by the angle-
angle cross term potential into units of kcal/mole. The correct value is force field dependent and typically 
provided in the header of the master force field parameter file. The default of (•/180)2 = 0.0003046 is used, 
if the ANGANGUNIT keyword is not given in the force field parameter file or the keyfile. 
 
ANGLE [3 integers & 4 reals]     This keyword provides the values for a single bond angle bending 
parameter. The integer modifiers give the atom class numbers for the three kinds of atoms involved in the 
angle which is to be defined. The real number modifiers give the force constant value for the angle and up 
to three ideal bond angles in degrees. In most cases only one ideal bond angle is given, and that value is 
used for all occurrences of the specified bond angle. If all three ideal angles are given, the values apply 
when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen atoms, respectively. This 
``hydrogen environment'' option is provided to implement the corresponding feature of Allinger's MM 
force fields. The default units for the force constant are kcal/mole/radian2, but this can be controlled via the 
ANGLEUNIT keyword. 
 
ANGLE-CUBIC [real]     Sets the value of the cubic term in the Taylor series expansion form of the bond 
angle bending potential energy. The real number modifier gives the value of the coefficient as a multiple of 
the quadratic coefficient. This term multiplied by the angle bending energy unit conversion factor, the force 
constant, and the cube of the deviation of the bond angle from its ideal value gives the cubic contribution to 
the angle bending energy. The default value in the absence of the ANGLE-CUBIC keyword is zero; i.e., the 
cubic angle bending term is omitted. 
 
ANGLE-PENTIC [real]     Sets the value of the fifth power term in the Taylor series expansion form of 
the bond angle bending potential energy. The real number modifier gives the value of the coefficient as a 
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion 
factor, the force constant, and the fifth power of the deviation of the bond angle from its ideal value gives 
the pentic contribution to the angle bending energy. The default value in the absence of the ANGLE-
PENTIC keyword is zero; i.e., the pentic angle bending term is omitted. 
 
ANGLE-QUARTIC [real]     Sets the value of the quartic term in the Taylor series expansion form of the 
bond angle bending potential energy. The real number modifier gives the value of the coefficient as a 
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion 
factor, the force constant, and the forth power of the deviation of the bond angle from its ideal value gives 
the quartic contribution to the angle bending energy. The default value in the absence of the ANGLE-
QUARTIC keyword is zero; i.e., the quartic angle bending term is omitted. 
 
ANGLE-SEXTIC [real]     Sets the value of the sixth power term in the Taylor series expansion form of 
the bond angle bending potential energy. The real number modifier gives the value of the coefficient as a 
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit conversion 
factor, the force constant, and the sixth power of the deviation of the bond angle from its ideal value gives 
the sextic contribution to the angle bending energy. The default value in the absence of the ANGLE-
SEXTIC keyword is zero; i.e., the sextic angle bending term is omitted. 
 
ANGLE3 [3 integers & 4 reals]     This keyword provides the values for a single bond angle bending 
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers for 
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the 
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are 
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen 
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled 
via the ANGLEUNIT keyword. If any ANGLE3 keywords are present, either in the master force field 
parameter file or the keyfile, then TINKER requires that special ANGLE3 parameters be given for all 
angles in 3-membered rings. In the absence of any ANGLE3 keywords, standard ANGLE parameters will 
be used for bonds in 3-membered rings. 
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ANGLE4 [3 integers & 4 reals]     This keyword provides the values for a single bond angle bending 
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers for 
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the 
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are 
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen 
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled 
via the ANGLEUNIT keyword. If any ANGLE4 keywords are present, either in the master force field 
parameter file or the keyfile, then TINKER requires that special ANGLE4 parameters be given for all 
angles in 4-membered rings. In the absence of any ANGLE4 keywords, standard ANGLE parameters will 
be used for bonds in 4-membered rings. 
 
ANGLE5 [3 integers & 4 reals]     This keyword provides the values for a single bond angle bending 
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers for 
the three kinds of atoms involved in the angle which is to be defined. The real number modifiers give the 
force constant value for the angle and up to three ideal bond angles in degrees. If all three ideal angles are 
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen 
atoms, respectively. The default units for the force constant are kcal/mole/radian2, but this can be controlled 
via the ANGLEUNIT keyword. If any ANGLE5 keywords are present, either in the master force field 
parameter file or the keyfile, then TINKER requires that special ANGLE5 parameters be given for all 
angles in 5-membered rings. In the absence of any ANGLE5 keywords, standard ANGLE parameters will 
be used for bonds in 5-membered rings. 
 
ANGLEF [3 integers & 3 reals]     This keyword provides the values for a single bond angle bending 
parameter for a SHAPES-style Fourier potential function. The integer modifiers give the atom class 
numbers for the three kinds of atoms involved in the angle which is to be defined. The real number 
modifiers give the force constant value for the angle, the angle shift in degrees, and the periodicity value. 
Note that the force constant should be given as the ``harmonic'' value and not the native Fourier value. The 
default units for the force constant are kcal/mole/radian2, but this can be controlled via the ANGLEUNIT 
keyword. 
 
ANGLETERM [NONE/ONLY]     This keyword controls use of the bond angle bending potential energy 
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option 
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for 
this one. 
 
ANGLEUNIT [real]     Sets the scale factor needed to convert the energy value computed by the bond 
angle bending potential into units of kcal/mole. The correct value is force field dependent and typically 
provided in the header of the master force field parameter file. The default value of (•/180)2 = 0.0003046 is 
used, if the ANGLEUNIT keyword is not given in the force field parameter file or the keyfile. 
 
ANGMAX [real]     Set the maximum permissible angle between the current optimization search direction 
and the negative of the gradient direction. If this maximum angle value is exceeded, the optimization 
routine will note an error condition and may restart from the steepest descent direction. The default value in 
the absence of the ANGMAX keyword is usually 88 degrees for conjugate gradient methods and 180 
degrees (i.e., disabled) for variable metric optimizations. 
 
ARCHIVE     Causes TINKER molecular dynamics-based programs to write trajectories directly to a 
single plain-text archive file with the .arc format. If an archive file already exists at the start of the 
calculation, then the newly generated trajectory is appended to the end of the existing file. The default in 
the absence of this keyword is to write the trajectory snapshots to consecutively numbered cycle files. 
 
ATOM [2 integers, name, quoted string, integer, real & integer]     This keyword provides the values 
needed to define a single force field atom type. 
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B-AXIS [real]     Sets the value of the b-axis length for a crystal unit cell, or, equivalently,  the Y-axis 
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is 
absent, the b-axis length is set equal to the a-axis length. 
 
B-EXPTERM [real]     Sets the value of the ``B'' exponential factor in the Buckingham van der Waals 
function, i.e., the value of B in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }. 
 
BASIN [2 reals]     Presence of this keyword turns on a ``basin'' restraint potential function that serves to 
drive the system toward a compact structure. The actual function is a Gaussian of the form Ebasin = • A exp[-
B R2], summed over all pairs of atoms where R is the distance between atoms. The A and B values are the 
depth and width parameters given as modifiers to the BASIN keyword. This potential is currently used to 
control the degree of expansion during potential energy smooth procedures through the use of shallow, 
broad basins. 
 
BETA [real]     Sets the value of the • angle of a crystal unit cell, i.e., the angle between the a-axis and c-
axis of a unit cell, or, equivalently, the angle between the X-axis and Z-axis of a periodic box. The default 
value in the absence of the BETA keyword is to set the • angle equal to the • angle as given by the keyword 
ALPHA. 
 
BIOTYPE [integer, name, quoted string & integer]     This keyword provides the values to define the 
correspondence between a single biopolymer atom type and its force field atom type. 
 
BOND [2 integers & 2 reals]     This keyword provides the values for a single bond stretching parameter. 
The integer modifiers give the atom class numbers for the two kinds of atoms involved in the bond which is 
to be defined. The real number modifiers give the force constant value for the bond and the ideal bond 
length in Å. The default units for the force constant are kcal/mole/Å2, but this can be controlled via the 
BONDUNIT keyword. 
 
BOND-CUBIC [real]     Sets the value of the cubic term in the Taylor series expansion form of the bond 
stretching potential energy. The real number modifier gives the value of the coefficient as a multiple of the 
quadratic coefficient. This term multiplied by the bond stretching energy unit conversion factor, the force 
constant, and the cube of the deviation of the bond length from its ideal value gives the cubic contribution 
to the bond stretching energy. The default value in the absence of the BOND-CUBIC keyword is zero; i.e., 
the cubic bond stretching term is omitted. 
 
BOND-QUARTIC [real]     Sets the value of the quartic term in the Taylor series expansion form of the 
bond stretching potential energy. The real number modifier gives the value of the coefficient as a multiple 
of the quadratic coefficient. This term multiplied by the bond stretching energy unit conversion factor, the 
force constant, and the forth power of the deviation of the bond length from its ideal value gives the quartic 
contribution to the bond stretching energy. The default value in the absence of the BOND-QUARTIC 
keyword is zero; i.e., the quartic bond stretching term is omitted. 
 
BOND3 [2 integers & 2 reals]     This keyword provides the values for a single bond stretching parameter 
specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers for the two kinds 
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant 
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2, 
but this can be controlled via the BONDUNIT keyword. If any BOND3 keywords are present, either in the 
master force field parameter file or the keyfile, then TINKER requires that special BOND3 parameters be 
given for all bonds in 3-membered rings. In the absence of any BOND3 keywords, standard BOND 
parameters will be used for bonds in 3-membered rings. 
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BOND4 [2 integers & 2 reals]     This keyword provides the values for a single bond stretching parameter 
specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers for the two kinds 
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant 
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2, 
but this can be controlled via the BONDUNIT keyword. If any BOND4 keywords are present, either in the 
master force field parameter file or the keyfile, then TINKER requires that special BOND4 parameters be 
given for all bonds in 4-membered rings. In the absence of any BOND4 keywords, standard BOND 
parameters will be used for bonds in 4-membered rings 
 
BOND5 [2 integers & 2 reals]     This keyword provides the values for a single bond stretching parameter 
specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers for the two kinds 
of atoms involved in the bond which is to be defined. The real number modifiers give the force constant 
value for the bond and the ideal bond length in Å. The default units for the force constant are kcal/mole/Å2, 
but this can be controlled via the BONDUNIT keyword. If any BOND5 keywords are present, either in the 
master force field parameter file or the keyfile, then TINKER requires that special BOND5 parameters be 
given for all bonds in 5-membered rings. In the absence of any BOND5 keywords, standard BOND 
parameters will be used for bonds in 5-membered rings 
 
BONDTERM [NONE/ONLY]     This keyword controls use of the bond stretching potential energy term. 
In the absence of a modifying option, this keyword turns on use of the potential. The NONE option turns 
off use of this potential energy term. The ONLY option turns off all potential energy terms except for this 
one. 
 
BONDTYPE [TAYLOR/MORSE/GAUSSIAN]     Chooses the functional form of the bond stretching 
potential. The TAYLOR option selects a Taylor series expansion containing terms from harmonic through 
quartic. The MORSE option selects a Morse potential fit to the ideal bond length and stretching force 
constant parameter values. The GAUSSIAN option uses an inverted Gaussian with amplitude equal to the 
Morse bond dissociation energy and width set to reproduce the vibrational frequency of a harmonic 
potential. The default is to use the TAYLOR potential. 
 
BONDUNIT [real]     Sets the scale factor needed to convert the energy value computed by the bond 
stretching potential into units of kcal/mole. The correct value is force field dependent and typically 
provided in the header of the master force field parameter file. The default value of 1.0 is used, if the 
BONDUNIT keyword is not given in the force field parameter file or the keyfile. 
 
C-AXIS [real]     Sets the value of the C-axis length for a crystal unit cell, or, equivalently,  the Z-axis 
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is 
absent, the C-axis length is set equal to the A-axis length. 
 
C-EXPTERM [real]     Sets the value of the ``C'' dispersion multiplier in the Buckingham van der Waals 
function, i.e., the value of C in the formula Evdw = • { A exp[-B(Ro/R)] - C (Ro/R)6 }. 
 
CAPPA [real]     This keyword is used to set the normal termination criterion for the line search phase of 
TINKER optimization routines. The line search exits successfully if the ratio of the current gradient 
projection on the line to the projection at the start of the line search falls below the value of CAPPA. A 
default value of 0.1 is used in the absence of the CAPPA keyword. 
 
CHARGE [1 integer & 1 real]     This keyword provides a value for a single atomic partial charge 
electrostatic parameter. The integer modifier, if positive, gives the atom type number for which the charge 
parameter is to be defined. Note that charge parameters are given for atom types, not atom classes. If the 
integer modifier is negative, then the parameter value to follow applies only to the individual atom whose 
atom number is the negative of the modifier. The real number modifier gives the values of the atomic 
partial charge in electrons. 
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CHARGETERM [NONE/ONLY]     This keyword controls use of the charge-charge potential energy 
term between pairs of atomic partial charges. In the absence of a modifying option, this keyword turns on 
use of the potential. The NONE option turns off use of this potential energy term. The ONLY option turns 
off all potential energy terms except for this one. 
 
CHG-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-2 connected atoms, i.e., atoms that are directly bonded. The 
default value of 0.0 is used, if the CHG-12-SCALE keyword is not given in either the parameter file or the 
keyfile. 
 
CHG-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-3 connected atoms, i.e., atoms separated by two covalent bonds. 
The default value of 0.0 is used, if the CHG-13-SCALE keyword is not given in either the parameter file or 
the keyfile. 
 
CHG-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-4 connected atoms, i.e., atoms separated by three covalent 
bonds. The default value of 1.0 is used, if the CHG-14-SCALE keyword is not given in either the parameter 
file or the keyfile. 
 
CHG-15-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-5 connected atoms, i.e., atoms separated by four covalent bonds. 
The default value of 1.0 is used, if the CHG-15-SCALE keyword is not given in either the parameter file or 
the keyfile. 
 
CHG-CUTOFF [real]     Sets the cutoff distance value in Angstroms for charge-charge electrostatic 
potential energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to zero. 
Other keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff 
distance in the absence of the CHG-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for 
periodic systems. 
 
CHG-TAPER [real]     This keyword allows modification of the cutoff window for charge-charge 
electrostatic potential energy interactions. It is similar in form and action to the TAPER keyword, except 
that its value applies only to the charge-charge potential. The default value in the absence of the CHG-
TAPER keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance. 
 
CHGDPLTERM [NONE/ONLY]     This keyword controls use of the charge-dipole potential energy term 
between atomic partial charges and bond dipoles. In the absence of a modifying option, this keyword turns 
on use of the potential. The NONE option turns off use of this potential energy term. The ONLY option 
turns off all potential energy terms except for this one. 
 
COLLISION [real]     Sets the value of the random collision frequency used in the Andersen stochastic 
collision dynamics thermostat. The supplied value has units of fs-1 atom-1 and is multiplied internal to 
TINKER by the time step in fs and N-2/3 where N is the number of atoms. The default value used in the 
absence of the COLLISION keyword is 0.1 which is appropriate for many systems but may need 
adjustment to achieve adequate temperature control without perturbing the dynamics. 
 
COMPRESS [real]     Sets the value of the bulk solvent isothermal compressibility in Atm-1 for use during 
pressure computation and scaling in molecular dynamics computations. The default value used in the 
absence of the COMPRESS keyword is 0.000046, appropriate for water. This parameter serves as a scale 
factor for the Groningen-style pressure bath coupling time, and its exact value should not be of critical 
importance. 
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CUTOFF [real]     Sets the cutoff distance value for all nonbonded potential energy interactions. The 
energy for any of the nonbonded potentials of a pair of sites beyond the cutoff distance will be set to zero. 
Other keywords can be used to select a smoothing scheme near the cutoff distance, or to apply different 
cutoff distances to various nonbonded energy terms. 
 
DEBUG     Turns on printing of detailed information and intermediate values throughout the progress of a 
TINKER computation; not recommended for use with large structures or full potential energy functions 
since a summary of every individual interaction will usually be output. 
 
DEFORM [real]     Sets the amount of diffusion equation-style smoothing that will be applied to the 
potential energy surface when using the SMOOTH force field. The real number option is equivalent to the 
``time'' value in the original Piela, et al. formalism; the larger the value, the greater the smoothing. The 
default value is zero, meaning that no smoothing will be applied. 
 
DELTA-HALGREN [real]     Sets the value of the • parameter in Halgren's buffered 14-7 vdw potential 
energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of 0.07 is used. 
 
DIELECTRIC [real]     Sets the value of the bulk dielectric constant used to damp all electrostatic 
interaction energies for any of the TINKER electrostatic potential functions. The default value is force field 
dependent, but is usually equal to 1.0 (for Allinger's MM force fields the default is 1.5). 
  
DIFFUSE-CHARGE [real]     This keyword is used during potential function smoothing procedures to 
specify the effective diffusion coefficient to be applied to the smoothed form of the Coulomb's Law charge-
charge potential function. In the absence of the DIFFUSE-CHARGE keyword, a default value of 3.5 is 
used. 
  
DIFFUSE-TORSION [real]     This keyword is used during potential function smoothing procedures to 
specify the effective diffusion coefficient to be applied to the smoothed form of the torsion angle potential 
function. In the absence of the DIFFUSE-TORSION keyword, a default value of 0.0225 is used. 
 
DIFFUSE-VDW [real]     This keyword is used during potential function smoothing procedures to specify 
the effective diffusion coefficient to be applied to the smoothed Gaussian approximation to the Lennard-
Jones van der Waals potential function. In the absence of the DIFFUSE-VDW keyword, a default value of 
1.0 is used. 
 
DIGITS [integer]     This keyword controls the number of digits of precision  output by TINKER in 
reporting potential energies and atomic coordinates. The allowed values for the integer modifier are 4, 6 
and 8. Input values less than 4 will be set to 4, and those greater than 8 will be set to 8. Final energy values 
reported by most TINKER programs will contain the specified number of digits to the right of the decimal 
point. The number of decimal places to be output for atomic coordinates is generally two larger than the 
value of DIGITS. In the absence of the DIGITS keyword a default value of 4 is used, and  energies will be 
reported to 4 decimal places with coordinates to 6 decimal places. 
 
DIPOLE [2 integers & 2 reals]     This keyword provides the values for a single bond dipole electrostatic 
parameter. The integer modifiers give the atom type numbers for the two kinds of atoms involved in the 
bond dipole which is to be defined. The real number modifiers give the value of the bond dipole in Debyes 
and the position of the dipole site along the bond. If the bond dipole value is positive, then the first of the 
two atom types is the positive end of the dipole. For a negative bond dipole value, the first atom type listed 
is negative. The position along the bond is an optional modifier that gives the postion of the dipole site as a 
fraction between the first atom type (position=0) and the second atom type (position=1). The default for the 
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. 
 
DIPOLE3 [2 integers & 2 reals]     This keyword provides the values for a single bond dipole electrostatic 
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom type numbers for the 
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two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the 
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the 
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If 
any DIPOLE3 keywords are present, either in the master force field parameter file or the keyfile, then 
TINKER requires that special DIPOLE3 parameters be given for all bond dipoles in 3-membered rings. In 
the absence of any DIPOLE3 keywords, standard DIPOLE parameters will be used for bonds in 3-
membered rings. 
 
DIPOLE4 [2 integers & 2 reals]     This keyword provides the values for a single bond dipole electrostatic 
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom type numbers for the 
two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the 
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the 
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If 
any DIPOLE4 keywords are present, either in the master force field parameter file or the keyfile, then 
TINKER requires that special DIPOLE4 parameters be given for all bond dipoles in 4-membered rings. In 
the absence of any DIPOLE4 keywords, standard DIPOLE parameters will be used for bonds in 4-
membered rings. 
 
DIPOLE5 [2 integers & 2 reals]     This keyword provides the values for a single bond dipole electrostatic 
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom type numbers for the 
two kinds of atoms involved in the bond dipole which is to be defined. The real number modifiers give the 
value of the bond dipole in Debyes and the position of the dipole site along the bond. The default for the 
dipole position in the absence of a specified value is 0.5, placing the dipole at the midpoint of the bond. If 
any DIPOLE5 keywords are present, either in the master force field parameter file or the keyfile, then 
TINKER requires that special DIPOLE5 parameters be given for all bond dipoles in 5-membered rings. In 
the absence of any DIPOLE5 keywords, standard DIPOLE parameters will be used for bonds in 5-
membered rings. 
 
DIPOLETERM [NONE/ONLY]     This keyword controls use of the dipole-dipole potential energy term 
between pairs of bond dipoles. In the absence of a modifying option, this keyword turns on use of the 
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
DIRECT-11-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
permanent (direct) field due to atoms within a polarization group during an induced dipole calculation, i.e., 
atoms that are in the same polarization group as the atom being polarized. The default value of 0.0 is used, 
if the DIRECT-11-SCALE keyword is not given in either the parameter file or the keyfile. 
 
DIRECT-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
permanent (direct) field due to atoms in 1-2 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups directly connected to the group containing the atom being polarized. 
The default value of 0.0 is used, if the DIRECT-12-SCALE keyword is not given in either the parameter 
file or the keyfile. 
 
DIRECT-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
permanent (direct) field due to atoms in 1-3 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups separated by one group from the group containing the atom being 
polarized. The default value of 0.0 is used, if the DIRECT-13-SCALE keyword is not given in either the 
parameter file or the keyfile. 
 
DIRECT-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
permanent (direct) field due to atoms in 1-4 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups separated by two groups from the group containing the atom being 
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polarized. The default value of 1.0 is used, if the DIRECT-14-SCALE keyword is not given in either the 
parameter file or the keyfile. 
 
DIVERGE [real]     This keyword is used by the SADDLE program to set the maximum allowed value of 
the ratio of the gradient length along the path to the total gradient norm at the end of a cycle of 
minimization perpendicular to the path. If the value provided by the DIVERGE keyword is exceeded, then 
another cycle of maximization along the path is required. A default value of 0.005 is used in the absence of 
the DIVERGE keyword. 
 
DPL-CUTOFF [real]     Sets the cutoff distance value in Angstroms for bond dipole-bond dipole 
electrostatic potential energy interactions. The energy for any pair of bond dipole sites beyond the cutoff 
distance will be set to zero. Other keywords can be used to select a smoothing scheme near the cutoff 
distance. The default cutoff distance in the absence of the DPL-CUTOFF keyword is essentially infinite for 
nonperiodic systems and 10.0 for periodic systems. 
 
DPL-TAPER [real]     This keyword allows modification of the cutoff windows for bond dipole-bond 
dipole electrostatic potential energy interactions. It is similar in form and action to the TAPER keyword, 
except that its value applies only to the vdw potential. The default value in the absence of the DPL-TAPER 
keyword is to begin the cutoff window at 0.75 of the dipole cutoff distance. 
 
ECHO [text string]     The presence of this keyword causes whatever text follows it on the line to be 
copied directly to the output file. This keyword is also active in parameter files. It has no default value; if 
no text follows the ECHO keyword, a blank line is placed in the output file. 
 
ELECTNEG [3 integers & 1 real]     This keyword provides the values for a single electronegativity bond 
length correction parameter. The first two integer modifiers give the atom class numbers of the atoms 
involved in the bond to be corrected. The third integer modifier is the atom class of an electronegative 
atom. In the case of a primary correction, an atom of this third class must be directly bonded to an atom of 
the second atom class. For a secondary correction, the third class is one atom removed from an atom of the 
second class. The real number modifier is the value in Å by which the original ideal bond length is to be 
corrected. 
 
ENFORCE-CHIRALITY     This keyword causes the chirality found at chiral tetravalent centers in the 
input structure to be maintained during TINKER calculations. The test for chirality is not exhaustive; two 
identical monovalent atoms connected to a center cause it to be marked as non-chiral, but large equivalent 
substituents are not detected. Trivalent ``chiral'' centers, for example the alpha carbon in united-atom 
protein structures, are not enforced as chiral. 
 
EPSILONRULE [GEOMETRIC/ARITHMETIC/HARMONIC/HHG]     This keyword selects the 
combining rule used to derive the • value for van der Waals interactions. The default in the absence of the 
EPSILONRULE keyword is to use the GEOMETRIC mean of the individual • values of the two atoms 
involved in the van der Waals interaction. 
 
EWALD     This keyword turns on the use of Ewald summation during computation of electrostatic 
interactions in periodic systems. In the current version of TINKER, regular Ewald is used for polarizable 
atomic multipoles, and smooth particle mesh Ewald (PME) is used for charge-charge interactions. Ewald 
summation is not available for interactions involving bond-centered dipoles. By default, in the absence of 
the EWALD keyword, distance-based cutoffs are used for electrostatic interactions. 
 
EWALD-ALPHA [real]     Sets the value of the Ewald coefficient which controls the width of the 
Gaussian screening charges during particle mesh Ewald summation. In the absence of the EWALD-
ALPHA keyword, a value is chosen which causes interactions outside the real-space cutoff to be below a 
fixed tolerance. For most standard applications of Ewald summation, the program default should be used. 
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EWALD-BOUNDARY     This keyword invokes the use of ``vacuum'' boundary conditions during Ewald 
summation, corresponding to the media surrounding the system having a dielectric value of 1. The default 
in the absence of the EWALD-BOUNDARY keyword is to use ``tinfoil'' boundary conditions where the 
surrounding media is assumed to have an infinite dielectric value. 
 
EWALD-CUTOFF [real]     Sets the value in Angstroms of the real-space distance cutoff for use during 
Ewald summation. By default, in the absence of the EWALD-CUTOFF keyword, a value of 9.0 is used. 
 
EWALD-FRACTION [real]    Sets the fraction between 0 and 1 of reciprocal space included in the 
reciprocal sum when using regular Ewald summation. The keyword has no effect on PME calculations. A 
default value of 0.5 is used in the absence of the EWALD-FRACTION keyword. 
 
EXIT-PAUSE     This keyword causes TINKER programs to pause and wait for a carriage return at the 
end of executation prior to returning control to the operating system. This is useful to keep the execution 
window open following termination on machines running Microsoft Windows or Apple MacOS. The 
default in the absence of the EXIT-PAUSE keyword, is to return control to the operating system 
immediately at program termination. 
 
EXTRATERM [NONE/ONLY]     This keyword controls use of the user defined extra potential energy 
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option 
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for 
this one. 
 
FCTMIN [real]     This keyword sets a convergence criterion for successful completion of a TINKER 
optimization. If the value of the optimization objective function, typically the potential energy, falls below 
the value set by FCTMIN, then the optimization is deemed to have converged. The default value in the 
absence of the FCTMIN keyword is -1000000, effectively removing this criterion as a possible agent for 
termination. 
 
FORCEFIELD [name]     This keyword provides a name for the force field to be used in the current 
calculation. Its value is usually set in the master force field parameter file for the calculation (see the 
PARAMETERS keyword) instead of in the keyfile. 
 
FRICTION [real]     Sets the value of the frictional coefficient in ps-1 for use with stochastic dynamics. 
The default value used in the absence of the FRICTION keyword is 91.0, which is generally appropriate for 
water. 
 
GAMMA [real]     Sets the value of the • angle of a crystal unit cell, i.e., the angle between the a-axis and 
b-axis of a unit cell, or, equivalently, the angle between the X-axis and Z-axis of a periodic box. The 
default value in the absence of the GAMMA keyword is to set the • angle equal to the • angle as given by 
the keyword ALPHA. 
 
GAMMA-HALGREN [real]     Sets the value of the • parameter in Halgren's buffered 14-7 vdw potential 
energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of 0.12 is used. 
 
GAMMAMIN [real]     Sets the convergence target value for • during searches for maxima along the 
quadratic synchronous transit used by the SADDLE program. The value of • is the square of the ratio of the 
gradient projection along the path to the total gradient. A default value of 0.00001 is used in the absence of 
the GAMMAMIN keyword. 
  
GAUSSTYPE [LJ-2/LJ-4/MM2-2/MM3-2/IN-PLACE]     This keyword specifies the underlying vdw 
form that a Gaussian vdw approximation will attempt to fit.number of terms to be used in a Gaussian 
approximation of the Lennard-Jones van der Waals potential. The text modifier gives the name of the 
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functional form to be used. Thus LJ-2 as a modifier will result in a 2-Gaussian fit to a Lennard-Jones vdw 
potential. The GAUSSTYPE keyword only takes effect when VDWTYPE is set to GAUSSIAN. This 
keyword has no default value. 
 
GROUP [integer, integer list]     This keyword defines an atom group as a substructure within the full 
input molecular structure. The value of the first integer is the group number which must be in the range 
from 1 to the maximum number of allowed groups. The remaining intergers give the atom or atoms 
contained in this group as one or more atom numbers or ranges. Multiple keyword lines can be used to 
specify additional atoms in the same group. Note that an atom can only be in one group, the last group to 
which it is assigned is the one used. 
 
GROUP-INTER     This keyword assigns a value of 1.0 to all inter-group interactions and a value of 0.0 to 
all intra-group interactions. For example, combination with the GROUP-MOLECULE keyword provides 
for rigid-body calculations. 
 
GROUP-INTRA     This keyword assigns a value of 1.0 to all intra-group interactions and a value of 0.0 to 
all inter-group interactions. 
 
GROUP-MOLECULE     This keyword sets each individual molecule in the system to be a separate atom 
group, but does not assign weights to group-group interactions. 
 
GROUP-SELECT [2 integers, real]     This keyword gives the weight in the final potential energy of a 
specified set of intra- or intergroup interactions. The integer modifiers give the group numbers of the 
groups involved. If the two numbers are the same, then an intragroup set of interactions is specified. The 
real modifier gives the weight by which all energetic interactions in this set will be multiplied before 
incorporation into the final potential energy. If omitted as a keyword modifier, the weight will be set to 1.0 
by default. If any SELECT-GROUP keywords are present, then any set of interactions not specified in a 
SELECT-GROUP keyword is given a zero weight. The default when no SELECT-GROUP keywords are 
specified is to use all intergroup interactions with a weight of 1.0 and to set all intragroup interactions to 
zero. 
 
HBOND [2 integers & 2 reals]     This keyword provides the values for the MM3-style directional 
hydrogen bonding parameters for a single pair of atoms. The integer modifiers give the pair of atom class 
numbers for which hydrogen bonding parameters are to be defined. The two real number modifiers give the 
values of the minimum energy contact distance in Å and the well depth at the minimum distance in 
kcal/mole.      
 
HESS-CUTOFF [real]     This keyword defines a lower limit for significant Hessian matrix elements. 
During computation of the Hessian matrix of partial second derivatives, any matrix elements with absolute 
value below HESS-CUTOFF will be set to zero and omitted from the sparse matrix Hessian storage scheme 
used by TINKER. For most calculations, the default in the absence of this keyword is zero, i.e., all 
elements will be stored. For most Truncated Newton optimizations the Hessian cutoff will be chosen 
dynamically by the optimizer. 
 
HGUESS [real]     Sets an initial guess for the average value of the diagonal elements of the scaled inverse 
Hessian matrix used by the optimally conditioned variable metric optimization routine. A default value of 
0.4 is used in the absence of the HGUESS keyword. 
 
IMPROPER [4 integers & 2 reals]     This keyword provides the values for a single CHARMM-style 
improper dihedral angle parameter. 
 
IMPROPTERM [NONE/ONLY]     This keyword controls use of the CHARMM-style improper dihedral 
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the 
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potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
IMPROPUNIT [real]     Sets the scale factor needed to convert the energy value computed by the 
CHARMM-style improper dihedral angle potential into units of kcal/mole. The correct value is force field 
dependent and typically provided in the header of the master force field parameter file. The default value of 
1.0 is used, if the IMPROPUNIT keyword is not given in the force field parameter file or the keyfile. 
 
IMPTORS [4 integers & up to 3 real/real/integer triples]     This keyword provides the values for a 
single AMBER-style improper torsional angle parameter. The first four integer modifiers give the atom 
class numbers for the atoms involved in the improper torsional angle to be defined. By convention, the third 
atom class of the four is the trigonal atom on which the improper torsion is centered. The torsional angle 
computed is literally that defined by the four atom classes in the order specified by the keyword. Each of 
the remaining triples of real/real/integer modifiers give the half-amplitude, phase offset in degrees and 
periodicity of a particular improper torsional term, respectively. Periodicities through 3-fold are allowed for 
improper torsional parameters. 
 
IMPTORSTERM [NONE/ONLY]     This keyword controls use of the AMBER-style improper torsional 
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the 
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
IMPTORSUNIT [real]     Sets the scale factor needed to convert the energy value computed by the 
AMBER-style improper torsional angle potential into units of kcal/mole. The correct value is force field 
dependent and typically provided in the header of the master force field parameter file. The default value of 
1.0 is used, if the IMPTORSUNIT keyword is not given in the force field parameter file or the keyfile. 
 
INACTIVE [integer list]     Sets the list of inactive atoms during a TINKER computation. Individual 
potential energy terms are not computed when all atoms involved in the term are inactive. For Cartesian 
space calculations, inactive atoms are not allowed to move. For torsional space calculations, rotations are 
not allowed when there are inactive atoms on both sides of the rotated bond. Multiple INACTIVE lines can 
be present in the keyfile, and on each line the keyword can be followed by one or more atom numbers or 
ranges. If any INACTIVE keys are found, all atoms are set to active except those listed on the INACTIVE 
lines. The ACTIVE keyword overrides all INACTIVE keywords found in the keyfile. 
 
INTEGRATE [VERLET/BEEMAN/STOCHASTIC/RIGIDBODY]     Chooses the integration method 
for propagation of dynamics trajectories. The keyword is followed on the same line by the name of the 
option. Standard Newtonian MD can be run using either VERLET for the Velocity Verlet method, or 
BEEMAN for the velocity form of Bernie Brook's ``Better Beeman'' method. A Velocity Verlet-based 
stochastic dynamics trajectory is selected by the STOCHASTIC modifier. A rigid-body dynamics method 
is selected by the RIGIDBODY modifier. The default integration scheme is MD using the BEEMAN 
method. 
 
INTMAX [integer]     Sets the maximum number of interpolation cycles that will be allowed during the 
line search phase of an optimization. All gradient-based TINKER optimization routines use a common line 
search routine involving quadratic extrapolation and cubic interpolation. If the value of INTMAX is 
reached, an error status is set for the line search and the search is repeated with a much smaller initial step 
size. The default value in the absence of this keyword is optimization routine dependent, but is usually in 
the range 5 to 10. 
 
LAMBDA [real]     This keyword sets the value of the • path parameter for free energy perturbation 
calculations. The real number modifier specifies the position along the mutation path and must be a number 
in the range from 0 (initial state) to 1 (final state). The actual atoms involved in the mutation are given 
separately in individual MUTATE keyword lines. 
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LBFGS-VECTORS [integer]     Sets the number of correction vectors used by the limited-memory L-
BFGS optimization routine. The current maximum allowable value, and the default in the absence of the 
LBFGS-VECTORS keyword is 15. 
 
LIGHTS     This keyword turns on Method of Lights neighbor generation for the charge-charge potential 
and any of the van der Waals potentials. This method will yield identical energetic results to the standard 
double loop method. Method of Lights will be faster when the volume of a sphere with radius equal to the 
nonbond cutoff distance is significantly less than half the volume of the total system (i.e., the full molecular 
system, the crystal unit cell or the periodic box). 
 
MAXITER [integer]     Sets the maximum number of minimization iterations that will be allowed for any 
TINKER program that uses any of the nonlinear optimization routines. The default value in the absence of 
this keyword is program dependent, but is always set to a very large number. 
 
METAL     This keyword provides the values for a single transition metal ligand field parameter. Note this 
keyword is present in the code, but not active in the current version of TINKER. 
 
METALTERM [NONE/ONLY]     This keyword controls use of the transition metal ligand field potential 
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE 
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms 
except for this one. 
 
MM2-STRBND     This keyword switches the behavior of the stretch-bend potential function to match the 
formulation used by the MM2 force field. In MM2, stretching of bonds to attached hydrogen atoms is not 
including in computing the stretch-bend cross term energy. The default behavior in the absence of this 
keyword is to include stretching of attached hydrogen atoms as in the MM3 force field. 
 
MPOLE-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
permanent atomic multipole electrostatic interactions between 1-2 connected atoms, i.e., atoms that are 
directly bonded. The default value of 0.0 is used, if the MPOLE-12-SCALE keyword is not given in either 
the parameter file or the keyfile. 
 
MPOLE-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
permanent atomic multipole  electrostatic interactions between 1-3 connected atoms, i.e., atoms separated 
by two covalent bonds. The default value of 0.0 is used, if the MPOLE-13-SCALE keyword is not given in 
either the parameter file or the keyfile. 
 
MPOLE-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
permanent atomic multipole  electrostatic interactions between 1-4 connected atoms, i.e., atoms separated 
by three covalent bonds. The default value of 1.0 is used, if the MPOLE-14-SCALE keyword is not given 
in either the parameter file or the keyfile. 
 
MPOLE-15-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
permanent atomic multipole  electrostatic interactions between 1-5 connected atoms, i.e., atoms separated 
by four covalent bonds. The default value of 1.0 is used, if the MPOLE-15-SCALE keyword is not given in 
either the parameter file or the keyfile. 
 
MPOLE-CUTOFF [real]     Sets the cutoff distance value in Angstroms for atomic multipole potential 
energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to zero. Other 
keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff distance in 
the absence of the MPOLE-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for periodic 
systems. 
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MPOLE-TAPER [real]     This keyword allows modification of the cutoff window for atomic multipole 
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its value 
applies only to the atomic multipole potential. The default value in the absence of the MPOLE-TAPER 
keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance. 
 
MPOLETERM [NONE/ONLY]     This keyword controls use of the atomic multipole electrostatics 
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The 
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy 
terms except for this one. 
 
MULTIPOLE [5 lines with: 3 or 4 integers & 1 real; 3 reals; 1 real; 2 reals; 3 reals]     This keyword 
provides the values for a set of atomic multipole parameters at a single site. A complete keyword entry 
consists of three consequtive lines, the first line containing the MULTIPOLE keyword and the two 
following lines. The first line contains three integers which define the atom type on which the multipoles 
are centered, and the Z-axis and X-axis defining atom types for this center. The optional fourth integer 
contains the Y-axis defining atom type, and is only required for locally chiral multipole sites. The real 
number on the first line gives the monopole (atomic charge) in electrons. The second line contains three 
real numbers which give the X-, Y- and Z-components of the atomic dipole in electron-Å. The final three 
lines, consisting of one, two and three real numbers give the upper triangle of the traceless atomic 
quadrupole tensor in electron-Å2. 
 
MUTATE [3 integers]     This keyword is used to specify atoms to be mutated during free energy 
perturbation calculations. The first integer modifier gives the atom number of an atom in the current 
system. The final two modifier values give the atom types corresponding the the •=0 and •=1 states of the 
specified atom. 
 
MUTUAL-11-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
induced (mutual) field due to atoms within a polarization group during an induced dipole calculation, i.e., 
atoms that are in the same polarization group as the atom being polarized. The default value of 1.0 is used, 
if the MUTUAL-11-SCALE keyword is not given in either the parameter file or the keyfile. 
 
