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The capabilities of the polarizable force fields for alchemical

free energy calculations have been limited by the high compu-

tational cost and complexity of the underlying potential

energy functions. In this work, we present a GPU-based gen-

eral alchemical free energy simulation platform for polarizable

potential AMOEBA. Tinker-OpenMM, the OpenMM implemen-

tation of the AMOEBA simulation engine has been modified to

enable both absolute and relative alchemical simulations on

GPUs, which leads to a �200-fold improvement in simulation

speed over a single CPU core. We show that free energy val-

ues calculated using this platform agree with the results of

Tinker simulations for the hydration of organic compounds

and binding of host–guest systems within the statistical errors.

In addition to absolute binding, we designed a relative

alchemical approach for computing relative binding affinities

of ligands to the same host, where a special path was applied

to avoid numerical instability due to polarization between the

different ligands that bind to the same site. This scheme is

general and does not require ligands to have similar scaffolds.

We show that relative hydration and binding free energy cal-

culated using this approach match those computed from the

absolute free energy approach. VC 2017 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24853

Introduction

Free energy is the driving force for spontaneous molecular

processes and accurate alchemical free energy calculations can

benefit a broad range of chemical and biomedical applica-

tions.[1–5] The accurate prediction of the binding affinities for

ligands to their target proteins has been a great challenge in

the computational drug development process.[6] Today, it is

common to utilize empirical docking algorithms in the identifi-

cation of potential lead compounds.[7–11] However, to screen

large ligand libraries in a short amount of time, empirical

docking typically relies on incomplete physics models,[12] and

only account for limited system dynamics (such as loop flexi-

bility) when predicting ligand affinity.[13] These limitations

result in a lack of the accuracy necessary for lead optimiza-

tion.[14,15] The calculation of ligand binding free energies from

elaborated molecular simulations has also been limited by a

combination of underlying force fields and sampling

algorithms.[16,17]

One pathway for the calculation of binding free energies is

the double decoupling approach. In this approach, one

includes a parameter (lambda) that controls the interaction of

a ligand with its environment. When transitioning from

lambda 5 1 (full ligand intermolecular interaction) to

lambda 5 0 (no ligand intermolecular interaction), a ligand’s

interaction with its environment is evaluated. Simulations of

the system are conducted with the solvated ligand and the

protein-ligand complex, and the binding free energy is calcu-

lated as the complexation energy minus the solvation energy,

plus standard state and other corrections.[18] In this methodol-

ogy restraints[19] are often used to keep the ligand bound to

the protein complex throughout the decoupling process . The

magnitude of this restraint term is then analytically corrected

for.

Another major class of approaches of binding free energy

involve the calculation of the potential of mean force. In these

approaches, pioneered by the Roux lab,[20] one calculates the

average force needed to maintain a system in a given configu-

ration (e.g., the distance and orientation between a ligand and

the active site). Free energy is then calculated by calculating
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the work integral from the starting to ending distances. To

obtain energy data on all relevant distances, a biasing process

such as steered MD[21,22] or umbrella sampling[20,23] is often

used. The advantage of this technique is that it allows for the

collection of free energy profiles, including information about

the energy barriers to binding. The main challenge of this

approach is the difficulty in defining an appropriate reaction

coordinate for the biasing process. Therefore, this technique

has been mostly applied to systems such as channel pro-

teins[24,25] that have an obvious pulling dimension. However,

this technique can also be applied to general protein–ligand

binding.[26–28]

The free energy between the bound and unbound states in

either approach can be sampled by using various techniques

such as free energy perturbation (FEP),[3] thermodynamic inte-

gration (TI),[29] metadynamics,[30–32] or orthogonal space ran-

dom walk (OSRW).[33,34] A common method for calculating the

free energy between neighboring states in alchemical pertur-

bation is the Bennett acceptance ratio (BAR).[35] The free

energy of binding can then be calculated as the difference

between the ligand–host interaction energy and the ligand–

water interaction energy. In thermodynamic integration, one

utilizes lambda much like in setting up a simulation for BAR

and calculate the numerical integration of <@H/@k)>k from

lambda 5 0 to lambda 5 1.[29] Compared to BAR, it can be dif-

ficult to determine which discrete values of lambda should be

used, as convergence can be difficult in regions of high curva-

ture of <@H/@k)>k. Due to this, comparison studies[36] have

suggested that TI simulations may require more states than

BAR to reach converged free energies. However, TI simulations

require less postsimulation processing than BAR-based

approaches.

