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tion rate of the two proteins is defined by their diffu-
Protein association events are ubiquitous in biological sys- sional encounter (3). The determination of whether a

tems. Some protein associations and subsequent responses are reaction or response is diffusion controlled is clearly
diffusion controlled in vivo. Hence, it is important to be able to crucial to protein design studies.
compute bimolecular diffusional association rates for proteins. Recently, there has been quite a dramatic increase
The Brownian dynamics simulation methodology may be used to in the number of experimental measurements of the
simulate protein–protein encounter, compute association rates, kinetics of protein–protein interactions (4). This is in
and examine their dependence on protein mutation and the na- part due to the recent availability of instruments based
ture of the physical environment (e.g., as a function of ionic on surface plasmon resonance (4, 5), which, in princi-
strength or viscosity). Here, the theory for Brownian dynamics ple, provide a generally applicable noninvasive method
simulations is described, and important methodological as-

to measure the kinetics of protein–protein interactionspects, particularly pertaining to the correct modeling of electro-
without the necessity for labeling. Experimentallystatic forces and definition of encounter complex formation, are
measured association rates cover a wide range fromhighlighted. To illustrate application of the method, simulations
103 to 109 M01 s01. The lower limit is dictated largelyof the diffusional encounter of the extracellular ribonuclease,
by experimental limits on the rates measurable (4),barnase, and its intracellular inhibitor, barstar, are described.
while the upper limit is based on measured associationThis shows how experimental rates for a series of mutants and
rates in solution for the association of thrombin andthe dependence of rates on ionic strength can be reproduced
hirudin (6) and of barnase and barstar (7). The follow-well by Brownian dynamics simulations. Potential future uses of
ing properties of protein association rates indicate dif-the Brownian dynamics method for investigating protein–protein

association are discussed. q 1998 Academic Press fusion control:

a. Fast, i.e., ¢ 106 M01 s01 under typical conditions.
b. Inverse dependence on solvent viscosity (1) and,

therefore, linear dependence on the proteins’ relative
diffusion constant.Protein–protein association is fundamental to pro-

c. Dependence on the ionic strength of the solution,cesses such as signal transduction, transcription, cell
indicating the importance of long-range electrostaticcycle regulation, and immune response. The speed of
forces.the association phase puts an upper limit on the speed

d. Temperature dependence following the tempera-of the response resulting from protein binding in vivo.
ture dependence of the solvent viscosity. The diffusionFrequently, at least one of the interacting proteins is
constants of proteins in water approximately doublefree to move in the intra- or extracellular environment
over the temperature range 288–313 K (8) , and, asand must find its binding partner by diffusion. The
has been observed for some antibody–antigen com-association rate is limited by the time required to bring
plexes (9, 10), this causes diffusion-controlled rates tothe ‘‘reactive patches’’ of the proteins together by diffu-
double too.sion (1, 2) so that the proteins form an ‘‘encounter com-

e. Sensitivity to the diffusional environment, e.g.,plex.’’ When the postdiffusional step of the association
whether, before complexation, both proteins are free toprocess is much faster than diffusional dissociation, the
diffuse in solution or one of them is immobilized on a‘‘reaction’’ is diffusion controlled; that is, the associa-
surface.

None of these five properties alone or in combination1 To whom correspondence should be addressed. Fax: /49 6221
387 517. E-mail: wade@embl-heidelberg.de. is a proof of diffusional control. Therefore, detailed sim-
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ulation of diffusional association is a necessary step which lead to the apparently random motion of the
particles that is diffusion. Such motion was first re-in defining the mechanism of interaction. Brownian

dynamics (BD) simulations provide a means to compute corded in 1827 by Brown, who observed erratic motions
of pollen grains in water. Einstein (15) and von Smolu-bimolecular diffusional association rates . They have

been used for calculating protein–protein and en- chowski (16) showed that the displacement Dr of a
particle undergoing Brownian motion in time Dt iszyme–substrate association rates using both atomic-

detail models and highly simplified models [for re- given by
views, see (11, 12)]. BD simulations provide insights
into the properties and mechanisms of diffusion-con- »Dr2

… Å 6DDt, [1]
trolled association and have been used for the design
of protein mutants with altered association rates [see,

where D is the translational diffusion coefficient of thee.g., (13)].
particle andBD simulations by Northrup and Erickson (14) of

the association of model spherical proteins showed that
D Å kbT/6pha, [2]associations rates in the absence of long-range attrac-