MUTUAL-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
induced (mutual) field due to atoms in 1-2 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups directly connected to the group containing the atom being polarized. 
The default value of 1.0 is used, if the MUTUAL-12-SCALE keyword is not given in either the parameter 
file or the keyfile. 
 
MUTUAL-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
induced (mutual) field due to atoms in 1-3 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups separated by one group from the group containing the atom being 
polarized. The default value of 1.0 is used, if the MUTUAL-13-SCALE keyword is not given in either the 
parameter file or the keyfile. 
 
MUTUAL-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to the 
induced (mutual) field due to atoms in 1-4 polarization groups during an induced dipole calculation, i.e., 
atoms that are in polarization groups separated by two groups from the group containing the atom being 
polarized. The default value of 1.0 is used, if the MUTUAL-14-SCALE keyword is not given in either the 
parameter file or the keyfile. 
 
NEIGHBOR-GROUPS     This keyword causes the attached atom to be used in determining the charge-
charge neighbor distance for all monovalent atoms in the molecular system. Its use causes all monovalent 
atoms to be treated the same as their attached atoms for purposes of including or scaling 1-2, 1-3 and 1-4 
interactions. This option works only for the simple charge-charge electrostatic potential; it does not affect 
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bond dipole or atomic multipole potentials. The NEIGHBOR-GROUPS scheme is similar to that used by 
some common force fields such as ENCAD. 
 
NEUTRAL-GROUPS     The keyword causes the attached atom to be used in determining the charge-
charge interaction cutoff distance for all monovalent atoms in the molecular system. Its use reduces cutoff 
discontinuities by avoiding splitting many of the largest charge separations found in typical molecules. 
Note that this keyword does not rigorously implement the usual concept of a ``neutral group'' as used in the 
literature with AMBER/OPLS and other force fields. This option works only for the simple charge-charge 
electrostatic potential; it does not affect bond dipole or atomic multipole potentials. 
 
NEWHESS [integer]     Sets the number of algorithmic iterations between recomputation of the Hessian 
matrix. At present this keyword applies exclusively to optimizations using the Truncated Newton method. 
The default value in the absence of this keyword is 1, i.e., the Hessian is computed on every iteration. 
 
NEXTITER [integer]     Sets the iteration number to be used for the first iteration of the current 
computation. At present this keyword applies to optimization procedures where its use can effect 
convergence criteria, timing of restarts, and so forth. The default in the absence of this keyword is to take 
the initial iteration as iteration 1. 
 
NOSE-MASS [2 reals]     Sets the hypothetical mass in Daltons of each of the two chain particles for the 
Nose-Hoover thermostat. If only a single real number modifier is given, its value is used for both chains. 
The default in the absence of this keyword is to use a mass of 10 Daltons for each Nose-Hoover chain. 
 
NOVERSION     Turns off the use of version numbers appended to the end of filenames as the method for 
generating filenames for updated copies of an existing file. The presence of this keyword results in direct 
use of input file names without a search for the highest available version, and requires the entry of specific 
output file names in many additional cases. By default, in the absence of this keyword, TINKER generates 
and attaches version numbers in a manner similar to the Digital OpenVMS operating system. For example, 
subsequent new versions of the file molecule.xyz would be written first to the file molecule.xyz_2, then to 
molecule.xyz_3, etc. 
 
OCTAHEDRON     Specifies that the periodic “box” is a truncated octahedron with maximal distance 
across the truncated octahedron as given by the A-AXIS keyword. All other unit cell and periodic box size-
defining keywords are ignored if the OCTAHEDRON keyword is present. 
 
OPBEND [2 integers & 1 real]     This keyword provides the values for a single Allinger MM-style out-
of-plane angle bending potential parameter. The first integer modifier is the atom class of the central 
trigonal atom and the second integer is the atom class of the out-of-plane atom. The real number modifier 
gives the force constant value for the out-of-plane angle. The default units for the force constant are 
kcal/mole/radian2, but this can be controlled via the OPBENDUNIT keyword. 
 
OPBENDTERM [NONE/ONLY]     This keyword controls use of the Allinger MM-style out-of-plane 
bending potential energy term. In the absence of a modifying option, this keyword turns on use of the 
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
OPBENDUNIT [real]     Sets the scale factor needed to convert the energy value computed by the Allinger 
MM-style out-of-plane bending potential into units of kcal/mole. The correct value is force field dependent 
and typically provided in the header of the master force field parameter file. The default of (•/180)2 = 
0.0003046 is used, if the OPBENDUNIT keyword is not given in the force field parameter file or the 
keyfile. 
 
OPDIST [4 integers & 1 real]     This keyword provides the values for a single out-of-plane distance 
potential parameter. The first integer modifier is the atom class of the central trigonal atom and the three 
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following integer modifiers are the atom classes of the three attached atoms. The real number modifier is 
the force constant for the harmonic function of the out-of-plane distance of the central atom. The default 
units for the force constant are kcal/mole/Å2, but this can be controlled via the OPDISTUNIT keyword. 
 
OPDISTTERM [NONE/ONLY]     This keyword controls use of the out-of-plane distance potential 
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE 
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms 
except for this one. 
 
OPDISTUNIT [real]     Sets the scale factor needed to convert the energy value computed by the out-of-
plane distance potential into units of kcal/mole. The correct value is force field dependent and typically 
provided in the header of the master force field parameter file. The default value of 1.0 is used, if the 
OPDISTUNIT keyword is not given in the force field parameter file or the keyfile. 
 
OVERWRITE     Causes TINKER programs, such as minimizations, that output intermediate coordinate 
sets to create a single disk file for the intermediate results which is successively overwritten with the new 
intermediate coordinates as they become available. This keyword is essentially the opposite of the 
SAVECYCLE keyword. 
 
PARAMETERS [file name]     Provides the name of the force field parameter file to be used for the 
current TINKER calculation. The standard file name extension for parameter files, .prm, is an optional part 
of the file name modifier. The default in the absence of the PARAMETERS keyword is to look for a 
parameter file with the same base name as the molecular system and ending in the .prm extension. If a 
valid parameter file is not found, the user will asked to provide a file name interactively. 
 
PIATOM [1 integer & 3 reals]     This keyword provides the values for the pisystem MO potential 
parameters for a single atom class belonging to a pisystem. 
 
PIBOND [2 integers & 2 reals]     This keyword provides the values for the pisystem MO potential 
parameters for a single type of pisystem bond. 
 
PISYSTEM [integer list]     This keyword sets the atoms within a molecule that are part of a conjugated •-
system. The keyword is followed on the same line by a list of atom numbers and/or atom ranges that 
constitute the •-system. The Allinger MM force fields use this information to set up an MO calculation used 
to scale bond and torsion parameters involving •-system atoms. 
 
PME-GRID [3 integers]     This keyword sets the dimensions of the charge grid used during particle mesh 
Ewald summation. The three modifiers give the size along the X-, Y- and Z-axes, respectively. If either the 
Y- or Z-axis dimensions are omitted, then they are set equal to the X-axis dimension. The default in the 
absence of the PME-GRID keyword is to set the grid size along each axis to the smallest power of 2, 3 
and/or 5 which is at least as large as 1.5 times the axis length in Angstoms. Note that the FFT used by PME 
is not restricted to, but is most efficient for, grid sizes which are powers of 2, 3 and/or 5. 
 
PME-ORDER [integer]     This keyword sets the order of the B-spline interpolation used during particle 
mesh Ewald summation. A default value of 8 is used in the absence of the PME-ORDER keyword. 
 
POLAR-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
polarization interactions between 1-2 polarization groups, i.e., pairs of atoms that are in directly connected 
polarization groups. The default value of 0.0 is used, if the POLAR-12-SCALE keyword is not given in 
either the parameter file or the keyfile. 
 
POLAR-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
polarization interactions between 1-3 polarization groups, i.e., pairs of atoms that are in polarization groups 
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separated by one other group. The default value of 0.0 is used, if the POLAR-13-SCALE keyword is not 
given in either the parameter file or the keyfile. 
 
POLAR-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
polarization interactions between 1-4 polarization groups, i.e., pairs of atoms that are in polarization groups 
separated by two other groups. The default value of 1.0 is used, if the POLAR-14-SCALE keyword is not 
given in either the parameter file or the keyfile. 
 
POLAR-15-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to 
polarization interactions between 1-5 polarization groups, i.e., pairs of atoms that are in polarization groups 
separated by three other groups. The default value of 1.0 is used, if the POLAR-15-SCALE keyword is not 
given in either the parameter file or the keyfile. 
 
POLAR-DAMP [2 reals]     Controls the strength of the damping function applied to induced dipoles and 
dipole polarization interaction energies. The first modifier sets the radius in Angstoms of a hypothetical 
atom with unit polarizability, while the second modifier sets the scale factor for the exponent of the  
damping function. The default values for the radius and the scale factor are 1.662 and 1.0, respectively. 
Damping is eliminated entirely by using this keyword to set the radius value to zero.  
 
POLAR-EPS [real]     This keyword sets the convergence criterion applied during computation of self-
consistent induced dipoles. The calculation is deemed to have converged when the rms change (in Debyes) 
of the induced dipoles at all polarizable sites is less than the value specified with this keyword. The default 
value in the absence of the keyword is 10-6 Debyes. 
 
POLAR-OLD     This keyword selects the polarization damping scheme used in TINKER 3.8 and earlier. 
Beginning with the 3.9 release, TINKER implements a short range polarization damping method due to 
Thole. This option is included primarily to allow continued use of the early TINKER polarizable water 
model based on the originally implemented flat multiplicative damping. 
 
POLAR-SOR [real]     Sets a successive overrelaxation (SOR) factor for use in computation of induced 
atomic dipoles. Optimal values for this keyword will speed the induced dipole calculation, and poor values 
can result in convergence failure. The default value in the absence of the POLAR-SOR keyword is 0.7 
which often a reasonable value when short-range intramolecular polarization is present. For models lacking 
intramolecular polarization, keyword values closer to 1.0 may be optimal. 
 
POLARIZATION [DIRECT/MUTUAL]     Selects between the use of direct and mutual dipole 
polarization for force fields that incorporate the polarization term. The DIRECT modifier avoids an 
iterative calculation by using only the permanent electric field in computation of induced dipoles. The 
MUTUAL option, which is the default in the absence of the POLARIZATION keyword, iterates the 
induced dipoles to self-consistency. 
 
POLARIZE [1 integer, 1 real & up to 4 integers]     This keyword provides the values for a single atomic 
dipole polarizability parameter. The integer modifier, if positive, gives the atom type number for which a 
polarizability parameter is to be defined. If the first integer modifier is negative, then the parameter value to 
follow applies only to the individual atom whose atom number is the negative of the modifier. The real 
number modifier gives the value of the dipole polarizability in Å3. The final integer modifiers list the atom 
type numbers of atoms directly bonded to the current atom and which will be considered to be part of the 
current atom's polarization group. 
 
POLARIZETERM [NONE/ONLY]     This keyword controls use of the atomic dipole polarization 
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The 
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy 
terms except for this one. 
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POLYMER-CUTOFF [real]     Sets the value of an additional cutoff parameter needed for infinite 
polymer systems. This value must be set to less than half the minimal periodic box dimension and should 
be greater than the largest possible interatomic distance that can be subject to scaling or exclusion as a local 
electrostatic or van der Waals interaction. The default in the absence of the POLYMER-CUTOFF keyword 
is 5.5 Angstroms. 
 
PRINTOUT [integer]     A general parameter for iterative procedures such as minimizations that sets the 
number of iterations between writes of status information to the standard output. The default value in the 
absence of the keyword is 1, i.e., the calculation status is given every iteration. 
 
RADIUSRULE [ARITHMETIC/GEOMETRIC/CUBIC-MEAN]     Sets the functional form of the 
radius combining rule for heteroatomic van der Waals potential energy interactions. The default in the 
absence of the RADIUSRULE keyword is to use the arithmetic mean combining rule to get radii for 
heteroatomic interactions. 
 
RADIUSSIZE [RADIUS/DIAMETER]     Determines whether the atom size values given in van der 
Waals parameters read from VDW keyword statements are interpreted as atomic radius or diameter values. 
The default in the absence of the RADIUSSIZE keyword is to assume that vdw size parameters are given 
as radius values. 
 
RADIUSTYPE [R-MIN/SIGMA]     Determines whether atom size values given in van der Waals 
parameters read from VDW keyword statements are interpreted as potential minimum (Rmin) or LJ-style 
sigma (•) values. The default in the absence of the RADIUSTYPE keyword is to assume that vdw size 
parameters are given as Rmin values. 
 
RANDOMSEED [integer]     Followed by an integer value, this keyword sets the initial seed value for the 
random number generator used by TINKER. Setting RANDOMSEED to the same value as an earlier run 
will allow exact reproduction of the earlier calculation. (Note that this will not hold across different 
machine types.) RANDOMSEED should be set to a positive integer less than about 2 billion. In the absence 
of the RANDOMSEED keyword the seed is chosen ``randomly'' based upon the number of seconds that 
have elapsed in the current decade. 
 
RATTLE [BONDS/ANGLES/DIATOMIC/TRIATOMIC/WATER]     Invokes the rattle algorithm, a 
velocity version of shake, on portions of a molecular system during a molecular dynamic calculation. The 
RATTLE keyword can be followed by any of the modifiers shown, in which case all occurrences of the 
modifier species are constrained at ideal values taken from the bond and angle parameters of the force field 
in use. In the absence of any modifier, RATTLE constrains all bonds to hydrogen atoms at ideal bond 
lengths. 
   
RATTLE-DISTANCE [2 integers]     This keyword allows the use of a ``Rattle'' constraint between the 
two atoms whose numbers are specified on the keyword line. If the two atoms are involved in a covalent 
bond, then their distance is constrained to the ideal bond length from the force field. For nonbonded atoms, 
the rattle constraint is fixed at their distance in the input coordinate file. 
   
REACTIONFIELD [2 reals & 1 integer]     This keyword provides parameters needed for the reaction 
field potential energy calculation. The two real modifiers give the radius of the dielectric cavity and the 
ratio of the bulk dielectric outside the cavity to that inside the cavity. The integer modifier gives the number 
of terms in the reaction field summation to be used. In the absence of the REACTIONFIELD keyword, the 
default values are a cavity of radius 1000000 Å, a dielectric ratio of 80 and use of only the first term of the 
reaction field summation. 
 
REDUCE [real]     Specifies the fraction between zero and one by which the path between starting and 
final conformational state will be shortened at each major cycle of the transition state location algorithm 
implemented by the SADDLE program. This causes the path endpoints to move up and out of the terminal 
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structures toward the transition state region. In favorable cases, a nonzero value of the REDUCE modifier 
can speed convergence to the transition state. The default value in the absence of the REDUCE keyword is 
zero. 
 
RESTRAIN-ANGLE [3 integers & 3 reals]     This keyword implements a flat-welled harmonic potential 
that can be used to restrain the angle between three atoms to lie within a specified angle range. The initial 
integer modifiers contains the atom numbers of the three atoms whose angle is to be restrained.  The first 
real modifier is the force constant in kcal/degree2 for the restraint. The last two real number modifiers give 
the lower and upper bounds in degrees on the allowed angle values. If the angle lies between the lower and 
upper bounds, the restraint potential is zero. Outside the bounds, the harmonic restraint is applied. If the 
angle range modifiers are omitted, then the atoms are restrained to the angle found in the input structure. If 
the force constant is also omitted, a default value of 10.0 is used. 
 
RESTRAIN-DISTANCE [2 integers & 3 reals]     This keyword implements a flat-welled harmonic 
potential that can be used to restrain two atoms to lie within a specified distance range. The initial integer 
modifiers contains the atom numbers of the two atoms to be restrained. The first two real number modifiers 
give the lower and upper bounds in Ångstroms on the allowed distance values. If the interatomic distance 
lies between the lower and upper bounds, the restraint potential is zero. Outside the bounds, the harmonic 
restraint is applied. If the distance range modifiers are omitted, then the atoms are restrained to the 
interatomic distance found in the input structure. If the force constant is also omitted, a default value of 
100.0 is used. 
 
RESTRAIN-GROUPS [2 integers & 3 reals]     This keyword implements a flat-welled harmonic 
distance restraint between the centers-of-mass of two groups of atoms. The integer modifiers are the 
numbers of the two groups which must be defined separately via the GROUP keyword. The first real 
modifier is the force constant in kcal/Å2 for the restraint. The last two real number modifiers give the lower 
and upper bounds in Ångstroms on the allowed distance values. If the distance range modifiers are omitted, 
then the atoms are restrained to the intergroup distance found in the input structure. If the force constant is 
also omitted, a default value of 100.0 is used. 
 
RESTRAIN-POSITION [1 integer & 5 reals]     This keyword provides the ability to restrain an 
individual atom to a specified coordinate position. The initial integer modifier contains the atom number of 
the atom to be restrained. The first real modifier sets the force constant in kcal/Å2 for the harmonic restraint 
potential. The next three real number modifiers give the X-, Y- and Z-coordinates to which the atom is 
tethered. The final real modifier defines a sphere around the specified coordinates within which the 
restraint value is zero. If all the real modifiers are omitted, then the atom is restrained to the origin. If the 
force constant is also omitted, a default value of 100.0 is used. 
 
RESTRAIN-TORSION [4 integers & 3 reals]     This keyword implements a flat-welled harmonic 
potential that can be used to restrain the torsional angle between four atoms to lie within a specified angle 
range. The initial integer modifiers contains the atom numbers of the four atoms whose torsional angle, 
computed in the atom order listed, is to be restrained. The first real modifier gives a force constant in 
kcal/degree2. The last two real number modifiers give the lower and upper bounds in degrees on the allowed 
torsional angle values. The angle values given can wrap around across -180 and +180 degrees. Outside the 
allowed angle range, the harmonic restraint is applied. If the angle range modifiers are omitted, then the 
atoms are restrained to the torsional angle found in the input structure. If the force constant is also omitted, 
a default value of 1.0 is used. 
 
RESTRAINTERM [NONE/ONLY]     This keyword controls use of the restraint potential energy terms. 
In the absence of a modifying option, this keyword turns on use of these potentials. The NONE option turns 
off use of these potential energy terms. The ONLY option turns off all potential energy terms except for 
these terms. 
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RXNFIELDTERM [NONE/ONLY]     This keyword controls use of the reaction field continuum 
solvation potential energy term. In the absence of a modifying option, this keyword turns on use of the 
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
SADDLEPOINT     The presence of this keyword allows Newton-style second derivative-based 
optimization routine used by NEWTON, NEWTROT and other programs to converge to saddlepoints as 
well as minima on the potential surface. By default, in the absence of the SADDLEPOINT keyword, 
checks are applied that prevent convergence to stationary points having directions of negative curvature. 
 
SAVE-CYCLE     This keyword causes TINKER programs, such as minimizations, that output 
intermediate coordinate sets to save each successive set to the next consecutively numbered cycle file. The 
SAVE-CYCLE keyword is the opposite of the OVERWRITE keyword. 
 
SAVE-INDUCED     This keyword causes TINKER molecular dynamics calculations that involve 
polarizable atomic multipoles to save the values of the induced dipole components on each polarizable 
atom to a separate cycle file. These files are written whenever the atomic coordinate snapshots are written 
during the dynamics run. Each induced dipole file name contains as a suffix the cycle number followed by 
the letter u.  
 
SAVE-VELOCITY     This keyword causes TINKER molecular dynamics calculations to save the values 
of the velocity components on each atom to a separate cycle file. These files are written whenever the 
atomic coordinate snapshots are written during the dynamics run. Each velocity file name contains as a 
suffix the cycle number followed by the letter v. 
 
SLOPEMAX [real]     This keyword and its modifying value set the maximum allowed size of the ratio 
between the current and initial projected gradients during the line search phase of conjugate gradient or 
truncated Newton optimizations. If this ratio exceeds SLOPEMAX, then the initial step size is reduced by a 
factor of 10. The default value is usually set to 10000.0 when not specified via the SLOPEMAX keyword. 
 
SMOOTHING [DEM/GDA/TOPHAT/STOPHAT]     This keyword activates the potential energy 
smoothing methods. Several variations are available depending on the value of the modifier used: DEM= 
Diffusion Equation Method with a standard Gaussian kernel; GDA= Gaussian Density Annealing as 
proposed by the Straub group; TOPHAT= a local DEM-like method using a finite range ``tophat'' kernel; 
STOPHAT= shifted tophat smoothing. 
 
SOLVATE [ASP/SASA/ONION/STILL/HCT/ACE/GBSA]     Use of this keyword during energy 
calculations with any of the standard force fields turns on a continuum solvation free energy term. Several 
algorithms are available based on the modifier used: ASP= Eisenberg-McLachlan ASP method using the 
Wesson-Eisenberg vacuum-to-water parameters; SASA= the Ooi-Scheraga SASA method; ONION= the 
original 1990 Still ``Onion-shell'' GB/SA method; STILL= the 1997 analytical GB/SA method from Still's 
group; HCT= the pairwise descreening method of Hawkins, Cramer and Truhlar; ACE= the Analytical 
Continuum Electrostatics solvation method from the Karplus group; GBSA= equivalent to the STILL 
modifier. At present, GB/SA-style methods are only valid for force fields that use simple partial charge 
electrostatics. 
 
SOLVATETERM [NONE/ONLY]     This keyword controls use of the macroscopic solvation potential 
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE 
option turns off use of this potential energy term. The ONLY option turns off all potential energy terms 
except for this one. 
 
SPACEGROUP [name]     This keyword selects the space group to be used in manipulation of crystal unit 
cells and asymmetric units. The name option must be chosen from one of the following currently 
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implemented space groups: P1, P1(-), P21, Cc, P21/a, P21/n, P21/c, C2/c, P212121, Pna21, Pn21a, Cmc21, 
Pccn, Pbcn, Pbca, P41, I41/a, P4(-)21c, P4(-)m2, R3c, P6(3)/mcm, Fm3(-)m, Im3(-)m. 
 
SPHERE [4 reals, or 1 integer & 1 real]     This keyword provides an alternative to the ACTIVE and 
INACTIVE keywords for specification of subsets of active atoms. If four real number modifiers are 
provided, the first three are taken as X-, Y- and Z-coordinates and the fourth is the radius of a sphere 
centered at these coordinates. In this case, all atoms within the sphere at the start of the calculation are 
active throughout the calculation, while all other atoms are inactive. Similarly if one integer and real 
number are given, an ``active'' sphere with radius set by the real is centered on the system atom with atom 
number given by the integer modifier. Multiple SPHERE keyword lines can be present in a single keyfile, 
and the list of active atoms specified by the spheres is cumulative. 
 
STEEPEST-DESCENT     This keyword forces the L-BFGS optimization routine used by the MINIMIZE 
program and other programs to perform steepest descent minimization. This option can be useful in 
conjunction with small step sizes for following minimum energy paths, but is generally inferior to the L-
BFGS default for most optimization purposes. 
 
STEPMAX [real]     This keyword and its modifying value set the maximum size of an individual step 
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size is 
computed as the norm of the vector of changes in parameters being optimized. The default value depends 
on the particular TINKER program, but is usually in the range from 1.0 to 5.0 when not specified via the 
STEPMAX keyword. 
 
STEPMIN [real]     This keyword and its modifying value set the minimum size of an individual step 
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size is 
computed as the norm of the vector of changes in parameters being optimized. The default value is usually 
set to about 10-16 when not specified via the STEPMIN keyword. 
 
STRBND [1 integer & 3 reals]     This keyword provides the values for a single stretch-bend cross term 
potential parameter. The integer modifier gives the atom class number for the central atom of the bond 
angle involved in stretch-bend interactions. The real number modifiers give the force constant values to be 
used when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen atoms, respectively. 
The default units for the stretch-bend force constant are kcal/mole/Å-degree, but this can be controlled via 
the STRBNDUNIT keyword. 
 
STRBNDTERM [NONE/ONLY]     This keyword controls use of the bond stretching-angle bending cross 
term potential energy. In the absence of a modifying option, this keyword turns on use of the potential. The 
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy 
terms except for this one. 
 
STRBNDUNIT [real]     Sets the scale factor needed to convert the energy value computed by the bond 
stretching-angle bending cross term potential into units of kcal/mole. The correct value is force field 
dependent and typically provided in the header of the master force field parameter file. The default value of 
1.0 is used, if the STRBNDUNIT keyword is not given in the force field parameter file or the keyfile. 
 
STRTORS [2 integers & 1 real]     This keyword provides the values for a single stretch-torsion cross 
term potential parameter. The two integer modifiers give the atom class numbers for the atoms involved in 
the central bond of the torsional angles to be parameterized. The real modifier gives the value of the 
stretch-torsion force constant for all torsional angles with the defined central bond atom classes. The 
default units for the stretch-torsion force constant can be controlled via the STRTORUNIT keyword. 
 
STRTORTERM [NONE/ONLY]     This keyword controls use of the bond stretching-torsional angle 
cross term potential energy. In the absence of a modifying option, this keyword turns on use of the 
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potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all 
potential energy terms except for this one. 
 
STRTORUNIT [real]     Sets the scale factor needed to convert the energy value computed by the bond 
stretching-torsional angle cross term potential into units of kcal/mole. The correct value is force field 
dependent and typically provided in the header of the master force field parameter file. The default value of 
1.0 is used, if the STRTORUNIT keyword is not given in the force field parameter file or the keyfile. 
 
TAPER [real]     This keyword allows modification of the cutoff windows for nonbonded potential energy 
interactions. The nonbonded terms are smoothly reduced from their standard value at the beginning of the 
cutoff window to zero at the far end of the window. The far end of the window is specified via the 
CUTOFF keyword or its potential function specific variants. The modifier value supplied with the TAPER 
keyword sets the beginning of the cutoff window. The modifier can be given either as an absolute distance 
value in Angstroms, or as a fraction between zero and one of the CUTOFF distance. The default value in 
the absence of the TAPER keyword ranges from 0.65 to 0.9 of the CUTOFF distance depending on the 
type of potential function. The windows are implemented via polynomial-based switching functions, in 
some cases combined with energy shifting. 
 
TAU-PRESSURE [real]     Sets the coupling time in picoseconds for the Groningen-style pressure bath 
coupling used to control the system pressure during molecular dynamics calculations. A default value of 
2.0 is used for TAU-PRESSURE in the absence of the keyword. 
 
TAU-TEMPERATURE [real]     Sets the coupling time in picoseconds for the Groningen-style 
temperature bath coupling used to control the system temperature during molecular dynamics calculations. 
A default value of 0.1 is used for TAU-TEMPERATURE in the absence of the keyword. 
 
THERMOSTAT [BERENDSEN/ANDERSEN/NOSE-HOOVER]     This keyword selects a thermostat 
algorithm for use during molecular dynamics. Three modifiers are available cooresponding to Berendsen 
bath coupling, Andersen stochastic collision, and Nose-Hoover extended dynamics methods. The default in 
the absence of the THERMOSTAT keyword is to use the BERENDSEN algorithm. 
 
TORSION [4 integers & up to 6 real/real/integer triples]     This keyword provides the values for a 
single torsional angle parameter. The first four integer modifiers give the atom class numbers for the atoms 
involved in the torsional angle to be defined. Each of the remaining triples of real/real/integer modifiers 
give the amplitude, phase offset in degrees and periodicity of a particular torsional function term, 
respectively. Periodicities through 6-fold are allowed for torsional parameters. 
 
TORSION4 [4 integers & up to 6 real/real/integer triples]     This keyword provides the values for a 
single torsional angle parameter specific to atoms in 4-membered rings. The first four integer modifiers 
give the atom class numbers for the atoms involved in the torsional angle to be defined. The remaining 
triples of real number and integer modifiers operate as described above for the TORSION keyword. 
 
TORSION5 [4 integers & up to 6 real/real/integer triples]     This keyword provides the values for a 
single torsional angle parameter specific to atoms in 5-membered rings. The first four integer modifiers 
give the atom class numbers for the atoms involved in the torsional angle to be defined. The remaining 
triples of real number and integer modifiers operate as described above for the TORSION keyword. 
 
TORSIONTERM [NONE/ONLY]     This keyword controls use of the torsional angle potential energy 
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option 
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for 
this one. 
 
TORSIONUNIT [real]     Sets the scale factor needed to convert the energy value computed by the 
torsional angle potential into units of kcal/mole. The correct value is force field dependent and typically 
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provided in the header of the master force field parameter file. The default value of 1.0 is used, if the 
TORSIONUNIT keyword is not given in the force field parameter file or the keyfile. 
 
TORTOR [7 integers, then multiple lines of 2 integers and 1 real]     This keyword is used to provide 
the values for a single torsion-torsion parameter. The first five integer modifiers give the atom class 
numbers for the atoms involved in the two adjacent torsional angles to be defined. The last two integer 
modifiers contain the number of data grid points that lie along each axis of the torsion-torsion map. For 
example, this value will be 13 for a 30 degree torsional angle spacing, i.e., 360/30 = 12, but 13 values are 
required since data values for -180 and +180 degrees must both be supplied. The subsequent lines contain 
the torsion-torsion map data as the integer values in degrees of each torsional angle and the target energy 
value in kcal/mole. 
 
TORTORTERM [NONE/ONLY]     This keyword controls use of the torsion-torsion potential energy 
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE option 
turns off use of this potential energy term. The ONLY option turns off all potential energy terms except for 
this one. 
 
TORTORUNIT [real]     Sets the scale factor needed to convert the energy value computed by the torsion-
torsion potential into units of kcal/mole. The correct value is force field dependent and typically provided 
in the header of the master force field parameter file. The default value of 1.0 is used, if the TORTORUNIT 
keyword is not given in the force field parameter file or the keyfile. 
 
TRIAL-DISTANCE              [CLASSIC/RANDOM/TRICOR/HAVEL integer/PAIRWISE integer]     
Sets the method for selection of a trial distance matrix during distance geometry computations. The 
keyword takes a modifier that selects the method to be used. The HAVEL and PAIRWISE modifiers also 
require an additional integer value that specifies the number of atoms used in metrization and the 
percentage of metrization, respectively. The default in the absence of this keyword is to use the PAIRWISE 
method with 100 percent metrization. Further information on the various methods is given with the 
description of the TINKER distance geometry program. 
 
TRIAL-DISTRIBUTION [real]     Sets the initial value for the mean of the Gaussian distribution used to 
select trial distances between the lower and upper bounds during distance geometry computations. The 
value given must be between 0 and 1 which represent the lower and upper bounds respectively. This 
keyword is rarely needed since TINKER will usually be able to choose a reasonable value by default. 
 
TRUNCATE     Causes all distance-based nonbond energy cutoffs to be sharply truncated to an energy of 
zero at distances greater than the value set by the cutoff keyword(s) without use of any shifting, switching 
or smoothing schemes. At all distances within the cutoff sphere, the full interaction energy is computed. 
 
UREY-CUBIC [real]     Sets the value of the cubic term in the Taylor series expansion form of the Urey-
Bradley potential energy. The real number modifier gives the value of the coefficient as a multiple of the 
quadratic coefficient. The default value in the absence of the UREY-CUBIC keyword is zero; i.e., the cubic 
Urey-Bradley term is omitted. 
 
UREY-QUARTIC [real]     Sets the value of the quartic term in the Taylor series expansion form of the 
Urey-Bradley potential energy. The real number modifier gives the value of the coefficient as a multiple of 
the quadratic coefficient. The default value in the absence of the UREY-QUARTIC keyword is zero; i.e., 
the quartic Urey-Bradley term is omitted. 
 
UREYBRAD [3 integers & 2 reals]     This keyword provides the values for a single Urey-Bradley cross 
term potential parameter. The integer modifiers give the atom class numbers for the three kinds of atoms 
involved in the angle for which a Urey-Bradley term is to be defined. The real number modifiers give the 
force constant value for the term and the target value for the 1-3 distance in Å. The default units for the 
force constant are kcal/mole/Å2, but this can be controlled via the UREYUNIT keyword. 
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UREYTERM [NONE/ONLY]     This keyword controls use of the Urey-Bradley potential energy term. In 
the absence of a modifying option, this keyword turns on use of the potential. The NONE option turns off 
use of this potential energy term. The ONLY option turns off all potential energy terms except for this one. 
 
UREYUNIT [real]     Sets the scale factor needed to convert the energy value computed by the Urey-
Bradley potential into units of kcal/mole. The correct value is force field dependent and typically provided 
in the header of the master force field parameter file. The default value of 1.0 is used, if the UREYUNIT 
keyword is not given in the force field parameter file or the keyfile. 
 
VDW [1 integer & 3 reals]     This keyword provides values for a single van der Waals parameter. The 
integer modifier, if positive, gives the atom class number for which vdw parameters are to be defined. Note 
that vdw parameters are given for atom classes, not atom types. The three real number modifiers give the 
values of the atom size in Å, homoatomic well depth in kcal/mole, and an optional reduction factor for 
univalent atoms. 
 
VDW-12-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to van der 
Waals potential interactions between 1-2 connected atoms, i.e., atoms that are directly bonded. The default 
value of 0.0 is used, if the VDW-12-SCALE keyword is not given in either the parameter file or the keyfile. 
 
VDW-13-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to van der 
Waals potential interactions between 1-3 connected atoms, i.e., atoms separated by two covalent bonds. 
The default value of 0.0 is used, if the VDW-13-SCALE keyword is not given in either the parameter file 
or the keyfile. 
 
VDW-14-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to van der 
Waals potential interactions between 1-4 connected atoms, i.e., atoms separated by three covalent bonds. 
The default value of 1.0 is used, if the VDW-14-SCALE keyword is not given in either the parameter file 
or the keyfile. 
 
VDW-15-SCALE [real]     This keyword provides a multiplicative scale factor that is applied to van der 
Waals potential interactions between 1-5 connected atoms, i.e., atoms separated by four covalent bonds. 
The default value of 1.0 is used, if the VDW-15-SCALE keyword is not given in either the parameter file 
or the keyfile. 
 
VDW-CUTOFF [real]     Sets the cutoff distance value in Angstroms for van der Waals potential energy 
interactions. The energy for any pair of van der Waals sites beyond the cutoff distance will be set to zero. 
Other keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff 
distance in the absence of the VDW-CUTOFF keyword is infinite for nonperiodic systems and 9.0 for 
periodic systems. 
 
VDW-TAPER [real]     This keyword allows modification of the cutoff windows for van der Waals 
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its value 
applies only to the vdw potential. The default value in the absence of the VDW-TAPER keyword is to 
begin the cutoff window at 0.9 of the vdw cutoff distance. 
 
VDW14 [1 integer & 2 reals]     This keyword provides values for a single van der Waals parameter for 
use in 1-4 nonbonded interactions. The integer modifier, if positive, gives the atom class number for which 
vdw parameters are to be defined. Note that vdw parameters are given for atom classes, not atom types. The 
two real number modifiers give the values of the atom size in Å and the homoatomic well depth in 
kcal/mole. Reduction factors, if used, are carried over from the VDW keyword for the same atom class. 
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VDWPR [2 integers & 2 reals]     This keyword provides the values for the vdw parameters for a single 
special heteroatomic pair of atoms. The integer modifiers give the pair of atom class numbers for which 
special vdw parameters are to be defined. The two real number modifiers give the values of the minimum 
energy contact distance in Å and the well depth at the minimum distance in kcal/mole. 
 
VDWTERM [NONE/ONLY]     This keyword controls use of the van der Waals repulsion-dispersion 
potential energy term. In the absence of a modifying option, this keyword turns on use of the potential. The 
NONE option turns off use of this potential energy term. The ONLY option turns off all potential energy 
terms except for this one. 
 
VDWTYPE [LENNARD-JONES / BUCKINGHAM / BUFFERED-14-7 / MM3-HBOND / 
GAUSSIAN]     Sets the functional form for the van der Waals potential energy term. The text modifier 
gives the name of the functional form to be used. The GAUSSIAN modifier value implements a two or four 
Gaussian fit to the corresponding Lennard-Jones function for use with potential energy smoothing schemes. 
The default in the absence of the VDWTYPE keyword is to use the standard two parameter Lennard-Jones 
function. 
 
VERBOSE     Turns on printing of secondary and informational output during a variety of TINKER 
computations; a subset of the more extensive output provided by the DEBUG keyword. 
 
WALL [real]     Sets the radius of a spherical boundary used to maintain droplet boundary conditions. The 
real modifier specifies the desired approximate radius of the droplet. In practice, an artificial van der Waals 
wall is constructed at a fixed buffer distance of 2.5 Å outside the specified radius. The effect is that atoms 
which attempt to move outside the region defined by the droplet radius will be forced toward the center. 
 
WRITEOUT [integer]     A general parameter for iterative procedures such as minimizations that sets the 
number of iterations between writes of intermediate results (such as the current coordinates) to disk file(s). 
The default value in the absence of the keyword is 1, i.e., the intermediate results are written to file on 
every iteration. Whether successive intermediate results are saved to new files or replace previously written 
intermediate results is controlled by the OVERWRITE and SAVE-CYCLE keywords. 
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8. Notes on Special Features & Methods 
 
 This section contains several short notes with further information about TINKER methodology, 
algorithms and special features. The discussion is not intended to be exhaustive, but rather to explain 
features and capabilities so that users can make more complete use of the package. 
 
FILE VERSION NUMBERS 
 
 All of the input and output file types routinely used by the TINKER package are capable of 
existing as multiple versions of a base file name. For example, if the program XYZINT is run on the input 
file molecule.xyz, the output internal coordinates file will be written to molecule.int. If a file named 
molecule.int is already present prior to running XYZINT, then the output will be written instead to the next 
available version, in this case to molecule.int_2. In fact the output is generally written to the lowest 
available, previously unused version number (molecule.int_3, molecule.int_4, etc., as high as needed). 
Input file names are handled similarly. If simply molecule or molecule.xyz is entered as the input file name 
upon running XYZINT, then the highest version of molecule.xyz will be used as the actual input file. If an 
explicit version number is entered as part of the input file name, then the specified version will be used as 
the input file. 
 
 The version number scheme will be recognized by many older users as a holdover from the VMS 
origins of the first version of the TINKER software. It has been maintained to make it easier to chain 
together multiple calculations that may create several new versions of a given file, and to make it more 
difficult to accidently overwrite a needed result. The version scheme applies to most uses of many common 
TINKER file types such as .xyz, .int, .key, .arc. It is not used when an overwritten file ``update'' is 
obviously the correct action, for example, the .dyn molecular dynamics restart files. For those users who 
prefer a more Unix-like operation, and do not desire use of file versions, this feature can be turned off by 
adding the NOVERSION keyword to the applicable TINKER keyfile. 
 