The second ingredient of free energy simulations is the choice

of force field. Popular force fields include CHARMM[37–40] and

AMBER.[41–44] More recent advances have resulted in the devel-

opment of force fields with more complex electrostatics models,

particularly incorporation of polarization. General polarizable

force fields include polarizable multipole-based AMOEBA,[45–47]

polarizable OPLS,[48–50] fluctuating charge,[51,52] and Drude-Oscil-

lator-[53–55] based CHARMM force fields. The defining feature of

the AMOEBA force field we have been developing is its electro-

static model based on permanent atomic multipoles, as well as

many-body polarization through induced dipoles. These added

terms, while computationally expensive, allow for a more rigor-

ous modeling of ligand-protein interaction, particularly at short

range, than is possible using a fixed-charge-based force field.

Previous work using AMOEBA force field has shown an accu-

rate recapitulation of experimental free energies in small mole-

cules hydration,[55,57–59] metal ion hydration,[60–62] as well as

ligand binding in synthetic hosts,[63] and protein systems.[47,64–68]

The inclusion of a complex electrostatic force leads to increasing

computational cost, so that potential it can benefit even more

from parallel computing of protein-scale systems consisting of

tens of thousands of atoms. Earlier implementations of AMOEBA

in Tinker have utilized OpenMP,[69] which allows for limited paral-

lelism on commercially available CPUs. Massively parallel compu-

tation using AMOEBA is possible on supercomputers using the

Tinker-HP package.[70,71] In addition, AMOEBA has been previ-

ously implemented in OpenMM, enabling massively parallel

molecular dynamics simulations on GPUs.[72,73] To enable alchem-

ical free energy calculations in OpenMM, we have incorporated

“lambda” into force and energy calculation via a soft-core

approach,[74] which is necessary to remove the singularities in

van der Waals (vdW) interactions that occurs when atoms are in

close contacts.[75] In addition, we modified the Tinker-OpenMM

interface to allow for perturbation of the electrostatic force via

the scaling of electrostatic parameters. Another feature of

OpenMM that is now supported by the Tinker-OpenMM interface

is the addition of support for the CustomCentroidBondForce.

This addition enables the coupling of a two groups of atoms

(such as a ligand and its binding site).

Compared to the state of CPU alchemical free energy calcu-

lations, GPU alchemical free energy calculations is still in its

infancy. It is possible to perform MD simulations on GPUs

using a few software, including AMBER,[76] NAMD,[77] and

OpenMM.[72] However, very few GPU platforms have yet sup-

ported alchemical simulations. In addition to the work with

OpenMM-AMOEBA described here, the YANK package for the

use of OpenMM to simulate AMBER force fields is currently in

development. Therefore, the AMOEBA on GPU implementation

described here (Tinker-OpenMM) constitutes the first available

platform for free energy perturbation simulations on GPUs

using a polarizable force field.