tive forces should be Ç2 1 106 M01 s01. This is about
1000-fold faster than would be expected solely on the where kb is Boltzmann constant, T is absolute tempera-
basis of geometric criteria for bringing the ‘‘reactive ture, h is solvent viscosity, and a is the hydrodynamic
patches’’ on the proteins into contact. However, in a radius of the particle.
diffusional system the particles do not rebound away The dynamics of diffusional motion are described by
from each other after colliding with a nonreactive con- the Langevin equation and there are a number of ways
tact as in a Newtonian system; instead, they diffuse to solve this equation (17). In simulations of protein–
close to each other, making multiple collisions and rota- protein association, the method used is that presented
tionally reorienting between them. This diffusive en- by Ermak and McCammon in 1978 for simulation of
trapment effect results in fast association rates of the the motion of Brownian particles (18). In this method,
order 106 M01 s01, which are only about 1000-fold a trajectory is generated as a set of snapshots of the
slower than the theoretical diffusion-limited Smolu- particles at time intervals of Dt. The positions of the
chowski rate for two isotropically reactive spheres. particles are computed from the Ermak–McCammon
Rates of Ç106 M01 s01 are often seen for protein–pro- equations for translational and rotational motion. In
tein complexation, e.g., antibody–antigen association. their simplest forms, these are as follows:
However, rates exceeding 106 M01 s01 and ranging up

• The translational displacement Dr of each particleto Ç109 M01 s01 are observed for some protein–protein
during each time step is given byencounters, indicating that electrostatic interactions

facilitate binding in these cases. Electrostatic steering
is the main focus of BD simulations of protein–protein Dr Å (kbT)01DFDt / R, [3]
association.

In this paper, we first present the theory for simulat- where F is the systematic force on the particle before
ing protein diffusion by BD and computing bimolecular the step is taken, and R is a random vector satisfying
association rates. We then describe how simulations

»R… Å 0 and »R2
… Å 6DDt. The (kbT)01D factor by which

are performed, highlighting the most important techni- F is multiplied models the damping effect of solvent
cal aspects. We illustrate this with a case study of the friction.
association of barnase and barstar. We conclude by out- • The rotational displacement angle Dw of each par-
lining other systems to which either the method has ticle at each time step is given by
been applied or that provide possible subjects of future
study.

Dw Å (kbT)01DRTDt / W, [4]

where T is the torque acting on the particle before theTHEORY
step is taken, DR is the rotational diffusion constant of
the particle, and W is a random rotation angle satis-

Simulation of Diffusional Motion by Brownian Dynamics fying »W… Å 0 and »W2
… Å 6DRDt.

For simulations of protein–protein interactions inThe theory of Brownian motion describes the dy-
namic behavior of particles, the mass and size of which which the proteins are treated as rigid bodies, there

are only two solute particles. Therefore, translationalare larger than those of the molecules of the solvent in
which they are immersed. These particles are subject motion is simulated for one of the proteins (protein II)

relative to the position of the other (protein I) (see Fig.to stochastic collisions with the solvent molecules
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1). The displacement of protein II is given by Eq. [3], interactions, and nonuniform reactivity. Nevertheless,
‘‘boundary conditions’’ given by an analytical solutionwith D replaced by the relative translational diffusion

constant. to the diffusion equation are necessary to use the re-
sults of BD simulations to compute rates. Thus, theThe effects of hydrodynamic interactions are usually

neglected for simulations of protein–protein associa- association rate k computed from a BD simulation is
given bytion but can be treated by substituting tensors for the

diffusion constants in the above equations.
To use these equations to propagate diffusional mo- k Å kD(b)b`, [5]

tion, the time step, Dt, must be small enough that the
forces and torques on the particles (and the gradient where kD(b) is the steady-state rate constant for two
of the diffusion tensors) remain effectively constant particles approaching within a distance b (see Fig. 1)
during the time step. On the other hand, the motion and b` is the probability that having reached this
can be analyzed only over periods exceeding a particle’s separation, the particles will go on to ‘‘react’’ and
momentum relaxation time, i.e., Dt @ mD/kbT, where form an encounter complex rather than diffuse apart
m is the mass of the particle. to infinite separation. kD(b) must be computed ana-

lytically, whereas b` is computed from BD simula-Computation of Bimolecular Diffusional Association
tions in which thousands of trajectories are gener-Rates
ated, each of which is started with the particlesComputation of bimolecular association rates re- separated by distance b and is truncated when theyquires solution of the diffusion equation. This can be reach a separation distance q.solved analytically only for systems with simple geome- For two spherical particles with relative diffusiontry and charge distribution. Numerical BD simulations constant D and no interparticle forces, kD(b) is givenare necessary to permit evaluation of the effects on rate by the Smoluchowski expression (19):constants of a protein’s complex shape, heterogeneous

charge distribution, internal motions, hydrodynamic
kD(b) Å 4pDb. [6]

When interparticle forces are present,

kD(b) Å 4pF*`

b
Se{E(r)/kBT}

r2D DdrG01

, [7]

where E(r) is the centrosymmetric interaction energy
between the particles, which depends on their separa-
tion distance r.
b` is usually given by (20)

b` Å b[1 0(1 0 b)V], [8]

where V Å kD(b)/kD(q) and b is the fraction of trajector-
ies in which encounter complex formation occurs before
the particles diffuse to a separation distance of q. The
multiplier for b in Eq. [8] is a correction factor to ac-
count for the truncation of trajectories at a finite sepa-
ration distance, q.FIG. 1. Schematic diagram indicating the setup of the system for