 The version scheme as implemented in TINKER does have two known quirks. First, it becomes 
impossible to directly use the original unversioned copy of a file if higher version numbers are present. For 
example, if the files molecule.xyz and molecule.xyz_2 both exist, then molecule.xyz cannot be accessed as 
input by XYZINT. If molecule.xyz is entered in response to the input file name question, molecule.xyz_2 
(or the highest present version number) will be used as input. The only workaround is to copy or rename 
molecule.xyz to something else, say molecule.new, and use that name for the input file. Secondly, missing 
version numbers always end the search for the highest available version number; i.e., version numbers are 
assumed to be consecutive and without gaps. For example, if molecule.xyz, molecule.xyz_2 and 
molecule.xyz_4 are present, but not molecule.xyz_3, then molecule.xyz_2 will be used as input to 
XYZINT if molecule is given as the input file name. Similarly, output files will fill in gaps in an already 
existing set of file versions. 
 
COMMAND LINE OPTIONS 
 
 Many operating systems or compiler supplied-libraries make available something like the standard 
Unix iargc and getarg routines for capturing command line arguments. On these machines most of the 
TINKER programs support a selection of command line arguments and options. The name of the keyfile to 
be used for a calculation is read from the argument following a -k (equivalent to either -key or -keyfile, 
case insensitive) command line argument. Note that the -k options can appear anywhere on the command 
line following the executable name. All other command line arguments, excepting the name of the 
executable program itself, are treated as input arguments. These input arguments are read from left to right 
and interpreted in order as the answers to questions that would be asked by an interactive invocation of the 
same TINKER program. For example, the following command line: 
 
newton molecule -k test a a 0.01 
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will invoke the NEWTON program on the structure file molecule.xyz using the keyfile test.key, automatic 
mode [a] for both the method and preconditioning, and 0.01 for the RMS gradient per atom termination 
criterion in kcal/mole/Å. Provided that the force field parameter set, etc. is provided in test.key, the above 
compuation will procede directly from the command line invocation without further interactive input. 
 
USE ON MICROSOFT WINDOWS SYSTEMS 
 
 TINKER executables for Microsoft PC systems should be run from the DOS or Command Prompt 
window available under the various versions of Windows. The TINKER executable directory should be 
added to your path via the autoexec.bat file or similar. If using Win2000 or XP, set the number of scrollable 
lines in the Command Prompt window to a very large number, so that you will be able to inspect screen 
output after it flies by. With Win95/98, these Command Prompt windows are only able to scroll a small 
number of lines (amazing!), so TINKER programs which generate large amounts of screen output should 
be run such that output will be redirected to a file. This can be accomplished by running the TINKER 
program in batch mode or by using the Unix-like output redirection build into DOS. For example, the 
command: 
 
dynamic < molecule.inp > molecule.log 
 
will run the TINKER dynamic program taking input from the file molecule.inp and sending output to 
molecule.log. Also note that command line options as described above are available with the distributed 
TINKER executables. 
 
 Another alternative, particularly attractive to those already familiar with Linux or Unix systems, is 
to download the Cygwin package currently available under GPL license from the site 
http://source.redhat.com/cygwin/. The cygwin tools provide many of the GNU tools, including a bash 
shell window from which TINKER programs can be run. 
 
 If the distributed TINKER executables are run directly from Windows by double clicking on the 
program icon, then the program will run in its own window. However, upon completion of the program the 
window will close and screen output will be lost. Any output files written by the program will, of course, 
still be available. The Windows behavior can be changed by adding the EXIT-PAUSE keyword to the 
keyfile. This keyword causes the executation window to remain open after completion until the ``Enter'' 
key is pressed. 
 
USE ON APPLE MACINTOSH SYSTEMS 
 
 The TINKER executables are best run under Mac OS X in a ``terminal'' application window where 
behavior is identical to that in a Linux terminal. At present the Force Field Explorer GUI for TINKER will 
not run on OS X since the required Java3D extensions are unavailable. 
 
 We have discontinued active support for Mac OS 9. However, the OS 9 versions of TINKER are 
run by double clicking on a program icon. The program will run in its own window to which all ``screen'' 
output will be directed. Upon program termination the window will remain active pending a final return 
entered by the user which will close the window. Prior to the final return, the contents of the screen window 
can be saved to a file via the clipboard for permanent storage. Note that Macintosh OS9 uses a colon 
instead of a forward- or back-slash as the directory separator, so keyfiles transfered from other machines 
will need to be altered accordingly. 
 
ATOM TYPES VS. ATOM CLASSES 
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 Manipulation of atom types and the proliferation of parameters as atoms are further subdivided 
into new types is the bane of force field calculation. For example, if each topologically distinct atom arising 
from the 20 natural amino acids is given a different atom type, then about 300 separate type are required 
(this ignores the different N- and C-terminal forms of the residues, diastereotopic hydrogens, etc.). 
However, all these types lead to literally thousands of different force field parameters. In fact, there are 
many thousands of distinct torsional parameters alone. It is impossible at present to fully optimize each of 
these parameters; and even if we could, a great many of the parameters would be nearly identical. Two 
somewhat complimentary solutions are available to handle the proliferation of parameters. The first is to 
specify the molecular fragments to which a given parameter can be applied in terms of a chemical structure 
language, SMILES strings for example. Some commercial systems, such as the TRIPOS Sybyl software, 
make use of such a scheme to parse structures and assign force field parameters. 
 
 A second general approach is to use hierarchical cascades of parameter groups. TINKER uses a 
simple version of this scheme. Each TINKER force field atom has both an atom type number and an atom 
class number. The types are subsets of the atom classes, i.e., several different atom types can belong to the 
same atom class. Force field parameters that are somewhat less sensitive to local environment, such as local 
geometry terms, are then provided and assigned based on atom class. Other energy parameters, such as 
electrostatic parameters, that are very environment dependent are assigned over the atom types. This 
greatly reduces the number of independent multiple-atom parameters like the four-atom torsional 
parameters. 
 
CALCULATIONS ON PARTIAL STRUCTURES 
 
 Two methods are available for performing energetic calculations on portions or substructures 
within a full molecular system. TINKER allows division of the entire system into active and inactive parts 
which can be defined via keywords. In subsequent calculations, such as minimization or dynamics, only the 
active portions of the system are allowed to move. The force field engine responds to the active/inactive 
division by computing all energetic interactions involving at least one active atom; i.e., any interaction 
whose energy can change with the motion of one or more active atoms is computed. 
 
 The second method for partial structure computation involves dividing the original system into a 
set of atom groups. As before, the groups can be specified via appropriate keywords. The current TINKER 
implementation allows specification of up to a maximum number of groups as given in the sizes.i 
dimensioning file. The groups must be disjoint in that no atom can belong to more than one group. Further 
keywords allow the user to specify which intra- and intergroup sets of energetic interactions will contribute 
to the total force field energy. Weights for each set of interactions in the total energy can also be input. A 
specific energetic interaction is assigned to a particular intra- or intergroup set if all the atoms involved in 
the interaction belong to the group (intra-) or pair of groups (inter-). Interactions involving atoms from 
more than two groups are not computed. 
 
 Note that the groups method and active/inactive method use different assignment procedures for 
individual interactions. The active/inactive scheme is intended for situations where only a portion of a 
system is allowed to move, but the total energy needs to reflect the presence of the remaining inactive 
portion of the structure. The groups method is intended for use in rigid body calculations, and is needed for 
certain kinds of free energy perturbation calculations. 
 
METAL COMPLEXES AND HYPERVALENT SPECIES 
 
 The distribution version of TINKER comes dimensioned for a maximum atomic coordination 
number of four as needed for standard organic compounds. In order to use TINKER for calculations on 
species containing higher coordination numbers, simply change the value of the parameter maxval in the 
master dimensioning file sizes.i and rebuilt the package. Note that this parameter value should not be set 
larger than necessary since large values can slow the execution of portions of some TINKER programs. 
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 Many molecular mechanics approaches to inorganic and metal structures use an angle bending 
term which is softer than the usual harmonic bending potential. TINKER implements a Fourier bending 
term similar to that used by the Landis group's SHAPES force field. The parameters for specific Fourier 
angle terms are supplied via the ANGLEF parameter and keyword format. Note that a Fourier term will 
only be used for a particular angle if a corresponding harmonic angle term is not present in the parameter 
file. 
 
 We are now collaborating with Anders Carlsson's group in St. Louis to add his transition metal 
ligand field term to TINKER. Support for this additional potential functional form is already in the 
TINKER source code, and we plan to release the energy routines after further testing and parameterization. 
 
NEIGHBOR METHODS FOR NONBONDED TERMS 
 
 In addition to standard double loop methods, the Method of Lights is available to speed neighbor 
searching. This method based on taking intersections of sorted atom lists can be much faster for problems 
where the cutoff distance is significantly smaller than half the maximal cell dimension. The current version 
of TINKER does not implement the ``neighbor list'' schemes common to many other simulation packages. 
 
PERIODIC BOUNDARY CONDITIONS 
 
 Both spherical cutoff images or replicates of a cell are supported by all TINKER programs that 
implement periodic boundary conditions. Whenever the cutoff distance is too large for the minimum image 
to be the only relevant neighbor (i.e., half the minimum box dimension for orthogonal cells), TINKER will 
automatically switch from the image formalism to use of replicated cells. 
 
DISTANCE CUTOFFS FOR ENERGY FUNCTIONS 
 
 Polynomial energy switching over a window is used for terms whose energy is small near the 
cutoff distance. For monopole electrostatic interactions, which are quite large in typical cutoff ranges, a two 
polynomial multiplicative-additive shifted energy switch unique to TINKER is applied. The TINKER 
method is similar in spirit to the force switching methods of Steinbach and Brooks, J. Comput. Chem., 15, 
667-683 (1994). While the particle mesh Ewald method is preferred when periodic boundary conditions are 
present, TINKER's shifted energy switch with reasonable switching windows is quite satisfactory for most 
routine modeling problems. The shifted energy switch minimizes the perturbation of the energy and the 
gradient at the cutoff to acceptable levels. Problems should arise only if the property you wish to monitor is 
known to require explicit inclusion of long range components (i.e., calculation of the dielectric constant, 
etc.). 
 
EWALD SUMMATION METHODS 
 
 TINKER contains a versions of the Ewald summation technique for inclusion of long range 
electrostatic interactions via periodic boundaries. The particle mesh Ewald (PME) method is available for 
simple charge-charge potentials, while regular Ewald is provided for polarizable atomic multipole 
interactions. The accuracy and speed of the regular and PME calculations is dependent on several 
interrelated parameters. For both methods, the Ewald coefficient and real-space cutoff distance must be set 
to reasonable and complementary values. Additional control variables for regular Ewald are the fractional 
coverage and number of vectors used in reciprocal space. For PME the additional control values are the B-
spline order and charge grid dimensions. Complete control over all of these parameters is available via the 
TINKER keyfile mechanism. By default TINKER will select a set of parameters which provide a 
reasonable compromise between accuracy and speed, but these should be checked and modified as 
necessary for each individual system. 
 
CONTINUUM SOLVATION MODELS 
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 Several alternative continuum solvation algorithms are contained within TINKER. All of these are 
accessed via the SOLVATE keyword and its modifiers. Two simple surface area methods are implemented: 
the ASP method of Eisenberg and McLachlan, and the SASA method from Scheraga's group. These 
methods are applicable to any of the standard TINKER force fields. Various schemes based on the 
generalized Born formalism are also available: the original 1990 numerical ``Onion-shell'' GB/SA method 
from Still's group, the 1997 analytical GB/SA method also due to Still, a pairwise descreening algorithm 
originally proposed by Hawkins, Cramer and Truhlar, and the analytical continuum solvation (ACE) 
method of Schaefer and Karplus. At present, the generalized Born methods should only be used with force 
fields having simple partial charge electrostatic interactions. 
 
 Some further comments are in order regarding the GB/SA-style solvation models. The ``Onion-
shell'' model is provided mostly for comparison purposes. It uses an exact, analytical surface area 
calculation for the cavity term and the numerical scheme described in the original paper for the polarization 
term. This method is very slow, especially for large systems, and does not contain the contribution of the 
Born radii chain rule term to the first derivatives. We recommend its use only for single-point energy 
calculations. The other GB/SA methods (``analytical'' Still, H-C-T pairwise descreening, and ACE) use an 
approximate cavity term based on Born radii, and do contain fully correct derivatives including the Born 
radii chain rule contribution. These methods all scale in CPU time with the square of the size of the system, 
and can be used with minimization, molecular dynamics and large molecules. 
 
 Finally, we note that the ACE solvation model should not be used with the current version of 
TINKER. The algorithm is fully implemented in the source code, but parameterization is not complete. As 
of late 2000, parameter values are only available in the literature for use of ACE with the older 
CHARMM19 force field. We plan to develop values for use with more modern all-atom force fields, and 
these will be incorporated into TINKER sometime in the future. 
 
POLARIZABLE MULTIPOLE ELECTROSTATICS 
 
 Atomic multipole electrostatics through the quadrupole moment is supported by the current 
version of TINKER, as is either mutual or direct dipole polarization. Ewald summation is available for 
inclusion of long range interactions. Calculations are implemented via a mixture of the CCP5 algorithms of 
W. Smith and the Applequist-Dykstra Cartesian polytensor method. At present analytical energy and 
Cartesian gradient code is provided. 
 
 The TINKER package allows intramolecular polarization to be treated via a version of the 
interaction damping scheme of Thole. To implement the Thole scheme, it is necessary to set all the 
mutual-1x-scale keywords to a value of one. The other polarization scaling keyword series, direct-1x-
scale and polar-1x-scale, can be set independently to enable a wide variety of polarization models. In order 
to use an Applequist-style model without polarization damping, simply set the polar-damp keyword to 
zero. 
 
POTENTIAL ENERGY SMOOTHING 
 
 Versions of our Potential Smoothing and Search (PSS) methodology have been implemented 
within TINKER. This methods belong to the same general family as Scheraga's Diffusion Equation 
Method, Straub's Gaussian Density Annealing, Shalloway's Packet Annealing and Verschelde's Effective 
Diffused Potential, but our algorithms reflect our own ongoing research in this area. In many ways the 
TINKER potential smoothing methods are the deterministic analog of stochastic simulated annealing. The 
PSS algorithms are very powerful, but are relatively new and are still undergoing modification, testing and 
calibration within our research group. This version of TINKER also includes a basin-hopping 
conformational scanning algorithm in the program SCAN which is particularly effective on smoothed 
potential surfaces. 
 
DISTANCE GEOMETRY METRIZATION 
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 A much improved and very fast random pairwise metrization scheme is available which allows 
good sampling during trial distance matrix generation without the usual structural anomalies and CPU 
constraints of other metrization procedures. An outline of the methodology and its application to NMR 
NOE-based structure refinement is described in the paper by Hodsdon, et al. in J. Mol. Biol., 264, 585-602 
(1996). We have obtained good results with something like the keyword phrase trial-distribution pairwise 
5, which performs 5% partial random pairwise metrization. For structures over several hundred atoms, a 
value less than 5 for the percentage of metrization should be fine. 
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9. Descriptions of TINKER Routines 
 
 The distribution version of the TINKER package contains over 700 separate programs, 
subroutines and functions. This section contains a brief description of the purpose of most of these code 
units. Further information can be found in the comments located at the top of each source code file. 
 
ACTIVE Subroutine 
 
"active" sets the list of atoms that are used during each potential energy function calculation 
 
ADDBASE Subroutine 
 
"addbase" builds the Cartesian coordinates for a single nucleic acid base; coordinates are read from the 
Protein Data Bank file or found from internal coordinates, then atom types are assigned and connectivity 
data generated 
 
ADDBOND Subroutine 
 
"addbond" adds entries to the attached atoms list in order to generate a direct connection between two 
atoms 
 
ADDSIDE Subroutine 
 
"addside" builds the Cartesian coordinates for a single amino acid side chain; coordinates are read from the 
Protein Data Bank file or found from internal coordinates, then atom types are assigned and connectivity 
data generated 
 
ADJACENT Function 
 
"adjacent" finds an atom connected to atom "i1" other than atom "i2"; if no such atom exists, then the 
closest atom in space is returned 
 
AGDA Program 
 
"agda" implements the Adiabatic Gaussian Density Annealing method (AGDA) for global optimization 
using a conjugate gradient optimization on differently annealed potential surfaces and a numerical 
integrator to control the widths of the Gaussian densities 
 
ALCHEMY Program 
 
"alchemy" computes the free energy difference corresponding to a small perturbation by Boltzmann 
weighting the potential energy difference over a number of sample states; current version (incorrectly) 
considers the charge energy to be intermolecular in finding the perturbation energies 
 
ANALYSIS Subroutine 
 
"analysis" calls the series of routines needed to calculate the potential energy and perform energy 
partitioning analysis in terms of type of interaction or atom number 
 
ANALYZ4 Subroutine 
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"analyz4" prints the energy to 4 decimal places and number of interactions for each component of the 
potential energy 
 
ANALYZ6 Subroutine 
 
"analyz6" prints the energy to 6 decimal places and number of interactions for each component of the 
potential energy 
 
ANALYZ8 Subroutine 
 
"analyz8" prints the energy to 8 decimal places and number of interactions for each component of the 
potential energy 
 
ANALYZE Program 
 
"analyze" computes and displays the total potential; options are provided to partition the energy by atom or 
by potential function type; parameters used in computing interactions can also be displayed by atom; output 
of large energy interactions and of electrostatic and inertial properties is available 
 
ANGLES Subroutine 
 
"angles" finds the total number of bond angles and stores the atom numbers of the atoms defining each 
angle; for each angle to a trivalent central atom, the third bonded atom is stored for use in out-of-plane 
bending 
 
ANNEAL Program 
 
"anneal" performs a simulated annealing protocol by means of variable temperature molecular dynamics 
using either linear, exponential or sigmoidal cooling schedules 
 
ANORM Function 
 
"anorm" finds the norm (length) of a vector; used as a service routine by the Connolly surface area and 
volume computation 
 
ARCHIVE Program 
 
"archive" is a utility program for coordinate files which concatenates multiple coordinate sets into a single 
archive file, or extracts individual coordinate sets from an archive 
 
ASET Subroutine 
 
"aset" computes by recursion the A functions used in the evaluation of Slater-type (STO) overlap integrals 
 
ATOMYZE Subroutine 
 
"atomyze" prints the potential energy components broken down by atom and to a choice of precision 
 
ATTACH Subroutine 
 
"attach" generates lists of 1-3, 1-4 and 1-5 connectivities starting from the previously determined list of 
attached atoms (ie, 1-2 connectivity) 
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BASEFILE Subroutine 
 
"basefile" extracts from an input filename the portion consisting of any directory name and the base 
filename 
 
BCUCOF Subroutine 
 
"bcucof" determines the coefficient matrix needed for bicubic interpolation of a function, gradients and 
cross derivatives 
 
BCUINT Subroutine 
 
"bcuint" performs a bicubic interpolation of the function value on a 2D spline grid 
 
BCUINT1 Subroutine 
 
"bcuint1" performs a bicubic interpolation of the function value and gradient along the directions of a 2D 
spline grid 
 
BCUINT2 Subroutine 
 
"bcuint2" performs a bicubic interpolation of the function value, gradient and Hessain along the directions 
of a 2D spline grid 
 
BEEMAN Subroutine 
 
"beeman" performs a single molecular dynamics time step by means of a Beeman multistep recursion 
formula; the actual coefficients are Brooks' "Better Beeman" values 
 
BETACF Function 
 
"betacf" computes a rapidly convergent continued fraction needed by routine "betai" to evaluate the 
cumulative Beta distribution 
 
BETAI Function 
 
"betai" evaluates the cumulative Beta distribution function as the probability that a random variable from a 
distribution with Beta parameters "a" and "b" will be less than "x" 
 
BIGBLOCK Subroutine 
 
"bigblock" replicates the coordinates of a single unit cell to give a larger block of repeated units 
 
BITORS Subroutine 
 
"bitors" finds the total number of bitorsions, pairs of overlapping dihedral angles, and the numbers of the 
five atoms defining each bitorsion 
 
BMAX Function 
 



 65 TINKER User's Guide 65

"bmax" computes the maximum order of the B functions needed for evaluation of Slater-type (STO) 
overlap integrals 
 
BNDERR Function 
 
"bnderr" is the distance bound error function and derivatives; this version implements the original and 
Havel's normalized lower bound penalty, the normalized version is preferred when lower bounds are small 
(as with NMR NOE restraints), the original penalty is needed if large lower bounds are present 
 
BONDS Subroutine 
 
"bonds" finds the total number of covalent bonds and stores the atom numbers of the atoms defining each 
bond 
 
BORN Subroutine 
 
"born" computes the Born radius of each atom for use with the various GB/SA solvation models 
 
BORN1 Subroutine 
 
"born1" computes derivatives of the Born radii with respect to atomic coordinates and increments total 
energy derivatives and virial components for potentials involving Born radii 
 
BOUNDS Subroutine 
 
"bounds" finds the center of mass of each molecule, translates any stray molecules back into the periodic 
box, and saves the offset of each atom relative to the molecular center of mass 
 
BSET Subroutine 
 
"bset" computes by downward recursion the B functions used in the evaluation of Slater-type (STO) 
overlap integrals 
 
BSPLINE Subroutine 
 
"bspline" calculates the coefficients for an n-th order B-spline approximation 
 
BSPLINE1 Subroutine 
 
"bspline1" calculates the coefficients and derivative coefficients for an n-th order B-spline approximation 
 
BSSTEP Subroutine 
 
"bsstep" takes a single Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy 
 
CALENDAR Subroutine 
 
"calendar" returns the current time as a set of integer values representing the year, month, day, hour, minute 
and second 
 
CELLATOM Subroutine 
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"cellatom" completes the addition of a symmetry related atom to a unit cell by updating the atom type and 
attachment arrays 
 
CENTER Subroutine 
 
"center" moves the weighted centroid of each coordinate set to the origin during least squares superposition 
 
CERROR Subroutine 
 
"cerror" is the error handling routine for the Connolly surface area and volume computation 
 
CFFTB Subroutine 
 
"cfftb" computes the backward complex discrete Fourier transform, the Fourier synthesis 
 
CFFTB1 Subroutine 
 
CFFTF Subroutine 
 
"cfftf" computes the forward complex discrete Fourier transform, the Fourier analysis 
 
CFFTF1 Subroutine 
 
CFFTI Subroutine 
 
"cffti" initializes the array "wsave" which is used in both forward and backward transforms; the prime 
factorization of "n" together with a tabulation of the trigonometric functions are computed and stored in 
"wsave" 
 
CFFTI1 Subroutine 
 
CHIRER Function 
 
"chirer" computes the chirality error and its derivatives with respect to atomic Cartesian coordinates as a 
sum the squares of deviations of chiral volumes from target values 
 
CHKCLASH Subroutine 
 
"chkclash" determines if there are any atom clashes which might cause trouble on subsequent energy 
evaluation 
 
CHKPOLE Subroutine 
 
"chkpole" inverts atomic multipole moments as necessary at sites with chiral local reference frame 
definitions 
 
CHKRING Subroutine 
 
"chkring" tests angles to be constrained for their presence in small rings and removes constraints that are 
redundant 
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CHKSIZE Subroutine 
 
"chksize" computes a measure of overall global structural expansion or compaction from the number of 
excess upper or lower bounds matrix violations 
 
CHKTREE Subroutine 
 
"chktree" tests a minimum energy structure to see if it belongs to the correct progenitor in the existing map 
 
CHKXYZ Subroutine 
 
"chkxyz" finds any pairs of atoms with identical Cartesian coordinates, and prints a warning message 
 
CHOLESKY Subroutine 
 
"cholesky" uses a modified Cholesky method to solve the linear system Ax = b, returning "x" in "b"; "A" is 
assumed to be a real symmetric positive definite matrix with its diagonal and upper triangle stored by rows 
 
CIRPLN Subroutine 
 
CJKM Function 
 
"cjkm" computes the coefficients of spherical harmonics expressed in prolate spheroidal coordinates 
 
CLIMBER Subroutine 
 
CLIMBRGD Subroutine 
 
CLIMBROT Subroutine 
 
CLIMBTOR Subroutine 
 
CLIMBXYZ Subroutine 
 
CLOCK Subroutine 
 
"clock" determines elapsed CPU time in seconds since the start of the job 
 
CLUSTER Subroutine 
 
"cluster" gets the partitioning of the system into groups and stores a list of the group to which each atom 
belongs 
 
COLUMN Subroutine 
 
"column" takes the off-diagonal Hessian elements stored as sparse rows and sets up indices to allow 
column access 
 
COMMAND Subroutine 
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"command" uses the standard Unix-like iargc/getarg routines to get the number and values of arguments 
specified on the command line at program runtime 
 
COMPRESS Subroutine 
 
"compress" transfers only the non-buried tori from the temporary tori arrays to the final tori arrays 
 
CONNECT Subroutine 
 
"connect" sets up the attached atom arrays starting from a set of internal coordinates 
 
CONNOLLY Subroutine 
 
"connolly" uses the algorithms from the AMS/VAM programs of Michael Connolly to compute the 
analytical molecular surface area and volume of a collection of spherical atoms; thus it implements Fred 
Richards' molecular surface definition as a set of analytically defined spherical and toroidal polygons 
 
CONTACT Subroutine 
 
"contact" constructs the contact surface, cycles and convex faces 
 
CONTROL Subroutine 
 
"control" gets initial values for parameters that determine the output style and information level provided 
by TINKER 
 
COORDS Subroutine 
 
"coords" converts the three principal eigenvalues/vectors from the metric matrix into atomic coordinates, 
and calls a routine to compute the rms deviation from the bounds 
 
CORRELATE Program 
 
"correlate" computes the time correlation function of some user-supplied property from individual snapshot 
frames taken from a molecular dynamics or other trajectory 
 
CRYSTAL Program 
 
"crystal" is a utility program which converts between fractional and Cartesian coordinates, and can generate 
full unit cells from asymmetric units 
 
CUTOFFS Subroutine 
 
"cutoffs" initializes and stores spherical energy cutoff distance windows, Hessian element and Ewald sum 
cutoffs, and the pairwise neighbor generation method 
 
CYTSY Subroutine 
 
"cytsy" solves a system of linear equations for a cyclically tridiagonal, symmetric, positive definite matrix 
 
CYTSYP Subroutine 
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"cytsyp" finds the Cholesky factors of a cyclically tridiagonal symmetric, positive definite matrix given by 
two vectors 
 
CYTSYS Subroutine 
 
"cytsys" solves a cyclically tridiagonal linear system given the Cholesky factors 
 
D1D2 Function 
 
"d1d2" is a utility function used in computation of the reaction field recursive summation elements 
 
DELETE Subroutine 
 
"delete" removes a specified atom from the Cartesian coordinates list and shifts the remaining atoms 
 
DEPTH Function 
 
DFTMOD Subroutine 
 
"dftmod" computes the modulus of the discrete Fourier transform of "bsarray", storing it into "bsmod" 
 
DIAGQ Subroutine 
 
"diagq" is a matrix diagonalization routine which is derived from the classical given, housec, and eigen 
algorithms with several modifications to increase the efficiency and accuracy 
 
DIFFEQ Subroutine 
 
"diffeq" performs the numerical integration of an ordinary differential equation using an adaptive stepsize 
method to solve the corresponding coupled first-order equations of the general form dyi/dx = f(x,y1,...,yn) 
for yi = y1,...,yn 
 
DIFFUSE Program 
 
"diffuse" finds the self-diffusion constant for a homogeneous liquid via the Einstein relation from a set of 
stored molecular dynamics frames; molecular centers of mass are unfolded and mean squared 
displacements are computed versus time separation 
 
DIST2 Function 
 
"dist2" finds the distance squared between two points; used as a service routine by the Connolly surface 
area and volume computation 
 
DISTGEOM Program 
 
"distgeom" uses a metric matrix distance geometry procedure to generate structures with interpoint 
distances that lie within specified bounds, with chiral centers that maintain chirality, and with torsional 
angles restrained to desired values; the user also has the ability to interactively inspect and alter the triangle 
smoothed bounds matrix prior to embedding 
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DMDUMP Subroutine 
 
"dmdump" puts the distance matrix of the final structure into the upper half of a matrix, the distance of each 
atom to the centroid on the diagonal, and the individual terms of the bounds errors into the lower half of the 
matrix 
 
DOCUMENT Program 
 
"document" generates a formatted description of all the code modules or common blocks, an index of 
routines called by each source code module, a listing of all valid keywords, a list of include file 
dependencies as needed by a Unix-style Makefile, or a formatted force field parameter set summary 
 
DOIMIN Subroutine 
 
"loclmin" performs an energy minimization in Cartesian coordinate space using a truncated Newton 
method 
 
DOT Function 
 
"dot" finds the dot product of two vectors 
 
DSTMAT Subroutine 
 
"dstmat" selects a distance matrix containing values between the previously smoothed upper and lower 
bounds; the distance values are chosen from uniform distributions, in a triangle correlated fashion, or using 
random partial metrization 
 
DYNAMIC Program 
 
"dynamic" computes a molecular dynamics trajectory in any of several statistical mechanical ensembles 
with optional periodic boundaries and optional coupling to temperature and pressure baths alternatively a 
stochastic dynamics trajectory can be generated 
 
EANGANG Subroutine 
 
"eangang" calculates the angle-angle potential energy 
 
EANGANG1 Subroutine 
 
"eangang1" calculates the angle-angle potential energy and first derivatives with respect to Cartesian 
coordinates 
 
EANGANG2 Subroutine 
 
"eangang2" calculates the angle-angle potential energy second derivatives with respect to Cartesian 
coordinates using finite difference methods 
 
EANGANG2A Subroutine 
 
"eangang2a" calculates the angle-angle first derivatives for a single interaction with respect to Cartesian 
coordinates; used in computation of finite difference second derivatives 
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EANGANG3 Subroutine 
 
"eangang3" calculates the angle-angle potential energy; also partitions the energy among the atoms 
 
EANGLE Subroutine 
 
"eangle" calculates the angle bending potential energy; projected in-plane angles at trigonal centers or 
Fourier angle bending terms are optionally used 
 
EANGLE1 Subroutine 
 
"eangle1" calculates the angle bending potential energy and the first derivatives with respect to Cartesian 
coordinates; projected in-plane angles at trigonal centers or Fourier angle bending terms are optionally used 
 
EANGLE2 Subroutine 
 
"eangle2" calculates second derivatives of the angle bending energy for a single atom using a mixture of 
analytical and finite difference methods; projected in-plane angles at trigonal centers or Fourier angle 
bending terms are optionally used 
 
EANGLE2A Subroutine 
 
"eangle2a" calculates bond angle bending potential energy second derivatives with respect to Cartesian 
coordinates 
 
EANGLE2B Subroutine 
 
"eangle2b" computes projected in-plane bending first derivatives for a single angle with respect to 
Cartesian coordinates; used in computation of finite difference second derivatives 
 
EANGLE3 Subroutine 
 
"eangle3" calculates the angle bending potential energy, also partitions the energy among the atoms; 
projected in-plane angles at trigonal centers or Fourier angle bending terms are optionally used 
 
EBOND Subroutine 
 
"ebond" calculates the bond stretching energy 
 
EBOND1 Subroutine 
 
"ebond1" calculates the bond stretching energy and first derivatives with respect to Cartesian coordinates 
 
EBOND2 Subroutine 
 
"ebond2" calculates second derivatives of the bond stretching energy for a single atom at a time 
 
EBOND3 Subroutine 
 
"ebond3" calculates the bond stretching energy; also partitions the energy among the atoms 
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EBUCK Subroutine 
 
"ebuck" calculates the Buckingham exp-6 van der Waals energy 
 
EBUCK0A Subroutine 
 
"ebuck0a" calculates the Buckingham exp-6 van der Waals energy using a pairwise double loop 
 
EBUCK0B Subroutine 
 
"ebuck0b" calculates the Buckingham exp-6 van der Waals energy using the method of lights to locate 
neighboring atoms 
 
EBUCK0C Subroutine 
 
"ebuck0c" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for 
potential energy smoothing 
 
EBUCK1 Subroutine 
 
"ebuck1" calculates the Buckingham exp-6 van der Waals energy and its first derivatives with respect to 
Cartesian coordinates 
 
EBUCK1A Subroutine 
 
"ebuck1a" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using a pairwise 
double loop 
 
EBUCK1B Subroutine 
 
"ebuck1b" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using the 
method of lights to locate neighboring atoms 
 
EBUCK1C Subroutine 
 
"ebuck1c" calculates the Buckingham exp-6 van der Waals energy and its first derivatives via a Gaussian 
approximation for potential energy smoothing 
 
EBUCK2 Subroutine 
 
"ebuck2" calculates the Buckingham exp-6 van der Waals second derivatives for a single atom at a time 
 
EBUCK2A Subroutine 
 
"ebuck2a" calculates the Buckingham exp-6 van der Waals second derivatives using a double loop over 
relevant atom pairs 
 
EBUCK2B Subroutine 
 
"ebuck2b" calculates the Buckingham exp-6 van der Waals second derivatives via a Gaussian 
approximation for use with potential energy smoothing 
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EBUCK3 Subroutine 
 
"ebuck3" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among the 
atoms 
 
EBUCK3A Subroutine 
 
"ebuck3a" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among the 
atoms using a pairwise double loop 
 
EBUCK3B Subroutine 
 
"ebuck3b" calculates the Buckingham exp-6 van der Waals energy and also partitions the energy among the 
atoms using the method of lights to locate neighboring atoms 
 
EBUCK3C Subroutine 
 
"ebuck3c" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for 
potential energy smoothing 
 
ECHARGE Subroutine 
 
"echarge" calculates the charge-charge interaction energy 
 
ECHARGE0A Subroutine 
 
"echarge0a" calculates the charge-charge interaction energy using a pairwise double loop 
 
ECHARGE0B Subroutine 
 
"echarge0b" calculates the charge-charge interaction energy using the method of lights to locate 
neighboring atoms 
 
ECHARGE0C Subroutine 
 
"echarge0c" calculates the charge-charge interaction energy for use with potential smoothing methods 
 
ECHARGE0D Subroutine 
 
"echarge0d" calculates the charge-charge interaction energy using a particle mesh Ewald summation 
 
ECHARGE0E Subroutine 
 
"echarge0e" calculates the charge-charge interaction energy using a particle mesh Ewald summation and 
the method of lights to locate neighboring atoms 
 
ECHARGE1 Subroutine 
 
"echarge1" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian 
coordinates 
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ECHARGE1A Subroutine 
 
"echarge1a" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian 
coordinates using a pairwise double loop 
 
ECHARGE1B Subroutine 
 
"echarge1b" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian 
coordinates using the method of lights to locate neighboring atoms 
 
ECHARGE1C Subroutine 
 
"echarge1c" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian 
coordinates for use with potential smoothing methods 
 
ECHARGE1D Subroutine 
 
"echarge1d" calculates the charge-charge interaction energy and first derivatives with respect to Cartesian 
coordinates using a particle mesh Ewald summation 
 
ECHARGE2 Subroutine 
 
"echarge2" calculates second derivatives of the charge-charge interaction energy for a single atom 
 
ECHARGE2A Subroutine 
 
"echarge2a" calculates second derivatives of the charge-charge interaction energy for a single atom using a 
pairwise double loop 
 
ECHARGE2B Subroutine 
 
"echarge2b" calculates second derivatives of the charge-charge interaction energy for a single atom for use 
with potential smoothing methods 
 
ECHARGE2C Subroutine 
 
"echarge2c" calculates second derivatives of the charge-charge interaction energy for a single atom using a 
particle mesh Ewald summation 
 
ECHARGE3 Subroutine 
 
"echarge3" calculates the charge-charge interaction energy and partitions the energy among the atoms 
 
ECHARGE3A Subroutine 
 
"echarge3a" calculates the charge-charge interaction energy and partitions the energy among the atoms 
using a pairwise double loop 
 
ECHARGE3B Subroutine 
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"echarge3b" calculates the charge-charge interaction energy and partitions the energy among the atoms 
using the method of lights to locate neighboring atoms 
 
ECHARGE3C Subroutine 
 
"echarge3c" calculates the charge-charge interaction energy and partitions the energy among the atoms for 
use with potential smoothing methods 
 
ECHARGE3D Subroutine 
 
"echarge3d" calculates the charge-charge interaction energy and partitions the energy among the atoms 
using a particle mesh Ewald summation 
 
ECHARGE3E Subroutine 
 
"echarge3e" calculates the charge-charge interaction energy and partitions the energy among the atoms 
using a particle mesh Ewald summation and the method of lights to locate neighboring atoms 
 
ECHGDPL Subroutine 
 
"echgdpl" calculates the charge-dipole interaction energy 
 
ECHGDPL1 Subroutine 
 
"echgdpl1" calculates the charge-dipole interaction energy and first derivatives with respect to Cartesian 
coordinates 
 
ECHGDPL2 Subroutine 
 
"echgdpl2" calculates second derivatives of the charge-dipole interaction energy for a single atom 
 
ECHGDPL3 Subroutine 
 
"echgdpl3" calculates the charge-dipole interaction energy; also partitions the energy among the atoms 
 
EDIPOLE Subroutine 
 
"edipole" calculates the dipole-dipole interaction energy 
 
EDIPOLE1 Subroutine 
 
"edipole1" calculates the dipole-dipole interaction energy and first derivatives with respect to Cartesian 
coordinates 
 
EDIPOLE2 Subroutine 
 
"edipole2" calculates second derivatives of the dipole-dipole interaction energy for a single atom 
 
EDIPOLE3 Subroutine 
 
"edipole3" calculates the dipole-dipole interaction energy; also partitions the energy among the atoms 
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EGAUSS Subroutine 
 
"egauss" calculates the Gaussian expansion van der Waals interaction energy 
 
EGAUSS0A Subroutine 
 
"egauss0a" calculates the Gaussian expansion van der Waals interaction energy using a pairwise double 
loop 
 
EGAUSS0B Subroutine 
 
"egauss0b" calculates the Gaussian expansion van der Waals interaction energy for use with potential 
energy smoothing 
 
EGAUSS1 Subroutine 
 
"egauss1" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives with 
respect to Cartesian coordinates 
 
EGAUSS1A Subroutine 
 
"egauss1a" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives 
using a pairwise double loop 
 
EGAUSS1B Subroutine 
 
"egauss1b" calculates the Gaussian expansion van der Waals interaction energy and its first derivatives for 
use with stophat potential energy smoothing 
 
EGAUSS2 Subroutine 
 
"egauss2" calculates the Gaussian expansion van der Waals second derivatives for a single atom at a time 
 
EGAUSS2A Subroutine 
 
"egauss2a" calculates the Gaussian expansion van der Waals second derivatives using a pairwise double 
loop 
 
EGAUSS2B Subroutine 
 
"egauss2b" calculates the Gaussian expansion van der Waals second derivatives for stophat potential 
energy smoothing 
 
EGAUSS3 Subroutine 
 
"egauss3" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy 
among the atoms 
 
EGAUSS3A Subroutine 
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"egauss3a" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy 
among the atoms using a pairwise double loop 
 
