
Truncated Conjugate Gradient: An Optimal Strategy for the
Analytical Evaluation of the Many-Body Polarization Energy and
Forces in Molecular Simulations
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ABSTRACT: We introduce a new class of methods, denoted as Truncated
Conjugate Gradient(TCG), to solve the many-body polarization energy and
its associated forces in molecular simulations (i.e. molecular dynamics (MD)
and Monte Carlo). The method consists in a fixed number of Conjugate
Gradient (CG) iterations. TCG approaches provide a scalable solution to
the polarization problem at a user-chosen cost and a corresponding optimal
accuracy. The optimality of the CG-method guarantees that the number of
the required matrix-vector products are reduced to a minimum compared to
other iterative methods. This family of methods is non-empirical, fully
adaptive, and provides analytical gradients, avoiding therefore any energy
drift in MD as compared to popular iterative solvers. Besides speed, one
great advantage of this class of approximate methods is that their accuracy is
systematically improvable. Indeed, as the CG-method is a Krylov subspace
method, the associated error is monotonically reduced at each iteration. On
top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads
to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is
available, one additional Picard fixed point iteration (“peek”), equivalent to one step of Jacobi Over Relaxation (JOR) with
relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to
find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/
mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products:
three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost
(three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-
1(ω) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as
water is remarkable, with only two matrix-vector product evaluations.

1. INTRODUCTION

In recent years, the development of polarizable force fields has
led to new methodologies incorporating more physics. There-
fore, higher accuracy in the evaluation of energies can be
achieved.1 Indeed, the explicit inclusion of the many-body
polarization energy offers a better treatment of intermolecular

interactions, with immediate applications in various fields of

application ranging from biomolecular simulations to material

science. However, adding polarization to a force field is

Received: October 6, 2016
Published: November 22, 2016

Article

pubs.acs.org/JCTC

© 2016 American Chemical Society 180 DOI: 10.1021/acs.jctc.6b00981
J. Chem. Theory Comput. 2017, 13, 180−190

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00981
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


associated with a significant increase of the overall computational
cost. In that context, various strategies have been introduced,
including Drude oscillators,2 fluctuating charges,3 Kriging
methods,4 and induced dipoles.1,5 Among them, the induced
dipole approach has been shown to provide a good balance
between accuracy and computational efficiency, and can be
implemented in a scalable fashion.6

One issue with this approach is the mandatory resolution of a
set of linear equations the size of which depends on the number
of atoms (or polarizable sites). In practice, for the large systems
of interest of force fields methods, a direct matrix inversion
approach using the LU or Cholesky decomposition is not
computationally feasible because of its cubic cost in the number
of atoms. Luckily, iterative methods provide a remedy. We
showed in a recent paper6,7 that techniques such as the
Preconditioned Conjugate Gradient (PCG) or the Jacobi/Direct
Inversion of the Iterative Subspace (JI/DIIS) were efficient for
large scale simulations as they offer the possibility of a massively
parallel implementation coupled to fast summation techniques
such as the Smooth Particle Mesh Ewald (SPME).8 The overall
cost is then directly proportional to the number of iterations
necessary to achieve a good convergence. In that context,
predictor-corrector strategies have been introduced to reduce
this number using the information on the previous time-steps.9,10

Extended Lagrangian formulations inspired by efficient ab initio
methods have also been introduced in order to limit the
computational cost, but they require additional thermostats.11 In
practice, iterative methods are now standard but suffer from
energy conservation issues due to their nonanalytical evaluation
of the forces. Moreover, force fields are optimized to reach a
precision for 10−1 to 10−2 kcal/mol in the polarization energy.
Such a precision can easily be reached using a convergence
threshold of 10−3 to 10−4 Debye on the induced dipoles.
However, when using iterative schemes, one needs to enforce the
quality of the nonanalytical forces in order to guarantee the
energy conservation. Hence, a tighter convergence criterion of
10−5 to 10−7 Debye must be used for its computation. This leads
to a very significant increase of the number of iterations. Overall,
this additional computational cost is not linked to the accuracy of
the polarization energy but only ensures the numerical stability of
the MD scheme. In that context, in their 2005 seminal paper12

(see also ref. 13), Wang and Skeel postulated that another
strategy would be possible if one could offer a method allowing
analytical derivatives and therefore avoiding by construction the
risk of loss of energy conservation (i.e. the drift). Such a method
would be associated with a fixed number of iterations and could
extend the applicability of polarizable simulations. Wang
explored such strategies based on modified Chebyshev
polynomials but noticed that even if the intended analytical
expression was obtained, it offered little accuracy compared to
fully converged iterated results. In that context, Simmonett et
al.14,15 recently proposed to revisit this assumption of a
perturbation approach evaluating an approximated polarization
energy denoted as ExPT. They proposed a parametric equation
offering analytical derivatives and a good accuracy for some class
of systems. However, the parametric aspect of the approach
limits its global applicability to other types of systems. The
purpose of this paper is to introduce a nonempirical strategy
based on the same goals: analytical derivatives in order to
guarantee energy conservation, limited number of iterations and
reasonable accuracy.
We will first present the variational formulation of the

polarization energy and the associated linear system. Then, we

will look at iterative methods that are commonly used to solve it
and discuss how they can cause problems in molecular
simulations. Following this, we will describe two classes of
iterative methods, the fixed point methods and the Krylov
methods, and see how one can compute the polarization energy
and its associated forces analytically (therefore avoiding the
energy drift mentioned above). Finally, we will show some
numerical results and discuss the accuracy of the new methods.

2. CONTEXT AND NOTATIONS
In the context of force fields, several techniques are used in order
to take polarization into account. Everything that will be
presented in this paper concerns the widely used induced dipole
model. In this model, each or some of the atomic sites are
associated with a 3 × 3 polarizability tensor, so that induced
dipoles appear on these sites because of the electric fields created
by the permanent charge density and by the other induced
dipoles.