It is not always necessary to compute the absolute alchemi-

cal free energy, and binding or solvation energies relative to a

reference ligand are sufficient. In those cases, it may be advan-

tageous to calculate relative energies instead of absolute ener-

gies. Many previous relative binding free energy calculation

use a “dummy atom” single topology approach[78–82] where a

pair of ligands are simulated as a common core of atoms con-

nected to a set of atoms sufficient to describe both desired

molecules. This dummy atom approach has been used to cal-

culate a number of molecular properties, including binding

free energies[79–83] Previous work with the AMOEBA force fields

on CPUs have accurately calculated the relative binding free

energies of ligands to trypsin using a single topology

approach.[66,67] The weakness of this scheme is that it is not

general; it is more suitable for pairs of molecules with signifi-

cant chemical similarity. A different approach is that of dual

topology free energy calculation, where two ligands are always

present in the binding pocket. Relative complexation free

energy is calculated via a path starting in a state with fully

ligand 1–environmental interaction, and ending at a state of

fully ligand 2–environmental interaction. Dual topology free

energy calculations have been possible in CHARMM since the

late 80s[84] and have more recently been implemented in

AMBER.[76] However, this dual topology scheme is more diffi-

cult to implement in a polarizable force field due to the com-

plexity of the electrostatics making it difficult to selectively

“scale” the polarization between two ligands. By utilizing a

pathway where only one ligand is charged during any pertur-

bation step, we were able to avoid this complication.

Currently, the ability to perform GPU-based platform

alchemical simulations, particularly for polarizable force fields,
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has been limited. In this work, we created Tinker-OpenMM, an

OpenMM implementation of AMOEBA that enables alchemical

free energy calculations on GPUs, while also adding the capa-

bility to perform dual topology simulations to both the Tin-

ker[85] and OpenMM[72,73] platforms. We then proceed to test

the GPU-based free energy calculations for hydration free ener-

gies of aromatic systems,[86] absolute and relative binding free

energies of the sampl4 host–guest systems.[87]

Implementation Details

Tinker-OpenMM interface

Tinker-OpenMM is built using an interface to pass tinker coor-

dinates and parameters to OpenMM. Tinker reads in the input

key and coordinate files, and passes the relevant variables in

to a C11 script. This script then uses the OpenMM C API to

create the relevant OpenMM parameters and forces, and ini-

tiates GPU Molecular Dynamics simulation. Coordinate saving

is then managed by occasionally transferring atomic coordi-

nates and velocities from the GPU to main system memory.

Tinker then saves these outputs in Tinker coordinate and

velocity files, enabling post-processing by Tinker commands

(e.g., BAR). This interface was originally created by Mark Frie-

drichs, Lee-Ping Wang, Kailong Mao, and Chao Lu.

Absolute binding free energy

In this work, we employ double-decoupling and alchemical

perturbation to compute free energy of binding. First, the

electrostatic interactions between the ligand and its environ-

ment (water or protein/water) are scaled from 0 to 100% in a

series of simulations. With no electrostatic interaction between

ligand and surroundings, a series of simulations are run where

the (softcore) vdW interactions between ligand and environ-

ment are scaled. The path utilized for absolute complexation

simulations is shown in Figure 1. This process is also repeated

in an aqueous environment to account for hydration free

energy.

After running these simulations, the Bennett acceptance

ratio (BAR) method is used to calculate the free energy differ-

ence between each pair of neighboring states. Since energy is

a state function, we can calculate the total complexation

energy as the sum of many small perturbations in ligand-

environmental interaction strengths. The binding energy is cal-

culated as the complexation free energy, minus the hydration

free energy, with the addition of several corrections explained

below.

When conducting alchemical perturbation, it is necessary to

denote which atoms belong to the ligand. In the simulation

system, the ligand atom indices are identified by using the

ligand keyword in the key file (e.g., “ligand -1 14” denotes that

atoms 1 through 14 belong to a ligand).

Alteration of the electrostatic interactions between the

ligand and its environment is accomplished via the scaling of

the electrostatic parameters passed from the Tinker interface

to OpenMM. The atomic charge, dipole, quadrupole, and

polarizability of all ligand atoms are each multiplied by the

current simulation electrostatic lambda value (between 0 and

1), which is denoted by the ele-lambda keyword. This results in

no electrostatic interaction between the ligand and its envi-

ronment when ele-lambda 5 0, and full interaction strength

when ele-lambda 5 1. This methodology also “turns off” the

intra-ligand electrostatic interactions. When calculating hydra-

tion free energy, the intra-ligand/solute electrostatic contribu-

tions are added back by “growing” the electrostatic

parameters for ligand alone (in gas phase). However, when cal-

culating binding free energy, this contribution is exactly can-

celed by an equal omission in the ligand–solvent interaction.