EGAUSS3B Subroutine 
 
"egauss3b" calculates the Gaussian expansion van der Waals interaction energy and partitions the energy 
among the atoms using a pairwise double loop 
 
EGBSA0A Subroutine 
 
"egbsa0a" calculates the generalized Born polarization energy for the GB/SA solvation models 
 
EGBSA0B Subroutine 
 
"egbsa0b" calculates the generalized Born polarization energy for the GB/SA solvation models for use with 
potential smoothing methods via analogy to the smoothing of Coulomb's law 
 
EGBSA1A Subroutine 
 
"egbsa1a" calculates the generalized Born energy and first derivatives of the GB/SA solvation models 
 
EGBSA1B Subroutine 
 
"egbsa1b" calculates the generalized Born energy and first derivatives of the GB/SA solvation models for 
use with potential smoothing methods 
 
EGBSA2A Subroutine 
 
"egbsa2a" calculates second derivatives of the generalized Born energy term for the GB/SA solvation 
models 
 
EGBSA2B Subroutine 
 
"egbsa2b" calculates second derivatives of the generalized Born energy term for the GB/SA solvation 
models for use with potential smoothing methods 
 
EGBSA3A Subroutine 
 
"egbsa3a" calculates the generalized Born energy term for the GB/SA solvation models; also partitions the 
energy among the atoms 
 
EGBSA3B Subroutine 
 
"egbsa3b" calculates the generalized Born polarization energy for the GB/SA solvation models for use with 
potential smoothing methods via analogy to the smoothing of Coulomb's law; also partitions the energy 
among the atoms 
 
EGEOM Subroutine 
 
"egeom" calculates the energy due to restraints on positions, distances, angles and torsions as well as 
Gaussian basin and spherical droplet restraints 
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EGEOM1 Subroutine 
 
"egeom1" calculates the energy and first derivatives with respect to Cartesian coordinates due to restraints 
on positions, distances, angles and torsions as well as Gaussian basin and spherical droplet restraints 
 
EGEOM2 Subroutine 
 
"egeom2" calculates second derivatives of restraints on positions, distances, angles and torsions as well as 
Gaussian basin and spherical droplet restraints 
 
EGEOM3 Subroutine 
 
"egeom3" calculates the energy due to restraints on positions, distances, angles and torsions as well as 
Gaussian basin and droplet restraints; also partitions energy among the atoms 
 
EHAL Subroutine 
 
"ehal" calculates the buffered 14-7 van der Waals energy 
 
EHAL0A Subroutine 
 
"ehal0a" calculates the buffered 14-7 van der Waals energy using a pairwise double loop 
 
EHAL0B Subroutine 
 
"ehal0a" calculates the buffered 14-7 van der Waals energy using the method of lights to locate neighboring 
atoms 
 
EHAL1 Subroutine 
 
"ehal1" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to Cartesian 
coordinates 
 
EHAL1A Subroutine 
 
"ehal1a" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to 
Cartesian coordinates using a pairwise double loop 
 
EHAL1B Subroutine 
 
"ehal1b" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to 
Cartesian coordinates using the method of lights to locate neighboring atoms 
 
EHAL2 Subroutine 
 
"ehal2" calculates the buffered 14-7 van der Waals second derivatives for a single atom at a time 
 
EHAL3 Subroutine 
 
"ehal3" calculates the buffered 14-7 van der Waals energy and partitions the energy among the atoms 
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EHAL3A Subroutine 
 
"ehal3a" calculates the buffered 14-7 van der Waals energy and partitions the energy among the atoms 
using a pairwise double loop 
 
EHAL3B Subroutine 
 
"ehal3b" calculates the buffered 14-7 van der Waals energy and also partitions the energy among the atoms 
using the method of lights to locate neighboring atoms 
 
EIGEN Subroutine 
 
"eigen" uses the power method to compute the largest eigenvalues and eigenvectors of the metric matrix, 
"valid" is set true if the first three eigenvalues are positive 
 
EIGENCART Subroutine 
 
EIGENRGD Subroutine 
 
EIGENROT Subroutine 
 
EIGENTOR Subroutine 
 
EIGENXYZ Subroutine 
 
EIMPROP Subroutine 
 
"eimprop" calculates the improper dihedral potential energy 
 
EIMPROP1 Subroutine 
 
"eimprop1" calculates improper dihedral energy and its first derivatives with respect to Cartesian 
coordinates 
 
EIMPROP2 Subroutine 
 
"eimprop2" calculates second derivatives of the improper dihedral angle energy for a single atom 
 
EIMPROP3 Subroutine 
 
"eimprop3" calculates the improper dihedral potential energy; also partitions the energy terms among the 
atoms 
 
EIMPTOR Subroutine 
 
"eimptor" calculates the improper torsion potential energy 
 
EIMPTOR1 Subroutine 
 
"eimptor1" calculates improper torsion energy and its first derivatives with respect to Cartesian coordinates 
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EIMPTOR2 Subroutine 
 
"eimptor2" calculates second derivatives of the improper torsion energy for a single atom 
 
EIMPTOR3 Subroutine 
 
"eimptor3" calculates the improper torsion potential energy; also partitions the energy terms among the 
atoms 
 
ELJ Subroutine 
 
"elj" calculates the Lennard-Jones 6-12 van der Waals energy 
 
ELJ0A Subroutine 
 
"elj0a" calculates the Lennard-Jones 6-12 van der Waals energy using a pairwise double loop 
 
ELJ0B Subroutine 
 
"elj0b" calculates the Lennard-Jones 6-12 van der Waals energy using the method of lights to locate 
neighboring atoms 
 
ELJ0C Subroutine 
 
"elj0c" calculates the Lennard-Jones 6-12 van der Waals energy via a Gaussian approximation for potential 
energy smoothing 
 
ELJ0D Subroutine 
 
"elj0d" calculates the Lennard-Jones 6-12 van der Waals energy for use with stophat potential energy 
smoothing 
 
ELJ1 Subroutine 
 
"elj1" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives with respect to 
Cartesian coordinates 
 
ELJ1A Subroutine 
 
"elj1a" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using a pairwise 
double loop 
 
ELJ1B Subroutine 
 
"elj1b" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using the method 
of lights to locate neighboring atoms 
 
ELJ1C Subroutine 
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"elj1c" calculates the Lennard-Jones 6-12 van der Waals energy  and its first derivatives via a Gaussian 
approximation for  potential energy smoothing 
 
ELJ1D Subroutine 
 
"elj1d" calculates the van der Waals interaction energy and its first derivatives for use with stophat 
potential energy smoothing 
 
ELJ2 Subroutine 
 
"elj2" calculates the Lennard-Jones 6-12 van der Waals second derivatives for a single atom at a time 
 
ELJ2A Subroutine 
 
"elj2a" calculates the Lennard-Jones 6-12 van der Waals second derivatives using a double loop over 
relevant atom pairs 
 
ELJ2B Subroutine 
 
"elj2b" calculates the Lennard-Jones 6-12 van der Waals second derivatives via a Gaussian approximation 
for use with potential energy smoothing 
 
ELJ2C Subroutine 
 
"elj2c" calculates the Lennard-Jones 6-12 van der Waals second derivatives for use with stophat potential 
energy smoothing 
 
ELJ3 Subroutine 
 
"elj3" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the 
atoms 
 
ELJ3A Subroutine 
 
"elj3a" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the 
atoms using a pairwise double loop 
 
ELJ3B Subroutine 
 
"elj3b" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the 
atoms using the method of lights to locate neighboring atoms 
 
ELJ3C Subroutine 
 
"elj3c" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the 
atoms via a Gaussian approximation for potential energy smoothing 
 
ELJ3D Subroutine 
 
"elj3d" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among the 
atoms for use with stophat potential energy smoothing 
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EMBED Subroutine 
 
"embed" is a distance geometry routine patterned after the ideas of Gordon Crippen, Irwin Kuntz and Tim 
Havel; it takes as input a set of upper and lower bounds on the interpoint distances, chirality restraints and 
torsional restraints, and attempts to generate a set of coordinates that satisfy the input bounds and restraints 
 
EMETAL Subroutine 
 
"emetal" calculates the transition metal ligand field energy 
 
EMETAL1 Subroutine 
 
"emetal1" calculates the transition metal ligand field energy and its first derivatives with respect to 
Cartesian coordinates 
 
EMETAL2 Subroutine 
 
"emetal2" calculates the transition metal ligand field second derivatives for a single atom at a time 
 
EMETAL3 Subroutine 
 
"emetal3" calculates the transition metal ligand field energy and also partitions the energy among the atoms 
 
EMM3HB Subroutine 
 
"emm3hb" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy 
 
EMM3HB0A Subroutine 
 
"emm3hb0a" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy using a pairwise double loop 
 
EMM3HB0B Subroutine 
 
"emm3hb0b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy using the method of lights to locate neighboring atoms 
 
EMM3HB1 Subroutine 
 
"emm3hb1" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy with respect to Cartesian coordinates 
 
EMM3HB1A Subroutine 
 
"emm3hb1a" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy with respect to Cartesian coordinates using a pairwise double loop 
 
EMM3HB1B Subroutine 
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"emm3hb1b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy with respect to Cartesian coordinates using the method of lights to locate neighboring atoms 
 
EMM3HB2 Subroutine 
 
"emm3hb2" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
second derivatives for a single atom at a time 
 
EMM3HB3 Subroutine 
 
"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy, and partitions the energy among the atoms 
 
EMM3HB3A Subroutine 
 
"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy, and partitions the energy among the atoms 
 
EMM3HB3B Subroutine 
 
"emm3hb3b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen bonding 
energy using the method of lights to locate neighboring atoms 
 
EMPOLE Subroutine 
 
"empole" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability 
 
EMPOLE0A Subroutine 
 
"empole0a" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability 
using a pairwise double loop 
 
EMPOLE0B Subroutine 
 
"empole0b" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability 
using a regular Ewald summation 
 
EMPOLE1 Subroutine 
 
"empole1" calculates the multipole and dipole polarization energy and derivatives with respect to Cartesian 
coordinates 
 
EMPOLE1A Subroutine 
 
"empole1a" calculates the multipole and dipole polarization energy and derivatives with respect to 
Cartesian coordinates using a pairwise double loop 
 
EMPOLE1B Subroutine 
 
"empole1b" calculates the multipole and dipole polarization energy and derivatives with respect to 
Cartesian coordinates using a regular Ewald summation 
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EMPOLE2 Subroutine 
 
"empole2" calculates second derivatives of the multipole and dipole polarization energy for a single atom at 
a time 
 
EMPOLE2A Subroutine 
 
"empole2a" computes multipole and dipole polarization first derivatives for a single atom with respect to 
Cartesian coordinates; used to get finite difference second derivatives 
 
EMPOLE3 Subroutine 
 
"empole3" calculates the electrostatic energy due to atomic multipole interactions and dipole polarizability, 
and partitions the energy among the atoms 
 
EMPOLE3A Subroutine 
 
"empole3a" calculates the electrostatic energy due to atomic multipole interactions and dipole 
polarizability, and partitions the energy among the atoms using a double loop 
 
EMPOLE3B Subroutine 
 
"empole3b" calculates the electrostatic energy due to atomic multipole interactions and dipole 
polarizability, and partitions the energy among the atoms using a regular Ewald summation 
 
ENERGY Function 
 
"energy" calls the subroutines to calculate the potential energy terms and sums up to form the total energy 
 
ENRGYZE Subroutine 
 
"energyze" is an auxiliary routine for the analyze program that performs the energy analysis and prints the 
total and intermolecular energies 
 
EOPBEND Subroutine 
 
"eopbend" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-Cross 
angle bend 
 
EOPBEND1 Subroutine 
 
"eopbend1" computes the out-of-plane bend potential energy and first derivatives at trigonal centers via a 
Wilson-Decius-Cross angle bend 
 
EOPBEND2 Subroutine 
 
"eopbend2" calculates second derivatives of the out-of-plane bend energy via a Wilson-Decius-Cross angle 
bend for a single atom using finite difference methods 
 
EOPBEND2A Subroutine 
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"eopbend2a" calculates out-of-plane bending first derivatives at a trigonal center via a Wilson-Decius-
Cross angle bend; used in computation of finite difference second derivatives 
 
EOPBEND3 Subroutine 
 
"eopbend3" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-Cross 
angle bend; also partitions the energy among the atoms 
 
EOPDIST Subroutine 
 
"eopdist" computes the out-of-plane distance potential energy at trigonal centers via the central atom height 
 
EOPDIST1 Subroutine 
 
"eopdist1" computes the out-of-plane distance potential energy and first derivatives at trigonal centers via 
the central atom height 
 
EOPDIST2 Subroutine 
 
"eopdist2" calculates second derivatives of the out-of-plane distance energy for a single atom via the 
central atom height 
 
EOPDIST3 Subroutine 
 
"eopdist3" computes the out-of-plane distance potential energy at trigonal centers via the central atom 
height; also partitions the energy among the atoms 
 
EPME Subroutine 
 
"epme" computes the reciprocal space energy for a particle mesh Ewald summation over partial charges 
 
EPME1 Subroutine 
 
"epme1" computes the reciprocal space energy and first derivatives for a particle mesh Ewald summation 
 
EPME3 Subroutine 
 
"epme3" computes the reciprocal space energy for a particle mesh Ewald summation over partial charges 
and prints information about the energy over the charge grid points 
 
EPUCLC Subroutine 
 
EREAL Subroutine 
 
"ereal" evaluates the real space portion of the regular Ewald summation energy due to atomic multipole 
interactions and dipole polarizability 
 
EREAL1 Subroutine 
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"ereal1" evaluates the real space portion of the regular Ewald summation energy and gradient due to atomic 
multipole interactions and dipole polarizability 
 
EREAL3 Subroutine 
 
"ereal3" evaluates the real space portion of the regular Ewald summation energy due to atomic multipole 
interactions and dipole polarizability and partitions the energy among the atoms 
 
ERECIP Subroutine 
 
"erecip" evaluates the reciprocal space portion of the regular Ewald summation energy due to atomic 
multipole interactions and dipole polarizability 
 
ERECIP1 Subroutine 
 
"erecip1" evaluates the reciprocal space portion of the regular Ewald summation energy and gradient due to 
atomic multipole interactions and dipole polarizability 
 
ERECIP3 Subroutine 
 
"erecip3" evaluates the reciprocal space portion of the regular Ewald summation energy due to atomic 
multipole interactions and dipole polarizability, and prints information about the energy over the reciprocal 
lattice vectors 
 
ERF Function 
 
"erf" computes a numerical approximation to the value of the error function via a Chebyshev 
approximation 
 
ERFC Function 
 
"erfc" computes a numerical approximation to the value of the complementary error function via a 
Chebyshev approximation 
 
ERFCORE Subroutine 
 
"erfcore" evaluates erf(x) or erfc(x) for a real argument x; when called with mode set to 0 it returns erf, a 
mode of 1 returns erfc; uses rational functions that approximate erf(x) and erfc(x) to at least 18 significant 
decimal digits 
 
ERFIK Subroutine 
 
"erfik" compute the reaction field energy due to a single pair of atomic multipoles 
 
ERFINV Function 
 
"erfinv" evaluates the inverse of the error function erf for a real argument in the range (-1,1) using a 
rational function approximation followed by cycles of Newton-Raphson correction 
 
ERXNFLD Subroutine 
 
"erxnfld" calculates the macroscopic reaction field energy arising from a set of atomic multipoles 
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ERXNFLD1 Subroutine 
 
"erxnfld1" calculates the macroscopic reaction field energy and derivatives with respect to Cartesian 
coordinates 
 
ERXNFLD2 Subroutine 
 
"erxnfld2" calculates second derivatives of the macroscopic reaction field energy for a single atom at a time 
 
ERXNFLD3 Subroutine 
 
"erxnfld3" calculates the macroscopic reaction field energy, and also partitions the energy among the atoms 
 
ESOLV Subroutine 
 
"esolv" calculates the continuum solvation energy via either the Eisenberg-McLachlan ASP model, Ooi-
Scheraga SASA model, various GB/SA methods or the ACE model 
 
ESOLV1 Subroutine 
 
"esolv1" calculates the continuum solvation energy and first derivatives with respect to Cartesian 
coordinates using either the Eisenberg-McLachlan ASP, Ooi-Scheraga SASA or various GB/SA solvation 
models 
 
ESOLV2 Subroutine 
 
"esolv2" calculates second derivatives of the continuum solvation energy using either the Eisenberg-
McLachlan ASP, Ooi-Scheraga SASA or various GB/SA solvation models 
 
ESOLV3 Subroutine 
 
"esolv3" calculates the continuum solvation energy using either the Eisenberg-McLachlan ASP model, 
Ooi-Scheraga SASA model, various GB/SA methods or the ACE model; also partitions the energy among 
the atoms 
 
ESTRBND Subroutine 
 
"estrbnd" calculates the stretch-bend potential energy 
 
ESTRBND1 Subroutine 
 
"estrbnd1" calculates the stretch-bend potential energy and first derivatives with respect to Cartesian 
coordinates 
 
ESTRBND2 Subroutine 
 
"estrbnd2" calculates the stretch-bend potential energy second derivatives with respect to Cartesian 
coordinates 
 
ESTRBND3 Subroutine 



 88 TINKER User's Guide 88

 
"estrbnd3" calculates the stretch-bend potential energy; also partitions the energy among the atoms 
 
ESTRTOR Subroutine 
 
"estrtor" calculates the stretch-torsion potential energy 
 
ESTRTOR1 Subroutine 
 
"estrtor1" calculates the stretch-torsion energy and first derivatives with respect to Cartesian coordinates 
 
ESTRTOR2 Subroutine 
 
"estrtor2" calculates the stretch-torsion potential energy second derivatives with respect to Cartesian 
coordinates 
 
ESTRTOR3 Subroutine 
 
"estrtor3" calculates the torsion-torsion potential energy; also partitions the energy terms among the atoms 
 
ESTRTOR3 Subroutine 
 
"estrtor3" calculates the stretch-torsion potential energy; also partitions the energy terms among the atoms 
 
ETORS Subroutine 
 
"etors" calculates the torsional potential energy 
 
ETORS0A Subroutine 
 
"etors0a" calculates the torsional potential energy using a standard sum of Fourier terms 
 
ETORS0B Subroutine 
 
"etors0b" calculates the torsional potential energy for use with potential energy smoothing methods 
 
ETORS1 Subroutine 
 
"etors1" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates 
 
ETORS1A Subroutine 
 
"etors1a" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates 
using a standard sum of Fourier terms 
 
ETORS1B Subroutine 
 
"etors1b" calculates the torsional potential energy and first derivatives with respect to Cartesian coordinates 
for use with potential energy smoothing methods 
 
ETORS2 Subroutine 
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"etors2" calculates the second derivatives of the torsional energy for a single atom 
 
ETORS2A Subroutine 
 
"etors2a" calculates the second derivatives of the torsional energy for a single atom using a standard sum of 
Fourier terms 
 
ETORS2B Subroutine 
 
"etors2b" calculates the second derivatives of the torsional energy for a single atom for use with potential 
energy smoothing methods 
 
ETORS3 Subroutine 
 
"etors3" calculates the torsional potential energy; also partitions the energy among the atoms 
 
ETORS3A Subroutine 
 
"etors3a" calculates the torsional potential energy using a standard sum of Fourier terms and partitions the 
energy among the atoms 
 
ETORS3B Subroutine 
 
"etors3b" calculates the torsional potential energy for use with potential energy smoothing methods and 
partitions the energy among the atoms 
 
ETORTOR Subroutine 
 
"etortor" calculates the torsional potential energy using a standard sum of Fourier terms 
 
ETORTOR1 Subroutine 
 
"etortor1" calculates the torsion-torsion energy and first derivatives with respect to Cartesian coordinates 
 
ETORTOR2 Subroutine 
 
"etortor2" calculates the stretch-torsion potential energy second derivatives with respect to Cartesian 
coordinates 
 
EUREY Subroutine 
 
"eurey" calculates the Urey-Bradley 1-3 interaction energy 
 
EUREY1 Subroutine 
 
"eurey1" calculates the Urey-Bradley interaction energy and its first derivatives with respect to Cartesian 
coordinates 
 
EUREY2 Subroutine 
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"eurey2" calculates second derivatives of the Urey-Bradley interaction energy for a single atom at a time 
 
EUREY3 Subroutine 
 
"eurey3" calculates the Urey-Bradley energy; also partitions the energy among the atoms 
 
EWALDCOF Subroutine 
 
"ewaldcof" finds a value of the Ewald coefficient such that all terms beyond the specified cutoff distance 
will have an value less than a specified tolerance 
 
EXPLORE Subroutine 
 
"explore" uses simulated annealing on an initial crude embedded distance geoemtry structure to refine 
versus the bound, chirality, planarity and torsional error functions 
 
EXTRA Subroutine 
 
"extra" calculates any additional user defined potential energy contribution 
 
EXTRA1 Subroutine 
 
"extra1" calculates any additional user defined potential energy contribution and its first derivatives 
 
EXTRA2 Subroutine 
 
"extra2" calculates second derivatives of any additional user defined potential energy contribution for a 
single atom at a time 
 
EXTRA3 Subroutine 
 
"extra3" calculates any additional user defined potential contribution and also partitions the energy among 
the atoms 
 
FATAL Subroutine 
 
"fatal" terminates execution due to a user request, a severe error or some other nonstandard condition 
 
FFTBACK Subroutine 
 
FFTFRONT Subroutine 
 
FFTSETUP Subroutine 
 
FIELD Subroutine 
 
"field" sets the force field potential energy functions from a parameter file and modifications specified in a 
keyfile 
 
FINAL Subroutine 
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"final" performs any final program actions, prints a status message, and then pauses if necessary to avoid 
closing the execution window 
 
FINDATM Subroutine 
 
"findatm" locates a specific PDB atom name type within a range of atoms from the PDB file, returns zero if 
the name type was not found 
 
FIXPDB Subroutine 
 
"fixpdb" corrects problems with PDB files by converting residue and atom names to the forms used by 
TINKER 
 
FRACDIST Subroutine 
 
"fracdist" computes a normalized distribution of the pairwise fractional distances between the smoothed 
upper and lower bounds 
 
FREEUNIT Function 
 
"freeunit" finds an unopened Fortran I/O unit and returns its numerical value from 1 to 99; the units already 
assigned to "input" and "iout" (usually 5 and 6) are skipped since they have special meaning as the default 
I/O units 
 
GAMMLN Function 
 
"gammln" uses a series expansion due to Lanczos to compute the natural logarithm of the Gamma function 
at "x" in [0,1] 
 
GDA Program 
 
"gda" implements Gaussian Density Annealing (GDA) algorithm for global optimization via simulated 
annealing 
 
GDA1 Subroutine 
 
GDA2 Function 
 
GDA3 Subroutine 
 
GDASTAT Subroutine 
 
GENDOT Subroutine 
 
"gendot" finds the coordinates of a specified number of surface points for a sphere with the input radius and 
coordinate center 
 
GEODESIC Subroutine 
 
"geodesic" smooths the upper and lower distance bounds via the triangle inequality using a sparse matrix 
version of a shortest path algorithm 
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GEOMETRY Function 
 
"geometry" finds the value of the interatomic distance, angle or dihedral angle defined by two to four input 
atoms 
 
GETBASE Subroutine 
 
"getbase" finds the base heavy atoms for a single nucleotide residue and copies the names and coordinates 
to the Protein Data Bank file 
 
GETIME Subroutine 
 
"getime" gets elapsed CPU time in seconds for an interval 
 
GETINT Subroutine 
 
"getint" asks for an internal coordinate file name, then reads the internal coordinates and computes 
Cartesian coordinates 
 
GETKEY Subroutine 
 
"getkey" finds a valid keyfile and stores its contents as line images for subsequent keyword parameter 
searching 
 
GETMOL2 Subroutine 
 
"getmol2" asks for a Sybyl MOL2 molecule file name, then reads the coordinates from the file 
 
GETNUCH Subroutine 
 
"getnuch" finds the nucleotide hydrogen atoms for a single residue and copies the names and coordinates to 
the Protein Data Bank file 
 
GETNUMB Subroutine 
 
"getnumb" searchs an input string from left to right for an integer and puts the numeric value in "number"; 
returns zero with "next" unchanged if no integer value is found 
 
GETPDB Subroutine 
 
"getpdb" asks for a Protein Data Bank file name, then reads in the coordinates file 
 
GETPRB Subroutine 
 
"getprb" tests for a possible probe position at the interface between three neighboring atoms 
 
GETPRM Subroutine 
 
"getprm" finds the potential energy parameter file and then opens and reads the parameters 
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GETPROH Subroutine 
 
"getproh" finds the hydrogen atoms for a single amino acid residue and copies the names and coordinates to 
the Protein Data Bank file 
 
GETREF Subroutine 
 
"getref" copies structure information from the reference area into the standard variables for the current 
system structure 
 
GETSEQ Subroutine 
 
"getseq" asks the user for the amino acid sequence and torsional angle values needed to define a peptide 
 
GETSEQN Subroutine 
 
"getseqn" asks the user for the nucleotide sequence and torsional angle values needed to define a nucleic 
acid 
 
GETSIDE Subroutine 
 
"getside" finds the side chain heavy atoms for a single amino acid residue and copies the names and 
coordinates to the Protein Data Bank file 
 
GETSTRING Subroutine 
 
"getstring" searchs for a quoted text string within an input character string; the region between the first and 
second quotes is returned as the "text"; if the actual text is too long, only the first part is returned 
 
GETTEXT Subroutine 
 
"gettext" searchs an input string for the first string of non-blank characters; the region from a non-blank 
character to the first blank space is returned as "text"; if the actual text is too long, only the first part is 
returned 
 
GETTOR Subroutine 
 
"gettor" tests for a possible torus position at the interface between two atoms, and finds the torus radius, 
center and axis 
 
GETWORD Subroutine 
 
"getword" searchs an input string for the first alphabetic character (A-Z or a-z); the region from this first 
character to the first blank space or comma is returned as a "word"; if the actual word is too long, only the 
first part is returned 
 
GETXYZ Subroutine 
 
"getxyz" asks for a Cartesian coordinate file name, then reads in the coordinates file 
 
GRADIENT Subroutine 
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"gradient" calls subroutines to calculate the potential energy and first derivatives with respect to Cartesian 
coordinates 
 
GRADRGD Subroutine 
 
"gradrgd" calls subroutines to calculate the potential energy and first derivatives with respect to rigid body 
coordinates 
 
GRADROT Subroutine 
 
"gradrot" calls subroutines to calculate the potential energy and its torsional first derivatives 
 
GRAFIC Subroutine 
 
"grafic" outputs the upper & lower triangles and diagonal of a square matrix in a schematic form for visual 
inspection 
 
GROUPS Subroutine 
 
"groups" tests a set of atoms to see if all are members of a single atom group or a pair of atom groups; if so, 
then the correct intra- or intergroup weight is assigned 
 
GRPLINE Subroutine 
 
"grpline" tests each atom group for linearity of the sites contained in the group 
 
GYRATE Subroutine 
 
"gyrate" computes the radius of gyration of a molecular system from its atomic coordinates 
 
HANGLE Subroutine 
 
"hangle" constructs hybrid angle bending parameters given an initial state, final state and "lambda" value 
 
HATOM Subroutine 
 
"hatom" assigns a new atom type to each hybrid site 
 
HBOND Subroutine 
 
"hbond" constructs hybrid bond stretch parameters given an initial state, final state and "lambda" value 
 
HCHARGE Subroutine 
 
"hcharge" constructs hybrid charge interaction parameters given an initial state, final state and "lambda" 
value 
 
HDIPOLE Subroutine 
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"hdipole" constructs hybrid dipole interaction parameters given an initial state, final state and "lambda" 
value 
 
HESSIAN Subroutine 
 
"hessian" calls subroutines to calculate the Hessian elements for each atom in turn with respect to Cartesian 
coordinates 
 
HESSRGD Subroutine 
 
"hessrgd" computes the numerical Hessian elements with respect to rigid body coordinates via 6*ngroup+1 
gradient evaluations 
 
HESSROT Subroutine 
 
"hessrot" computes the numerical Hessian elements with respect to torsional angles; either the full matrix 
or just the diagonal can be calculated; the full matrix needs nomega+1 gradient evaluations while the 
diagonal requires just two gradient calls 
 
HIMPTOR Subroutine 
 
"himptor" constructs hybrid improper torsional parameters given an initial state, final state and "lambda" 
value 
 
HSTRBND Subroutine 
 
"hstrbnd" constructs hybrid stretch-bend parameters given an initial state, final state and "lambda" value 
 
HSTRTOR Subroutine 
 
"hstrtor" constructs hybrid stretch-torsion parameters given an initial state, final state and "lambda" value 
 
HTORS Subroutine 
 
"htors" constructs hybrid torsional parameters for a given initial state, final state and "lambda" value 
 
HVDW Subroutine 
 
"hvdw" constructs hybrid van der Waals  parameters given an initial state, final state and "lambda" value 
 
HYBRID Subroutine 
 
"hybrid" constructs the hybrid hamiltonian for a specified initial state, final state and mutation parameter 
"lambda" 
 
IJKPTS Subroutine 
 
"ijkpts" stores a set of indices used during calculation of macroscopic reaction field energetics 
 
IMAGE Subroutine 
 



 96 TINKER User's Guide 96

"image" takes the components of pairwise distance between two points in the same or neighboring periodic 
boxes and converts to the components of the minimum image distance 
 
IMPOSE Subroutine 
 
"impose" performs the least squares best superposition of two atomic coordinate sets via a quaternion 
method; upon return, the first coordinate set is unchanged while the second set is translated and rotated to 
give best fit; the final root mean square fit is returned in "rmsvalue" 
 
INDUCE Subroutine 
 
"induce" computes the induced dipole moment at each polarizable site due to direct or mutual polarization; 
assumes that multipole components have already been rotated into the global coordinate frame 
 
INDUCE0A Subroutine 
 
"induce0a" computes the induced dipole moment at each polarizable site using a pairwise double loop 
 
INDUCE0B Subroutine 
 
"induce0b" computes the induced dipole moment at each polarizable site using a regular Ewald summation 
 
INEDGE Subroutine 
 
"inedge" inserts a concave edge into the linked list for its temporary torus 
 
INERTIA Subroutine 
 
"inertia" computes the principal moments of inertia for the system, and optionally translates the center of 
mass to the origin and rotates the principal axes onto the global axes 
 
INITERR Function 
 
"initerr" is the initial error function and derivatives for a distance geometry embedding; it includes 
components from the local geometry and torsional restraint errors 
 
INITIAL Subroutine 
 
"initial" sets up original values for some parameters and variables that might not otherwise get initialized 
 
INITPRM Subroutine 
 
"initprm" completely initializes a force field by setting all parameters to zero and using defaults for control 
values 
 
INITRES Subroutine 
 
"initres" sets names for biopolymer residue types used in PDB file conversion and automated generation of 
structures 
 
INITROT Subroutine 
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"initrot" sets the torsional angles which are to be rotated in subsequent computation, by default 
automatically selects all rotatable single bonds; assumes internal coordinates have already been setup 
 
INSERT Subroutine 
 
"insert" adds the specified atom to the Cartesian coordinates list and shifts the remaining atoms 
 
INTEDIT Program 
 
"intedit" allows the user to extract information from or alter the values within an internal coordinates file 
 
INTXYZ Program 
 
"intxyz" takes as input an internal coordinates file, converts to and then writes out Cartesian coordinates 
 
INVBETA Function 
 
"invbeta" computes the inverse Beta distribution function via a combination of Newton iteration and 
bisection search 
 
INVERT Subroutine 
 
"invert" inverts a matrix using the Gauss-Jordan method 
 
IPEDGE Subroutine 
 
"ipedge" inserts convex edge into linked list for atom 
 
ISPLPE Subroutine 
 
"isplpe" computes the coefficients for a cubic periodic interpolating spline 
 
JACOBI Subroutine 
 
"jacobi" performs a matrix diagonalization of a real symmetric matrix by the method of Jacobi rotations 
 
KANGANG Subroutine 
 
"kangang" assigns the parameters for angle-angle cross term interactions and processes new or changed 
parameter values 
 
KANGLE Subroutine 
 
"kangle" assigns the force constants and ideal angles for the bond angles; also processes new or changed 
parameters 
 
KATOM Subroutine 
 
"katom" assigns an atom type definitions to each atom in the structure and processes any new or changed 
values 
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KBOND Subroutine 
 
"kbond" assigns a force constant and ideal bond length to each bond in the structure and processes any new 
or changed parameter values 
 
KCHARGE Subroutine 
 
"kcharge" assigns partial charges to the atoms within the structure and processes any new or changed 
values 
 
KCHIRAL Subroutine 
 
"kchiral" determines the target value for each chirality and planarity restraint as the signed volume of the 
parallelpiped spanned by vectors from a common atom to each of three other atoms 
 
KDIPOLE Subroutine 
 
"kdipole" assigns bond dipoles to the bonds within the structure and processes any new or changed values 
 
KENEG Subroutine 
 
"keneg" applies primary and secondary electronegativity bond length corrections to applicable bond 
parameters 
 
KEWALD Subroutine 
 
"kewald" assigns both regular Ewald summation and particle mesh Ewald parameters for a periodic box 
 
KGEOM Subroutine 
 
"kgeom" asisgns parameters for geometric restraint terms to be included in the potential energy calculation 
 
KIMPROP Subroutine 
 
"kimprop" assigns potential parameters to each improper dihedral in the structure and processes any 
changed values 
 
KIMPTOR Subroutine 
 
"kimptor" assigns torsional parameters to each improper torsion in the structure and processes any changed 
values 
 
KINETIC Subroutine 
 
"kinetic" computes the total kinetic energy and kinetic energy contributions to the pressure tensor by 
summing over velocities 
 
KMETAL Subroutine 
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"kmetal" assigns ligand field parameters to transition metal atoms and processes any new or changed 
parameter values 
 
KMPOLE Subroutine 
 
"kmpole" assigns atomic multipole moments to the atoms of the structure and processes any new or 
changed values 
 
KOPBEND Subroutine 
 
"kopbend" assigns the force constants for out-of-plane bending at trigonal centers via Wilson-Decius-Cross 
angle bends; also processes any new or changed parameter values 
 
KOPDIST Subroutine 
 
"kopdist" assigns the force constants for out-of-plane distance at trigonal centers via the central atom 
height; also processes any new or changed parameter values 
 
KORBIT Subroutine 
 
"korbit" assigns pi-orbital parameters to conjugated systems and processes any new or changed parameters 
 
KPOLAR Subroutine 
 
"kpolar" assigns atomic dipole polarizabilities to the atoms within the structure and processes any new or 
changed values 
 
KSOLV Subroutine 
 
"ksolv" assigns continuum solvation energy parameters for the Eisenberg-McLachlan ASP, Ooi-Scheraga 
SASA or various GB/SA solvation models 
 
KSTRBND Subroutine 
 
"kstrbnd" assigns the parameters for the stretch-bend interactions and processes new or changed parameter 
values 
 
KSTRTOR Subroutine 
 
"kstrtor" assigns stretch-torsion parameters to torsions needing them, and processes any new or changed 
values 
 
KTORS Subroutine 
 
"ktors" assigns torsional parameters to each torsion in the structure and processes any new or changed 
values 
 
KTORTOR Subroutine 
 
"ktortor" assigns torsion-torsion parameters to adjacent torsion pairs and processes any new or changed 
values 
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KUREY Subroutine 
 
"kurey" assigns the force constants and ideal distances for the Urey-Bradley 1-3 interactions; also processes 
any new or changed parameter values 
 
KVDW Subroutine 
 
"kvdw" assigns the parameters to be used in computing the van der Waals interactions and processes any 
new or changed values for these parameters 
 
LATTICE Subroutine 
 
"lattice" stores the periodic box dimensions and sets angle values to be used in computing fractional 
coordinates 
 
LBFGS Subroutine 
 
"lbfgs" is a limited memory BFGS quasi-newton nonlinear optimization routine 
 
LIGASE Subroutine 
 
"ligase" translates a nucleic acid structure in Protein Data Bank format to a Cartesian coordinate file and 
sequence file 
 
LIGHTS Subroutine 
 
"lights" computes the set of nearest neighbor interactions using the method of lights algorithm 
 
LINGROUP Subroutine 
 
"lingroup" finds the angular velocity of a linear rigid body given the inertia tensor and angular momentum 
 
LMSTEP Subroutine 
 
"lmstep" computes the Levenberg-Marquardt step during a nonlinear least squares calculation; this version 
is based upon ideas from the Minpack routine LMPAR together with with the internal doubling strategy of 
Dennis and Schnabel 
 
LOCALMIN Subroutine 
 
"localmin" is used during normal mode local search to perform a Cartesian coordinate energy minimization 
 
LOCALRGD Subroutine 
 
"localrgd" is used during the PSS local search procedure to perform a rigid body energy minimization 
 
LOCALROT Subroutine 
 
"localrot" is used during the PSS local search procedure to perform a torsional space energy minimization 
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LOCALXYZ Subroutine 
 
"localxyz" is used during the potential smoothing and search procedure to perform a local optimization at 
the current smoothing level 
 
LOCERR Function 
 
"locerr" is the local geometry error function and derivatives including the 1-2, 1-3 and 1-4 distance bound 
restraints 
 
LOCLSRCH Subroutine 
 
LOWCASE Subroutine 
 
"lowcase" converts a text string to all lower case letters 
 
MAJORIZE Subroutine 
 
"majorize" refines the projected coordinates by attempting to minimize the least square residual between 
the trial distance matrix and the distances computed from the coordinates 
 
MAKEINT Subroutine 
 
"makeint" converts Cartesian to internal coordinates where selection of internal coordinates is controlled by 
"mode" 
 
MAKEPDB Subroutine 
 
"makexyz" converts a set of Cartesian coordinates to Protein Data Bank format with special handling for 
systems consisting of polypeptide chains, ligands and water molecules 
 
MAKEREF Subroutine 
 
"makeref" copies the information contained in the "xyz" file of the current structure into corresponding 
reference areas 
 
MAKEXYZ Subroutine 
 
"makexyz" generates a complete set of Cartesian coordinates for a full structure from the internal 
coordinate values 
 
MAPCHECK Subroutine 
 
"mapcheck" checks the current minimum energy structure for possible addition to the master list of local 
minima 
 
MAXWELL Function 
 
"maxwell" returns a speed in Angstroms/picosecond randomly selected from a 3-D Maxwell-Boltzmann 
distribution for the specified particle mass and system temperature 
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MCM1 Function 
 
"mcm1" is a service routine that computes the energy and gradient for truncated Newton optimization in 
Cartesian coordinate space 
 
MCM2 Subroutine 
 
"mcm2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton 
optimization in Cartesian coordinate space 
 
MCMSTEP Function 
 
"mcmstep" implements the minimization phase of an MCM step via Cartesian minimization following a 
Monte Carlo step 
 
MDINIT Subroutine 
 
"mdinit" initializes the velocities and accelerations for a molecular dynamics trajectory, including restarts 
 