2.1. Notations. In the rest of the paper, we will assume that
the studied system consists of N atoms, each of them bearing an
invertible 3 × 3 polarizability tensor αi. We will denote by E⃗i the
electric field created by the permanent density of charge on site i,
and by μ⃗i the induced dipole on site i. The 3N vectors collecting
these vectors will respectively be noted E and μ. Furthermore, for
i ≠ j, we will denote by Tij the 3 × 3 tensor representing the
interaction between the ith and the jth induced dipole, so that
Tijμ⃗j is the (possibly damped) electric field created by μ⃗j on site i.
We are now able to define by blocks the so-called polarization
matrix of the system block by block:
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This matrix is symmetric and we assume that it is also positive
definite (thanks to the damping of the electric fields at short-
range) so that the energy functional defined below has a
minimum and “the polarization catastrophe”16 is avoided.

2.2. Variational Formulation of the Polarization Energy
and the Associated Linear System. Given these notations,
one can express the polarization energy of the studied system in
the context of an induced dipole polarizable force field as follows:

μ μ μ= −E T E
1
2

T T
pol (1)

The dipoles μ of the quadratic energy functional are determined
by the first optimality condition in the form of the following
linear system:

μ =T E (2)

so that finally:

μ= −E E
1
2

T
pol (3)

for the minimizing dipoles μ. The linear system expressed above
has to be solved at each time step of a MD trajectory, so that a
computationally efficient technique must be used to solve it. Two
kinds of methods exist to solve a linear system, the direct ones
and the iterative ones. The first approaches, such as the LU or
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Cholesky decomposition, yield exact results (up to round-off
errors) but their computational cost grows proportionally to N3

and their memory requirements proportionally to N2, making
them hardly usable for large systems of biological interest.

3. ITERATIVE METHODS
In contrast, iterative techniques yield approximate results
depending on a convergence criterion, but their computional
cost is proportional to the number of iterations times the cost of
one iteration (dominated by the cost of a matrix-vector product).
This implies that the iterative techniques can be used in
conjunction with an efficient matrix-vector multiplication
method such as the Smooth Particle Mesh Ewald or the Fast
Multipoles.8,17

Several issues arise when using an iterative method to solve the
polarization energy. The first one is related to the way the
associated forces are computed. Indeed, the polarization energy
is a function of the induced dipoles and of the atomic positions,
so that one can rely on the chain rule to express the total
derivative of this energy with respect to the atomic positions. The
induced dipoles are then assumed to be completely minimizing

Epol so that
μ

∂
∂
Epol is assumed to be zero, yielding the following

expression (that is analogous to the Hellman−Feynman theorem
in quantum mechanics):

μ
μ=

∂
∂

∂
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+
∂
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=
∂
∂

E

r

E

r

E

r

E

r

d

d i i i i

pol pol pol pol

(4)

As the iterative method for the resolution of the induced dipoles
is never perfectly converged, the previous assumption is never
perfectly satisfied. Consequently, the forces calculated using this
method are not exactly the negative of the first derivative of Epol
(eq 3) with respect to the nuclear positions, potentially giving
rise to an energy drift in a MD simulation. This is illustrated by
the following graph (Figure 1) representing the evolution of the
total energy for a water box of 27 molecules, using the
(diagonally) PCG with different convergence thresholds, namely
10−3, 10−4, 10−5, 10−6, and 10−7. An initial guess not issued from
the past iterations was used, for a short MD simulation of 10 ps,
using a time step of 0.25 fs. Such a small time step was used in

order to minimize the numerical error coming from time-
integration. One can directly observe the relation between the
convergence threshold and the energy conservation.
The second issue is the computational cost of the iterative

methods, proportional to the number of iterations times the cost
of one iteration. Solving the polarization equations costs usually
(depending on the settings of the simulation) more than 60% of
the total cost of an MD step. It has already been shown that
carefully choosing the iterative techique employed and taking an
initial guess μ0 using information from the past (by using
predictor guesses9,10) can yield an important reduction of the
number of iterations required to reach a satisfactory convergence
threshold. Nevertheless, some limitations exist due to the
imperfect time reversibilty and volume preservation that they
imply. Furthermore, the ability to parallelize the method
efficiently also influences the choice of the optimal method.6,7

These issues motivate the derivation of a computationally
cheap analytical approximation of the polarization energy in
polarizable MD. We aim also for such an approximation to be as
close as possible to the exact results (or at least within the
accuracy of the force field) so that it would not require a
reparametrization of the force fields. For the forces to be
analytical, the computation of the induced dipoles must be
history free and should therefore avoid the use of predictors.

4. FIXED POINT METHODS AND RELATIONWITH ExPT
This first class of methods regroups the fixed point methods, also
called stationary methods. In this case, one splits the matrix into
two parts in order to re-express the solution of the linear system
as a fixed point of a mapping associated with the splitting. For the
polarizationmatrix one can re-expressT as the sum of its (block-)
diagonal and off-diagonal part:

α= −−T 1 (5)

yielding the following expression of the solution μ:

μ α μ= +E( ) (6)

where μ appears as the fixed point of a mapping. Then, Picard’s
fixed point theorem18 tells us that starting from any guess μ0 and
computing the following sequence of dipoles (denoted by rn the
residual associated with μn):

μ α α μ μ α= + = ++ E rn n n n1 (7)

we converge toward the solution if αρ <( ) 1, with ρ(M)
denoting the spectral radius of a given matrix M. The method
that was described above is the Jacobi method and if we had split
the matrix between its upper triangular part and the remaining
terms, we would have obtained the Gauss−Seidel method.
A direct refinement of the Jacobi method consists in choosing

a “relaxation” parameter ω and the following (relaxed) scheme:

μ μ μ α μ αω ω ω= − + + = ++ r r(1 ) ( )n n n n n n1 (8)

which is convergent if ρ(Id −ωαT) < 1. In the rest of the text we
will denote this method as JOR (Jacobi over Relaxation).19,20

One way to get analytical approximations of the polarization
energy is to truncate one of these methods at a fixed order. One
could for example choose to truncate the Jacobi method at some
order n to obtain an analytical approximation to the solutions of
the induced dipoles which we rearrange as:

μ μ μ μ= + + +...n n(0) (1) ( ) (9)

with

Figure 1. Evolution of the total energy of a water box of 27 molecules
computed with PCG and different convergence thresholds (AMOEBA),
and with the TPCG2(ωfit) method, with P = diag. The drift on the total
energy is fully related to the polarization contribution, the TPCG2(ωfit)
converges to the 10−7 PCG results without any drift.
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μ α α= E( )n
n

( ) (10)

which is exactly the formulation of the perturbation theory (PT)
method proposed by Simmonett et al.,14 even though they follow
another reasoning related to perturbation theory. The ExPT
method that they propose is then made by truncating this
expansion at order two and by using a linear combination of μ1
and μ3

μ μ μ= +c cExPT 0 0 1 3 (11)

in order to provide the following expression for the
approximation of the polarization energy:

μ= −E E
1
2

T
pol,ExPT ExPT (12)

The computational cost of this method is then equivalent to
making three matrix-vector multiplication and its accuracy is
good in many cases but it has the disadvantage of using two
parameters that need to be fitted. Simmonett and co-workers
recently extended the ExPT technique to higher orders, giving
the OPTn class of methods,15 that lead to improved results but
require even more empirical parameters.

5. KRYLOV METHODS: PRECONDITIONED
CONJUGATE GRADIENT

The point of view of the Krylov methods is completely
different.21 It consists in minimizing some energy functional at
each iteration over some growing subspaces.
Starting from some initial guess μ0, let us define the associated

residual:

μ= −r E T0 0 (13)

We are now able to define the so-called Krylov subspaces of order
∈ p :

= −K r T rspan( , Tr , ..., )p
p

0 0
1

0 (14)

We clearly have the following inclusion of spaces:

⊆̲ ⊆̲K K ...1 2 (15)

Then, μn is determined as the minimum of the energy functional
over μ0 + Kp. As one is minimizing at each iteration the energy
functional over some increasing sequence of embedded spaces,
the error (as measured by the functional) is necessarily
decreasing. One can show that there exists a p ≤ 3N such that
the exact solution μ belongs to μ0 + Kp, meaning that these
methods always converge and even provide the exact solution
after a finite number of steps, the worst case being when they
converge in 3N iterations. In practice, however, only very few
iterations are needed to obtain accurate solutions.
The different Krylov methods are determined by the quantity

that is minimized over the Krylov subspaces: if one minimizes
Epol then one obtains the conjugate gradient (given the
assumption that T is symmetric definite positive), if one
minimizes ∥rn∥l2 then one gets the GMRES method21 (which
is equivalent to some version of the JI/DIIS22). But many other
methods exist, such as the Minres algorithm23 or the BiCG
method21 for nonsymmetric matrices.
The conjugate gradient algorithm updates three vectors at

each iteration: a descent direction, a dipole vector, and the
associated residual. These vectors are updated using three scalars
that are obtained by making some scalar products over these

vectors. After the following initialization (using here the direct
field αE as an initial guess):

μ α

μ
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= −
=

⎧
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r E T
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the algorithm reads as follows:
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where pi is the descent direction at iteration i, μi the associated
dipole vector, and ri the associated residual. The magic of the
conjugate gradient algorithm is that this simple recursion scheme
still guarantees μi to be the optimum over the entire Krylov-
subspace of order i.
There are several techniques to accelerate the convergence of

this algorithm. A widely used strategy is to use preconditioners.
Indeed, one can show that the convergence rate of the conjugate
gradient, and more generally of Krylov subspace methods,
depends on the condition number of the matrix that is being
inverted: the lower this number is (it is always greater than 1), the
faster the conjugate gradient will converge. In the case of
symmetric positive definite (s.p.d.) matrices as the polarization
matrix, this number can be expressed such as

κ
λ
λ

=T( ) max

min (18)

where λmax and λmin are the largest and smallest eigenvalues of the
polarization matrix. A preconditioner is then a matrix P that is
”close” to the inverse of T, such that the matrix P is easily applied
to a vector, κ(PT)≤ κ(T), and κ(PT) is close to 1. The conjugate
gradient algorithm is then applied to the matrix PT with PE as a
right-hand side. We first chose to use one of the simplest forms of
preconditioner: the diagonal or Jacobi preconditioner, in which P
is the inverse of the (block-)diagonal part of the polarization
matrix. The advantage of this choice in our context is that
multiplying a matrix by a diagonal matrix is computationaly
almost free and that the diagonal of T does not depend on the
positions of the atoms of the system that is studied. As a
consequence, this choice does not complicate the expression of
the gradients very much. On the down side, the diagonal of T is
not a perfect approximation of it, so that we do not expect the
acceleration of convergence to be the highest among the possible
choices of preconditioners. This is why we also considered a
more efficient preconditioner designed for the polarization
problem which we will present below. Wang and Skeel12 start
from the expression

α α= −− −IT ( )d
1 1

(19)

giving the first approximation

α α≈ +− IT ( )d
1

(20)
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which is in fact equivalent to one Jacobi iteration. A second
approximation is then made by only considering the interactions
within a certain cutoff in the matrix . A typical value for this
cutoff is 3 Å, a value that we also used for our numerical tests
presented below. This preconditioner has a bigger impact on
reducing the condition number of the polarization matrix than
the Jacobi one but it also has a higher computational cost per
iteration. This cost is typically a bit less than half a real space
matrix-vector product within a Particle Mesh Ewald simulation
with usual settings for the value we chose (7 Å cutoff). The
parallel implementation of this preconditioner would require
additional communications before and after the application of
this preconditioner.6 Finally, as it depends on the atoms
positions, the expression of the gradients of the associated
dipoles would be very involved (therefore in the following
sections we will only retain the diagonal preconditionner). To
illustrate the different rates of convergence of these iterative
methods we plotted in Figure 2 their convergence as well as the

one of JI/DIIS wich is described in ref. 7 (represented by the
norm of the increment) as a function of the number of iterations
in the context of the AMOEBA polarizable force field for the
ubiquitin protein in water. Note that the Jacobi iterations are not
convergent in this case and that both the JI/DIIS and the
Preconditioned Conjugate Gradient converge twice as fast as the
JOR (as supported by the theory, as the convergence rate of JOR
depends on the condition number, while the rate of Krylov
methods depends on its square root).
We will now explain how to truncate the preconditioned

conjugate gradient to get analytical expressions that approximate
the polarization energy.