When conducting alchemical perturbation simulations, the

change in energy and structure that results from each pertur-

bation needs to be relatively small. To avoid the numerical

instability of the standard vdW function when the ligand–envi-

ronment interaction approaches zero, a softcore buffered 14–7

vdW (energy equation shown below) has been used to calcu-

late the forces and energies.[67]

Uvdw
ij 5k5

ijEij
1:077

0:7 12kij

� �2
1 qij10:07
� �7

1:12

0:7 � 12kij

� �2
1q7

ij10:12
22

 !

(1)

Here eij is the well depth, and qij represents the current inter-

atomic distance divided by rmin, the interatomic distance that

results in the lowest vdW energy. To use this softcore vdW

force, we need to assign the appropriate value of the lambda

parameter kij. In this implementation, each ligand atom is

assigned a lambda value equal to the vdW-lambda keyword

value in the simulation input key file. Each nonligand atom is

assigned a lambda value of 1. When calculating a pairwise

vdW interaction, it is necessary to have a set of combining

rules to convert two atomic vdW lambdas into a combined, kij .

For a pair of atom i and j, kij is determined as the lesser of ki

Figure 1. Thermodynamic path used to calculate the absolute complexa-

tion energy of a ligand using a double-decoupling approach.
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and kj. If the two lambda values are identical (as is the case in

an intraligand or water–water interaction), kij51.

To ensure that the ligand stays in the binding pocket even

when intramolecular interactions are weak, a distance restraint

(k r2r0ð Þ2) is applied between the centers of mass of the

ligand and the center of the binding pocket. The bias intro-

duced by the restraint is corrected for at the start and end of

our thermodynamic path. The restraint correction at the end

of simulation where no intermolecular interaction between

ligand and environment is given by[88]

DGrestraint5RT ln C0 pRT

k

� �3
2

" #
(2)

Here, C0 represents standard state concentration (1 mol/L). In

this work, we use a force constant (k) of 15 Kcal/mol/Å2, and

this correction amounts to 6.25 Kcal/mol.

To remove the ligand restraint from the system with full

ligand–protein interaction, we repeat the simulation but with

the restraint off. The free energy difference between the two

simulations is then calculated using BAR. Alternatively, one

could also gradually turn off the restraint while the interaction

strength between ligand and protein increases so that no

additional correction is needed.

Dual-topology-based relative free energy

Relative binding free energy can potentially be calculated

more reliably as it avoids simulation of the nonligand bound

form of the protein. In this implementation of the calculation

of relative binding free energies, we take a thermodynamic

path where we first reduce ligand 1’s electrostatic parameters

to zero magnitude. We then proceed to reduce the vdW inter-

actions between ligand 1 and environment, while simulta-

neously increasing the vdW interactions between ligand 2 and

environment. Finally, we increase ligand 2’s electrostatic

parameters from zero to full. The path we used to calculate

relative complexation energy (ligand binding to receptor in

water) is shown in Figure 2. Since the two ligands are never

charged at the same perturbation step, ligand 1 and 2 never

interact with each other (the vdW interactions are also turned

off via the soft-core formula), which requires minimal changes

to the electrostatic force in the existing OpenMM code.

To run the simulations in our thermodynamic path, we

require independent (ligand 1 and ligand 2) keywords to

denote the indices of ligand 1 and ligand 2, respectively. The

electrostatic perturbation segments of our path require that

we independently control the electrostatic interaction of

ligand 1 and ligand 2. This is accomplished by having two

electrostatic lambda keywords (ele-lambda1 and ele-lambda2,

respectively). The charge, dipole, quadrupole, and polarizability

of each ligand is multiplied by the appropriate ele-lambda

variable.