MDREST Subroutine 
 
"mdrest" finds and removes any translational or rotational kinetic energy of the overall system center of 
mass 
 
MDSAVE Subroutine 
 
"mdsave" writes molecular dynamics trajectory snapshots and auxiliary files with velocity and induced 
dipole information; also checks for user requested termination of a simulation 
 
MDSTAT Subroutine 
 
"mdstat" is called at each molecular dynamics time step to form statistics on various average values and 
fluctuations, and to periodically save the state of the trajectory 
 
MEASFN Subroutine 
 
MEASFP Subroutine 
 
MEASFS Subroutine 
 
MEASPM Subroutine 
 
"measpm" computes the volume of a single prism section of the full interior polyhedron 
 
MECHANIC Subroutine 
 
"mechanic" sets up needed parameters for the potential energy calculation and reads in many of the user 
selectable options 
 
MERGE Subroutine 
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"merge" combines the reference and current structures into a single new "current" structure containing the 
reference atoms followed by the atoms of the current structure 
 
METRIC Subroutine 
 
"metric" takes as input the trial distance matrix and computes the metric matrix of all possible dot products 
between the atomic vectors and the center of mass using the law of cosines and the following formula for 
the distances to the center of mass: 
 
MIDERR Function 
 
"miderr" is the secondary error function and derivatives for a distance geometry embedding; it includes 
components from the distance bounds, local geometry, chirality and torsional restraint errors 
 
MINIMIZ1 Function 
 
"minimiz1" is a service routine that computes the energy and gradient for a low storage BFGS optimization 
in Cartesian coordinate space 
 
MINIMIZE Program 
 
"minimize" performs energy minimization in Cartesian coordinate space using a low storage BFGS 
nonlinear optimization 
 
MINIROT Program 
 
"minirot" performs an energy minimization in torsional angle space using a low storage BFGS nonlinear 
optimization 
 
MINIROT1 Function 
 
"minirot1" is a service routine that computes the energy and gradient for a low storage BFGS nonlinear 
optimization in torsional angle space 
 
MINPATH Subroutine 
 
"minpath" is a routine for finding the triangle smoothed upper and lower bounds of each atom to a specified 
root atom using a sparse variant of the Bellman-Ford shortest path algorithm 
 
MINRIGID Program 
 
"minrigid" performs an energy minimization of rigid body atom groups using a low storage BFGS 
nonlinear optimization 
 
MINRIGID1 Function 
 
"minrigid1" is a service routine that computes the energy and gradient for a low storage BFGS nonlinear 
optimization of rigid bodies 
 
MMID Subroutine 
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"mmid" implements a modified midpoint method to advance the integration of a set of first order 
differential equations 
 
MODECART Subroutine 
 
MODEROT Subroutine 
 
MODESRCH Subroutine 
 
MODETORS Subroutine 
 
MODULI Subroutine 
 
"moduli" sets the moduli of the inverse discrete Fourier transform of the B-splines; bsmod[1-3] hold these 
values, nfft[1-3] are the grid dimensions, bsorder is the order of B-spline approximation 
 
MOLECULE Subroutine 
 
"molecule" counts the molecules, assigns each atom to its molecule and computes the mass of each 
molecule 
 
MOLUIND Subroutine 
 
"moluind" computes the molecular induced dipole components in the presence of an external electric field 
 
MOMENTS Subroutine 
 
"moments" computes the total electric charge, dipole and quadrupole moments for the entire system as a 
sum over the partial charges, bond dipoles and atomic multipole moments 
 
MONTE Program 
 
"monte" performs a Monte Carlo/MCM conformational search using either Cartesian single atom or 
torsional move sets 
 
MUTATE Subroutine 
 
"mutate" constructs the hybrid hamiltonian for a specified initial state, final state and mutation parameter 
"lambda" 
 
NEIGHBOR Subroutine 
 
"neighbor" finds all of the neighbors of each atom 
 
NEWATM Subroutine 
 
"newatm" creates and defines an atom needed for the Cartesian coordinates file, but which may not present 
in the original Protein Data Bank file 
 
NEWTON Program 
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"newton" performs an energy minimization in Cartesian coordinate space using a truncated Newton method 
 
NEWTON1 Function 
 
"newton1" is a service routine that computes the energy and gradient for truncated Newton optimization in 
Cartesian coordinate space 
 
NEWTON2 Subroutine 
 
"newton2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton 
optimization in Cartesian coordinate space 
 
NEWTROT Program 
 
"newtrot" performs an energy minimization in torsional angle space using a truncated Newton conjugate 
gradient method 
 
NEWTROT1 Function 
 
"newtrot1" is a service routine that computes the energy and gradient for truncated Newton conjugate 
gradient optimization in torsional angle space 
 
NEWTROT2 Subroutine 
 
"newtrot2" is a service routine that computes the sparse matrix Hessian elements for truncated Newton 
optimization in torsional angle space 
 
NEXTARG Subroutine 
 
"nextarg" finds the next unused command line argument and returns it in the input character string 
 
NEXTTEXT Function 
 
"nexttext" finds and returns the location of the first non-blank character within an input text string; zero is 
returned if no such character is found 
 
NORMAL Function 
 
"normal" generates a random number from a normal Gaussian distribution with a mean of zero and a 
variance of one 
 
NUCBASE Subroutine 
 
"nucbase" builds the side chain for a single nucleotide base in terms of internal coordinates 
 
NUCCHAIN Subroutine 
 
"nucchain" builds up the internal coordinates for a nucleic acid sequence from the sugar type, backbone and 
glycosidic torsional values 
 
NUCLEIC Program 
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"nucleic" builds the internal and Cartesian coordinates of a polynucleotide from nucleic acid sequence and 
torsional angle values for the nucleic acid backbone and side chains 
 
NUMBER Function 
 
"number" converts a text numeral into an integer value; the input string must contain only numeric 
characters 
 
NUMERAL Subroutine 
 
"numeral" converts an input integer number into the corresponding right- or left-justified text numeral 
 
NUMGRAD Subroutine 
 
"numgrad" computes the gradient of the objective function "fvalue" with respect to Cartesian coordinates of 
the atoms via a two-sided numerical differentiation 
 
OCVM Subroutine 
 
"ocvm" is an optimally conditioned variable metric nonlinear optimization routine without line searches 
 
OLDATM Subroutine 
 
"oldatm" get the Cartesian coordinates for an atom from the Protein Data Bank file, then assigns the atom 
type and atomic connectivities 
 
OPENEND Subroutine 
 
"openend" opens a file on a Fortran unit such that the position is set to the bottom for appending to the end 
of the file 
 
OPTIMIZ1 Function 
 
"optimiz1" is a service routine that computes the energy and gradient for optimally conditioned variable 
metric optimization in Cartesian coordinate space 
 
OPTIMIZE Program 
 
"optimize" performs energy minimization in Cartesian coordinate space using an optimally conditioned 
variable metric method 
 
OPTIROT Program 
 
"optirot" performs an energy minimization in torsional angle space using an optimally conditioned variable 
metric method 
 
OPTIROT1 Function 
 
"optirot1" is a service routine that computes the energy and gradient for optimally conditioned variable 
metric optimization in torsional angle space 
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OPTRIGID Program 
 
"optrigid" performs an energy minimization of rigid body atom groups using an optimally conditioned 
variable metric method 
 
OPTRIGID1 Function 
 
"optrigid1" is a service routine that computes the energy and gradient for optimally conditioned variable 
metric optimization of rigid bodies 
 
ORBITAL Subroutine 
 
"orbital" finds and organizes lists of atoms in a pisystem, bonds connecting pisystem atoms and torsions 
whose two central atoms are both pisystem atoms 
 
ORIENT Subroutine 
 
"orient" computes a set of reference Cartesian coordinates in standard orientation for each rigid body atom 
group 
 
ORTHOG Subroutine 
 
"orthog" performs an orthogonalization of an input matrix via the modified Gram-Schmidt algorithm 
 
OVERLAP Subroutine 
 
"overlap" computes the overlap for two parallel p-orbitals given the atomic numbers and distance of 
separation 
 
PARAMYZE Subroutine 
 
"paramyze" prints the force field parameters used in the computation of each of the potential energy terms 
 
PASSB Subroutine 
 
PASSB2 Subroutine 
 
PASSB3 Subroutine 
 
PASSB4 Subroutine 
 
PASSB5 Subroutine 
 
PASSF Subroutine 
 
PASSF2 Subroutine 
 
PASSF3 Subroutine 
 
PASSF4 Subroutine 
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PASSF5 Subroutine 
 
PATH Program 
 
"path" locates a series of structures equally spaced along a conformational pathway connecting the input 
reactant and product structures; a series of constrained optimizations orthogonal to the path is done via 
Lagrangian multipliers 
 
PATH1 Function 
 
PATHPNT Subroutine 
 
"pathpnt" finds a structure on the synchronous transit path with the specified path value "t" 
 
PATHSCAN Subroutine 
 
"pathscan" makes a scan of a synchronous transit pathway by computing structures and energies for 
specific path values 
 
PATHVAL Subroutine 
 
"pathval" computes the synchronous transit path value for the specified structure 
 
PDBATM Subroutine 
 
"pdbatm" adds an atom to the Protein Data Bank file 
 
PDBXYZ Program 
 
"pdbxyz" takes as input a Protein Data Bank file and then converts to and writes out a Cartesian coordinates 
file and, for polypeptides, a sequence file 
 
PIALTER Subroutine 
 
"pialter" first modifies bond lengths and force constants according to the standard bond slope parameters 
and the bond order values stored in "pnpl"; also alters some 2-fold torsional parameters based on the bond-
order * beta matrix 
 
PIMOVE Subroutine 
 
"pimove" rotates the vector between atoms "list(1)" and "list(2)" so that atom 1 is at the origin and atom 2 
along the x-axis; the atoms defining the respective planes are also moved and their bond lengths normalized 
 
PIPLANE Subroutine 
 
"piplane" selects the three atoms which specify the plane perpendicular to each p-orbital; the current 
version will fail in certain situations, including ketenes, allenes, and isolated or adjacent triple bonds 
 
PISCF Subroutine 
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"piscf" performs an scf molecular orbital calculation for the pisystem using a modified Pariser-Parr-Pople 
method 
 
PITILT Subroutine 
 
"pitilt" calculates for each pibond the ratio of the actual p-orbital overlap integral to the ideal overlap if the 
same orbitals were perfectly parallel 
 
PLACE Subroutine 
 
"place" finds the probe sites by putting the probe sphere tangent to each triple of neighboring atoms 
 
POLARGRP Subroutine 
 
"polargrp" generates members of the polarization group of each atom and separate lists of the 1-2, 1-3 and 
1-4 group connectivities 
 
POLARIZE Program 
 
"polarize" computes the molecular polarizability by applying an external field along each axis followed by 
diagonalization of the resulting polarizability tensor 
 
POLYMER Subroutine 
 
"polymer" tests for the presence of an infinite polymer extending across periodic boundaries 
 
POLYP Subroutine 
 
"polyp" is a polynomial product routine that multiplies two algebraic forms 
 
POTNRG Function 
 
POTOFF Subroutine 
 
"potoff" clears the forcefield definition by turning off the use of each of the potential energy functions 
 
POWER Subroutine 
 
"power" uses the power method with deflation to compute the few largest eigenvalues and eigenvectors of a 
symmetric matrix 
 
PRECISE Function 
 
"precise" finds a machine precision value as selected by the input argument: (1) the smallest positive 
floating point value, (2) the smallest relative floating point spacing, (3) the largest relative floating point 
spacing 
 
PRECOND Subroutine 
 
"precond" solves a simplified version of the Newton equations Ms = r, and uses the result to precondition 
linear conjugate gradient iterations on the full Newton equations in "tnsolve" 
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PRESSURE Subroutine 
 
"pressure" uses the internal virial to find the pressure in a periodic box and maintains a constant desired 
pressure by scaling the coordinates via coupling to an external constant pressure bath 
 
PRMKEY Subroutine 
 
"field" parses a text string to extract keywords related to force field potential energy functional forms and 
constants 
 
PROCHAIN Subroutine 
 
"prochain" builds up the internal coordinates for an amino acid sequence from the phi, psi, omega and chi 
values 
 
PROJCT Subroutine 
 
PROMO Subroutine 
 
"promo" writes a short message containing information about the TINKER version number and the 
copyright notice 
 
PROPERTY Function 
 
"property" takes two input snapshot frames and computes the value of the property for which the 
correlation function is being accumulated 
 
PROPYZE Subroutine 
 
"propyze" finds and prints the total charge, dipole moment components, radius of gyration and moments of 
inertia 
 
PROSIDE Subroutine 
 
"proside" builds the side chain for a single amino acid residue in terms of internal coordinates 
 
PROTEIN Program 
 
"protein" builds the internal and Cartesian coordinates of a polypeptide from amino acid sequence and 
torsional angle values for the peptide backbone and side chains 
 
PRTARC Subroutine 
 
"prtarc" writes out a set of Cartesian coordinates for all active atoms in the TINKER XYZ archive format 
 
PRTCAR Subroutine 
 
"prtcar" writes out a set of Cartesian coordinates for all active atoms in the Accelerys InsightII .car format 
 
PRTDYN Subroutine 
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"prtdyn" writes out the information needed to restart a molecular dynamics trajectory to an external disk 
file 
 
PRTERR Subroutine 
 
"prterr" writes out a set of coordinates to a disk file prior to aborting on a serious error 
 
PRTINT Subroutine 
 
"prtint" writes out a set of Z-matrix internal coordinates to an external disk file 
 
PRTMOL2 Program 
 
"prtmol2" writes out a set of coordinates in Sybyl MOL2 format to an external disk file 
 
PRTPDB Subroutine 
 
"prtpdb" writes out a set of Protein Data Bank coordinates to an external disk file 
 
PRTPRM Subroutine 
 
"prtprm" writes out a formatted listing of the default set of potential energy parameters for a force field 
 
PRTSEQ Subroutine 
 
"prtseq" writes out a biopolymer sequence to an external disk file with 15 residues per line and distinct 
chains separated by blank lines 
 
PRTXMOL Subroutine 
 
"prtxmol" writes out a set of Cartesian coordinates for all active atoms in a simple, generic XYZ format 
originally used by the XMOL program 
 
PRTXYZ Subroutine 
 
"prtxyz" writes out a set of Cartesian coordinates to an external disk file 
 
PSS Program 
 
"pss" implements the potential smoothing plus search method for global optimization in Cartesian 
coordinate space with local searches performed in Cartesian or torsional space 
 
PSS1 Function 
 
"pss1" is a service routine that computes the energy and gradient during PSS global optimization in 
Cartesian coordinate space 
 
PSS2 Subroutine 
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"pss2" is a service routine that computes the sparse matrix Hessian elements during PSS global 
optimization in Cartesian coordinate space 
 
PSSRGD1 Function 
 
"pssrgd1" is a service routine that computes the energy and gradient during PSS global optimization over 
rigid bodies 
 
PSSRIGID Program 
 
"pssrigid" implements the potential smoothing plus search method for global optimization for a set of rigid 
bodies 
 
PSSROT Program 
 
"pssrot" implements the potential smoothing plus search method for global optimization in torsional space 
 
PSSROT1 Function 
 
"pssrot1" is a service routine that computes the energy and gradient during PSS global optimization in 
torsional space 
 
PSSWRITE Subroutine 
 
PTINCY Function 
 
PZEXTR Subroutine 
 
"pzextr" is a polynomial extrapolation routine used during Bulirsch-Stoer integration of ordinary 
differential equations 
 
QRFACT Subroutine 
 
"qrfact" performs Householder transformations with column pivoting (optional) to compute a QR 
factorization of the m by n matrix a; the routine determines an orthogonal matrix q, a permutation matrix p, 
and an upper trapezoidal matrix r with diagonal elements of nonincreasing magnitude, such that a*p = q*r; 
the Householder transformation for column k, k = 1,2,...,min(m,n), is of the form 
 
QRSOLVE Subroutine 
 
"qrsolve" solves a*x=b and d*x=0 in the least squares sense; normally used in combination with routine 
"qrfact" to solve least squares problems 
 
QUATFIT Subroutine 
 
"quatfit" uses a quaternion-based method to achieve the best fit superposition of two sets of coordinates 
 
RADIAL Program 
 
"radial" finds the radial distribution function for a specified pair of atom types via analysis of a set of stored 
coordinate frames from a liquid simulation 
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RANDOM Function 
 
"random" generates a random number on [0,1] via a long period generator due to L'Ecuyer with Bays-
Durham shuffle 
 
RANVEC Subroutine 
 
"ranvec" generates a unit vector in 3-dimensional space with uniformly distributed random orientation 
 
RATTLE Subroutine 
 
"rattle" implements the first portion of the rattle algorithm by correcting atomic positions and half-step 
velocities to maintain constrained interatomic distances 
 
RATTLE2 Subroutine 
 
"rattle2" implements the second portion of the rattle algorithm by correcting the full-step velocities in order 
to maintain constrained interatomic distances 
 
READBLK Subroutine 
 
"readblk" reads in a set of snapshot frames and transfers the values to internal arrays for use in the 
computation of time correlation functions 
 
READDYN Subroutine 
 
"readdyn" get the positions, velocities and accelerations for a molecular dynamics restart from an external 
disk file 
 
READINT Subroutine 
 
"readint" gets a set of Z-matrix internal coordinates from an external file 
 
READMOL2 Subroutine 
 
"readmol2" gets a set of Sybyl MOL2 coordinates from an external disk file 
 
READPDB Subroutine 
 
"readpdb" gets a set of Protein Data Bank coordinates from an external disk file 
 
READPRM Subroutine 
 
"readprm" processes the potential energy parameter file in order to define the default force field parameters 
 
READSEQ Subroutine 
 
"readseq" gets a biopolymer sequence containing one or more separate chains from an external file; all lines 
containing sequence must begin with the starting sequence number, the actual sequence is read from 
subsequent nonblank characters 
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READXYZ Subroutine 
 
"readxyz" gets a set of Cartesian coordinates from an external disk file 
 
REFINE Subroutine 
 
"refine" performs minimization of the atomic coordinates of an initial crude embedded distance geometry 
structure versus the bound, chirality, planarity and torsional error functions 
 
REPLICA Subroutine 
 
"replica" decides between images and replicates for generation of periodic boundary conditions, and sets 
the cell replicate list if the replicates method is to be used 
 
RFINDEX Subroutine 
 
"rfindex" finds indices for each multipole site for use in computing reaction field energetics 
 
RGDSRCH Subroutine 
 
RGDSTEP Subroutine 
 
"rgdstep" performs a single molecular dynamics time step for a rigid-body calculation 
 
RIBOSOME Subroutine 
 
"ribosome" translates a polypeptide structure in Protein Data Bank format to a Cartesian coordinate file and 
sequence file 
 
RIGIDXYZ Subroutine 
 
"rigidxyz" computes Cartesian coordinates for a rigid body group via rotation and translation of reference 
coordinates 
 
RINGS Subroutine 
 
"rings" searches the structure for small rings and stores their constituent atoms 
 
RMSERROR Subroutine 
 
"rmserror" computes the maximum absolute deviation and the rms deviation from the distance bounds, and 
the number and rms value of the distance restraint violations 
 
RMSFIT Function 
 
"rmsfit" computes the rms fit of two coordinate sets 
 
ROTANG Function 
 
ROTCHECK Function 
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"rotcheck" tests a specified candidate rotatable bond for the disallowed case where inactive atoms are found 
on both sides of the candidate bond 
 
ROTCRD Subroutine 
 
"rotcrd" computes updated atomic coordinates for a rigid body given the previous coordinates, the rotation 
matrix and shift in the center of mass corresponding to the motion 
 
ROTEULER Subroutine 
 
"roteuler" computes a set of Euler angle values consistent with an input rotation matrix 
 
ROTLIST Subroutine 
 
"rotlist" generates the minimum list of all the atoms lying to one side of a pair of directly bonded atoms; 
optionally finds the minimal list by choosing the side with fewer atoms 
 
ROTMAT Subroutine 
 
"rotmat" finds the rotation matrix that converts from the local coordinate system to the global frame at a 
multipole site 
 
ROTPOLE Subroutine 
 
"rotpole" constructs the set of atomic multipoles in the global frame by applying the correct rotation matrix 
for each site 
 
ROTRGD Subroutine 
 
"rotrgd" finds the rotation matrix for a rigid body due to a single step of dynamics 
 
ROTSITE Subroutine 
 
"rotsite" computes the atomic multipoles at a specified site in the global coordinate frame by applying a 
rotation matrix 
 
SADDLE Program 
 
"saddle" finds a transition state between two conformational minima using a combination of ideas from the 
synchronous transit (Halgren-Lipscomb) and quadratic path (Bell-Crighton) methods 
 
SADDLE1 Function 
 
"saddle1" is a service routine that computes the energy and gradient for transition state optimization 
 
SADDLES Subroutine 
 
"saddles" constructs circles, convex edges and saddle faces 
 
SCAN Program 
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"scan" attempts to find all the local minima on a potential energy surface via an iterative series of local 
searches 
 
SCAN1 Function 
 
"scan1" is a service routine that computes the energy and gradient during exploration of a potential energy 
surface via iterative local search 
 
SCAN2 Subroutine 
 
"scan2" is a service routine that computes the sparse matrix Hessian elements during exploration of a 
potential energy surface via iterative local search 
 
SDAREA Subroutine 
 
"sdarea" optionally scales the atomic friction coefficient of each atom based on its accessible surface area 
 
SDSTEP Subroutine 
 
"sdstep" performs a single stochastic dynamics time step via a velocity Verlet integration algorithm 
 
SDTERM Subroutine 
 
"sdterm" gets frictional and random force terms needed to update positions and velocities via stochastic 
dynamics 
 
SEARCH Subroutine 
 
"search" is a unidimensional line search based upon parabolic extrapolation and cubic interpolation using 
both function and gradient values; if forced to search in an uphill direction, return is after the initial step 
 
SETIME Subroutine 
 
"setime" initializes the elapsed interval CPU timer 
 
SHAKEUP Subroutine 
 
"shakeup" initializes any holonomic constraints for use with the rattle algorithm during molecular dynamics 
 
SIGMOID Function 
 
"sigmoid" implements a normalized sigmoidal function on the interval [0,1]; the curves connect (0,0) to 
(1,1) and have a cooperativity controlled by beta, they approach a straight line as beta -> 0 and get more 
nonlinear as beta increases 
 
SKTCALL Subroutine 
 
"sktcall" is a Fortran dummy version of the C routine that passes structural and system information to the 
graphical user interface 
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SKTCLOSE Subroutine 
 
"sktclose" closes any currently open socket connection 
 
SKTINIT Subroutine 
 
"sktinit" sets up socket communication with the graphical user interface by starting the socket daemon 
 
SKTKILL Subroutine 
 
"sktkill" closes socket connections and kills the socket daemon 
 
SKTSEND Subroutine 
 
"sktsend" is the main routine for communication of system and structural information to the graphical user 
interface via a socket mechanism 
 
SLATER Subroutine 
 
"slater" is a general routine for computing the overlap integrals between two Slater-type orbitals 
 
SMOOTH Subroutine 
 
"smooth" sets the type of smoothing method and the extent of surface deformation for use with potential 
energy smoothing 
 
SNIFFER Program 
 
"sniffer" performs a global energy minimization using a discrete version of Griewank's global search 
trajectory 
 
SNIFFER1 Function 
 
"sniffer1" is a service routine that computes the energy and gradient for the Sniffer global optimization 
method 
 
SOAK Subroutine 
 
"soak" takes a currently defined solute system and places it into a solvent box, with removal of any solvent 
molecules that overlap the solute 
 
SORT Subroutine 
 
"sort" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm 
 
SORT2 Subroutine 
 
"sort2" takes an input list of reals and sorts it into ascending order using the Heapsort algorithm; it also 
returns a key into the original ordering 
 
SORT3 Subroutine 
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"sort3" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm; it also 
returns a key into the original ordering 
 
SORT4 Subroutine 
 
"sort4" takes an input list of integers and sorts it into ascending absolute value using the Heapsort algorithm 
 
SORT5 Subroutine 
 
"sort5" takes an input list of integers and sorts it into ascending order based on each value modulo "m" 
 
SORT6 Subroutine 
 
"sort6" takes an input list of character strings and sorts it into alphabetical order using the Heapsort 
algorithm 
 
SORT7 Subroutine 
 
"sort7" takes an input list of character strings and sorts it into alphabetical order using the Heapsort 
algorithm; it also returns a key into the original ordering 
 
SORT8 Subroutine 
 
"sort8" takes an input list of integers and sorts it into ascending order using the Heapsort algorithm, 
duplicate values are removed from the final sorted list 
 
SORT9 Subroutine 
 
"sort9" takes an input list of character strings and sorts it into alphabetical order using the Heapsort 
algorithm, duplicate values are removed from the final sorted list 
 
SPACEFILL Program 
 
"spacefill" computes the surface area and volume of a structure; the van der Waals, accessible-excluded, 
and contact-reentrant definitions are available 
 
SPECTRUM Program 
 
"spectrum" computes a power spectrum over a wavelength range from the velocity autocorrelation as a 
function of time 
 
SPMDAEMON Subroutine 
 
"spmdaemon" is a Fortran dummy version of the C routine that starts the Simple Sockets Library 
communication daemon 
 
SQUARE Subroutine 
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"square" is a nonlinear least squares routine derived from the IMSL routine BCLSF and More's Minpack 
routine LMDER; the Jacobian is estimated by finite differences and bounds can be specified for the 
variables to be refined 
 
STAT Subroutine 
 
SUFFIX Subroutine 
 
"suffix" checks a filename for the presence of an extension, and appends an extension if none is found 
 
SUPERPOSE Program 
 
"superpose" takes pairs of structures and superimposes them in the optimal least squares sense; it will 
attempt to match all atom pairs or only those specified by the user 
 
SURFACE Subroutine 
 
"surface" performs an analytical computation of the weighted solvent accessible surface area of each atom 
and the first derivatives of the area with respect to Cartesian coordinates 
 
SURFATOM Subroutine 
 
"surfatom" performs an analytical computation of the surface area of a specified atom; a simplified version 
of "surface" 
 
SWITCH Subroutine 
 
"switch" sets the coeffcients used by the fifth and seventh order polynomial switching functions for 
spherical cutoffs 
 
SYBYLXYZ Program 
 
"sybylxyz" takes as input a Sybyl MOL2 coordinates file, converts to and then writes out Cartesian 
coordinates 
 
SYMMETRY Subroutine 
 
"symmetry" applies symmetry operators to the fractional coordinates of the asymmetric unit in order to 
generate the symmetry related atoms of the full unit cell 
 
TANGENT Subroutine 
 
"tangent" finds the projected gradient on the synchronous transit path for a point along the transit pathway 
 
TEMPER Subroutine 
 
"temper" maintains a constant desired temperature via either Berendsen's velocity scaling coupled to an 
external temperature bath or Andersen's stochastic collision method 
 
TESTGRAD Program 
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"testgrad" computes and compares the analytical and numerical gradient vectors of the potential energy 
function with respect to Cartesian coordinates 
 
TESTHESS Program 
 
"testhess" computes and compares the analytical and numerical Hessian matrices of the potential energy 
function with respect to Cartesian coordinates 
 
TESTLIGHT Program 
 
"testlight" performs a set of timing tests to compare the evaluation of potential energy and energy/gradient 
using the method of lights with a double loop over all atom pairs 
 
TESTROT Program 
 
"testrot" computes and compares the analytical and numerical gradient vectors of the potential energy 
function with respect to rotatable torsional angles 
 
TIMER Program 
 
"timer" measures the CPU time required for file reading and parameter assignment, potential energy 
computation, energy and gradient computation, and Hessian matrix evaluation 
 
TIMEROT Program 
 
"timerot" measures the CPU time required for file reading and parameter assignment, potential energy 
computation, energy and gradient over torsions, and torsional angle Hessian matrix evaluation 
 
TNCG Subroutine 
 
"tncg" implements a truncated Newton optimization algorithm in which a preconditioned linear conjugate 
gradient method is used to approximately solve Newton's equations; special features include use of an 
explicit sparse Hessian or finite-difference gradient-Hessian products within the PCG iteration; the exact 
Newton search directions can be used optionally; by default the algorithm checks for negative curvature to 
prevent convergence to a stationary point having negative eigenvalues; if a saddle point is desired this test 
can be removed by disabling "negtest" 
 
TNSOLVE Subroutine 
 
"tnsolve" uses a linear conjugate gradient method to find an approximate solution to the set of linear 
equations represented in matrix form by Hp = -g (Newton's equations) 
 
TORPHASE Subroutine 
 
"torphase" sets the n-fold amplitude and phase values for each torsion via sorting of the input parameters 
 
TORQUE Subroutine 
 
"torque" takes the torque values on sites defined by local coordinate frames and distributes thme to convert 
to forces on the original sites and sites specifying the local frames 
 
TORQUE1 Subroutine 
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"torque1" takes the torque value on a site defined by a local coordinate frame and distributes it to convert to 
forces on the original site and sites specifying the local frame 
 
TORSER Function 
 
"torser" computes the torsional error function and its first derivatives with respect to the atomic Cartesian 
coordinates based on the deviation of specified torsional angles from desired values, the contained bond 
angles are also restrained to avoid a numerical instability 
 
TORSIONS Subroutine 
 
"torsions" finds the total number of dihedral angles and the numbers of the four atoms defining each 
dihedral angle 
 
TORUS Subroutine 
 
"torus" sets a list of all of the temporary torus positions by testing for a torus between each atom and its 
neighbors 
 
TOTERR Function 
 
"toterr" is the error function and derivatives for a distance geometry embedding; it includes components 
from the distance bounds, hard sphere contacts, local geometry, chirality and torsional restraint errors 
 
TRANSIT Function 
 
"transit" evaluates the synchronous transit function and gradient; linear and quadratic transit paths are 
available 
 
TRIANGLE Subroutine 
 
"triangle" smooths the upper and lower distance bounds via the triangle inequality using a full-matrix 
variant of the Floyd-Warshall shortest path algorithm; this routine is usually much slower than the sparse 
matrix shortest path methods in "geodesic" and "trifix", and should be used only for comparison with 
answers generated by those routines 
 
TRIFIX Subroutine 
 
"trifix" rebuilds both the upper and lower distance bound matrices following tightening of one or both of 
the bounds between a specified pair of atoms, "p" and "q", using a modification of Murchland's shortest 
path update algorithm 
 
TRIMTEXT Function 
 
"trimtext" finds and returns the location of the last non-blank character before the first null character in an 
input text string; the function returns zero if no such character is found 
 
TRIPLE Function 
 
"triple" finds the triple product of three vectors; used as a service routine by the Connolly surface area and 
volume computation 
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TRUST Subroutine 
 
"trust" updates the model trust region for a nonlinear least squares calculation; this version is based on the 
ideas found in NL2SOL and in Dennis and Schnabel's book 
 
UDIRECT1 Subroutine 
 
"udirect1" computes the reciprocal space contribution of the permanent atomic multipole moments to the 
electrostatic field for use in finding the direct induced dipole moments via a regular Ewald summation 
 
UDIRECT2 Subroutine 
 
"udirect2" computes the real space contribution of the permanent atomic multipole moments to the 
electrostatic field for use in finding the direct induced dipole moments via a regular Ewald summation 
 
UFIELD Subroutine 
 
"ufield" finds the field at each polarizable site due to the induced dipoles at the other sites using Thole's 
method to damp the field at close range 
 
UMUTUAL1 Subroutine 
 
"umutual1" computes the reciprocal space contribution of the induced atomic dipole moments to the 
electrostatic field for use in iterative calculation of induced dipole moments via a regular Ewald summation 
 
UMUTUAL2 Subroutine 
 
"umutual2" computes the real space contribution of the induced atomic dipole moments to the electrostatic 
field for use in iterative calculation of induced dipole moments via a regular Ewald summation 
 
UNITCELL Subroutine 
 
"unitcell" gets the periodic boundary box size and related values from an external keyword file 
 
UPCASE Subroutine 
 
"upcase" converts a text string to all upper case letters 
 
VAM Subroutine 
 
"vam" takes the analytical molecular surface defined as a collection of spherical and toroidal polygons and 
uses it to compute the volume and surface area 
 
VCROSS Subroutine 
 
"vcross" finds the cross product of two vectors 
 
VDWERR Function 
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"vdwerr" is the hard sphere van der Waals bound error function and derivatives that penalizes close 
nonbonded contacts, pairwise neighbors are generated via the method of lights 
 
VECANG Function 
 
"vecang" finds the angle between two vectors handed with respect to a coordinate axis; returns an angle in 
the range [0,2*pi] 
 
VERLET Subroutine 
 
"verlet" performs a single molecular dynamics time step by means of the velocity Verlet multistep 
recursion formula 
 
VERSION Subroutine 
 
"version" checks the name of a file about to be opened; if if "old" status is passed, the name of the highest 
current version is returned; if "new" status is passed the filename of the next available unused version is 
generated 
 
VIBRATE Program 
 
"vibrate" performs a vibrational normal mode analysis; the Hessian matrix of second derivatives is 
determined and then diagonalized both directly and after mass weighting; output consists of the eigenvalues 
of the force constant matrix as well as the vibrational frequencies and displacements 
 
VIBRIGID Program 
 
"vibrigid" computes the eigenvalues and eigenvectors of the Hessian matrix over rigid body degrees of 
freedom 
 
VIBROT Program 
 
"vibrot" computes the eigenvalues and eigenvectors of the torsional Hessian matrix 
 
VNORM Subroutine 
 
"vnorm" normalizes a vector to unit length; used as a service routine by the Connolly surface area and 
volume computation 
 
VOLUME Subroutine 
 
"volume" calculates the excluded volume via the Connolly analytical volume and surface area algorithm 
 
VOLUME1 Subroutine 
 
"volume1" calculates first derivatives of the total excluded volume with respect to the Cartesian coordinates 
of each atom 
 
VOLUME2 Subroutine 
 
"volume2" calculates second derivatives of the total excluded volume with respect to the Cartesian 
coordinates of the atoms 
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WATSON Subroutine 
 
"watson" uses a rigid-body optimization to approximately align the paired strands of a nucleic acid double 
helix 
 
WATSON1 Function 
 
"watson1" is a service routine that computes the energy and gradient for optimally conditioned variable 
metric optimization of rigid bodies 
 
WRITEOUT Subroutine 
 
"writeout" is used by each of the optimization routines to save imtermediate atomic coordinates to a disk 
file 
 
XTALERR Subroutine 
 
"xtalerr" computes an error function value derived from derivatives with respect to lattice parameters, 
lattice energy and monomer dipole moments 
 
XTALFIT Program 
 
"xtalfit" computes an optimized set of potential energy parameters for user specified van der Waals and 
electrostatic interactions by fitting to crystal structure, lattice energy and monomer dipole moment data 
 
XTALLAT1 Function 
 
"xtalmol1" is a service routine that computes the energy and numerical gradient with respect to the six 
lattice lengths and angles for a crystal energy minimization 
 
XTALMIN Program 
 
"xtalmin" performs a full crystal energy minimization by alternating cycles of truncated Newton 
optimization over atomic coordinates with variable metric optimization over the six lattice dimensions and 
angles 
 
XTALMOL1 Function 
 
"xtalmol1" is a service routine that computes the energy and gradient with respect to the atomic Cartesian 
coordinates for a crystal energy minimization 
 
XTALMOL2 Subroutine 
 
"xtalmol2" is a service routine that computes the sparse matrix Hessian elements with respect to the atomic 
Cartesian coordinates for a crystal energy minimization 
 
XTALMOVE Subroutine 
 
"xtalmove" converts fractional to Cartesian coordinates for rigid molecules during fitting of force field 
parameters to crystal structure data 
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XTALPRM Subroutine 
 
"xtalprm" stores or retrieves a crystal structure; used to make a previously stored structure the currently 
active structure, or to store a structure for later use; only provides for the intermolecular energy terms 
 
XTALWRT Subroutine 
 
"xtalwrt" is a utility that prints intermediate results during fitting of force field parameters to crystal data 
 
XYZATM Subroutine 
 
"xyzatm" computes the Cartesian coordinates of a single atom from its defining internal coordinate values 
 
XYZEDIT Program 
 
"xyzedit" provides for modification and manipulation of the contents of a Cartesian coordinates file 
 
XYZINT Program 
 
"xyzint" takes as input a Cartesian coordinates file, then converts to and writes out an internal coordinates 
file 
 
XYZPDB Program 
 
"xyzpdb" takes as input a Cartesian coordinates file, then converts to and writes out a Protein Data Bank 
file 
 
XYZRIGID Subroutine 
 
"xyzrigid" computes the center of mass and Euler angle rigid body coordinates for each atom group in the 
system 
 
XYZSYBYL Program 
 
"xyzsybyl" takes as input a Cartesian coordinates file, converts to and then writes out a Sybyl MOL2 file 
 
ZATOM Subroutine 
 
"zatom" adds an atom to the end of the current Z-matrix and then increments the atom counter; atom type, 
defining atoms and internal coordinates are passed as arguments 
 
ZHELP Subroutine 
 
"zhelp" prints the general information and instructions for the Z-matrix editing program 
 
ZVALUE Subroutine 
 
"zvalue" gets user supplied values for selected coordinates as needed by the internal coordinate editing 
program 
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10. Contents of Common Block Variables 
 
 The Fortran common blocks found in the TINKER package are listed below along with a brief 
description of the contents of each variable in each common block. Each individual common block is 
present as a separate ".i" file in the /source subdirectory. A source code listing containing each of the source 
code modules and each of the common blocks can be produced by running the "listing.make" script found 
in the distribution. 
 