6. TRUNCATED PRECONDITIONED CONJUGATE
GRADIENT

Let us define μTCGn, the approximation of the induced dipoles
obtained by truncating the conjugate gradient at order n. We
immediately have the result that Epol(μ) ≤ Epol(μTCGn) ≤
Epol(μTCGm) if n ≥ m, with Epol written as in eq 1, and μ being the
exact solution of the linear system. In other words, the quality of
the approximation is systematically improvable. One can then
unfold the algorithm at order one and two. Using the following
notations:
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3 (21)

one obtains the cumbersome but analytical approximations for
the dipoles corresponding to the conjugate gradient truncated at
order one and two, thus allowing the derivation of analytical
forces that are the exact negative of the gradients of the energy:

μ μ= + t rTCG1 0 4 0 (22)

μ μ γ γ= + + −t t tr P( )TCG2 0 4 1 2 0 1 4 1 (23)

As in the ExPT approach, one can take the following expression
as approximation of the polarization energy:

μ= −E E
1
2n n

T
pol,TCG TCG (24)

Note that both these expressions would be exact if the dipole
vectors were exact and that the closer these vectors are to the fully
converged dipoles, the closer these energies will be to the actual
polarization energy.
Indeed, we have:

μ μ μ μ μ μ| − | = − +E E E ET( ) ( )
1
2

1
2n

T T T
pol T(P)CG

(25)

μ μ μ μ| − | = | − |E E ET( ) ( )
1
2

( )n
T

pol T(P)CG (26)

leading to the following inequatlity:

μ μ μ| − | ≤ ∥ ∥ ·∥ ∥E E r( ) ( )
1
2n l n lpol T(P)CG 2 2

(27)

These energies are not the expression minimized over the Krylov
subspaces at each iteration of the conjugate gradient (CG)
algorithm (see eq 1), but they coincide at convergence which
should almost be the case if our method is accurate.
These results are naturally extended to the preconditioned

conjugate gradient (PCG). One can of course also choose to
truncate the (P)CG at a superior order and still be analytical to
obtain a more accurate approximation, at the price however of
additional computational time, and the analytical expression of
the energy and its derivatives will be incrementely more complex,
thus cumbersome to implement. In the following section, where
numerical results are presented, we will limit ourselves to TCG3
as the highest order of truncation.
Moreover, having chosen an order of truncation of the (P)CG,

one can exploit the residual (if it is computed to monitor the
accuracy) of the last iteration of the truncated algorithm in order
to get closer to the converged value by computing one step of a

Figure 2. Norm of the increment as a function of the number of
iterations for different iterative methods (AMOEBA), computed on
ubiquitin.
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fixed point iterative method. As did Wang and Skeel,12 we will
call this operation a peek step. Indeed, many fixed point iterative
methods such as the Jacobi and more generally the JOR only
require to know a starting value of the dipoles and the associated
residual to be applied at each iteration. Note that the Jacobi
method can be seen as a particular case of the JOR method with
ω = 1 and that this operation is not computationally expensive, as
it only requires a matrix-vector product with a diagonal matrix if
the residual is known. As for any fixed-point method of a linear
system, the asymptotic convergence of the JORmethod depends
on the spectral radius of the iteration matrix. More precisely, the
condition

αρ ω− <I T( ) 1d (28)

guarantees that the JOR method is convergent. Asymptotically,
the best convergence rate is obtained with the value of ω that
minimizes this spectral radius. One can show that if T is
symmetric positive definite, this value is

ω
λ λ

=
+
2

opt
min max (29)

λmin and λmax being, respectively, the smallest and largest
eigenvalue of αT.
As these results are asymptotic, one cannot necessarily expect

the associated methods to give the best results if only the so-
called peek step is applied, as this depends on the composition of
the current approximation (which is in our case provided by the
T(P)CG) in the eigenvector-basis of T.
Since we cannot rely on asymptotic results for one iteration,

we also explored another strategy that can be of use in cases in
which one is particularly interested in the values of the energies,
as for example inMonte Carlo simulations. Theωopt based on the
spectrum intends to further optimize all the modes of the
polarization matrix after the (P)CG steps (independently of the
actual approximation) and should therefore asymptotically
improve both the energy and the RMS. However, other values
of ω that take into account the actual approximation can be used
to further improve the accuracy. This explains why we tried,
starting from one or two iterations of (P)CG, to choose the value
of ω that gave the closest approximate polarization energy to the
fully converged one. Since the optimal parameter (in this new
sense) requires another matrix-vector multiplication, we tried to
obtain values of this parameter on the fly by fitting one or several
energies against the energies obtained with the fully converged
dipoles or a superior truncation of (P)CG. It will be called ωfit.
Starting for example from μTCG2, and noting:

μ μ αω= + rTCG2,peek TCG2 2 (30)

one can see this procedure as a line search: given the starting
point μ2, one further tries to optimize the energies along the
parametrized line μ2 + ωαr2 for ω ∈ .
Once one of these methods is chosen, analytical expressions of

the associated forces can be naturally obtained, thus ensuring that
the forces are (up to round off errors) the opposite of the exact
gradients of the polarization energy, and thus avoiding an energy
drift. Gradients of the energies have been derived and are
presented in a technical appendix at the end of the manuscript.

7. NUMERICAL RESULTS
7.1. Energy Conservation of the T(P)CGn Approaches.

We first emphasize that Figure 1 already displays an important
result: the TCGn methods ensure total energy conservation as

they use analytical evaluation of the forces. All further
refinements discussed in section 6 lead to the same behavior,
incremently closer to the reference energy.