When perturbing the vdW force, we need to assign each

ligand atom the correct lambda value. The vdW-lambda of all

ligand 1 atoms is equal to the value specified by the vdW-

lambda keyword, and vdW-lambda of all ligand 2 atoms is

equal to 1 minus vdW-lambda. Therefore, changing the vdw-

lambda keyword from 1.0 to 0.0 results in removing all ligand

1–environment interactions while setting all ligand 2 atoms to

full vdW interaction with the environment.

When conducting relative binding simulations or BAR

energy calculations, we need to ensure that the two ligands

do not interact via the vdW force. Therefore, we need a way

for our vdW force and energy calculations kernels to know

which ligand each atom belongs to. This is accomplished by

adding an internal variable to the vdW force used to designate

which ligand (if any) an atom belongs to. This variable is equal

to 0 for environmental (nonligand) atoms, 1 for ligand 1, and 2

for ligand 2. Each pairwise vdW interaction is checked to

ensure that ligand 1–ligand 2 interactions are omitted.

The relative binding free energy is calculated as the relative

complexation energy minus the relative hydration energy.

Note that if one uses the same force constant for ligand–

receptor restraint for all simulations, the restraint correction

discussed above is identical for both ligands and drops out in

the relative binding free energy.

Methods

Simulation setup

Prior to all simulation, the system energy was minimized to 1

Kcal/mol/Å to avoid close atomic contacts. All simulations

Figure 2. Path used to determine the relative complexation interaction energy of two ligands using a dual topological approach. [Color figure can be

viewed at wileyonlinelibrary.com]
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were run under OpenMM mixed precision mode. Ewald cutoff

was set to 7.0 Å, with a 12 Å vdW cutoff in both simulations.

All simulations converge the induced dipole moments

between iterations to <0.00001 D. Sampl4 and aromatic simu-

lations use a cubic box of 40 Å an Ewald grid of 48 3 48 3

48, while the larger bench7 dataset uses an Ewald grid of 64

3 64 3 64 and a cubic box of 62.23 Å. Example Tinker key

files are included in the Supporting Information.

Molecular dynamics

Perturbation steps for absolute binding and solvation simula-

tions were conducted with a stepwise reduction of the ele-

lambda keyword, followed by a stepwise reduction of the vdw-

lambda keyword at 0 ele-lambda. MD used a RESPA integrator,

and a BUSSI thermostat. Information on what perturbation

steps were used is included in the Supporting Information.

Relative binding and solvation simulations were conducting

starting with the ele-lambda1 and vdw-lambda keywords at

1.0, and the ele-lambda2 keyword at 0.0. In a series of simula-

tions, the ele-lambda1 keyword is then gradually reduced to

0.0. This is followed by simulations with a stepwise reduction

of vdw-lambda1 to 0.0, then a stepwise increase of ele-

lambda2 to 1.0.

All CPU simulations were conducted using Tinker dynamic.x

for 1ns with a 2fs time step and snapshots saved every 1 ps.

Each GPU perturbation simulation was conducted using

dynamic_omm for 5 ns, with a 2 fs time-step and snapshots

saved every 2 ps (except for relative free energy simulations,

which had snapshots saved every 1 ps). All simulations were

conducted at 298 K.

Bennett acceptance ratio

Bar was computed using Tinker’s BAR program. This program

iterates between the two equations below until convergence:

e2bDF5
hf b U22U12Cð Þð Þi1
hf b U12U21Cð Þð Þi2

C5DF

f xð Þ5 1

11ex

(3)

For all CPU-based trajectories, BAR used frames 400 to 1000 for

calculation, with the initial 400 ps equilibration discarded. For

absolute free energy trajectories generated on the GPU, BAR

used frames 1 to 2500(0–5 ns) for calculation. For the relative

free energy trajectories generated on the GPU, BAR used frames

1 to 5000(0–5 ns) due to more frequently saved snapshots.