ACTION total number of each energy term computed 
 
neb number of bond stretch energy terms computed 
nea number of angle bend energy terms computed 
neba number of stretch-bend energy terms computed 
neub number of Urey-Bradley energy terms computed 
neaa number of angle-angle energy terms computed 
neopb number of out-of-plane bend energy terms computed 
neopd number of out-of-plane distance energy terms computed 
neid number of improper dihedral energy terms computed 
neit number of improper torsion energy terms computed 
net number of torsional energy terms computed 
nebt number of stretch-torsion energy terms computed 
nett number of torsion-torsion energy terms computed 
nev number of van der Waals energy terms computed 
nec number of charge-charge energy terms computed 
necd number of charge-dipole energy terms computed 
ned number of dipole-dipole energy terms computed 
nem number of multipole energy terms computed 
nep number of polarization energy terms computed 
new number of Ewald summation energy terms computed 
ner number of reaction field energy terms computed 
nes number of solvation energy terms computed 
nelf number of metal ligand field energy terms computed 
neg number of geometric restraint energy terms computed 
nex number of extra energy terms computed 
 
ALIGN information for superposition of structures 
 
wfit weights assigned to atom pairs during superposition 
nfit number of atoms to use in superimposing two structures 
ifit atom numbers of pairs of atoms to be superimposed 
 
ANALYZ energy components partitioned over atoms 
 
aeb bond stretch energy partitioned over atoms 
aea angle bend energy partitioned over atoms 
aeba stretch-bend energy partitioned over atoms 
aeub Urey-Bradley energy partitioned over atoms 
aeaa angle-angle energy partitioned over atoms 
aeopb out-of-plane bend energy partitioned over atoms 
aeopd out-of-plane distance energy partitioned over atoms 
aeid improper dihedral energy partitioned over atoms 
aeit improper torsion energy partitioned over atoms 
aet torsional energy partitioned over atoms 
aebt stretch-torsion energy partitioned over atoms 
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aett torsion-torsion energy partitioned over atoms 
aev van der Waals energy partitioned over atoms 
aec charge-charge energy partitioned over atoms 
aecd charge-dipole energy partitioned over atoms 
aed dipole-dipole energy partitioned over atoms 
aem multipole energy partitioned over atoms 
aep polarization energy partitioned over atoms 
aer reaction field energy partitioned over atoms 
aes solvation energy partitioned over atoms 
aelf metal ligand field energy partitioned over atoms 
aeg geometric restraint energy partitioned over atoms 
aex extra energy term partitioned over atoms 
 
ANGANG angle-angle terms in current structure 
 
kaa force constant for angle-angle cross terms 
nangang total number of angle-angle interactions 
iaa angle numbers used in each angle-angle term 
 
ANGLE bond angles within the current structure 
 
ak harmonic angle force constant (kcal/mole/rad**2) 
anat ideal bond angle or phase shift angle (degrees) 
afld periodicity for Fourier bond angle term 
nangle total number of bond angles in the system 
iang numbers of the atoms in each bond angle 
angtyp potential energy function type for each bond angle 
 
ANGPOT specifics of bond angle functional forms 
 
cang cubic coefficient in angle bending potential 
qang quartic coefficient in angle bending potential 
pang quintic coefficient in angle bending potential 
sang sextic coefficient in angle bending potential 
angunit convert angle bending energy to kcal/mole 
stbnunit convert stretch-bend energy to kcal/mole 
aaunit convert angle-angle energy to kcal/mole 
opbunit convert out-of-plane bend energy to kcal/mole 
opdunit convert out-of-plane distance energy to kcal/mole 
mm2stbn logical flag governing use of MM2-style stretch-bend 
 
ARGUE command line arguments at program startup 
 
maxarg maximum number of command line arguments 
narg number of command line arguments to the program 
listarg flag to mark available command line arguments 
arg strings containing the command line arguments 
 
ATMLST local geometry terms involving each atom 
 
bndlist list of the bond numbers involving each atom 
anglist list of the angle numbers centered on each atom 
 
ATMTYP atomic properties for each current atom 
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mass atomic weight for each atom in the system 
tag integer atom labels from input coordinates file 
class atom class number for each atom in the system 
atomic atomic number for each atom in the system 
valence valence number for each atom in the system 
name atom name for each atom in the system 
story descriptive type for each atom in system 
 
ATOMS number, position and type of current atoms 
 
x current x-coordinate for each atom in the system 
y current y-coordinate for each atom in the system 
z current z-coordinate for each atom in the system 
n total number of atoms in the current system 
type atom type number for each atom in the system 
 
BATH temperature and pressure control parameters 
 
kelvin target value for the system temperature (K) 
atmsph target value for the system pressure (atm) 
tautemp time constant in psec for temperature bath coupling 
taupres time constant in psec for pressure bath coupling 
compress isothermal compressibility of medium (atm-1) 
collide collision frequency for Andersen thermostat 
isothermal logical flag geverning use of temperature bath 
isobaric logical flag governing use of pressure bath 
thermostat type of thermostat, either Berendsen or Andersen 
 
BITOR bitorsions within the current structure 
 
nbitor total number of bitorsions in the system 
ibitor numbers of the atoms in each bitorsion 
 
BNDPOT specifics of bond stretch functional forms 
 
cbnd cubic coefficient in bond stretch potential 
qbnd quartic coefficient in bond stretch potential 
bndunit convert bond stretch energy to kcal/mole 
bndtyp type of bond stretch potential energy function 
 
BOND covalent bonds in the current structure 
 
bk bond stretch force constants (kcal/mole/Ang**2) 
bl ideal bond length values in Angstroms 
nbond total number of bond stretches in the system 
ibnd numbers of the atoms in each bond stretch 
 
BORDER bond orders for a conjugated pisystem 
 
pbpl pi-bond orders for bonds in "planar" pisystem 
pnpl pi-bond orders for bonds in "nonplanar" pisystem 
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BOUND control of periodic boundary conditions 
 
polycut cutoff distance for infinite polymer nonbonds 
polycut2 square of infinite polymer nonbond cutoff 
use_bounds flag to use periodic boundary conditions 
use_image flag to use images for periodic system 
use_replica flag to use replicates for periodic system 
use_polymer flag to mark presence of infinite polymer 
 
BOXES parameters for periodic boundary conditions 
 
xbox length in Angs of a-axis of periodic box 
ybox length in Angs of b-axis of periodic box 
zbox length in Angs of c-axis of periodic box 
alpha angle in degrees between b- and c-axes of box 
beta angle in degrees between a- and c-axes of box 
gamma angle in degrees between a- and b-axes of box 
xbox2 half of the a-axis length of periodic box 
ybox2 half of the b-axis length of periodic box 
zbox2 half of the c-axis length of periodic box 
box34 three-fourths axis length of truncated octahedron 
recip reciprocal lattice vectors as matrix columns 
volbox volume in Ang**3 of the periodic box 
beta_sin sine of the beta periodic box angle 
beta_cos cosine of the beta periodic box angle 
gamma_sin sine of the gamma periodic box angle 
gamma_cos cosine of the gamma periodic box angle 
beta_term term used in generating triclinic box 
gamma_term term used in generating triclinic box 
orthogonal flag to mark periodic box as orthogonal 
monoclinic flag to mark periodic box as monoclinic 
triclinic flag to mark periodic box as triclinic 
octahedron flag to mark box as truncated octahedron 
spacegrp space group symbol for the unitcell type 
 
CELL periodic boundaries using replicated cells 
 
xcell length of the a-axis of the complete replicated cell 
ycell length of the b-axis of the complete replicated cell 
zcell length of the c-axis of the complete replicated cell 
xcell2 half the length of the a-axis of the replicated cell 
ycell2 half the length of the b-axis of the replicated cell 
zcell2 half the length of the c-axis of the replicated cell 
ncell total number of cell replicates for periodic boundaries 
icell offset along axes for each replicate periodic cell 
 
CENTRE atom coordinates relative to center of mass 
 
xcm offset of each atom from center of mass x-coordinate 
ycm offset of each atom from center of mass y-coordinate 
zcm offset of each atom from center of mass z-coordinate 
 
CHARGE partial charges for the current structure 
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pchg magnitude of the partial charges (e-) 
nion total number of partial charges in system 
iion number of the atom site for each partial charge 
jion neighbor generation site for each partial charge 
kion cutoff switching site for each partial charge 
chglist partial charge site for each atom (0=no charge) 
 
CHGPOT specifics of charge-charge functional form 
 
dielec dielectric constant for electrostatic interactions 
c2scale factor by which 1-2 charge interactions are scaled 
c3scale factor by which 1-3 charge interactions are scaled 
c4scale factor by which 1-4 charge interactions are scaled 
c5scale factor by which 1-5 charge interactions are scaled 
neutnbr logical flag governing use of neutral group neighbors 
neutcut logical flag governing use of neutral group cutoffs 
 
CHRONO timing statistics for the current program 
 
cputim elapsed cpu time in seconds since start of program 
 
COUPLE near-neighbor atom connectivity lists 
 
maxn13 maximum number of atoms 1-3 connected to an atom 
maxn14 maximum number of atoms 1-4 connected to an atom 
maxn15 maximum number of atoms 1-5 connected to an atom 
n12 number of atoms directly bonded to each atom 
i12 atom numbers of atoms 1-2 connected to each atom 
n13 number of atoms in a 1-3 relation to each atom 
i13 atom numbers of atoms 1-3 connected to each atom 
n14 number of atoms in a 1-4 relation to each atom 
i14 atom numbers of atoms 1-4 connected to each atom 
n15 number of atoms in a 1-5 relation to each atom 
i15 atom numbers of atoms 1-5 connected to each atom 
 
CUTOFF cutoff distances for energy interactions 
 
vdwcut cutoff distance for van der Waals interactions 
chgcut cutoff distance for charge-charge interactions 
dplcut cutoff distance for dipole-dipole interactions 
mpolecut cutoff distance for atomic multipole interactions 
vdwtaper distance at which van der Waals switching begins 
chgtaper distance at which charge-charge switching begins 
dpltaper distance at which dipole-dipole switching begins 
mpoletaper distance at which atomic multipole switching begins 
ewaldcut cutoff distance for direct space Ewald summation 
use_ewald logical flag governing use of Ewald summation term 
use_lights logical flag to use method of lights neighbors 
 
DERIV Cartesian coordinate derivative components 
 
deb bond stretch Cartesian coordinate derivatives 
dea angle bend Cartesian coordinate derivatives 
deba stretch-bend Cartesian coordinate derivatives 
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deub Urey-Bradley Cartesian coordinate derivatives 
deaa angle-angle Cartesian coordinate derivatives 
deopb out-of-plane bend Cartesian coordinate derivatives 
deopd out-of-plane distance Cartesian coordinate derivatives 
deid improper dihedral Cartesian coordinate derivatives 
deit improper torsion Cartesian coordinate derivatives 
det torsional Cartesian coordinate derivatives 
debt stretch-torsion Cartesian coordinate derivatives 
dett torsion-torsion Cartesian coordinate derivatives 
dev van der Waals Cartesian coordinate derivatives 
dec charge-charge Cartesian coordinate derivatives 
decd charge-dipole Cartesian coordinate derivatives 
ded dipole-dipole Cartesian coordinate derivatives 
dem multipole Cartesian coordinate derivatives 
dep polarization Cartesian coordinate derivatives 
der reaction field Cartesian coordinate derivatives 
des solvation Cartesian coordinate derivatives 
delf metal ligand field Cartesian coordinate derivatives 
deg geometric restraint Cartesian coordinate derivatives 
dex extra energy term Cartesian coordinate derivatives 
 
DIPOLE atom & bond dipoles for current structure 
 
bdpl magnitude of each of the dipoles (Debyes) 
sdpl position of each dipole between defining atoms 
ndipole total number of dipoles in the system 
idpl numbers of atoms that define each dipole 
 
DISGEO distance geometry bounds and parameters 
 
bnd distance geometry upper and lower bounds matrix 
vdwrad hard sphere radii for distance geometry atoms 
vdwmax maximum value of hard sphere sum for an atom pair 
compact index of local distance compaction on embedding 
pathmax maximum value of upper bound after smoothing 
use_invert flag to use enantiomer closest to input structure 
use_anneal flag to use simulated annealing refinement 
 
DOMEGA derivative components over torsions 
 
teb bond stretch derivatives over torsions 
tea angle bend derivatives over torsions 
teba stretch-bend derivatives over torsions 
teub Urey-Bradley derivatives over torsions 
teaa angle-angle derivatives over torsions 
teopb out-of-plane bend derivatives over torsions 
teopd out-of-plane distance derivatives over torsions 
teid improper dihedral derivatives over torsions 
teit improper torsion derivatives over torsions 
tet torsional derivatives over torsions 
tebt stretch-torsion derivatives over torsions 
tett torsion-torsion derivatives over torsions 
tev van der Waals derivatives over torsions 
tec charge-charge derivatives over torsions 
tecd charge-dipole derivatives over torsions 



 132 TINKER User's Guide 132

ted dipole-dipole derivatives over torsions 
tem atomic multipole derivatives over torsions 
tep polarization derivatives over torsions 
ter reaction field derivatives over torsions 
tes solvation derivatives over torsions 
telf metal ligand field derivatives over torsions 
teg geometric restraint derivatives over torsions 
tex extra energy term derivatives over torsions 
 
ENERGI individual potential energy components 
 
eb bond stretch potential energy of the system 
ea angle bend potential energy of the system 
eba stretch-bend potential energy of the system 
eub Urey-Bradley potential energy of the system 
eaa angle-angle potential energy of the system 
eopb out-of-plane bend potential energy of the system 
eopd out-of-plane distance potential energy of the system 
eid improper dihedral potential energy of the system 
eit improper torsion potential energy of the system 
et torsional potential energy of the system 
ebt stretch-torsion potential energy of the system 
ett torsion-torsion potential energy of the system 
ev van der Waals potential energy of the system 
ec charge-charge potential energy of the system 
ecd charge-dipole potential energy of the system 
ed dipole-dipole potential energy of the system 
em atomic multipole potential energy of the system 
ep polarization potential energy of the system 
er reaction field potential energy of the system 
es solvation potential energy of the system 
elf metal ligand field potential energy of the system 
eg geometric restraint potential energy of the system 
ex extra term potential energy of the system 
 
EWALD parameters for regular or PM Ewald summation 
 
aewald Ewald convergence coefficient value (Ang-1) 
frecip fractional cutoff value for reciprocal sphere 
tinfoil flag governing use of tinfoil boundary conditions 
 
EWREG exponential factors for regular Ewald sum 
 
maxvec maximum number of k-vectors per reciprocal axis 
ejc exponental factors for cosine along the j-axis 
ejs exponental factors for sine along the j-axis 
ekc exponental factors for cosine along the k-axis 
eks exponental factors for sine along the k-axis 
elc exponental factors for cosine along the l-axis 
els exponental factors for sine along the l-axis 
 
FACES variables for Connolly area and volume 
 
maxnbr maximum number of neighboring atom pairs 
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maxtt maximum number of temporary tori 
maxt maximum number of total tori 
maxp maximum number of probe positions 
maxv maximum number of vertices 
maxen maximum number of concave edges 
maxfn maximum number of concave faces 
maxc maximum number of circles 
maxep maximum number of convex edges 
maxfs maximum number of saddle faces 
maxcy maximum number of cycles 
mxcyep maximum number of cycle convex edges 
maxfp maximum number of convex faces 
mxfpcy maximum number of convex face cycles 
 
FIELDS molecular mechanics force field description 
 
biotyp force field atom type of each biopolymer type 
forcefield string used to describe the current forcefield 
 
FILES name and number of current structure files 
 
nprior number of previously existing cycle files 
ldir length in characters of the directory name 
leng length in characters of the base filename 
filename base filename used by default for all files 
outfile output filename used for intermediate results 
 
FRACS atom distances to molecular center of mass 
 
xfrac fractional coordinate along a-axis of center of mass 
yfrac fractional coordinate along b-axis of center of mass 
zfrac fractional coordinate along c-axis of center of mass 
 
GROUP partitioning of system into atom groups 
 
grpmass total mass of all the atoms in each group 
wgrp weight for each set of group-group interactions 
ngrp total number of atom groups in the system 
kgrp contiguous list of the atoms in each group 
igrp first and last atom of each group in the list 
grplist number of the group to which each atom belongs 
use_group flag to use partitioning of system into groups 
use_intra flag to include only intragroup interactions 
use_inter flag to include only intergroup interactions 
 
HESCUT cutoff value for Hessian matrix elements 
 
hesscut magnitude of smallest allowed Hessian element 
 
HESSN Cartesian Hessian elements for a single atom 
 
hessx Hessian elements for x-component of current atom 
hessy Hessian elements for y-component of current atom 
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hessz Hessian elements for z-component of current atom 
 
IMPROP improper dihedrals in the current structure 
 
kprop force constant values for improper dihedral angles 
vprop ideal improper dihedral angle value in degrees 
niprop total number of improper dihedral angles in the system 
iiprop numbers of the atoms in each improper dihedral angle 
 
IMPTOR improper torsions in the current structure 
 
itors1 1-fold amplitude and phase for each improper torsion 
itors2 2-fold amplitude and phase for each improper torsion 
itors3 3-fold amplitude and phase for each improper torsion 
nitors total number of improper torsional angles in the system 
iitors numbers of the atoms in each improper torsional angle 
 
INFORM control values for I/O and program flow 
 
digits decimal places output for energy and coordinates 
iprint steps between status printing (0=no printing) 
iwrite steps between coordinate dumps (0=no dumps) 
isend steps between socket communication (0=no sockets) 
verbose logical flag to turn on extra information 
debug logical flag to turn on full debug printing 
holdup logical flag to wait for carriage return on exit 
abort logical flag to stop execution at next chance 
 
INTER sum of intermolecular energy components 
 
einter total intermolecular potential energy 
 
IOUNIT Fortran input/output (I/O) unit numbers 
 
iout Fortran I/O unit for major output (default=6) 
input Fortran I/O unit for major input (default=5) 
 
KANANG forcefield parameters for angle-angle terms 
 
anan angle-angle cross term parameters for each atom class 
 
KANGS forcefield parameters for bond angle bending 
 
maxna maximum number of harmonic angle bend parameter entries 
maxna5 maximum number of 5-membered ring angle bend entries 
maxna4 maximum number of 4-membered ring angle bend entries 
maxna3 maximum number of 3-membered ring angle bend entries 
maxnaf maximum number of Fourier angle bend parameter entries 
acon force constant parameters for harmonic angle bends 
acon5 force constant parameters for 5-ring angle bends 
acon4 force constant parameters for 4-ring angle bends 
acon3 force constant parameters for 3-ring angle bends 
aconf force constant parameters for Fourier angle bends 
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ang bond angle parameters for harmonic angle bends 
ang5 bond angle parameters for 5-ring angle bends 
ang4 bond angle parameters for 4-ring angle bends 
ang3 bond angle parameters for 3-ring angle bends 
angf phase shift angle and periodicity for Fourier bends 
ka string of atom classes for harmonic angle bends 
ka5 string of atom classes for 5-ring angle bends 
ka4 string of atom classes for 4-ring angle bends 
ka3 string of atom classes for 3-ring angle bends 
kaf string of atom classes for Fourier angle bends 
 
KATOMS forcefield parameters for the atom types 
 
weight average atomic mass of each atom type 
atmcls atom class number for each of the atom types 
atmnum atomic number for each of the atom types 
ligand number of atoms to be attached to each atom type 
symbol modified atomic symbol for each atom type 
describe string identifing each of the atom types 
 
KBONDS forcefield parameters for bond stretching 
 
maxnb maximum number of bond stretch parameter entries 
maxnb5 maximum number of 5-membered ring bond stretch entries 
maxnb4 maximum number of 4-membered ring bond stretch entries 
maxnb3 maximum number of 3-membered ring bond stretch entries 
maxnel maximum number of electronegativity bond corrections 
bcon force constant parameters for harmonic bond stretch 
bcon5 force constant parameters for 5-ring bond stretch 
bcon4 force constant parameters for 4-ring bond stretch 
bcon3 force constant parameters for 3-ring bond stretch 
blen bond length parameters for harmonic bond stretch 
blen5 bond length parameters for 5-ring bond stretch 
blen4 bond length parameters for 4-ring bond stretch 
blen3 bond length parameters for 3-ring bond stretch 
dlen electronegativity bond length correction parameters 
kb string of atom classes for harmonic bond stretch 
kb5 string of atom classes for 5-ring bond stretch 
kb4 string of atom classes for 4-ring bond stretch 
kb3 string of atom classes for 3-ring bond stretch 
kel string of atom classes for electronegativity corrections 
 
KCHRGE forcefield parameters for partial charges 
 
chg partial charge parameters for each atom type 
 
KDIPOL forcefield parameters for bond dipoles 
 
maxnd maximum number of bond dipole parameter entries 
maxnd5 maximum number of 5-membered ring dipole entries 
maxnd4 maximum number of 4-membered ring dipole entries 
maxnd3 maximum number of 3-membered ring dipole entries 
dpl dipole moment parameters for bond dipoles 
dpl5 dipole moment parameters for 5-ring dipoles 
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dpl4 dipole moment parameters for 4-ring dipoles 
dpl3 dipole moment parameters for 3-ring dipoles 
pos dipole position parameters for bond dipoles 
pos5 dipole position parameters for 5-ring dipoles 
pos4 dipole position parameters for 4-ring dipoles 
pos3 dipole position parameters for 3-ring dipoles 
kd string of atom classes for bond dipoles 
kd5 string of atom classes for 5-ring dipoles 
kd4 string of atom classes for 4-ring dipoles 
kd3 string of atom classes for 3-ring dipoles 
 
KEYS contents of current keyword parameter file 
 
nkey number of nonblank lines in the keyword file 
keyline contents of each individual keyword file line 
 
KGEOMS parameters for the geometrical restraints 
 
xpfix x-coordinate target for each restrained position 
ypfix y-coordinate target for each restrained position 
zpfix z-coordinate target for each restrained position 
pfix force constant and flat-well range for each position 
dfix force constant and target range for each distance 
afix force constant and target range for each angle 
tfix force constant and target range for each torsion 
gfix force constant and target range for each group distance 
chir force constant and target range for chiral centers 
depth depth of shallow Gaussian basin restraint 
width exponential width coefficient of Gaussian basin 
rwall radius of spherical droplet boundary restraint 
npfix number of position restraints to be applied 
ipfix atom number involved in each position restraint 
kpfix flags to use x-, y-, z-coordinate position restraints 
ndfix number of distance restraints to be applied 
idfix atom numbers defining each distance restraint 
nafix number of angle restraints to be applied 
iafix atom numbers defining each angle restraint 
ntfix number of torsional restraints to be applied 
itfix atom numbers defining each torsional restraint 
ngfix number of group distance restraints to be applied 
igfix group numbers defining each group distance restraint 
nchir number of chirality restraints to be applied 
ichir atom numbers defining each chirality restraint 
use_basin logical flag governing use of Gaussian basin 
use_wall logical flag governing use of droplet boundary 
 
KHBOND forcefield parameters for H-bonding terms 
 
maxnhb maximum number of hydrogen bonding pair entries 
radhb radius parameter for hydrogen bonding pairs 
epshb well depth parameter for hydrogen bonding pairs 
khb string of atom types for hydrogen bonding pairs 
 
KIPROP forcefield parameters for improper dihedral 
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maxndi maximum number of improper dihedral parameter entries 
dcon force constant parameters for improper dihedrals 
tdi ideal dihedral angle values for improper dihedrals 
kdi string of atom classes for improper dihedral angles 
 
KITORS forcefield parameters for improper torsions 
 
maxnti maximum number of improper torsion parameter entries 
ti1 torsional parameters for improper 1-fold rotation 
ti2 torsional parameters for improper 2-fold rotation 
ti3 torsional parameters for improper 3-fold rotation 
kti string of atom classes for improper torsional parameters 
 
KMULTI forcefield parameters for atomic multipoles 
 
maxnmp maximum number of atomic multipole parameter entries 
multip atomic monopole, dipole and quadrupole values 
mpaxis type of local axis definition for atomic multipoles 
kmp string of atom types for atomic multipoles 
 
KOPBND forcefield parameters for out-of-plane bend 
 
maxnopb maximum number of out-of-plane bending entries 
copb force constant parameters for out-of-plane bending 
kaopb string of atom classes for out-of-plane bending 
 
KOPDST forcefield parameters for out-plane distance 
 
maxnopb maximum number of out-of-plane distance entries 
copb force constant parameters for out-of-plane distance 
kaopb string of atom classes for out-of-plane distance 
 
KORBS forcefield parameters for pisystem orbitals 
 
maxnpi maximum number of pisystem bond parameter entries 
electron number of pi-electrons for each atom class 
ionize ionization potential for each atom class 
repulse repulsion integral value for each atom class 
sslope slope for bond stretch vs. pi-bond order 
tslope slope for 2-fold torsion vs. pi-bond order 
kpi string of atom classes for pisystem bonds 
 
KPOLR forcefield parameters for polarizability 
 
polr dipole polarizability parameters for each atom type 
pgrp connected types in polarization group of each atom type 
 
KSTBND forcefield parameters for stretch-bending 
 
stbn stretch-bending parameters for each atom class 
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KSTTOR forcefield parameters for stretch-torsions 
 
maxnbt maximum number of stretch-torsion parameter entries 
btcon force constant parameters for stretch-torsion 
kbt string of atom classes for bonds in stretch-torsion 
 
KTORSN forcefield parameters for torsional angles 
 
maxnt maximum number of torsional angle parameter entries 
maxnt5 maximum number of 5-membered ring torsion entries 
maxnt4 maximum number of 4-membered ring torsion entries 
t1 torsional parameters for standard 1-fold rotation 
t2 torsional parameters for standard 2-fold rotation 
t3 torsional parameters for standard 3-fold rotation 
t4 torsional parameters for standard 4-fold rotation 
t5 torsional parameters for standard 5-fold rotation 
t6 torsional parameters for standard 6-fold rotation 
t15 torsional parameters for 1-fold rotation in 5-ring 
t25 torsional parameters for 2-fold rotation in 5-ring 
t35 torsional parameters for 3-fold rotation in 5-ring 
t45 torsional parameters for 4-fold rotation in 5-ring 
t55 torsional parameters for 5-fold rotation in 5-ring 
t65 torsional parameters for 6-fold rotation in 5-ring 
t14 torsional parameters for 1-fold rotation in 4-ring 
t24 torsional parameters for 2-fold rotation in 4-ring 
t34 torsional parameters for 3-fold rotation in 4-ring 
t44 torsional parameters for 4-fold rotation in 4-ring 
t54 torsional parameters for 5-fold rotation in 4-ring 
t64 torsional parameters for 6-fold rotation in 4-ring 
kt string of atom classes for torsional angles 
kt5 string of atom classes for 5-ring torsions 
kt4 string of atom classes for 4-ring torsions 
 
KTRTOR forcefield parameters for torsion-torsions 
 
maxntt maximum number of torsion-torsion parameter entries 
maxtgrd maximum dimension of torsion-torsion spline grid 
maxtgrd2 maximum number of torsion-torsion spline grid points 
ttx angle values for first torsion of spline grid 
tty angle values for second torsion of spline grid 
tbf function values at points on spline grid 
tbx gradient over first torsion of spline grid 
tby gradient over second torsion of spline grid 
tbxy Hessian cross components over spline grid 
tnx number of columns in torsion-torsion spline grid 
tny number of rows in torsion-torsion spline grid 
ktt string of torsion-torsion atom classes 
 
KURYBR forcefield parameters for Urey-Bradley terms 
 
maxnu maximum number of Urey-Bradley parameter entries 
ucon force constant parameters for Urey-Bradley terms 
dst13 ideal 1-3 distance parameters for Urey-Bradley terms 
ku string of atom classes for Urey-Bradley terms 
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KVDWPR forcefield parameters for special vdw terms 
 
maxnvp maximum number of special van der Waals pair entries 
radpr radius parameter for special van der Waals pairs 
epspr well depth parameter for special van der Waals pairs 
kvpr string of atom classes for special van der Waals pairs 
 
KVDWS forcefield parameters for van der Waals terms 
 
rad van der Waals radius parameter for each atom class 
eps van der Waals well depth parameter for each atom class 
rad4 van der Waals radius parameter in 1-4 interactions 
eps4 van der Waals well depth parameter in 1-4 interactions 
reduct van der Waals reduction factor for each atom class 
 
LIGHT indices for method of lights pair neighbors 
 
nlight total number of sites for method of lights calculation 
kbx low index of neighbors of each site in the x-sorted list 
kby low index of neighbors of each site in the y-sorted list 
kbz low index of neighbors of each site in the z-sorted list 
kex high index of neighbors of each site in the x-sorted list 
key high index of neighbors of each site in the y-sorted list 
kez high index of neighbors of each site in the z-sorted list 
locx pointer from x-sorted list into original interaction list 
locy pointer from y-sorted list into original interaction list 
locz pointer from z-sorted list into original interaction list 
rgx pointer from original interaction list into x-sorted list 
rgy pointer from original interaction list into y-sorted list 
rgz pointer from original interaction list into z-sorted list 
 
LINMIN parameters for line search minimization 
 
stpmin minimum step length in current line search direction 
stpmax maximum step length in current line search direction 
cappa stringency of line search (0=tight < cappa < 1=loose) 
slpmax projected gradient above which stepsize is reduced 
angmax maximum angle between search direction and -gradient 
intmax maximum number of interpolations during line search 
 
MATH mathematical and geometrical constants 
 
radian conversion factor from radians to degrees 
pi numerical value of the geometric constant 
sqrtpi numerical value of the square root of Pi 
logten numerical value of the natural log of ten 
twosix numerical value of the sixth root of two 
 
MDSTUF control of molecular dynamics trajectory 
 
nfree total number of degrees of freedom for a system 
velsave flag to save atomic velocity components to a file 
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uindsave flag to save induced atomic dipoles to a file 
integrate type of molecular dynamics integration algorithm 
 
MINIMA general parameters for minimizations 
 
fctmin value below which function is deemed optimized 
hguess initial value for the H-matrix diagonal elements 
maxiter maximum number of iterations during optimization 
nextiter iteration number to use for the first iteration 
 
MOLCUL individual molecules within current system 
 
molmass molecular weight for each molecule in the system 
totmass total weight of all the molecules in the system 
nmol total number of separate molecules in the system 
kmol contiguous list of the atoms in each molecule 
imol first and last atom of each molecule in the list 
molcule number of the molecule to which each atom belongs 
 
MOLDYN velocity and acceleration on MD trajectory 
 
v current velocity of each atom along the x,y,z-axes 
a current acceleration of each atom along x,y,z-axes 
aold previous acceleration of each atom along x,y,z-axes 
 
MOMENT components of electric multipole moments 
 
netchg net electric charge for the total system 
netdpl dipole moment magnitude for the total system 
netqdp diagonal quadrupole (Qxx, Qyy, Qzz) for system 
xdpl dipole vector x-component in the global frame 
ydpl dipole vector y-component in the global frame 
zdpl dipole vector z-component in the global frame 
xxqdp quadrupole tensor xx-component in global frame 
xyqdp quadrupole tensor xy-component in global frame 
xzqdp quadrupole tensor xz-component in global frame 
yxqdp quadrupole tensor yx-component in global frame 
yyqdp quadrupole tensor yy-component in global frame 
yzqdp quadrupole tensor yz-component in global frame 
zxqdp quadrupole tensor zx-component in global frame 
zyqdp quadrupole tensor zy-component in global frame 
zzqdp quadrupole tensor zz-component in global frame 
 
MPLPOT specifics of atomic multipole functions 
 
m2scale factor by which 1-2 multipole interactions are scaled 
m3scale factor by which 1-3 multipole interactions are scaled 
m4scale factor by which 1-4 multipole interactions are scaled 
m5scale factor by which 1-5 multipole interactions are scaled 
 
MPOLE multipole components for current structure 
 
maxpole max components (monopole=1,dipole=4,quadrupole=13) 
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pole multipole values for each site in the local frame 
rpole multipoles rotated to the global coordinate system 
npole total number of multipole sites in the system 
ipole number of the atom for each multipole site 
polsiz number of mutipole components at each multipole site 
zaxis number of the z-axis defining atom for each site 
xaxis number of the x-axis defining atom for each site 
yaxis number of the y-axis defining atom for each site 
polaxe local axis type for each multipole site 
 
MUTANT hybrid atoms for free energy perturbation 
 
lambda weighting of initial state in hybrid Hamiltonian 
nhybrid number of atoms mutated from initial to final state 
ihybrid atomic sites differing in initial and final state 
type0 atom type of each atom in the initial state system 
class0 atom class of each atom in the initial state system 
type1 atom type of each atom in the final state system 
class1 atom class of each atom in the final state system 
alter true if an atom is to be mutated, false otherwise 
 
NUCLEO parameters for nucleic acid structure 
 
bkbone phosphate backbone angles for each nucleotide 
glyco glycosidic torsional angle for each nucleotide 
pucker sugar pucker, either 2=2'-endo or 3=3'-endo 
dblhlx flag to mark system as nucleic acid double helix 
deoxy flag to mark deoxyribose or ribose sugar units 
hlxform helix form (A, B or Z) of polynucleotide strands 
 
OMEGA dihedrals for torsional space computations 
 
dihed current value in radians of each dihedral angle 
nomega number of dihedral angles allowed to rotate 
iomega numbers of two atoms defining rotation axis 
zline line number in Z-matrix of each dihedral angle 
 
OPBEND out-of-plane bends in the current structure 
 
kopb force constant values for out-of-plane bending 
nopbend total number of out-of-plane bends in the system 
iopb bond angle numbers used in out-of-plane bending 
 
OPDIST out-of-plane distances in current structure 
 
kopd force constant values for out-of-plane distance 
nopdist total number of out-of-plane distances in the system 
iopb numbers of the atoms in each out-of-plane distance 
 
ORBITS orbital energies for conjugated pisystem 
 
q number of pi-electrons contributed by each atom 
w ionization potential of each pisystem atom 
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em repulsion integral for each pisystem atom 
nfill number of filled pisystem molecular orbitals 
 
OUTPUT control of coordinate output file format 
 
archive logical flag to save structures in an archive 
noversion logical flag governing use of filename versions 
overwrite logical flag to overwrite intermediate files inplace 
cyclesave logical flag to mark use of numbered cycle files 
coordtype selects Cartesian, internal, rigid body or none 
 
PARAMS contents of force field parameter file 
 
nprm number of nonblank lines in the parameter file 
prmline contents of each individual parameter file line 
 
PATHS parameters for Elber reaction path method 
 
p0 reactant Cartesian coordinates as variables 
p1 product Cartesian coordinates as variables 
pmid midpoint between the reactant and product 
pvect vector connecting the reactant and product 
pstep step per cycle along reactant-product vector 
pzet current projection on reactant-product vector 
pnorm length of the reactant-product vector 
acoeff transformation matrix 'A' from Elber paper 
gc gradients of the path constraints 
 
PDB definition of a Protein Data Bank structure 
 
xpdb x-coordinate of each atom stored in PDB format 
ypdb y-coordinate of each atom stored in PDB format 
zpdb z-coordinate of each atom stored in PDB format 
npdb number of atoms stored in Protein Data Bank format 
resnum number of the residue to which each atom belongs 
npdb12 number of atoms directly bonded to each CONECT atom 
ipdb12 atom numbers of atoms connected to each CONECT atom 
pdblist list of the Protein Data Bank atom number of each atom 
pdbtyp Protein Data Bank record type assigned to each atom 
atmnam Protein Data Bank atom name assigned to each atom 
resnam Protein Data Bank residue name assigned to each atom 
 
PHIPSI phi-psi-omega-chi angles for a protein 
 
phi value of the phi angle for each amino acid residue 
psi value of the psi angle for each amino acid residue 
omega value of the omega angle for each amino acid residue 
chi values of the chi angles for each amino acid residue 
chiral chirality of each amino acid residue (1=L, -1=D) 
disulf residue joined to each residue via a disulfide link 
 
PIORBS conjugated system in the current structure 
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norbit total number of pisystem orbitals in the system 
iorbit numbers of the atoms containing pisystem orbitals 
reorbit number of evaluations between orbital updates 
piperp atoms defining a normal plane to each orbital 
npibond total number of bonds affected by the pisystem 
pibond bond and piatom numbers for each pisystem bond 
npitors total number of torsions affected by the pisystem 
pitors torsion and pibond numbers for each pisystem torsion 
listpi atom list indicating whether each atom has an orbital 
 
PISTUF bonds and torsions in the current pisystem 
 
bkpi bond stretch force constants for pi-bond order of 1.0 
blpi ideal bond length values for a pi-bond order of 1.0 
kslope rate of force constant decrease with bond order decrease 
lslope rate of bond length increase with a bond order decrease 
torspi 2-fold torsional energy barrier for pi-bond order of 1.0 
 
PME parameters for particle mesh Ewald summation 
 
maxfft maximum number of points along each FFT direction 
maxorder maximum order of the B-spline approximation 
maxtable maximum size of the FFT table array 
maxgrid maximum dimension of the PME charge grid array 
bsmod1 B-spline moduli along the a-axis direction 
bsmod2 B-spline moduli along the b-axis direction 
bsmod3 B-spline moduli along the c-axis direction 
table intermediate array used by the FFT calculation 
nfft1 number of grid points along the a-axis direction 
nfft2 number of grid points along the b-axis direction 
nfft3 number of grid points along the c-axis direction 
bsorder order of the PME B-spline approximation 
 
POLAR polarizabilities and induced dipole moments 
 
polarity dipole polarizability for each multipole site (Ang**3) 
pdamp value of polarizability damping factor for each site 
uind induced dipole components at each multipole site 
uinp induced dipoles in field used for energy interactions 
npolar total number of polarizable sites in the system 
 
POLGRP polarizable site group connectivity lists 
 
maxp11 maximum number of atoms in a polarization group 
maxp12 maximum number of atoms in groups 1-2 to an atom 
maxp13 maximum number of atoms in groups 1-3 to an atom 
maxp14 maximum number of atoms in groups 1-4 to an atom 
np11 number of atoms in polarization group of each atom 
ip11 atom numbers of atoms in same group as each atom 
np12 number of atoms in groups 1-2 to each atom 
ip12 atom numbers of atoms in groups 1-2 to each atom 
np13 number of atoms in groups 1-3 to each atom 
ip13 atom numbers of atoms in groups 1-3 to each atom 
np14 number of atoms in groups 1-4 to each atom 
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ip14 atom numbers of atoms in groups 1-4 to each atom 
 
POLPOT specifics of polarization functional form 
 
poleps induced dipole convergence criterion (rms Debyes/atom) 
polsor induced dipole SOR convergence acceleration factor 
pgamma prefactor in exponential polarization damping term 
p2scale field 1-2 scale factor for energy evaluations 
p3scale field 1-3 scale factor for energy evaluations 
p4scale field 1-4 scale factor for energy evaluations 
p5scale field 1-5 scale factor for energy evaluations 
d1scale field intra-group scale factor for direct induced 
d2scale field 1-2 group scale factor for direct induced 
d3scale field 1-3 group scale factor for direct induced 
d4scale field 1-4 group scale factor for direct induced 
u1scale field intra-group scale factor for mutual induced 
u2scale field 1-2 group scale factor for mutual induced 
u3scale field 1-3 group scale factor for mutual induced 
u4scale field 1-4 group scale factor for mutual induced 
poltyp type of polarization potential (direct or mutual) 
 
POTENT usage of each potential energy component 
 
use_bond logical flag governing use of bond stretch potential 
use_angle logical flag governing use of angle bend potential 
use_strbnd logical flag governing use of stretch-bend potential 
use_urey logical flag governing use of Urey-Bradley potential 
use_angang logical flag governing use of angle-angle cross term 
use_opbend logical flag governing use of out-of-plane bend term 
use_opdist logical flag governing use of out-of-plane distance 
use_improp logical flag governing use of improper dihedral term 
use_imptor logical flag governing use of improper torsion term 
use_tors logical flag governing use of torsional potential 
use_strtor logical flag governing use of stretch-torsion term 
use_tortor logical flag governing use of torsion-torsion term 
use_vdw logical flag governing use of vdw der Waals potential 
use_charge logical flag governing use of charge-charge potential 
use_chgdpl logical flag governing use of charge-dipole potential 
use_dipole logical flag governing use of dipole-dipole potential 
use_mpole logical flag governing use of multipole potential 
use_polar logical flag governing use of polarization term 
use_rxnfld logical flag governing use of reaction field term 
use_solv logical flag governing use of surface area solvation 
use_gbsa logical flag governing use of GB/SA solvation term 
use_metal logical flag governing use of ligand field term 
use_geom logical flag governing use of geometric restraints 
use_extra logical flag governing use of extra potential term 
use_orbit logical flag governing use of pisystem computation 
 