7.2. Stability of the Spectrum. Before presenting the
complete numerical tests, we analyze here the spectrum of the
polarization matrix during a MD simulation. Indeed, as pointed
out in the theory section, some refinements of the TCG rely on
the extreme eigenvalues of T and αT. We followed the evolution
of these eigenvalues during 100 ps ofMD. Those tests were made
with the Lanczos algorithm since all the matrices we are
interested in are symmetric. Indeed, one great advantage of the
Lanczos method is that it reduces the computational cost
compared to direct methods (such as the one available in the
LAPACK library). That way, if direct eigenvalue solvers force the
user to compute the full spectrum (i.e all the eigenvalues),
Lanczos method allows rapid access to the extreme eigenvalues
by constructing a much smaller tridiagonal matrix whose
spectrum is close to the one of the original matrix, leading to
almost identical extreme eigenvalues that can then be obtained in
a few iterations. We observed that in all cases these values are
stable over the 100 ps of the MD trajectories as pointed out by
Skeel.12 This can be seen for S3 and the ubiquitin system in
Figures 3 and 4. This result motivated our choice to computeωopt

and ωfit for the first geometry of our equilibrated systems and to
keep this value for all the others geometries. Both our Lanczos

Figure 3. Evolution of the extreme eigenvalues of αT for S3 and
ubiquitin.

Figure 4. Evolution of ωopt for S3 and ubiquitin.
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implementation and the energy fitting procedure are fast enough
to be used on the fly while being negligeable over a 100 ps MD
simulation. In our tests, the adaptive reevaluation of the ω’s was
nevertheless never required.
7.3. Computational Details and Notations. In this

section, we will present some numerical results from the
methods presented above. All the tests presented here were
made using the AMOEBA polarizable force field24,25 imple-
mented in our Tinker-HP code.26 The proposed benchmarks
deal with homogeneous and inhomogeneous systems: water
clusters and protein in water droplets as well as an ionic liquid
system. The three water systems will be called S1, S2, and S3 and
contain respectively 27 molecules (81 atoms), 216 molecules
(648 atoms), and 4000 molecules (12000 atoms). We chose
difficult systems ranging from usual proteins to metalloproteins
and highly charged ionic liquids.27 The protein droplets are,
respectively, a metalloprotein containing two Zn(II) cations
(nucleocapsid protein ncp7) with water (18515 atoms including
counterions), the ubiquitin protein with water (9737 atoms), and
the dhfr protein with water (23558 atoms). The ionic liquid
system is made of [dmim+][Cl−] (1−3 dimethylimidazolium)
ions, making it a highly charged system of 3672 atoms with a very
different regime of polarization interactions. All the results
presented in this section were averaged over 100 geometries that
were extracted from a 100 ps MDNVT trajectory (one geometry
was saved every picosecond) at 300 K for all systems, except the
[dmim+][CL−] at 425 K. The results, that will give indications
about the accuracy of the approximate methods compared to the
fully converged iterative results, will give two different and
complementary aspects of this accuracy. We will first compare
the polarization energies (in kcal/mol) obtained with dipoles
converged with a very tight criterion (RMS of the residual under
10−9) to the ones obtained with T(P)CG. We will then present
the RMS of the difference between the fully converged dipole
vectors and the approximate methods. This RMS is a good
indicator of the quality of T(P)CG forces compared to the
reference: the smaller this RMS is, the closer the approximated
but analytical forces will be to the reference force.
Tables 1 to 4 describe the water systems and Tables 5 to 8

describe the protein droplets and ionic liquid. We will denote by
“ref” the results obtained with dipoles converged up to 10−9 in
the RMS of the residual; by “ExPT” the results obtained with the
method of Simmonnet et al. presented in section 3; by “TCGn”
(with n = 1, 2, and 3) the results obtained with the CG truncated
at order 1, 2, and 3; by “TPCGn” (P = diag) (with n = 1, 2, and 3)
the results obtained with the preconditioned (with the diagonal)
CG truncated at order 1,2 and 3; by “TPCGn” (P = Skeel) (with
n = 1, 2, and 3) the results obtained with the preconditioned
(using Wang and Skeel’s preconditioner) CG truncated at order
1, 2, and 3.
Furthermore, we will present results obtained with different

kinds of peek steps. We will first denote by TCGn(ω = 1) (with n
= 1, 2, and 3) the results obtained with the CG truncated at
different orders when a Jacobi peek step is made after the last
conjugate gradient iteration. We will also denote by TPCGn (P =
diag) the results where the same peek step is made after different
numbers of iterations of the PCGwith a diagonal preconditioner.
We will also denote by TPCGn(P = diag)(ωopt) (with n = 1

and 2) the results obtained with 1 and 2 iterations of diagonally
preconditioned CG and a JOR peek step with an “optimal” ωopt
in the sense of section 6 (that depends whether a preconditioner
is used or not).

As explained in the previous section we also explored a strategy
where the damping parameter of the JOR step is fitted to
reproduce energy values. In the following tables, the damping
parameter will be denoted by ωfit.

7.4. Numerical Results. A first observation to make is that
given a particular matrix (preconditioned or not) and with or
whithout a JOR peek step, the results are always better in terms of
energy and RMS when one performs more matrix-vector
products, that is, going to a higher order of truncation. This is
naturally explained in the context of the Krylov methods: an
additional matrix-vector product increases the dimension of the
Krylov subspace on which the polarization functional (see eq 1)
is minimized, and thus systematically improves the associated
results. We should also recall here that the functional that is
minimized over growing subspaces is not exactly the same as the
one we are taking as the polarization energy and that this explains
the nonvariationality of some of our results: there are many cases
where the energy associated TCG3 is slightly lower than the one
associated with the fully converged dipoles (see discussion in
section 6).