Hydration of aromatic compounds

Parameters for the aromatic molecules were previously gener-

ated.[86] Structures of the 10 compounds are shown in Figure

3. Initial simulation systems were generated by solvating each

ligand in water boxes using the Tinker commands solvate and

crystal. Initial structures for relative HFE simulations were gen-

erated by concatenating ligand 2’s coordinates to the solvated

ligand 1 pose.

To calculate the absolute hydration free energy, it is neces-

sary to correct for the contribution of intramolecular electro-

statics as we scale the solute electrostatic parameters in

“disappearing” or “growing” the solute molecule. The intraso-

lute electrostatic energy was calculated by running simulations

on CPU (this same value was used for both the CPU and GPU

simulations). Each molecule was simulated alone in a nonperi-

odic system at ele-lambda values of 0, 0.1, . . . and 1.0. Simula-

tions were run for 1ns using a time step of 0.1 fs, with

structures saved every 0.5 ps at constant volume of 40.0 Å

with temperature at 298 K. The intrasolute electrostatic energy

was then calculated using BAR.

Sampl4 binding simulations

Parameters and starting poses for 12 molecules of the sampl4

dataset were generated as described previously.[63] Structures

of the sampl4 ligands utilized in this study are shown in Figure

4. Relative binding poses were generated as in the relative aro-

matic simulations.

The final absolute binding energy was calculated as DG of

complexation (from no interaction to full interaction) – DG of

solvation (from no interaction to full interaction) 1 DG of going

from no restraint to full restraint at 0 interaction lambda 1 DG of

removing the restraint at full interaction energy.

The latest version of Tinker is available at https://github.com/

jayponder/tinker. Tinker-OpenMM is available at https://github.

com/pren/tinker-openmm. Note that Tinker only works using

the modified Tinker-OpenMM, not the main OpenMM release.

Results

Force agreement

Correct simulation of molecular systems requires an accurate

calculation of both force and energy. However, since energy is

Figure 3. Structures of the 12 sampl4 molecules utilized in this study.
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only utilized by Tinker in the BAR process, and is not used dur-

ing OpenMM molecular dynamics, we focused our initial analy-

sis of Tinker-OpenMM on agreement of OpenMM forces with

those of Tinker. To ensure that lambda was working in the

Tinker-OpenMM implementation, we tested molecule 1 of the

sampl4 dataset bound to the host at a range of lambda val-

ues, and compared the resulting static forces to those of Tin-

ker. The Tinker-OpenMM platform was able to closely match

that of Tinker for all tested lambda values, with a root mean

squared error of approximately 8.6 3 1024 Kcal/mol/Å, and a

maximal atomic force deviation of approximately 4.7 3 1023

Kcal/mol/Å (Table 1). These degrees of deviation are negligible

when considering that the RMS force is 31 Kcal/mol/Å. The

force deviation is partially due to the single precision used in

GPU force evaluation.

Computational efficiency

To test the speed and scalability of the Tinker-OpenMM plat-

form, we ran 1000 steps of MD on sampl4 molecule 1 (6417

atoms), and the bench7 test case distributed with Tinker (a

protein system of 23,558 atoms). For both test systems, the

NVidia GTX1070 and GTX 970 were approximately 66-fold and

40-fold faster than an eight core CPU simulation, respectively

(Table 2). A single CPU core is approximately 200-fold slower

than simulation on a GTX1070 due to the poor core scalability

of Tinker utilizing OpenMP. The GPU platform shows better

than linear scaling with respect to system size, with a 3.7-fold

increase in particle number resulting in a 2.4-fold or 2.5-fold

decrease in speed on the GTX1070 and GTX970 platforms,

respectively. This better then linear scaling is likely a result of

the smaller sampl4 systems being unable to saturate GPU core

utilization, as verified by profiling GPU core utilization during

simulations. The change of the vdW force to the softcore 14–7

force resulted in no observable difference in speed compared

to the kernel used in OpenMM. This was confirmed by running

simulations using a version of Tinker-OpenMM that had been

modified to utilize a standard, non-softcore 14–7 vdW force

without the presence of the lambda parameter in the

codebase.