PRECIS values of machine precision tolerances 
 
tiny the smallest positive floating point value 
small the smallest relative floating point spacing 
huge the largest relative floating point spacing 
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REFER storage of reference atomic coordinate set 
 
xref reference x-coordinate for each atom in the system 
yref reference y-coordinate for each atom in the system 
zref reference z-coordinate for each atom in the system 
nref total number of atoms in the reference system 
reftyp atom type for each atom in the reference system 
n12ref number of atoms bonded to each reference atom 
i12ref atom numbers of atoms 1-2 connected to each atom 
refleng length in characters of the reference filename 
refltitle length in characters of the reference title string 
refnam atom name for each atom in the reference system 
reffile base filename for the reference structure 
reftitle title used to describe the reference structure 
 
RESDUE standard biopolymer residue abbreviations 
 
amino three-letter abbreviations for amino acids types 
nuclz three-letter abbreviations for nucleic acids types 
amino1 one-letter abbreviations for amino acids types 
nuclz1 one-letter abbreviations for nucleic acids types 
 
RGDDYN velocities and momenta for rigid-body MD 
 
vcm current translational velocity of each rigid-body 
wcm current angular velocity of each rigid-body 
lm current angular momentum of each rigid-body 
linear logical flag to mark group as linear or nonlinear 
 
RIGID rigid body coordinates for atom groups 
 
xrb rigid body reference x-coordinate for each atom 
yrb rigid body reference y-coordinate for each atom 
zrb rigid body reference z-coordinate for each atom 
rbc current rigid body coordinates for each atom group 
 
RING number and location of small ring structures 
 
nring3 total number of 3-membered rings in the system 
iring3 numbers of the atoms involved in each 3-ring 
nring4 total number of 4-membered rings in the system 
iring4 numbers of the atoms involved in each 4-ring 
nring5 total number of 5-membered rings in the system 
iring5 numbers of the atoms involved in each 5-ring 
nring6 total number of 6-membered rings in the system 
iring6 numbers of the atoms involved in each 6-ring 
 
ROTATE molecule partitions for rotation of a bond 
 
nrot total number of atoms moving when bond rotates 
rot atom numbers of atoms moving when bond rotates 
use_short logical flag governing use of shortest atom list 
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RXNFLD reaction field matrix elements and indices 
 
b1 first reaction field matrix element array 
b2 second reaction field matrix element array 
ijk indices into the reaction field element arrays 
 
RXNPOT specifics of reaction field functional form 
 
rfsize radius of reaction field sphere centered at origin 
rfbulkd bulk dielectric constant of reaction field continuum 
rfterms number of terms to use in reaction field summation 
 
SCALES parameter scale factors for optimization 
 
scale multiplicative factor for each optimization parameter 
set_scale logical flag to show if scale factors have been set 
 
SEQUEN sequence information for a biopolymer 
 
nseq total number of residues in biopolymer sequences 
nchain number of separate biopolymer sequence chains 
ichain first and last residue in each biopolymer chain 
seqtyp residue type for each residue in the sequence 
seq three-letter code for each residue in the sequence 
chnnam one-letter identifier for each sequence chain 
 
SHAKE definition of Shake/Rattle constraints 
 
krat ideal distance value for rattle constraint 
nrat number of rattle constraints to be applied 
irat atom numbers of atoms in a rattle constraint 
ratimage flag to use minimum image for rattle constraint 
use_rattle logical flag to set use of rattle contraints 
 
SHUNT polynomial switching function coefficients 
 
off distance at which the potential energy goes to zero 
off2 square of distance at which the potential goes to zero 
cut distance at which switching of the potential begins 
cut2 square of distance at which the switching begins 
c0 zeroth order coefficient of multiplicative switch 
c1 first order coefficient of multiplicative switch 
c2 second order coefficient of multiplicative switch 
c3 third order coefficient of multiplicative switch 
c4 fourth order coefficient of multiplicative switch 
c5 fifth order coefficient of multiplicative switch 
f0 zeroth order coefficient of additive switch function 
f1 first order coefficient of additive switch function 
f2 second order coefficient of additive switch function 
f3 third order coefficient of additive switch function 
f4 fourth order coefficient of additive switch function 
f5 fifth order coefficient of additive switch function 
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f6 sixth order coefficient of additive switch function 
f7 seventh order coefficient of additive switch function 
 
SIZES parameter values to set array dimensions 
 
"sizes.i" sets values for critical array dimensions used throughout the software; these parameters will fix the 
size of the largest systems that can be handled; values too large for the computer's memory and/or 
swap space to accomodate will result in poor performance or outright failure 
 
parameter: maximum allowed number of: 
 
maxatm atoms in the molecular system 
maxval atoms directly bonded to an atom 
maxgrp user-defined groups of atoms 
maxtyp force field atom type definitions 
maxclass force field atom class definitions 
maxkey lines in the keyword file 
maxrot bonds for torsional rotation 
maxvar optimization variables (vector storage) 
maxopt optimization variables (matrix storage) 
maxhess off-diagonal Hessian elements 
maxlight sites for method of lights neighbors 
maxvib vibrational frequencies 
maxgeo distance geometry points 
maxcell unit cells in replicated crystal 
maxring 3-, 4-, or 5-membered rings 
maxfix geometric restraints 
maxbio biopolymer atom definitions 
maxres residues in the macromolecule 
maxamino amino acid residue types 
maxnuc nucleic acid residue types 
maxbnd covalent bonds in molecular system 
maxang bond angles in molecular system 
maxtors torsional angles in molecular system 
maxbitor bitorsions in molecular system 
maxpi atoms in conjugated pisystem 
maxpib covalent bonds involving pisystem 
maxpit torsional angles involving pisystem 
 
SOCKET control parameters for socket communication 
 
sktpid process ID number of the Spm socket daemon 
use_socket logical flag governing use of external sockets 
 
SOLUTE parameters for continuum solvation models 
 
rsolv atomic radius of each atom for continuum solvation 
vsolv atomic volume of each atom for continuum solvation 
asolv atomic solvation parameters (kcal/mole/Ang**2) 
rborn Born radius of each atom for GB/SA solvation 
drb solvation derivatives with respect to Born radii 
doffset dielectric offset to continuum solvation atomic radii 
p1 single-atom scale factor for analytical Still GB/SA 
p2 1-2 interaction scale factor for analytical Still GB/SA 
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p3 1-3 interaction scale factor for analytical Still GB/SA 
p4 nonbonded scale factor for analytical Still GB/SA 
p5 soft cutoff parameter for analytical Still GB/SA 
gpol polarization self-energy values for each atom 
shct overlap scaling factors for Hawkins-Cramer-Truhlar GB/SA 
wace "omega" values for atom class pairs for use with ACE 
s2ace "sigma^2" values for atom class pairs for use with ACE 
uace "mu" values for atom class pairs for use with ACE 
solvtyp solvation model (ASP, SASA, ONION, STILL, HCT, ACE) 
 
STODYN frictional coefficients for SD trajectory 
 
friction global frictional coefficient for exposed particle 
gamma atomic frictional coefficients for each atom 
use_sdarea logical flag to use surface area friction scaling 
 
STRBND stretch-bends in the current structure 
 
ksb force constant for stretch-bend terms 
nstrbnd total number of stretch-bend interactions 
isb angle and bond numbers used in stretch-bend 
 
STRTOR stretch-torsions in the current structure 
 
kst 1-, 2- and 3-fold stretch-torsion force constants 
nstrtor total number of stretch-torsion interactions 
ist torsion and bond numbers used in stretch-torsion 
 
SYNTRN definition of synchronous transit path 
 
t value of the path coordinate (0=reactant, 1=product) 
pm path coordinate for extra point in quadratic transit 
xmin1 reactant coordinates as array of optimization variables 
xmin2 product coordinates as array of optimization variables 
xm extra coordinate set for quadratic synchronous transit 
 
TITLES title for the current molecular system 
 
ltitle length in characters of the nonblank title string 
title title used to describe the current structure 
 
TORPOT specifics of torsional functional forms 
 
idihunit convert improper dihedral energy to kcal/mole 
itorunit convert improper torsion amplitudes to kcal/mole 
torsunit convert torsional parameter amplitudes to kcal/mole 
storunit convert stretch-torsion energy to kcal/mole 
ttorunit convert torsion-torsion energy to kcal/mole 
 
TORS torsional angles within the current structure 
 
tors1 1-fold amplitude and phase for each torsional angle 
tors2 2-fold amplitude and phase for each torsional angle 
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tors3 3-fold amplitude and phase for each torsional angle 
tors4 4-fold amplitude and phase for each torsional angle 
tors5 5-fold amplitude and phase for each torsional angle 
tors6 6-fold amplitude and phase for each torsional angle 
ntors total number of torsional angles in the system 
itors numbers of the atoms in each torsional angle 
 
TORTOR torsion-torsions in the current structure 
 
ntortor total number of torsion-torsion interactions 
itt atoms and parameter indices for torsion-torsion 
 
TREE potential smoothing & search tree levels 
 
maxpss maximum number of potential smoothing levels 
etree energy reference value at the top of the tree 
ilevel smoothing deformation value at each tree level 
nlevel number of levels of potential smoothing used 
 
UNITS physical constants and unit conversions 
 
avogadro Avogadro's number (N) in particles/mole 
boltzmann Boltzmann constant (kB) in g*Ang**2/ps**2/K/mole 
gasconst ideal gas constant (R) in kcal/mole/K 
lightspd speed of light in vacuum (c) in cm/ps 
bohr conversion from Bohrs to Angstroms 
joule conversion from calories to joules 
evolt conversion from Hartree to electron-volts 
hartree conversion from Hartree to kcal/mole 
electric conversion from electron**2/Ang to kcal/mole 
debye conversion from electron-Ang to Debyes 
prescon conversion from kcal/mole/Ang**3 to Atm 
convert conversion from kcal to g*Ang**2/ps**2 
 
UREY Urey-Bradley interactions in the structure 
 
uk Urey-Bradley force constants (kcal/mole/Ang**2) 
ul ideal 1-3 distance values in Angstroms 
nurey total number of Urey-Bradley terms in the system 
iury numbers of the atoms in each Urey-Bradley interaction 
 
URYPOT specifics of Urey-Bradley functional form 
 
cury cubic coefficient in Urey-Bradley potential 
qury quartic coefficient in Urey-Bradley potential 
ureyunit convert Urey-Bradley energy to kcal/mole 
 
USAGE atoms active during energy computation 
 
nuse number of active atoms used in energy calculation 
use true if an atom is active, false if inactive 
 
VDW van der Waals parameters for current structure 



 150 TINKER User's Guide 150

 
radmin minimum energy distance for each atom class pair 
epsilon well depth parameter for each atom class pair 
radmin4 minimum energy distance for 1-4 interaction pairs 
epsilon4 well depth parameter for 1-4 interaction pairs 
radhbnd minimum energy distance for hydrogen bonding pairs 
epshbnd well depth parameter for hydrogen bonding pairs 
kred value of reduction factor parameter for each atom 
ired attached atom from which reduction factor is applied 
nvdw total number van der Waals active sites in the system 
ivdw number of the atom for each van der Waals active site 
 
VDWPOT specifics of van der Waals functional form 
 
abuck value of "A" constant in Buckingham vdw potential 
bbuck value of "B" constant in Buckingham vdw potential 
cbuck value of "C" constant in Buckingham vdw potential 
ghal value of "gamma" in buffered 14-7 vdw potential 
dhal value of "delta" in buffered 14-7 vdw potential 
v2scale factor by which 1-2 vdw interactions are scaled 
v3scale factor by which 1-3 vdw interactions are scaled 
v4scale factor by which 1-4 vdw interactions are scaled 
v5scale factor by which 1-5 vdw interactions are scaled 
igauss coefficients of Gaussian fit to vdw potential 
ngauss number of Gaussians used in fit to vdw potential 
vdwtyp type of van der Waals potential energy function 
radtyp type of parameter (sigma or R-min) for atomic size 
radsiz atomic size provided as radius or diameter 
radrule combining rule for atomic size parameters 
epsrule combining rule for vdw well depth parameters 
gausstyp type of Gaussian fit to van der Waals potential 
 
VIRIAL components of internal virial tensor 
 
vir total internal virial Cartesian tensor components 
 
WARP parameters for potential surface smoothing 
 
m2 second moment of the GDA gaussian for each atom 
deform value of the smoothing deformation parameter 
difft diffusion coefficient for torsional potential 
diffv diffusion coefficient for van der Waals potential 
diffc diffusion coefficient for charge-charge potential 
use_smooth flag to use a potential energy smoothing method 
use_dem flag to use diffusion equation method potential 
use_gda flag to use gaussian density annealing potential 
use_tophat flag to use analytical tophat smoothed potential 
use_stophat flag to use shifted tophat smoothed potential 
 
XTALS crystal structures for parameter fitting 
 
e0_lattice ideal lattice energy for the current crystal 
moment_0 ideal dipole moment for monomer from crystal 
nxtal number of crystal structures to be stored 
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nvary number of potential parameters to optimize 
ivary index for the types of potential parameters 
vary atom numbers involved in potential parameters 
iresid crystal structure to which each residual refers 
rsdtyp experimental variable for each of the residuals 
vartyp type of potential parameter to be optimized 
 
ZCLOSE ring openings and closures for Z-matrix 
 
nadd number of added bonds between Z-matrix atoms 
iadd numbers of the atom pairs defining added bonds 
ndel number of bonds between Z-matrix bonds to delete 
idel numbers of the atom pairs defining deleted bonds 
 
ZCOORD Z-matrix internal coordinate definitions 
 
zbond bond length used to define each Z-matrix atom 
zang bond angle used to define each Z-matrix atom 
ztors angle or torsion used to define Z-matrix atom 
iz defining atom numbers for each Z-matrix atom 
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11. Index of Function & Subroutine Calls 
 
 This section contains an alphabetical cross index listing of the routines called by each TINKER 
program, subroutine and function. Routines not present in the left hand column do not make calls to any 
other portion of the TINKER package. 
 
Routine List of Source Code Units called by this Routine 
 
ACTIVE GETTEXT UPCASE 
 
ADDBASE ADDBOND FINDATM JACOBI NEWATM OLDATM 
 OVERLAP PIALTER PIMOVE PITILT 
 
ADDSIDE ADDBASE ADDBOND FATAL FINDATM FREEUNIT 
 JACOBI NEWATM OLDATM OVERLAP PIALTER 
 PIMOVE PITILT PRTSEQ VERSION 
 
AGDA DIFFEQ FREEUNIT GDASTAT GETXYZ INITIAL 
 MECHANIC NEXTARG NUMERAL PRTXYZ RANDOM 
 TNCG UPCASE VERSION 
 
ALCHEMY ENERGY FINAL FREEUNIT GETTEXT GETXYZ 
 HATOM HYBRID INITIAL MECHANIC NUMERAL 
 READXYZ UPCASE VERSION 
 
ANALYSIS BOUNDS EANGANG3 EANGLE3 EBOND3 EBUCK3 
 ECHARGE3 ECHGDPL3 EDIPOLE3 EGAUSS3 EGEOM3 
 EHAL3 EIMPROP3 EIMPTOR3 ELJ3 EMETAL3 
 EMM3HB3 EMPOLE3 EOPBEND3 EOPDIST3 ERXNFLD3 
 ESOLV3 ESTRBND3 ESTRTOR3 ETORS3 ETORTOR3 
 EUREY3 EXTRA3 PISCF REPLICA 
 
ANALYZE ANALYZ4 ANALYZ6 ANALYZ8 ATOMYZE ENRGYZE 
 FINAL FREEUNIT GETXYZ INITIAL MECHANIC 
 NEXTARG PARAMYZE PROPYZE READXYZ SUFFIX 
 TRIMTEXT UPCASE VERSION 
 
ANGLES FATAL 
 
ANNEAL BEEMAN FINAL GETTEXT GETXYZ INITIAL 
 MDINIT MDREST MECHANIC NEXTARG RGDSTEP 
 SDSTEP SHAKEUP SIGMOID SKTSEND UPCASE 
 VERLET 
 
ARCHIVE ACTIVE BASEFILE FINAL FREEUNIT GETTEXT 
 INITIAL NEXTARG NUMERAL PRTARC PRTCAR 
 PRTXMOL PRTXYZ READXYZ SUFFIX TRIMTEXT 
 UPCASE VERSION 
 
ATTACH FATAL SORT 
 
BASEFILE CONTROL GETKEY TRIMTEXT 
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BCUINT BCUCOF 
 
BCUINT1 BCUCOF 
 
BCUINT2 BCUCOF 
 
BEEMAN GRADIENT KINETIC MDSAVE MDSTAT PRESSURE 
 RATTLE RATTLE2 TEMPER 
 
BETAI BETACF GAMMLN 
 
BIGBLOCK CELLATOM 
 
BITORS FATAL 
 
BONDS FATAL 
 
BORN SURFATOM 
 
BSET BMAX 
 
BSSTEP FATAL MMID PZEXTR 
 
CALENDAR IDATE ITIME 
 
CERROR FATAL TRIMTEXT 
 
CFFTB CFFTB1 
 
CFFTB1 PASSB PASSB2 PASSB3 PASSB4 PASSB5 
 
CFFTF CFFTF1 
 
CFFTF1 PASSF PASSF2 PASSF3 PASSF4 PASSF5 
 
CFFTI CFFTI1 
 
CHKTREE LOCALXYZ 
 
CIRPLN ANORM DOT VCROSS VNORM 
 
CLIMBER ENERGY GETREF LOCALMIN MAKEINT MAKEXYZ 
 
CLIMBRGD ENERGY LOCALRGD RIGIDXYZ 
 
CLIMBROT ENERGY LOCALROT MAKEXYZ 
 
CLIMBTOR CHKTREE ENERGY GETREF LOCALXYZ MAKEINT 
 MAKEXYZ 
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CLIMBXYZ CHKTREE ENERGY GETREF LOCALXYZ 
 
CLUSTER CUTOFFS FATAL GETNUMB GETTEXT SORT 
 SORT3 UPCASE 
 
COMMAND GETARG UPCASE 
 
COMPRESS CERROR GETTOR 
 
CONNECT SORT 
 
CONNOLLY COMPRESS CONTACT NEIGHBOR PLACE SADDLES 
 TORUS VAM 
 
CONTACT ANORM CERROR PTINCY 
 
CONTROL GETTEXT UPCASE 
 
COORDS GYRATE RMSERROR 
 
CORRELATE FINAL INITIAL NEXTARG PROPERTY READBLK 
 TRIMTEXT 
 
CRYSTAL BIGBLOCK BOUNDS FIELD FINAL FREEUNIT 
 GETTEXT GETXYZ INITIAL KATOM LATTICE 
 MOLECULE NEXTARG PRTXYZ SYMMETRY UNITCELL 
 UPCASE VERSION 
 
CUTOFFS GETTEXT UPCASE 
 
CYTSY CYTSYP CYTSYS 
 
DEPTH DOT VCROSS VNORM 
 
DIAGQ GETIME SETIME 
 
DIFFEQ BSSTEP DERIVS GDASTAT 
 
DIFFUSE BASEFILE FATAL FIELD FINAL FREEUNIT 
 GETWORD INITIAL KATOM MOLECULE NEXTARG 
 READXYZ SUFFIX UNITCELL VERSION 
 
DISTGEOM ACTIVE ANGLES ATTACH BONDS EMBED 
 FATAL FINAL FREEUNIT GEODESIC GETIME 
 GETTEXT GETXYZ GRAFIC IMPOSE INITIAL 
 KCHIRAL KGEOM MAKEREF NEXTARG NUMERAL 
 PRTXYZ SETIME TORSIONS TRIFIX UPCASE 
 VERSION 
 
DMDUMP GRAFIC 
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DOCUMENT FINAL FREEUNIT GETPRM GETTEXT GETWORD 
 INITIAL LOWCASE NEXTARG NEXTTEXT PRTPRM 
 SORT6 SORT7 SORT9 SUFFIX TRIMTEXT 
 UPCASE VERSION 
 
DSTMAT GETIME GETNUMB GETTEXT INVBETA LOWCASE 
 RANDOM SETIME SORT2 TRIFIX UPCASE 
 
DYNAMIC BEEMAN FINAL GETXYZ INITIAL MDINIT 
 MDREST MECHANIC NEXTARG RGDSTEP SDSTEP 
 SHAKEUP SKTSEND VERLET 
 
EANGANG GROUPS IMAGE 
 
EANGANG1 GROUPS IMAGE 
 
EANGANG2 EANGANG2A GROUPS 
 
EANGANG2A IMAGE 
 
EANGANG3 GROUPS IMAGE 
 
EANGLE GROUPS IMAGE 
 
EANGLE1 GROUPS IMAGE 
 
EANGLE2 EANGLE2A EANGLE2B GROUPS 
 
EANGLE2A GROUPS IMAGE 
 
EANGLE2B IMAGE 
 
EANGLE3 GROUPS IMAGE 
 
EBOND GROUPS IMAGE 
 
EBOND1 GROUPS IMAGE 
 
EBOND2 GROUPS IMAGE 
 
EBOND3 GROUPS IMAGE 
 
EBUCK EBUCK0A EBUCK0B EBUCK0C FATAL 
 
EBUCK0A GROUPS IMAGE SWITCH 
 
EBUCK0B GROUPS LIGHTS SWITCH 
 
EBUCK0C EGAUSS 
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EBUCK1 EBUCK1A EBUCK1B EBUCK1C FATAL 
 
EBUCK1A GROUPS IMAGE SWITCH 
 
EBUCK1B GROUPS LIGHTS SWITCH 
 
EBUCK1C EGAUSS1 
 
EBUCK2 EBUCK2A EBUCK2B FATAL 
 
EBUCK2A GROUPS IMAGE SWITCH 
 
EBUCK2B EGAUSS2 
 
EBUCK3 EBUCK3A EBUCK3B EBUCK3C FATAL 
 
EBUCK3A GROUPS IMAGE SWITCH 
 
EBUCK3B GROUPS LIGHTS SWITCH 
 
EBUCK3C EGAUSS3 
 
ECHARGE ECHARGE0A ECHARGE0B ECHARGE0C ECHARGE0D 
 ECHARGE0E 
 
ECHARGE0A GROUPS IMAGE SWITCH 
 
ECHARGE0B GROUPS LIGHTS SWITCH 
 
ECHARGE0C ERF GROUPS 
 
ECHARGE0D EPME ERFC GROUPS IMAGE SWITCH 
 
ECHARGE0E EPME ERFC GROUPS LIGHTS SWITCH 
 
ECHARGE1 ECHARGE1A ECHARGE1B ECHARGE1C ECHARGE1D 
 
ECHARGE1A GROUPS IMAGE SWITCH 
 
ECHARGE1B GROUPS LIGHTS SWITCH 
 
ECHARGE1C ERF GROUPS 
 
ECHARGE1D EPME1 ERFC GROUPS IMAGE SWITCH 
 
ECHARGE2 ECHARGE2A ECHARGE2B ECHARGE2C 
 
ECHARGE2A GROUPS IMAGE SWITCH 
 
ECHARGE2B ERF GROUPS 
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ECHARGE2C ERFC GROUPS IMAGE 
 
ECHARGE3 ECHARGE3A ECHARGE3B ECHARGE3C ECHARGE3D 
 ECHARGE3E 
 
ECHARGE3A GROUPS IMAGE SWITCH 
 
ECHARGE3B GROUPS LIGHTS SWITCH 
 
ECHARGE3C ERF GROUPS 
 
ECHARGE3D EPME3 ERFC GROUPS IMAGE SWITCH 
 
ECHARGE3E EPME3 ERFC GROUPS LIGHTS SWITCH 
 
ECHGDPL GROUPS IMAGE SWITCH 
 
ECHGDPL1 GROUPS IMAGE SWITCH 
 
ECHGDPL2 GROUPS IMAGE SWITCH 
 
ECHGDPL3 GROUPS IMAGE SWITCH 
 
EDIPOLE GROUPS IMAGE SWITCH 
 
EDIPOLE1 GROUPS IMAGE SWITCH 
 
EDIPOLE2 GROUPS IMAGE SWITCH 
 
EDIPOLE3 GROUPS IMAGE SWITCH 
 
EGAUSS EGAUSS0A EGAUSS0B 
 
EGAUSS0A GROUPS SWITCH 
 
EGAUSS0B ERF GROUPS 
 
EGAUSS1 EGAUSS1A EGAUSS1B 
 
EGAUSS1A GROUPS SWITCH 
 
EGAUSS1B ERF GROUPS 
 
EGAUSS2 EGAUSS2A EGAUSS2B 
 
EGAUSS2A GROUPS SWITCH 
 
EGAUSS2B GROUPS 
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EGAUSS3 EGAUSS3A EGAUSS3B 
 
EGAUSS3A GROUPS SWITCH 
 
EGAUSS3B ERF GROUPS 
 
EGBSA0A GROUPS SWITCH 
 
EGBSA0B ERF GROUPS 
 
EGBSA1A GROUPS SWITCH 
 
EGBSA1B ERF GROUPS 
 
EGBSA2A SWITCH 
 
EGBSA2B ERF 
 
EGBSA3A GROUPS SWITCH 
 
EGBSA3B ERF GROUPS 
 
EGEOM GROUPS IMAGE 
 
EGEOM1 GROUPS IMAGE 
 
EGEOM2 GROUPS IMAGE 
 
EGEOM3 GROUPS IMAGE 
 
EHAL EHAL0A EHAL0B 
 
EHAL0A GROUPS IMAGE SWITCH 
 
EHAL0B GROUPS LIGHTS SWITCH 
 
EHAL1 EHAL1A EHAL1B 
 
EHAL1A GROUPS IMAGE SWITCH 
 
EHAL1B GROUPS LIGHTS SWITCH 
 
EHAL2 GROUPS IMAGE SWITCH 
 
EHAL3 EHAL3A EHAL3B 
 
EHAL3A GROUPS IMAGE SWITCH 
 
EHAL3B GROUPS LIGHTS SWITCH 
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EIGEN GETIME POWER SETIME 
 
EIGENCART DIAGQ HESSIAN 
 
EIGENRGD DIAGQ HESSRGD 
 
EIGENROT DIAGQ HESSROT 
 
EIGENTOR DIAGQ HESSROT 
 
EIGENXYZ DIAGQ HESSIAN 
 
EIMPROP GROUPS IMAGE 
 
EIMPROP1 GROUPS IMAGE 
 
EIMPROP2 GROUPS IMAGE 
 
EIMPROP3 GROUPS IMAGE 
 
EIMPTOR GROUPS IMAGE 
 
EIMPTOR1 GROUPS IMAGE 
 
EIMPTOR2 GROUPS IMAGE 
 
EIMPTOR3 GROUPS IMAGE 
 
ELJ ELJ0A ELJ0B ELJ0C ELJ0D 
 
ELJ0A GROUPS IMAGE SWITCH 
 
ELJ0B GROUPS LIGHTS SWITCH 
 
ELJ0C EGAUSS 
 
ELJ0D GROUPS 
 
ELJ1 ELJ1A ELJ1B ELJ1C ELJ1D 
 
ELJ1A GROUPS IMAGE SWITCH 
 
ELJ1B GROUPS LIGHTS SWITCH 
 
ELJ1C EGAUSS1 
 
ELJ1D GROUPS 
 
ELJ2 ELJ2A ELJ2B 
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ELJ2A GROUPS IMAGE SWITCH 
 
ELJ2B EGAUSS2 
 
ELJ2C GROUPS 
 
ELJ3 ELJ3A ELJ3B ELJ3C ELJ3D 
 
ELJ3A GROUPS IMAGE SWITCH 
 
ELJ3B GROUPS LIGHTS SWITCH 
 
ELJ3C EGAUSS3 
 
ELJ3D GROUPS 
 
EMBED BNDERR CHIRER CHKSIZE COORDS DMDUMP 
 DSTMAT EIGEN EXPLORE FRACDIST FREEUNIT 
 GETIME GYRATE IMPOSE LOCERR MAJORIZE 
 METRIC NUMERAL PRTXYZ REFINE RMSERROR 
 SETIME TORSER VDWERR 
 
EMETAL FATAL 
 
EMETAL1 FATAL 
 
EMETAL3 EMETAL 
 
EMM3HB EMM3HB0A EMM3HB0B 
 
EMM3HB0A GROUPS IMAGE SWITCH 
 
EMM3HB0B GROUPS LIGHTS SWITCH 
 
EMM3HB1 EMM3HB1A EMM3HB1B 
 
EMM3HB1A GROUPS IMAGE SWITCH 
 
EMM3HB1B GROUPS LIGHTS SWITCH 
 
EMM3HB2 GROUPS IMAGE SWITCH 
 
EMM3HB3 EMM3HB3A EMM3HB3B 
 
EMM3HB3A GROUPS IMAGE SWITCH 
 
EMM3HB3B GROUPS LIGHTS SWITCH 
 
EMPOLE EMPOLE0A EMPOLE0B 
 
EMPOLE0A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE 



 161 TINKER User's Guide 161

 SWITCH 
 
EMPOLE0B CHKPOLE EREAL ERECIP INDUCE ROTPOLE 
 
EMPOLE1 EMPOLE1A EMPOLE1B 
 
EMPOLE1A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE 
 SWITCH TORQUE TORQUE1 
 
EMPOLE1B CHKPOLE EREAL1 ERECIP1 INDUCE ROTPOLE 
 TORQUE 
 
EMPOLE2 EMPOLE2A 
 
EMPOLE2A GROUPS IMAGE SWITCH TORQUE 
 
EMPOLE3 EMPOLE3A EMPOLE3B 
 
EMPOLE3A CHKPOLE GROUPS IMAGE INDUCE ROTPOLE 
 SWITCH 
 
EMPOLE3B CHKPOLE EREAL3 ERECIP3 INDUCE ROTPOLE 
 
ENERGY BOUNDS EANGANG EANGLE EBOND EBUCK 
 ECHARGE ECHGDPL EDIPOLE EGAUSS EGEOM 
 EHAL EIMPROP EIMPTOR ELJ EMETAL 
 EMM3HB EMPOLE EOPBEND EOPDIST ERXNFLD 
 ESOLV ESTRBND ESTRTOR ETORS ETORTOR 
 EUREY EXTRA PISCF REPLICA 
 
ENRGYZE ANALYSIS 
 
EOPBEND GROUPS IMAGE 
 
EOPBEND1 GROUPS IMAGE 
 
EOPBEND2 EOPBEND2A GROUPS 
 
EOPBEND2A IMAGE 
 
EOPBEND3 GROUPS IMAGE 
 
EOPDIST GROUPS IMAGE 
 
EOPDIST1 GROUPS IMAGE 
 
EOPDIST2 GROUPS IMAGE 
 
EOPDIST3 GROUPS IMAGE 
 
EPME BSPLINE FFTFRONT 
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EPME1 BSPLINE1 FFTBACK FFTFRONT 
 
EPME3 BSPLINE FFTFRONT 
 
EPUCLC ANORM 
 
EREAL ERFC IMAGE SWITCH 
 
EREAL1 ERFC IMAGE SWITCH TORQUE TORQUE1 
 
EREAL3 ERFC IMAGE SWITCH 
 
ERECIP1 TORQUE 
 
ERF ERFCORE 
 
ERFC ERFCORE 
 
ERFIK D1D2 RFINDEX 
 
ERFINV ERF FATAL 
 
ERXNFLD CHKPOLE ERFIK IJKPTS ROTPOLE SWITCH 
 
ERXNFLD3 CHKPOLE ERFIK IJKPTS ROTPOLE SWITCH 
 
ESOLV BORN EGBSA0A EGBSA0B SURFACE 
 
ESOLV1 BORN BORN1 EGBSA1A EGBSA1B SURFACE 
 
ESOLV2 EGBSA2A EGBSA2B 
 
ESOLV3 BORN EGBSA3A EGBSA3B SURFACE 
 
ESTRBND GROUPS IMAGE 
 
ESTRBND1 GROUPS IMAGE 
 
ESTRBND2 GROUPS IMAGE 
 
ESTRBND3 GROUPS IMAGE 
 
ESTRTOR GROUPS IMAGE 
 
ESTRTOR1 GROUPS IMAGE 
 
ESTRTOR2 GROUPS IMAGE 
 
ESTRTOR3 GROUPS IMAGE 
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ETORS ETORS0A ETORS0B 
 
ETORS0A GROUPS IMAGE 
 
ETORS0B GROUPS 
 
ETORS1 ETORS1A ETORS1B 
 
ETORS1A GROUPS IMAGE 
 
ETORS1B GROUPS 
 
ETORS2 ETORS2A ETORS2B 
 
ETORS2A GROUPS IMAGE 
 
ETORS2B GROUPS 
 
ETORS3 ETORS3A ETORS3B 
 
ETORS3A GROUPS IMAGE 
 
ETORS3B GROUPS 
 
ETORTOR BCUINT GROUPS IMAGE 
 
ETORTOR1 BCUINT1 GROUPS IMAGE 
 
ETORTOR2 BCUINT2 GROUPS IMAGE 
 
ETORTOR3 BCUINT GROUPS IMAGE 
 
EUREY GROUPS IMAGE 
 
EUREY1 GROUPS IMAGE 
 
EUREY2 GROUPS IMAGE 
 
EUREY3 GROUPS IMAGE 
 
EWALDCOF ERFC 
 
EXPLORE INITERR MIDERR SIGMOID TOTERR 
 
FFTBACK CFFTB 
 
FFTFRONT CFFTF 
 
FFTSETUP CFFTI 
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FIELD GETPRM PRMKEY 
 
FINAL SKTKILL 
 
FRACDIST DIST2 TRIMTEXT 
 
FREEUNIT FATAL 
 
GDA DIFFEQ FINAL FREEUNIT GDASTAT GETTEXT 
 GETXYZ INITIAL MECHANIC NEXTARG NUMERAL 
 PRTXYZ RANDOM TNCG UPCASE VERSION 
 
GDA1 GRADIENT HESSIAN 
 
GDA2 GRADIENT 
 
GDA3 HESSIAN 
 
GDASTAT ENERGY GYRATE STAT TNCG WRITEOUT 
 
GEODESIC MINPATH SORT3 
 
GETBASE PDBATM 
 
GETIME CLOCK 
 
GETINT BASEFILE CHKXYZ CONNECT FATAL FREEUNIT 
 MAKEXYZ NEXTARG READINT SUFFIX VERSION 
 
GETKEY FATAL FREEUNIT GETTEXT SUFFIX TRIMTEXT 
 UPCASE 
 
GETMOL2 BASEFILE FREEUNIT NEXTARG READMOL2 SUFFIX 
 VERSION 
 
GETNUCH PDBATM 
 
GETNUMB TRIMTEXT 
 
GETPDB BASEFILE FREEUNIT NEXTARG READPDB SUFFIX 
 VERSION 
 
GETPRB DIST2 DOT GETTOR VCROSS 
 
GETPRM FREEUNIT GETTEXT INITPRM NEXTARG READPRM 
 SUFFIX UPCASE VERSION 
 
GETPROH PDBATM 
 
GETSEQ GETWORD TRIMTEXT UPCASE 
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GETSEQN GETTEXT GETWORD TRIMTEXT UPCASE 
 
GETSIDE PDBATM 
 
GETTOR DIST2 
 
GETXYZ BASEFILE FATAL FREEUNIT NEXTARG READXYZ 
 SUFFIX VERSION 
 
GRADIENT BOUNDS EANGANG1 EANGLE1 EBOND1 EBUCK1 
 ECHARGE1 ECHGDPL1 EDIPOLE1 EGAUSS1 EGEOM1 
 EHAL1 EIMPROP1 EIMPTOR1 ELJ1 EMETAL1 
 EMM3HB1 EMPOLE1 EOPBEND1 EOPDIST1 ERXNFLD1 
 ESOLV1 ESTRBND1 ESTRTOR1 ETORS1 ETORTOR1 
 EUREY1 EXTRA1 PISCF REPLICA 
 
GRADRGD GRADIENT 
 
GRADROT GRADIENT ROTLIST 
 
HANGLE NUMERAL 
 
HBOND NUMERAL 
 
HDIPOLE NUMERAL 
 
HESSIAN BORN BOUNDS CHKPOLE EANGANG2 EANGLE2 
 EBOND2 EBUCK2 ECHARGE2 ECHGDPL2 EDIPOLE2 
 EGAUSS2 EGEOM2 EHAL2 EIMPROP2 EIMPTOR2 
 ELJ2 EMETAL2 EMM3HB2 EMPOLE2 EOPBEND2 
 EOPDIST2 ERXNFLD2 ESOLV2 ESTRBND2 ESTRTOR2 
 ETORS2 ETORTOR2 EUREY2 EXTRA2 FATAL 
 INDUCE PISCF REPLICA ROTPOLE 
 
HESSRGD GRADRGD RIGIDXYZ 
 
HESSROT GRADROT MAKEXYZ 
 
HIMPTOR NUMERAL 
 
HSTRTOR NUMERAL 
 
HTORS NUMERAL 
 
HYBRID HANGLE HATOM HBOND HCHARGE HDIPOLE 
 HIMPTOR HSTRBND HSTRTOR HTORS HVDW 
 
IMPOSE CENTER QUATFIT RMSFIT 
 
INDUCE INDUCE0A INDUCE0B 
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INDUCE0A FATAL GROUPS IMAGE PRTERR SWITCH 
 
INDUCE0B FATAL PRTERR UDIRECT1 UDIRECT2 UMUTUAL1 
 UMUTUAL2 
 
INEDGE CERROR 
 
INERTIA JACOBI 
 
INITERR LOCERR TORSER 
 
INITIAL COMMAND INITRES PRECISE PROMO SKTINIT 
 
INITROT FATAL NEXTARG ROTCHECK ROTLIST 
 
INTEDIT FIELD FINAL FREEUNIT GEOMETRY GETINT 
 GETWORD INITIAL MAKEXYZ NUMBER PRTINT 
 TRIMTEXT UPCASE VERSION ZHELP ZVALUE 
 