We can also see on the numerical tests that using a
preconditioner systematically reduces the associated RMS.
Concerning the energy, the improvement is less systematic and
depends on the type of preconditioner: the diagonal is less
accurate than the one described byWang et al.,12 a result that was
anticipated.
Nevertheless, preconditioning is important when coupled with

a peek step: a combination of any preconditioner with the peek is
better than the peek alone. However, concerning the peek itself,
one observes a systematic improvement of both RMS and energy

Table 1. Polarization Energies of Water Systems

water box S1 S2 S3

ref −81.03 −803.33 −15229.87
ExPT −69.54 −660.95 −12822.79
TCG1 −73.50 −728.73 −13814.35
TCG2 −80.69 −800.32 −15173.15
TCG3 −81.24 −805.20 −15265.65
TPCG1 (P = diag) −74.98 −741.91 −14028.18
TPCG2 (P = diag) −80.81 −801.61 −15194.87
TPCG3 (P = diag) −81.20 −805.26 −15268.43
TPCG1 (P = Skeel) −78.63 −779.17 −14743.48
TPCG2 (P = Skeel) −81.03 −803.11 −15222.53
TPCG3 (P = Skeel) −81.06 −803.64 −15236.03

Table 2. Polarization Energies of Water Systems, Using a
Peek-Step

water box S1 S2 S3

ref −81.03 −803.33 −15229.87
TCG1(ω = 1) −81.41 −806.83 −15315.13
TCG2(ω = 1) −80.23 −794.49 −15061.22
TCG3(ω = 1) −80.78 −800.83 −15181.55
TPCG1 (P = diag)(ω = 1) −79.88 −791.51 −15001.40
TPCG2 (P = diag)(ω = 1) −80.98 −802.74 −15218.27
TPCG3 (P = diag)(ω = 1) −81.03 −803.27 −15228.74
TPCG1 (P = diag)(ωopt) −78.98 −780.94 −14789.04
TPCG2 (P = diag)(ωopt) −80.95 −802.50 −15213.17
TPCG1 (P = diag)(ωfit) −81.06 −803.42 −15230.10
TPCG2 (P = diag)(ωfit) −81.02 −803.06 −15231.14
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with and without preconditioning. In particular this is the case
when ω = 1 (Jacobi peek step).
As the spectrum is stable (see section 7.2), one can use an

adaptive ωopt coefficient computed on one geometry using a few
iterations of the Lanczos method. In that case, the energies are
slighlty less accurate than the ones obtained with ω = 1.
Concerning the RMS, we observe a systematic reduction by a
factor 2 for TPCG2 and TPCG3 but not for TPCG1. This occurs
because, if the asymptotic coefficientωopt is the same, the starting
point of the peek step is different and is significantely better for
TPCG2 and TPCG3 as additional matrix-vector products have
been computed.

The results obtained with ωfit after 1, 2, or 3 iterations of PCG
show that it is possible to stay close to the converged value of the
polarization energy with only one or two matrix-vector products
and a ω parameter that is only fitted once during a 100 ps
dynamic. But we can also see that this is made at the cost of
slightly degrading the RMS compared to the results obtained
withωopt or withω = 1. Overall, these RMS are of the same order
of magnitude than the ones obtained with ωopt and ω = 1. This
balance between RMS and energy depending on the choice of ω
as the relaxation parameter for a JOR peek step can be seen as the
choice to favor the minimization of the error along some modes
of the polarization matrix: the energy is more sensitive to modes
corresponding to large eigenvalues whereas the RMS is sensitive
to all of them. Overall, a ω = 1 Jacobi peek step tends to improve
both RMS and the energy whereas ωopt favors RMS and ωfit
favors energies. As we showed, TPCG1 should not be used with a
ωopt peek step but with one corresponding to ω = 1 and ωfit, but
all options are open for TPCG2 and TPCG3.
A choice can then be made depending on the simulation that

one wants to run. For a Monte Carlo simulation it is essential to
have accurate energies: the strategy of using an adaptative
parameter (refittable at a negligeable cost) that allows the correct
reproduction of the energies with only one or two iterations of
the (P)CG would hence produce excellent results. On the other
side, during a MD simulation, one wants to get the dynamics
right; in this case, choosing the method that minimizes the RMS
and thus the error made on the forces may produce improved
results. For example, using TPCG2(P = diag)(ωopt) is a good
strategy to fulfill this purpose. However, the procedure leading to
ωfit only slightly degrades the RMS and provides RMS far beyond
the usual values for which the force field models are
parametrized. One has also to keep in mind that other source
of errors exist in MD, such as the ones due to the PME
discretization or van der Waals cutoffs, that are larger than the
error discussed in this section. Nevertheless, none of the
refinements will compete with a full additional matrix-vector
product because an additional CG step is optimal. We see clearly
that TPCG3(ωfit) reaches high accuracy on both RMS and
energies.
Concerning preconditioning, we confirm the very good

behavior of the Skeel preconditioner. However, its cost is non-
negligible in terms of computations, in terms of necessary
communications arising when running in parallel, and in terms of
complexity of implementation. We recommend therefore the use
of the simpler yet efficient diagonal preconditioner. Overall,
possibilities of tayloring TCG approaches are infinite. In practice,
one could design more adapted preconditioners combining
accuracy and low computational cost.
To conclude, a striking result is obtained for well conditioned

systems such as water: computations show that they will require a
smaller order of truncation than the proteins to obtain the same
level of accuracy.

8. CONCLUSION
We proposed a general way to derive an analytical expression of
the many-body polarization energy that approximates the inverse
of T using a truncated preconditioned conjugate gradient
approach. The general method gives analytical forces, guarantee-
ing that they are the opposite of the exact gradients of the
energies, parameter free, and can replace the usual many-body
polarization solvers in popular codes with little effort. The
proposed technique allows by construction a true energy
conservation as it is based on analytical derivatives. The method

Table 3. RMS of the dipole vector compared to the reference
for water systems

water box S1 S2 S3

ExPT 1.4 × 10−2 2.5 × 10−2 2.6 × 10−2

TCG1 6.3 × 10−3 7.0 × 10−3 7.1 × 10−3

TCG2 1.7 × 10−3 1.9 × 10−3 1.9 × 10−3

TCG3 4.7 × 10−4 5.4 × 10−4 5.5 × 10−4

TPCG1 (P = diag) 4.9 × 10−3 5.6 × 10−3 5.8 × 10−3

TPCG2 (P = diag) 9.2 × 10−4 1.1 × 10−3 1.1 × 10−3

TPCG3 (P = diag) 3.8 × 10−4 3.8 × 10−4 3.9 × 10−4

TPCG1(P = Skeel) 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TPCG2 (P = Skeel) 3.0 × 10−4 3.9 × 10−4 4.2 × 10−4