To test the cost of utilization of relative vdW, tests were run

on bench7 with the relative VDW activated by using two

waters (atoms 9000–9002 and 9003–9005) as “ligands” for the

alchemical dual topology process. Both of these waters had

their ele-lambda values set at 0.0, with a utilized vdW-lambda

of 1.0. This allowed for the activation of dual topology kernels

without introducing extra costs. This system was minimized,

and a speed test was run as above. This resulted in a speed of

4.68 ns/day on a GTX 970, an approximately 2.5% speed

reduction when compared to the absolute simulations. This

small cost is only present when doing relative free energy

Table 1. Force comparison between the Tinker-AMOEBA CPU and Tinker-

OpenMM-AMOEBA GPU platforms for Sampl4 molecule 1 at a range of

lambda values.

VDW lambda/

ele-lambda

RMSE force

(10–4 Kcal/mol/Å)

Max force deviation

(10–3 Kcal/mol/Å)

1/1 8.58 4.69

1/0.5 8.59 4.66

1/0.0 8.58 4.71

0.5/0.0 8.58 4.72

0.0/0.0 8.58 4.72

Table 2. Performance of Tinker-OpenMM on Nvidia GTX1070 and GTX970

GPUs without the relative binding calculations compared to Tinker CPU

running on 8 OpenMP threads (4X of single CPU speed).

GTX1070 GTX970 CPU

mol01(6417 atoms) 20.0 12.2 0.3

bench7(23558 atoms) 8.3 4.8 0.16

Values are in nanoseconds/day.

Figure 4. Structures of the 10 aromatic compounds used in this study.

Figure 5. Comparison between the sampl4 binding free energies of 12

sampl4 compounds computed by the Tinker-OpenMM GPU and Tinker CPU

platforms. GPU simulations were run for 5 ns at each perturbation step,

while CPU simulations were run for 1 ns. [Color figure can be viewed at

wileyonlinelibrary.com]
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calculations; when no ligand 2 parameter is set, the cheaper

absolute vdW kernel is used for force and energy calculation.

Tinker-OpenMM defaults to a utilizing a “mixed” precision

mode in all calculations. This mixed precision mode uses 32-

bit floating point calculation for all forces, and integrates using

64-bit floating point precision. Due to the poor double floating

point calculation of the consumer GeForce line of graphics

cards, the use of double precision for both integration and

force calculation results in an 18.1-fold reduction in perfor-

mance on a GTX 970.

GPU/CPU absolute free energy agreement

As a test of the ability of the Tinker-OpenMM platform to

reproduce the results of the Tinker CPU implementation, we

performed hydration free energy calculation on a dataset of

10 aromatic compounds, as well as binding free energies on

12 ligands of the sampl4 dataset (9). Both the solvation (Fig. 5)

and sampl4 datasets (Fig. 6) show agreement within the

uncertainty of BAR, with R2 values of (0.9924) and (0.9987),

respectively. This, along with the static force calculations pro-

vides strong evidence that the GPU and CPU implementations

of the AMOEBA force field produce comparable results. The

fact that a high degree of agreement is possible despite the

fact that the GPU simulations were run for 5 times longer (5

ns vs. 1ns at each perturbation step) is an indication that the

tested systems converge relatively rapidly.

GPU/CPU relative free energy agreement

We then proceeded to test the capability of the dual-

topology-based relative free energy platform by computing

the relative solvation values for the aromatic dataset. For all

tested aromatic pairs, the relative hydration free energy values

computed from the dual-topology approach and the absolute

HFE showed an agreement within 0.3 Kcal/mol, with an R2

value of 0.999 (Table 3). The observed deviation is likely a

result of random, nonsystematic statistical error.