INTXYZ FINAL FREEUNIT GETINT INITIAL PRTXYZ 
 VERSION 
 
INVBETA BETAI GAMMLN 
 
INVERT FATAL 
 
IPEDGE CERROR 
 
ISPLPE CYTSY CYTSYS 
 
KANGANG GETTEXT UPCASE 
 
KANGLE GETTEXT NUMERAL UPCASE 
 
KATOM GETNUMB GETSTRING GETTEXT UPCASE 
 
KBOND GETTEXT KENEG NUMERAL UPCASE 
 
KCHARGE GETTEXT UPCASE 
 
KDIPOLE GETTEXT NUMERAL UPCASE 
 
KENEG GETTEXT NUMERAL UPCASE 
 
KEWALD EWALDCOF FATAL FFTSETUP GETTEXT MODULI 
 UPCASE 
 
KGEOM FATAL GEOMETRY GETTEXT GETWORD IMAGE 
 UPCASE 
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KIMPROP GETTEXT NUMERAL UPCASE 
 
KIMPTOR GETTEXT NUMERAL TORPHASE UPCASE 
 
KMPOLE CHKPOLE GETTEXT NUMBER NUMERAL RANDOM 
 SORT3 UPCASE 
 
KOPBEND GETTEXT NUMBER NUMERAL UPCASE 
 
KOPDIST GETTEXT NUMERAL UPCASE 
 
KORBIT GETTEXT NUMERAL UPCASE 
 
KPOLAR CHKPOLE GETTEXT POLARGRP UPCASE 
 
KSOLV GETTEXT GETWORD KANGLE KBOND UPCASE 
 
KSTRBND GETTEXT UPCASE 
 
KSTRTOR GETTEXT NUMERAL UPCASE 
 
KTORS GETTEXT NUMERAL TORPHASE UPCASE 
 
KTORTOR GETTEXT ISPLPE NUMERAL UPCASE 
 
KUREY GETTEXT NUMERAL UPCASE 
 
KVDW GETTEXT NUMBER NUMERAL UPCASE 
 
LBFGS GETTEXT SEARCH UPCASE WRITEOUT 
 
LIGASE FINDATM 
 
LIGHTS FATAL SORT2 SORT5 
 
LMSTEP PRECISE QRSOLVE 
 
LOCALMIN GRADIENT TNCG 
 
LOCALRGD OCVM 
 
LOCALROT OCVM 
 
LOCALXYZ TNCG 
 
LOCLMIN LBFGS 
 
LOCLSRCH CLIMBER EIGENCART GETREF IMPOSE MAKEREF 
 
MAJORIZE GETIME GYRATE RMSERROR SETIME 
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MAKEINT ADJACENT FATAL GEOMETRY GETTEXT UPCASE 
 
MAKEPDB ATTACH FREEUNIT GETBASE GETNUCH GETPROH 
 GETSIDE NUMERAL PDBATM READSEQ VERSION 
 
MAKEXYZ XYZATM 
 
MAPCHECK FREEUNIT NUMERAL PRTXYZ VERSION 
 
MAXWELL ERFINV RANDOM 
 
MCM1 GRADIENT 
 
MCM2 HESSIAN 
 
MCMSTEP TNCG 
 
MDINIT FREEUNIT GETTEXT GETWORD GRADIENT GRPLINE 
 LATTICE MAXWELL MDREST NUMERAL RANVEC 
 READDYN UPCASE VERSION 
 
MDREST INVERT 
 
MDSAVE FATAL FREEUNIT NUMERAL OPENEND PRTDYN 
 PRTXYZ SUFFIX VERSION 
 
MEASFN CERROR TRIPLE VCROSS VECANG VNORM 
 
MEASFP CERROR DOT VCROSS VECANG VNORM 
 
MEASFS CERROR DOT VECANG VNORM 
 
MEASPM VCROSS 
 
MECHANIC ACTIVE ANGLES ATTACH BITORS BONDS 
 CLUSTER CUTOFFS FATAL FIELD KANGANG 
 KANGLE KATOM KBOND KCHARGE KDIPOLE 
 KEWALD KGEOM KIMPROP KIMPTOR KMETAL 
 KMPOLE KOPBEND KOPDIST KORBIT KPOLAR 
 KSOLV KSTRBND KSTRTOR KTORS KTORTOR 
 KUREY KVDW LATTICE MOLECULE MUTATE 
 ORBITAL POLYMER RINGS SMOOTH TORSIONS 
 UNITCELL 
 
MERGE FATAL GETREF 
 
MIDERR BNDERR CHIRER LOCERR TORSER 
 
MINIMIZ1 GRADIENT 
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MINIMIZE FINAL FREEUNIT GETTEXT GETXYZ GRADIENT 
 INITIAL LBFGS MECHANIC NEXTARG PRTXYZ 
 UPCASE VERSION 
 
MINIROT FINAL FREEUNIT GETINT GETTEXT GRADROT 
 INITIAL INITROT LBFGS MECHANIC NEXTARG 
 PRTINT UPCASE VERSION 
 
MINIROT1 GRADROT MAKEXYZ 
 
MINRIGID FINAL FREEUNIT GETTEXT GETXYZ GRADRGD 
 INITIAL LBFGS MECHANIC NEXTARG ORIENT 
 PRTXYZ UPCASE VERSION 
 
MINRIGID1 GRADRGD RIGIDXYZ 
 
MMID DERIVS 
 
MODECART CLIMBXYZ EIGENXYZ GETREF IMPOSE MAKEREF 
 
MODEROT CLIMBROT EIGENROT MAKEXYZ 
 
MODESRCH CLIMBER EIGENROT MAKEINT MAKEREF MAPCHECK 
 
MODETORS CLIMBTOR EIGENTOR GETREF IMPOSE MAKEINT 
 MAKEREF 
 
MODULI BSPLINE DFTMOD 
 
MOLECULE SORT SORT3 
 
MOLUIND UFIELD 
 
MOMENTS CHKPOLE INDUCE JACOBI ROTPOLE 
 
MONTE CHKCLASH FREEUNIT GETREF GETTEXT GETXYZ 
 INITIAL INITROT MAKEINT MAKEREF MAKEXYZ 
 MCMSTEP MECHANIC NEXTARG PRTXYZ RANDOM 
 RANVEC UPCASE VERSION 
 
MUTATE GETTEXT UPCASE 
 
NEIGHBOR CERROR DIST2 
 
NEWATM ADDBOND XYZATM 
 
NEWTON FINAL FREEUNIT GETTEXT GETXYZ GRADIENT 
 INITIAL MECHANIC NEXTARG PRTXYZ TNCG 
 UPCASE VERSION 
 
NEWTON1 GRADIENT 
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NEWTON2 HESSIAN 
 
NEWTROT FINAL FREEUNIT GETINT GETTEXT GRADROT 
 INITIAL INITROT MECHANIC NEXTARG PRTINT 
 TNCG UPCASE VERSION 
 
NEWTROT1 GRADROT MAKEXYZ 
 
NEWTROT2 HESSROT MAKEXYZ 
 
NORMAL RANDOM 
 
NUCBASE OCVM ORIENT POTOFF ZATOM 
 
NUCCHAIN NUCBASE OCVM ORIENT ZATOM 
 
NUCLEIC BASEFILE CONNECT DELETE FIELD FREEUNIT 
 GETKEY GETSEQN INITIAL MAKEINT MAKEXYZ 
 MOLECULE NEXTARG NUCCHAIN PRTINT PRTSEQ 
 PRTXYZ TRIMTEXT VERSION WATSON 
 
NUMBER TRIMTEXT 
 
OCVM GETTEXT PRECISE UPCASE WRITEOUT 
 
OLDATM ADDBOND FATAL 
 
OPTIMIZ1 GRADIENT 
 
OPTIMIZE FATAL FINAL FREEUNIT GETTEXT GETXYZ 
 GRADIENT INITIAL MECHANIC NEXTARG OCVM 
 PRTXYZ UPCASE VERSION 
 
OPTIROT FATAL FINAL FREEUNIT GETINT GETTEXT 
 GRADROT INITIAL INITROT MECHANIC NEXTARG 
 OCVM PRTINT UPCASE VERSION 
 
OPTIROT1 GRADROT MAKEXYZ 
 
OPTRIGID FATAL FINAL FREEUNIT GETTEXT GETXYZ 
 GRADRGD INITIAL MECHANIC NEXTARG OCVM 
 ORIENT PRTXYZ UPCASE VERSION 
 
OPTRIGID1 GRADRGD RIGIDXYZ 
 
ORBITAL FATAL GETTEXT PIPLANE UPCASE 
 
ORIENT XYZRIGID 
 
OVERLAP SLATER 
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PATH FINAL GETXYZ IMPOSE INITIAL INVERT 
 LBFGS MECHANIC NEXTARG ORTHOG POTNRG 
 WRITEOUT 
 
PATH1 POTNRG 
 
PATHPNT OCVM 
 
PATHSCAN PATHPNT SADDLE1 TANGENT 
 
PATHVAL IMPOSE 
 
PDBXYZ CHKXYZ DELETE FIELD FINAL FREEUNIT 
 GETNUMB GETPDB INITIAL LIGASE PRTXYZ 
 RIBOSOME SORT UPCASE VERSION 
 
PIPLANE FATAL 
 
PISCF NEWATM 
 
PITILT OLDATM 
 
PLACE CERROR DIST2 GETPRB GETTOR INEDGE 
 
POLARGRP SORT SORT8 
 
POLARIZE FATAL GETXYZ INITIAL JACOBI MECHANIC 
 MOLUIND 
 
POLYMER FATAL GETTEXT IMAGE UPCASE 
 
POTNRG GRADIENT 
 
POWER RANDOM 
 
PRECOND CHOLESKY COLUMN 
 
PRESSURE LATTICE 
 
PRMKEY GETTEXT GETWORD POTOFF UPCASE 
 
PROCHAIN GETTEXT PROSIDE UPCASE ZATOM 
 
PROJCT DOT 
 
PROPYZE GRADIENT GYRATE INERTIA MOMENTS 
 
PROSIDE FREEUNIT PRTINT PRTXYZ VERSION ZATOM 
 
PROTEIN BASEFILE CHKXYZ CONNECT DELETE FIELD 
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 FINAL FREEUNIT GETKEY GETSEQ INITIAL 
 MAKEINT MAKEXYZ NEXTARG PROCHAIN PRTINT 
 PRTSEQ PRTXYZ TRIMTEXT VERSION 
 
PRTARC VERSION 
 
PRTCAR VERSION 
 
PRTDYN ZATOM 
 
PRTERR ZATOM 
 
PRTINT VERSION 
 
PRTMOL2 NUMBER VERSION 
 
PRTPDB VERSION 
 
PRTPRM NUMBER 
 
PRTSEQ VERSION 
 
PRTXMOL VERSION 
 
PRTXYZ VERSION 
 
PSS ACTIVE FINAL GETTEXT GETXYZ IMPOSE 
 INITIAL INITROT LOCALXYZ MAKEINT MAKEREF 
 MECHANIC MODECART MODETORS NEXTARG PSSWRITE 
 SIGMOID UPCASE 
 
PSS1 GRADIENT 
 
PSS2 HESSIAN 
 
PSSRGD1 GRADRGD RIGIDXYZ 
 
PSSRIGID FINAL FREEUNIT GETTEXT GETXYZ IMPOSE 
 INITIAL MAKEREF MECHANIC NEXTARG NUMERAL 
 OCVM ORIENT PRTXYZ RGDSRCH RIGIDXYZ 
 SIGMOID UPCASE VERSION 
 
PSSROT FINAL FREEUNIT GETTEXT GETXYZ IMPOSE 
 INITIAL INITROT MAKEREF MAKEXYZ MECHANIC 
 MODEROT NEXTARG NUMERAL OCVM PRTXYZ 
 UPCASE VERSION 
 
PSSROT1 GRADROT MAKEXYZ 
 
PSSWRITE FREEUNIT NUMERAL PRTXYZ VERSION 
 



 173 TINKER User's Guide 173

PTINCY DOT EPUCLC PROJCT ROTANG 
 
QUATFIT JACOBI 
 
RADIAL BASEFILE FINAL FREEUNIT GETWORD IMAGE 
 INITIAL LATTICE MOLECULE NEXTARG READXYZ 
 SUFFIX TRIMTEXT UNITCELL VERSION 
 
RANDOM CALENDAR GETTEXT UPCASE 
 
RANVEC RANDOM 
 
RATTLE FATAL IMAGE PRTERR 
 
RATTLE2 FATAL IMAGE PRTERR 
 
READBLK FATAL FREEUNIT GETWORD NUMERAL 
 
READDYN FATAL VERSION 
 
READINT FATAL GETTEXT GETWORD NEXTTEXT TRIMTEXT 
 VERSION 
 
READMOL2 FATAL GETTEXT GETWORD SORT TRIMTEXT 
 UPCASE VERSION 
 
READPDB FATAL FIXPDB GETTEXT NEXTARG TRIMTEXT 
 UPCASE VERSION 
 
READPRM FATAL GETNUMB GETSTRING GETTEXT GETWORD 
 NUMERAL PRMKEY TORPHASE TRIMTEXT UPCASE 
 
READSEQ FATAL GETNUMB GETTEXT GETWORD TRIMTEXT 
 VERSION 
 
READXYZ CHKXYZ FATAL GETTEXT GETWORD NEXTTEXT 
 SORT TRIMTEXT VERSION 
 
REFINE LBFGS 
 
REPLICA FATAL 
 
RGDSRCH CLIMBRGD EIGENRGD RIGIDXYZ 
 
RGDSTEP CHOLESKY GRADIENT LINGROUP MDSAVE MDSTAT 
 PRESSURE ROTCRD ROTRGD TEMPER 
 
RIBOSOME ADDBOND ADDSIDE FATAL FINDATM FREEUNIT 
 NEWATM OLDATM PRTSEQ VERSION 
 
RINGS ANGLES BITORS BONDS FATAL TORSIONS 
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RMSERROR TRIMTEXT 
 
ROTANG DOT VCROSS 
 
ROTCHECK ROTLIST 
 
ROTLIST FATAL 
 
ROTPOLE ROTMAT ROTSITE 
 
SADDLE FATAL FINAL FREEUNIT GETTEXT GETXYZ 
 IMPOSE INITIAL MAKEINT MAKEXYZ MECHANIC 
 NEXTARG PATHPNT PATHSCAN PATHVAL PRTXYZ 
 READXYZ SADDLE1 SEARCH TANGENT UPCASE 
 VERSION 
 
SADDLE1 GRADIENT 
 
SADDLES CERROR IPEDGE TRIPLE 
 
SCAN ACTIVE FINAL FREEUNIT GETXYZ INITIAL 
 INITROT LOCALMIN MAKEINT MAPCHECK MECHANIC 
 MODESRCH NEXTARG NUMERAL READXYZ VERSION 
 
SCAN1 GRADIENT 
 
SCAN2 HESSIAN 
 
SDAREA SURFATOM 
 
SDSTEP GRADIENT KINETIC MDSAVE MDSTAT PRESSURE 
 RATTLE RATTLE2 SDTERM 
 
SDTERM NORMAL SDAREA 
 
SENDOUT COMMUNICATE 
 
SETIME CLOCK 
 
SHAKEUP CHKRING GETNUMB GETTEXT GETWORD UPCASE 
 
SKTCLOSE SKTCALL 
 
SKTINIT SPMDAEMON 
 
SKTKILL KILL SKTCALL 
 
SKTSEND SKTCALL SKTCLOSE 
 
SLATER ASET BSET CJKM POLYP 
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SMOOTH GETTEXT GETWORD NEXTARG UPCASE 
 
SNIFFER FINAL FREEUNIT GETREF GETXYZ GRADIENT 
 INITIAL MAKEREF MECHANIC NEXTARG PRTXYZ 
 SNIFFER1 VERSION WRITEOUT 
 
SNIFFER1 GRADIENT 
 
SOAK DELETE FREEUNIT IMAGE LATTICE MAKEREF 
 MERGE MOLECULE READXYZ SUFFIX UNITCELL 
 VERSION 
 
SPACEFILL ACTIVE CONNOLLY FIELD FINAL FREEUNIT 
 GETTEXT GETXYZ INITIAL KATOM KVDW 
 NEXTARG READXYZ SUFFIX UPCASE VERSION 
 
SPECTRUM BASEFILE FREEUNIT INITIAL NEXTARG SUFFIX 
 VERSION 
 
SQUARE GETTEXT LMSTEP PRECISE QRFACT RSDVALUE 
 TRUST UPCASE WRITEOUT 
 
SUFFIX TRIMTEXT 
 
SUPERPOSE FIELD FINAL FREEUNIT GETTEXT GETXYZ 
 IMPOSE INITIAL KATOM NEXTARG PRTXYZ 
 READXYZ SUFFIX TRIMTEXT UPCASE VERSION 
 
SURFACE FATAL SORT2 
 
SURFATOM FATAL SORT2 
 
SWITCH REPLICA 
 
SYBYLXYZ FINAL FREEUNIT GETMOL2 INITIAL PRTXYZ 
 VERSION 
 
SYMMETRY CELLATOM 
 
TANGENT PATHPNT SADDLE1 
 
TEMPER MAXWELL RANDOM RANVEC 
 
TESTGRAD ENERGY FINAL GETTEXT GETXYZ GRADIENT 
 INITIAL MECHANIC NEXTARG UPCASE 
 
TESTHESS FINAL FREEUNIT GETTEXT GETXYZ GRADIENT 
 HESSIAN INITIAL MECHANIC NEXTARG NUMGRAD 
 UPCASE VERSION 
 
TESTLIGHT EBUCK EBUCK1 ECHARGE ECHARGE1 EGAUSS 
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 EGAUSS1 EHAL EHAL1 ELJ ELJ1 
 EMM3HB EMM3HB1 FINAL GETIME GETXYZ 
 INITIAL LIGHTS MECHANIC NEXTARG SETIME 
 
TESTROT ENERGY FINAL GETINT GRADROT INITIAL 
 INITROT MAKEXYZ MECHANIC NEXTARG 
 
TIMER ENERGY FINAL GETIME GETTEXT GETXYZ 
 GRADIENT HESSIAN INITIAL MECHANIC NEXTARG 
 SETIME UPCASE 
 
TIMEROT ENERGY FINAL GETIME GETINT GETTEXT 
 GRADROT HESSROT INITIAL INITROT MECHANIC 
 NEXTARG SETIME UPCASE 
 
TNCG GETTEXT HMATRIX PISCF SEARCH TNSOLVE 
 UPCASE WRITEOUT 
 
TNSOLVE PRECOND 
 
TORSIONS FATAL 
 
TORUS CERROR GETTOR 
 
TOTERR BNDERR CHIRER LOCERR TORSER VDWERR 
 
TRIANGLE FATAL 
 
TRIPLE DOT VCROSS 
 
TRUST PRECISE RSDVALUE 
 
UDIRECT2 ERFC IMAGE SWITCH 
 
UMUTUAL2 ERFC IMAGE SWITCH 
 
UNITCELL FATAL GETTEXT GETWORD UPCASE 
 
VAM CERROR CIRPLN DEPTH DIST2 DOT 
 GENDOT MEASFN MEASFP MEASFS MEASPM 
 TRIPLE VCROSS VNORM 
 
VDWERR LIGHTS 
 
VECANG ANORM DOT TRIPLE 
 
VERLET GRADIENT KINETIC MDSAVE MDSTAT PRESSURE 
 RATTLE RATTLE2 TEMPER 
 
VERSION LOWCASE NEXTARG TRIMTEXT 
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VIBRATE DIAGQ FATAL FINAL FREEUNIT GETXYZ 
 HESSIAN INITIAL MECHANIC NEXTARG NUMERAL 
 PRTXYZ VERSION 
 
VIBRIGID DIAGQ FINAL GETXYZ HESSRGD INITIAL 
 MECHANIC ORIENT 
 
VIBROT DIAGQ FINAL GETINT HESSROT INITIAL 
 INITROT MECHANIC 
 
VNORM ANORM 
 
VOLUME CONNOLLY 
 
VOLUME1 FATAL 
 
VOLUME2 FATAL 
 
WATSON ZATOM 
 
WATSON1 GRADRGD RIGIDXYZ 
 
WRITEOUT FREEUNIT MAKEXYZ NUMERAL PRTINT PRTXYZ 
 SKTSEND VERSION 
 
XTALERR ENERGY XTALMOVE XTALPRM 
 
XTALFIT FINAL GETXYZ INITIAL MECHANIC NEXTARG 
 POTOFF SQUARE XTALPRM 
 
XTALLAT1 ENERGY LATTICE 
 
XTALMIN FINAL FREEUNIT GETXYZ GRADIENT INITIAL 
 LATTICE MECHANIC NEXTARG OCVM PRTXYZ 
 TNCG VERSION XTALLAT1 
 
XTALMOL1 GRADIENT 
 
XTALMOL2 HESSIAN 
 
XTALMOVE LATTICE 
 
XTALPRM BOUNDS LATTICE MOLECULE 
 
XYZEDIT ACTIVE BOUNDS CUTOFFS DELETE FIELD 
 FINAL FREEUNIT GETXYZ IMAGE INERTIA 
 INITIAL INSERT KATOM LATTICE MAKEREF 
 MERGE MOLECULE PRTXYZ RANDOM SOAK 
 SORT SORT4 UNITCELL VERSION 
 
XYZINT FINAL FREEUNIT GETTEXT GETXYZ INITIAL 
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 MAKEINT NEXTARG PRTINT READINT UPCASE 
 VERSION 
 
XYZPDB FIELD FINAL FREEUNIT GETXYZ INITIAL 
 KATOM MAKEPDB MOLECULE PRTPDB VERSION 
 
XYZRIGID JACOBI ROTEULER 
 
XYZSYBYL BONDS FINAL FREEUNIT GETXYZ INITIAL 
 PRTMOL2 VERSION 
 
ZATOM FATAL 
 
ZVALUE MAKEXYZ TRIMTEXT 
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12. Examples using the TINKER Package 
 
 This section contains brief descriptions of the sample calculations found in the EXAMPLE 
subdirectory of the TINKER distribution. These examples exercise several of the current TINKER 
programs and are intended to provide a flavor of the capabilities of the package. 
 
ANION Example 
 
Computes an estimation of the free energy of hydration of Cl- anion vs. Br- anion via a 2 picosecond 
simulation on a ``hybrid'' anion in a box of water followed by a free energy perturbation calculation 
 
ARGON Example 
 
Performs an initial energy minimization on a periodic box containing 150 argon atoms followed by 6 
picoseconds of a molecular dynamics using a modified Beeman integration algorithm and a Bersedsen 
thermostat 
 
CLUSTER Example 
 
Performs a set of 10 Gaussian density annealing (GDA) trials on a cluster of 13 argon atoms in an attempt 
to locate the global minimum energy structure 
 
CRAMBIN Example 
 
Generates a TINKER file from a PDB file, followed by a single point energy computation and 
determination of the molecular volume and surface area 
 
CYCLOHEX Example 
 
First approximately locates the transition state between chair and boat cyclohexane, followed by 
subsequent refinement of the transition state and a final vibrational analysis to show that a single negative 
frequency is associated with the saddle point 
 
ENKEPHALIN Example 
 
Produces coordinates from the met-enkephalin amino acid sequence and phi/psi angles, followed by 
truncated Newton energy minimization and determination of the lowest frequency normal mode 
 
FORMAMIDE Example 
 
Converts to a unit cell from fractional coordinates, followed by full crystal energy minimization and 
determination of optimal carbonyl oxygen energy parameters from a fit to lattice energy and structure 
 
HELIX Example 
 
Performs a rigid-body optimization of the packing of two idealized polyalanine helices using only van der 
Waals interactions 
 
SALT Example 
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Converts a sodium chloride assymetric unit to the corresponding unit cell, then runs a crystal minimization 
starting from the initial diffraction structure using Ewald summation to model the long-range electrostatic 
interactions. 
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13. Benchmark Results 
 
 The tables in this section provide CPU benchmarks for basic TINKER energy and derivative 
evaluations, vibrational analysis and molecular dynamics. All times are in seconds and were measured with 
TINKER executables dimensioned to maxatm of 10000 and maxhess of 1000000 in the source file sizes.i. 
All calculations were run twice in rapid succession on a quiet machine. The times reported for each 
benchmark are the results from the second run. If you have built TINKER on an alternative machine type 
and are able to run the benchmarks on the additional machine type, please send the results for inclusion in a 
future listing. 
 

BENCHMARK #1:  Calmodulin Energy Evaluation 
 
The system is an isolated molecule of the 148-residue protein calmodulin with 2264 atoms using the Amber 
ff94 force field. All interactions are computed with no use of cutoffs. Times listed are for calculation setup 
followed by a single energy, energy/gradient and Hessian evaluation. 
 
MACHINE-OS-COMPILER TYPE MHz SETUP ENERGY GRAD HESS 
 
Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 0.20 0.29 0.60 3.29 
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 0.19 0.28 0.67 3.60 
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 0.26 0.42 0.86 5.35 
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 0.25 0.41 0.96 6.00 
Athlon Classic (RH 8.0, Intel 7.1) 950 0.30 0.63 1.41 7.28 
Athlon Classic (RH 8.0, g77 3.2) 950 0.33 0.65 1.54 7.99 
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 0.17 0.38 0.72 2.63 
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 0.17 0.34 0.90 3.67 
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 0.19 0.45 0.88 3.19 
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 0.33 0.41 1.08 4.36 
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 0.19 0.42 0.79 3.03 
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 0.16 0.40 1.08 4.45 
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 0.43 1.94 3.86 14.63 
Compaq AlphaServer DS10 (Tru64 5.0) 466 0.36 1.53 2.64 8.86 
Compaq AlphaServer 4100 (Tru64 5.1A) 400 0.61 2.51 4.73 17.14 
SGI IndigoII R10K (Irix 6.5, MIPS) 195 1.17 3.49 6.35 23.03 
 
 

BENCHMARK #2:  Crambin Crystal Energy Evaluation 
 
The system is a unit cell of the 46-residue protein crambin containing 2 polypeptide chains, 2 ethanol and 
178 water molecules for a total of 1360 atoms using the OPLS-UA force field. Periodic boundaries are used 
with particle mesh Ewald for electrostatics and a 9.0 Å cutoff for vdW interactions. Times listed are for 
calculation setup followed by a single energy, energy/ gradient and Hessian evaluation. 
 
MACHINE-OS-COMPILER TYPE MHz SETUP ENERGY GRAD HESS 
 
Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 0.17 0.12 0.23 0.69 
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 0.16 0.13 0.24 0.70 
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 0.20 0.17 0.32 0.98 
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 0.21 0.18 0.33 1.04 
Athlon Classic (RH 8.0, Intel 7.1) 950 0.25 0.26 0.47 1.51 
Athlon Classic (RH 8.0, g77 3.2) 950 0.27 0.26 0.50 1.57 
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 0.14 0.12 0.23 0.56 
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 0.14 0.16 0.30 0.72 
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Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 0.15 0.14 0.29 0.69 
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 0.27 0.20 0.38 0.97 
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 0.18 0.16 0.28 0.67 
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 0.12 0.22 0.52 1.16 
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 0.34 0.42 0.81 2.43 
Compaq AlphaServer DS10 (Tru64 5.0) 466 0.29 0.40 0.70 1.93 
Compaq AlphaServer 4100 (Tru64 5.1A) 400 0.49 0.69 1.17 3.59 
SGI IndigoII R10K (Irix 6.5, MIPS) 195 0.92 0.74 1.41 3.89 
 
 

BENCHMARK #3:  Peptide Normal Mode Calculation 
 
The system is a minimum energy conformation of a 20-residue peptide containing one of each of the 
standard amino acids for a total of 328 atoms using the OPLS-AA force field without cutoffs. The time 
reported is for computation of the Hessian and calculation of the normal modes of the Hessian matrix and 
the vibration frequencies requiring two separate matrix diagonalization steps. 
 
MACHINE-OS-COMPILER TYPE MHz NORMAL MODES 
 
Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 25 
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 25 
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 32 
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 34 
Athlon Classic (RH 8.0, Intel 7.1) 950 48 
Athlon Classic (RH 8.0, g77 3.2) 950 50 
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 15 
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 16 
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 18 
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 19 
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 19 
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 20 
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 64 
Compaq AlphaServer DS10 (Tru64 5.0) 466 40 
Compaq AlphaServer 4100 (Tru64 5.1A) 400 75 
SGI IndigoII R10K (Irix 6.5, MIPS) 195 144 
 
 

 BENCHMARK #4:  TIP3P Water Box Molecular Dynamics 
 
The system consists of 216 rigid TIP3P water molecules in a 18.643 Å periodic box, 9.0 Å shifted energy 
switch cutoffs for nonbonded interactions. The time reported is for 1000 dynamics steps of 1.0 fs each 
using the modified Beeman integrator and Rattle constraints on all bond lengths. 
 
MACHINE-OS-COMPILER TYPE MHz DYNAMICS 
 
Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 39 
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 50 
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 55 
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 71 
Athlon Classic (RH 8.0, Intel 7.1) 950 80 
Athlon Classic (RH 8.0, g77 3.2) 950 85 
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 44 
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 56 
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Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 53 
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 65 
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 55 
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 94 
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 170 
Compaq AlphaServer DS10 (Tru64 5.0) 466 133 
Compaq AlphaServer 4100 (Tru64 5.1A) 400 230 
SGI IndigoII R10K (Irix 6.5, MIPS) 195 280 
 
 

BENCHMARK #5:  TINKER Water Box Molecular Dynamics 
 
The system consists of 216 AMOEBA flexible polarizable atomic multipole water molecules in a 18.643 Å 
periodic box using regular Ewald summation for the electrostatics and a 12.0 Å switched cutoff for vdW 
interactions. The time reported is for 100 dynamics steps of 1.0 fs each using the modified Beeman 
integrator and 0.01 Debye rms convergence for induced dipole moments. 
 
MACHINE-OS-COMPILER TYPE MHz DYNAMICS 
 
Athlon XP 2400+ (RH 8.0, Intel 7.1) 2000 114 
Athlon XP 2400+ (RH 8.0, g77 3.2) 2000 126 
Athlon Thunderbird (RH 8.0, Intel 7.1) 1400 161 
Athlon Thunderbird (RH 8.0, g77 3.2) 1400 184 
Athlon Classic (RH 8.0, Intel 7.1) 950 275 
Athlon Classic (RH 8.0, g77 3.2) 950 297 
Dell 600SC P4 Server (RH 8.0, Intel 7.1) 2400 134 
Dell 600SC P4 Server (RH 8.0, g77 3.2) 2400 171 
Compaq Evo N610c P4 (RH 8.0, Intel 7.1) 2000 162 
Compaq Evo N610c P4 (RH 8.0, g77 3.2) 2000 212 
Compaq Evo N610c P4 (WinXP, Intel 7.1) 2000 161 
Compaq Evo N610c P4 (WinXP, g77 3.2) 2000 263 
Apple Power Mac G4 (OSX 10.2, g77 3.3) 733 492 
Compaq AlphaServer DS10 (Tru64 5.0) 466 356 
Compaq AlphaServer 4100 (Tru64 5.1A) 400 639 
SGI IndigoII R10K (Irix 6.5, MIPS) 195 868 
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14. Collaborators & Acknowledgments 
 
 The TINKER package has developed over a period of many years, very slowly during the late-
1980's, and more rapidly since the mid-1990's in Jay Ponder's research group at the Washington University 
School of Medicine in St. Louis. Many people have played significant roles in the development of the 
package into its current form. The major contributors are listed below: 
 
Stew Rubenstein coordinate interconversions; original optimization methods 
 and torsional angle manipulation 
 
Craig Kundrot molecular surface area & volume and their derivatives 
 
Shawn Huston original AMBER/OPLS implementation; free energy 
 calculations; time correlation functions 
 
Mike Dudek initial multipole models for peptides and proteins 
 
Yong "Mike" Kong multipole electrostatics; dipole polarization; reaction field 
 treatment; TINKER water model 
 
Reece Hart potential smoothing methodology; Scheraga's DEM, 
 Straub's GDA and extensions 
 
Mike Hodsdon extension of the TINKER distgeom program and its 
 application to NMR NOE structure determination 
 
Rohit Pappu potential smoothing methodology and PSS algorithms; 
 rigid body optimization; GB/SA solvation derivatives 
 
Wijnand Mooij MM3 directional hydrogen bonding term; crystal lattice 
 minimization code 
 
Gerald Loeffler stochastic/Langevin dynamics implementation 
 
Marina Vorobieva nucleic acid building module and parameter translation 
Nina Sokolova 
 
Peter Bagossi AMOEBA force field parameters for alkanes and diatomics 
 
Pengyu Ren Ewald summation for polarizable atomic multipoles; 
 AMOEBA force field for water, organics and peptides 
 
Anders Carlsson ligand field potential energy term for transition metals 
 
Andrey Kutepov integrator for rigid-body dynamics trajectories 
 
Alan Grossfield Monte Carlo minimization; tophat potential smoothing; 
 weighted histogram analysis (distributed separately) 
 
Michael Schnieders Force Field Explorer, a Java GUI for TINKER 
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In addition, we would like to thank Tom Darden for making his particle mesh Ewald code generally 
available to the simulation community. 
 
It is critically important that TINKER's distributed force field parameter sets exactly reproduce the intent of 
the original force field authors. We would like to thank Julian Tirado-Rives (OPLS-AA), Alex 
MacKerell (CHARMM27), and Adrian Roitberg and Carlos Simmerling (AMBER) for their help in 
testing TINKER's results against those given by the authentic programs and parameter sets. Lou Allinger 
has provided updated parameters for MM2 and MM3 on several occasions. His very successful methods 
provided the original inspiration for the development of TINKER. 
 
Still other workers have devoted considerable time in developing code that will hopefully be incorporated 
into future TINKER versions; for example, Jim Kress (UFF implementation) and Michael Sheets 
(neighbor lists, thermodynamic integration). Finally, we wish to thank the many users of the TINKER 
package for their suggestions and comments, praise and criticism, which have resulted in a variety of 
improvements. 
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15. References & Suggested Reading 
 
 This section contains a list of the references to general theory, algorithms and implementation 
details which have been of use during the development of the TINKER package. Methods described in 
some of the references have been implemented in detail within the TINKER source code. Other references 
contain useful background information although the algorithms themselves are now obsolete. Still other 
papers contain ideas or extensions planned for future inclusion in TINKER. References for specific force 
field parameter sets are provided in an earlier section of this User's Guide. This list is heavily skewed 
toward biomolecules in general and proteins in particular. This bias reflects our group's major interests; 
however an attempt has been made to include methods which should be generally applicable. 
 
PARTIAL LIST OF MOLECULAR MECHANICS SOFTWARE PACKAGES 
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FANTOM Werner Braun, University of Texas, Galveston 
FEDER/2 Nobuhiro Go, Kyoto University 
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GROMOS Wilfred van Gunsteren, BIOMOS and ETH, Zurich 
IMPACT Ronald Levy, Rutgers University 
MACROMODEL Schodinger, Inc., Jersey City, New Jersey 
MM2/MM3/MM4 N. Lou Allinger, University of Georgia 
MMC Cliff Dykstra, Indiana Univ.-Purdue Univ. at Indianapolis 
MMFF Tom Halgren, Merck Research Laboratories, Rahway 
MMTK Konrad Hinsen, Inst. of Structural Biology, Grenoble 
MOIL Ron Elber, Cornell University 
MOLARIS Arieh Warshal, University of Southern California 
MOLDY Keith Refson, Oxford University 
MOSCITO Dietmar Paschek & Alfons Geiger, Universität Dortmund 
NAMD Klaus Schulten, University of Illinois, Urbana 
OOMPAA Andy McCammon, University of California, San Diego 
ORAL Karel Zimmerman, INRA, Jouy-en-Josas, France 
ORIENT Anthony Stone, Cambridge University 
PCMODEL Kevin Gilbert, Serena Software, Bloomington, Indiana 
PEFF Jan Dillen, University of Pretoria, South Africa 
Q Johan Åqvist, Uppsala University 
SIBFA Nohad Gresh, INSERM, CNRS, Paris 
SIGMA Jan Hermans, University of North Carolina 
SPASIBA Gerard Vergoten, Université de Lille 
SPASMS David Spellmeyer and the Kollman Group, UCSF 
TINKER Jay Ponder, Washington University, St. Louis 
XPLOR/CNS Axel Brünger, Stanford University 
YAMMP Stephen Harvey, University of Alabama, Birmingham 
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YASP Florian Mueller-Plathe, ETH Zentrum, Zurich 
YETI Angelo Vedani, Biografik-Labor 3R, Basel 
 
AMBER     D. A Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt, D. 
Ferguson, G. Seibel and P. Kollman, AMBER, a Package of Computer Programs for Applying Molecular 
Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the 
Structural and Energetic Properties of Molecules, Comp. Phys. Commun., 91, 1-41 (1995) 
 
ARGOS     T. P. Straatsma and J. A. McCammon, ARGOS, a Vectorized General Molecular Dynamics 
Program, J. Comput. Chem., 11, 943-951 (1990) 
 
CHARMM     B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, 
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations, J. 
Comput. Chem., 4, 187-217 (1983) 
 
ENCAD     M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, Potential Energy Function and Parameters 
for Simulations for the Molecular Dynamics of Proteins and Nucleic Acids in Solution, Comp. Phys. 
Commun., 91, 215-231 (1995) 
 
FANTOM     T. Schaumann, W. Braun and K. Wurtrich, The Program FANTOM for Energy Refinement 
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29, 679-694 (1990) 
 
FEDER/2     H. Wako, S. Endo, K. Nagayama and N. Go, FEDER/2: Program for Static and Dynamic 
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91, 233-251 (1995) 
 
GROMACS     H. J. C. Berendsen, D. van der Spoel and R. van Drunen, GROMACS: A Message-passing 
Parallel Molecular Dynamics Implementation, Comp. Phys. Commun., 91, 43-56 (1995) 
 
GROMOS     W. R. P. Scott, P. H. Hunenberger , I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. 
Torda, T. Huber, P. Kruger, W. F. van Gunsteren, The GROMOS Biomolecular Simulation Program 
Package, J. Phys. Chem. A, 103, 3596-3607 (1999) 
 
IMPACT     D. B. Kitchen, F. Hirata, J. D. Westbrook, R. Levy, D. Kofke and M. Yarmush, Conserving 
Energy during Molecular Dynamics Simulations of Water, Proteins, and Proteins in Water, J. Comput. 
Chem., 10, 1169-1180 (1990) 
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G. Chang, T. Hendrickson and W. C. Still, MacroModel-An Integrated Software System for Modeling 
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MM2     N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and 
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MM3     N. L. Allinger, Y. H. Yuh and J.-H. Lii, Molecular Mechanics. The MM3 Force Field for 
Hydrocarbons, J. Am. Chem. Soc., 111, 8551-8566 (1989) 
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MMFF     T. A. Halgren, Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and 
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MOIL     R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Li, G. Verkhiver, C. Keasar, J. Zhang and 
A. Ulitsky, MOIL: A Program for Simulations of Macromolecules, Comp. Phys. Commun., 91, 159-189 
(1995) 
 
MOSCITO     See the web site at http:/ganter.chemie.uni-dortmund.de/~pas/moscito.html 
 
NAMD     L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, 
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