TPCG3 (P = Skeel) 6.6 × 10−5 9.5 × 10−5 1.0 × 10−4

Table 4. RMS of the Dipole Vector Compared to the
Reference for Water Systems, Using a Peek-Step

water box S1 S2 S3

TCG1(ω = 1) 3.6 × 10−3 3.9 × 10−3 3.7 × 10−3

TCG2(ω = 1) 1.5 × 10−3 1.7 × 10−3 1.8 × 10−3

TCG3(ω = 1) 4.6 × 10−4 4.9 × 10−4 4.8 × 10−4

TPCG1(P = diag)(ω = 1) 2.2 × 10−3 2.6 × 10−3 2.7 × 10−3

TPCG2 (P = diag)(ω = 1) 4.1 × 10−4 5.0 × 10−4 5.2 × 10−4

TPCG3 (P = diag)(ω = 1) 1.3 × 10−4 1.5 × 10−4 1.6 × 10−4

TPCG1 (P = diag)(ωopt) 2.3 × 10−3 2.7 × 10−3 2.8 × 10−3

TPCG2 (P = diag)(ωopt) 3.9 × 10−4 4.6 × 10−4 4.7 × 10−4

TPCG1 (P = diag)(ωfit) 2.6 × 10−3 3.0 × 10−3 3.0 × 10−3

TPCG2 (P = diag)(ωfit) 5.3 × 10−4 7.0 × 10−4 1.0 × 10−3

Table 5. Polarization Energies of Protein Droplet and Ionic
Liquids

system ncp7 ubiquitin dhfr
[dmim+]
[Cl−]

ref −24202.54 −11154.87 −28759.01 −1476.79
ExPT −27362.70 −10919.77 −28076.62 −5841.73
TCG1 −21733.63 −9897.22 −25583.50 −1428.35
TCG2 −23922.79 −11031.67 −28463.51 −1420.00
TCG3 −24262.87 −11174.93 −28812.99 −1450.22
TPCG1 (P =
diag)

−21438.14 −9907.09 −25588.07 −1465.66

TPCG2 (P =
diag)

−23613.31 −10948.32 −28206.73 −1462.22

TPCG3
(P = diag)

−24219.49 −11164.62 −28775.53 −1469.89

TPCG1 (P =
Skeel)

−22489.55 −10458.44 −27030.86 −1424.49

TPCG2
(P = Skeel)

−24056.53 −11090.36 −28637.35 −1469.05

TPCG3
(P = Skeel)

−24208.22 −11144.53 −28763.55 −1477.02
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minimizes the energy over the (preconditioned) Krylov space
which leads to superior accuracy than fixed point inspired
methods such as ExPT and associated methods. It does not use
any history of the previous steps and is therefore fully time
reversible and is compatible with multitimestep integrators.28

The best compromise between accuracy and speed appears to be
the TPCG-2 approach that consists of two iterations of PCG
with a computational cost of three matrix vector multiplications
for the energy (one for the descent direction plus two for the
iterations). The analytical derivatives have a cost equivalent to an
additional matrix vector product. The overall computational cost
is therefore identical to that of the ExPT. We showed that the
method allows the computation of potential energy surfaces very
close to the exact ones and that it is systematically improvable

using a final peek step. Strategies for adaptative JOR coefficients
have been discussed and allows an improvement of the desired
quantities at a negligeable cost. Overall, among all the derived
methods, TPCG3(ωfit) provides high accuracy in both energy
and RMS. Concerning the future improvements of the accuracy
of the method, one could find dedicated preconditionners
improving the efficiency of the CG steps. Nevertheless, the final
choice of ingredients will be a trade-off between accuracy,
computational cost, and communication cost when running in
parallel. We will address this issue in the context of the Tinker-
HP package. The TPCGn approaches will be coupled to a
domain decomposition infrastructure with linear scaling
capabilities, thanks to a SPME8 implementation, which is
straightforward in link with our previous work on PCG. Future
work will then include validation of the methods by comparing
condensed-phase properties obtained using different orders of
TCG. Given the level of accuracy already obtained on induced
dipoles and energies, we expect the majority of these properties
to be conserved by using T(P)CG2 and higher-order methods.

■ TECHNICAL APPENDIX

A.1. Analytical Gradients and Polarization Energies for TCG
In this section, we will present the analytical derivatives of the
polarization energies associated with the polarization energies
Epol,TCG1 and Epol,TCG2 with respect to the positions of the atoms
of the system. The extension to Epol,(P=diag)TCG1 and
Epol,(P=diag)TCG2 is straightforward, as is the expressions including
a final JOR peek step. We don’t report here the expression of the
analytical gradients of Epol,TCG3 as it follows the same logic but is
just incremently complex.
These gradients have been validated against the ones obtained

with finite differences of the energies and an implementation of
these equations will be accessible through the Tinker-HP

Table 6. Polarization Energies of Protein Droplet and Ionic Liquids, Using a Peek-Step

system ncp7 ubiquitin dhfr [dmim+][Cl-]

ref −24202.54 −11154.87 −28759.01 −1476.79
TCG1(ω = 1) −24481.14 −11231.35 −28986.08 −1477.08
TCG2(ω = 1) −23965.96 −11009.06 −28384.49 −1465.73
TCG3(ω = 1) −24121.02 −11105.78 −28635.73 −1441.95
TPCG1 (P = diag)(ω = 1) −23532.73 −10829.84 −27972.41 −1493.58
TPCG2 (P = diag)(ω = 1) −24123.65 −11128.14 −28683.52 −1471.34
TPCG3 (P = diag)(ω = 1) −24194.37 −11150.95 −28749.68 −1478.83
TPCG1 (P = diag)(ωopt) −22773.65 −10513.24 −27079.47 −1484.24
TPCG2 (P = diag)(ωopt) −23938.70 −11066.44 −28504.96 −1468.29
TPCG1 (P = diag)(ωfit) −24161.11 −11162.02 −28766.40 −1479.06
TPCG2 (P = diag)(ωfit) −24205.30 −11154.21 −28753.60 −1475.08

Table 7. RMS of the Dipole Vector Compared to the
Reference for Protein Droplets and Ionic Liquids

water box ncp7 ubiquitin dhfr
[dmim+]
[Cl-]