Finally, we tested the relative binding prediction of two

pairs of sampl4 compounds. The first set of compounds,

mol05 and mol06 share similar scaffolds, and show agreement

in both complexation and solvation to within the uncertainty

of BAR(Table 4) .

The relative binding between molecules 9 and 10 consti-

tutes a more challenging case that cannot be handled using

the dummy atom-based approach due to the lack of a shared

scaffold. In addition, this dissimilarity between the ligands may

theoretically make convergence more difficult in the intermedi-

ate vdW transitions. Nonetheless, the relative binding platform

was still able to agree with the absolute platform to within 0.3

Kcal/mol, demonstrating the advantage of dual-topology

platform.

Discussion and Conclusions

This work reports a GPU implementation of alchemical free

energy simulation for polarizable force field AMOEBA. The

enhanced speed of GPU over CPU will be valuable for applica-

tions such as lead optimization. We have shown that the

Tinker-OpenMM GPU platform is capable of reproducing the

results of Tinker CPU platform, with an approximately 200-fold

improvement in computational performance over what is pos-

sible on a single CPU core. This usage of GPU computation

greatly improved sampling, which should allow for accounting

for slow dynamics such as induced fit effects and other local

changes in protein structure. Therefore, we expect the better

Figure 6. Comparison between the calculated solvation free energies for

the 10 molecule aromatic compound dataset on the Tinker-OpenMM GPU

and Tinker CPU platforms. [Color figure can be viewed at wileyonlineli-

brary.com]

Table 3. Comparison between the Tinker-OpenMM absolute and relative

platform calculation of the solvation energy between pairs of aromatic

compounds.

Relative from

Dual-Topology

Difference

by Absolute

Aniline/Benzene 4.2 6 0.1 4.0 6 0.1

Adenine/Pyrrole 11.4 6 0.1 11.3 6 0.1

Aniline/Adenine 210.2 6 0.1 210.2 6 0.1

Benzene/3-Methylimidizole 29.0 6 0.1 28.7 6 0.1

3-Methylpytidine/pyridine 20.1 6 0.1 0.0 6 0.1

Values are in Kcal/mol.

Table 4. Comparison between the Tinker-OpenMM absolute and relative

platform calculations of the relative binding free energy between pairs of

sampl4 compounds.

mol05-mol06 mol09-mol10

Relative

from

absolute

GPU

Relative

from

dual

topology

Relative

from

absolute

GPU

Relative

from

dual

topology

Complexation

energy

44.3 6 0.1 44.3 6 0.1 256.3 6 0.1 256.0 6 0.1

solvation

energy

47.3 6 0.1 47.3 6 0.1 268.0 6 0.1 268.0 6 0.1

total DDG 22.9 6 0.1 22.9 6 0.1 10.4 6 0.2 10.7 6 0.1

Values are in Kcal/mol.
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sampling afforded by the GPU-based platform will potentially

lead to improved accuracy in ligand binding free energy

prediction.

In addition to raw performance, one of the biggest chal-

lenges facing the free energy calculation field is the applica-

tion of techniques to improve sampling of flexible systems to

enable convergence with lesser simulation times. One method-

ology to achieve this increase in sampling efficiency is the cal-

culation of relative binding free energies. Unlike previously

utilized dummy atom-based approaches,[78–82] the framework

presented here is general and does not require a shared set of

atoms to be utilized effectively. A special path has been

designed to avoid unstable ligand–ligand polarization in the

dual-topology approach. We expect that for flexible protein

systems, the dual-topology approach will be more efficient

and reduce the time needed for convergence in comparison

with absolute free energy approaches.

Keywords: AMOEBA � free energy calculation � graphics proc-

essing units � Tinker � OpenMM
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