ExPT 8.1 × 10−2 5.2 × 10−2 5.4 × 10−2 1.3 × 10−1

TCG1 8.9 × 10−3 8.8 × 10−3 8.8 × 10−3 1.1 × 10−2

TCG2 3.5 × 10−3 3.2 × 10−3 3.2 × 10−3 7.2 × 10−3

TCG3 2.1 × 10−3 1.7 × 10−3 1.7 × 10−3 5.3 × 10−3

TPCG1 (P =
diag)

8.6 × 10−3 8.0 × 10−3 8.1 × 10−3 6.9 × 10−3

TPCG2
(P = diag)

2.5 × 10−3 2.0 × 10−3 2.2 × 10−3 3.4 × 10−3

TPCG3
(P = diag)

7.1 × 10−4 6.5 × 10−4 7.2 × 10−4 7.9 × 10−4

TPCG1
(P = Skeel)

5.5 × 10−3 4.4 × 10−3 4.5 × 10−3 5.6 × 10−3

TPCG2 (P =
Skeel)

9.0 × 10−4 7.7 × 10−4 7.8 × 10−4 1.5 × 10−3

TPCG3 (P =
Skeel)

2.1 × 10−4 1.8 × 10−4 1.9 × 10−4 3.2 × 10−4

Table 8. RMS of the Dipole Vector Compared to the Reference for Protein Droplets and Ionic Liquids, Using a Peek-Step

water box ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1(ω = 1) 4.6 × 10−3 4.4 × 10−3 4.5 × 10−3 7.0 × 10−3

TCG2(ω = 1) 2.9 × 10−3 2.5 × 10−3 2.5 × 10−3 5.5 × 10−3

TCG3(ω = 1) 1.6 × 10−3 1.1 × 10−3 1.1 × 10−3 4.1 × 10−3

TPCG1 (P = diag)(ω = 1) 4.4 × 10−3 3.9 × 10−3 4.1 × 10−3 3.2 × 10−3

TPCG2 (P = diag)(ω = 1) 1.7 × 10−3 1.4 × 10−3 1.7 × 10−3 1.6 × 10−3

TPCG3 (P = diag)(ω = 1) 4.3 × 10−4 3.8 × 10−4 4.8 × 10−4 4.5 × 10−4

TPCG1 (P = diag)(ωopt) 5.1 × 10−3 4.7 × 10−3 4.8 × 10−3 3.8 × 10−3

TPCG2 (P = diag)(ωopt) 1.3 × 10−3 1.0 × 10−3 1.1 × 10−3 1.9 × 10−3

TPCG1 (Jacobi)(ωfit) 4.9 × 10−3 4.5 × 10−3 4.6 × 10−3 4.5 × 10−3

TPCG2 (Jacobi)(ωfit) 2.2 × 10−3 1.7 × 10−3 2.1 × 10−3 2.0 × 10−3
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software public distribution. Since we are in the context of the

AMOEBA force field, we will consider that each atom site

embodies a permanent multipole expansion up to quadrupoles.

For site i, the components of this expansion will be denoted by

qi,μ⃗p,i,θi.

Furthermore, since the permanent dipoles and quadrupoles

are expressed in a local frame that depends on the positions of

neighboring atoms, they are rotated in the lab frame with rotation

matrices depending on these positions, so that we now have to

deal with partial derivatives of the dipole and quadrupole

components: the “torques”. Therefore, the derivative of the

polarization energy ϵ, written as μ ET1
2

for μ = μTCG1 or μTCG2,

with respect to the β-component of the kth site is given by
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Formally, these derivatives can be written as

μ μϵ′ = − ′ + ′E E
1
2

( )T T
(32)

Hence different types of derivatives are involved:

• derivatives of the rotated permanent multipoles

• derivatives of the permanent electric field with respect to

the spatial components of the different atoms

• derivatives of the permanent electric field with respect to

the permanent multipoles

• derivatives of the induced dipole vector (μ) with respect to

spatial components

• derivatives of the induced dipole vector with respect to the

permanent multipole components

As these quantities are standard except for the ones concerning
the approximate dipole vector, these are the only one we will
express here.

Using the same notation as before we have
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So that

μ μ= + t rTCG1 0 4 0 (34)

μ μ γ γ= + + −t t tr P( )TCG2 0 1 2 4 0 1 4 1 (35)

μ μ γ γ γ β

γ γ γ β γγ

= + + + +

− + + −

t t t

t t t

r

P P

( )

( )
TCG3 0 4 1 2 2 2 2 2 0

1 4 2 4 2 2 4 1 1 2 2 (36)

We then need to differentiate these expressions with respect to

space and multipole components, respectively. Using the

following formal development for the spatial derivative:
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μ μ

γ

′ = ′ − ′ − ′

′ = ′

′ = ′ + ′

∥ ′ =

′ = ′ + ′

′ =
′∥ + ∥ ∥ ′ − ∥ ∥ ′

′ = ′ + ′

′ = ′ + ′ + ′

′ =
′ − ′

′ = ′ − ′∥ ∥ − ∥ ∥ ′

− − ∥ ∥ ′

n

t

t
n n t n t t

t

t t t t

t
n t n t

t

t
t t n n t

t n t

r E T T

r r

P T r Tr

P P P

r P P r

P P P

P T P TP

P P P P P P

P P

P

2

( ) 2

( ( ) ) ( )2

1
((2 ( ) )

( ) )

T

T

T T

T T T

0 0 0

0 0 0

1 0 0

1
2

1 1

1 0 1 1 0

2
0 1

2
0 1

2
1
2

0 1
2

1 1

1
4

2 1 1

3 1 1 2 1 2 1 1 1 2

4
0 1 0 1

1
2

1
3
2 1 1 0 1

2
0 1

2
3

1
2

0 1
2

3

(37)

we obtain

μ μ′ = ′ + ′ + ′t tr rTCG1 0 4 0 4 0 (38)

μ μ γ γ γ

γ γ γ

′ = ′ + + ′ + ′ + ′ + ′

+ ′ + ′ + ′

t t t t t

t t t

r r

P P P

( ) ( )TCG2 0 4 1 2 0 4 1 2 1 2 0

1 4 1 1 4 1 1 4 1 (39)
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