BD simulations to compute bimolecular diffusion-controlled rate con- Several alternative ways to compute association
stants. Simulations are conducted in coordinates defined relative to rates using BD simulations have been developed to im-
the position of the central protein (protein I). At the beginning of prove efficiency, e.g., the WEBDS (Weighted-Ensembleeach trajectory, the second protein is positioned with a randomly

Brownian Dynamics Simulations) method (21), an algo-chosen orientation at a randomly chosen point on the surface of the
rithm to compute time-dependent rate coefficients (22),inner sphere of radius b. BD simulation is then performed until this

protein diffuses outside the outer sphere of radius q. During the and an algorithm to remove the outer sphere by using
simulation, satisfaction of reaction criteria for encounter complex an ‘‘m surface’’ (23). These methods have been applied
formation is monitored. The radius b is chosen so that outside the either to simulation of simple model systems for pro-sphere the forces between the proteins are centrosymmetric and in-

tein–protein association (24) or to atomic-detail simu-side they are anisotropic. The radius q is chosen so that the inward
reactive flux at separation q is centrosymmetric (22). lations of enzyme–substrate association (25). They
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have not yet been applied to simulations of protein– the proteins are assigned lower dielectric constants,
typically 2–4. The boundary between these dielectricsprotein association using detailed protein models.
is assigned from atomic coordinates and radii. While

Modeling of Forces Governing Diffusional Motion of there are a number of numerical methods for solving
Proteins the Poisson–Boltzmann equation, the most commonly

used is the finite-difference method in which a set ofFor simulations of protein–ligand association, inter-
difference equations of the following type are solvedmolecular forces and torques are given by the sum of
iteratively (27):electrostatic and exclusion forces. Short-range attrac-

tive interactions such as hydrogen bonding and van der
Waals interactions are not modeled because they are h2 ∑ eij(fi 0 fj)

h
/ cih3eik

2fi Å 4pqi. [10]
not as important for encounter complex formation as
for formation of the final bound complex and because

Here, j runs over the six grid points adjacent to gridit is too computationally demanding to model them over
point i, eij is the permittivity of the face connectingthe time scales of BD simulations. These time scales
i and j, ci is the fraction of the volume accessible toare orders of magnitude longer than those for molecu-
counterions, ei is the permittivity at point i, and qi islar dynamics simulations in which a more complete
the charge enclosed. The parameters of this grid willmodel of forces is used. Additional forces that are some-
influence the accuracy of the calculation (see below).times modeled for BD simulation of bimolecular associ-

The finite-difference method can be used to computeations involving proteins are hydrodynamic interac-
the intermolecular free energy, and hence the intermo-tions and intramolecular forces to model internal
lecular forces, for a system consisting of two low dielec-flexibility.
tric solutes in a high-dielectric solvent. This is, how-
ever, too computationally demanding for use in BDElectrostatic Forces
simulations for which forces are required at every timeA range of electrostatic models have been employed
step in thousands of trajectories. Instead, the testin BD simulations of protein–ligand association. A con-
charge approximation has usually been adopted. Fortinuum model of the solvent is adopted for the BD simu-
this, the electrostatic potential of one protein (proteinlations and it is also used for computing electrostatic
I) is computed on a grid. The second protein (proteinforces. The electrostatic models, however, vary in the
II) then moves on the potential grid of protein I andlevel of the detail with which the charge distribution
forces are computed considering protein II as a collec-in the proteins is modeled and the approximations used
tion of point charges in the solvent dielectric; i.e., theto represent the dielectric environment of the system.
low dielectric and ion exclusion volume of protein IIIn simple models, used mostly in early simulations
are ignored. We have recently shown (28) that forces(26), a small number of charges are positioned in the
in BD simulations can be computed more accuratelyproteins so as to reproduce their monopole, dipole,
but with virtually the same computational cost as theand quadrupole moments, and interactions between
test charge approximation by using effective potential-charges are computed using Coulomb’s law either with
derived charges instead of test charges. To derive ‘‘ef-a constant dielectric permittivity or with a distance-
fective charges,’’ a full partial atomic charge model ofdependent dielectric permittivity to implicitly model
each protein is used to compute each protein’s electro-the dielectric variation in the system simulated. Ionic
static potential separately by numerical solution of thestrength was modeled by Debye–Hückel screening.
finite-difference Poisson–Boltzmann equation, takingMore recently, it has become possible to assign par-
into account the inhomogeneous dielectric medium andtial atomic charges to all atoms in the proteins and to
the surrounding ionic solvent. Then effective chargesmodel the dielectric heterogeneity and ionic strength
are computed for each protein by fitting so that theyexplicitly by solving the Poisson–Boltzmann equation
reproduce its external potential in a homogeneous di-numerically:
electric environment corresponding to that of the sol-
vent. To compute the forces and torques acting on pro-

Ç(e(r)Çf(r)) 0 c(r)e(r)k2f(r) Å 04pr(r). [9] tein II (I), the array of effective charges for protein II
(I) is placed on the electrostatic potential grid of protein
I (II). This procedure gives a good approximation to theHere, the dielectric constant, e(r), is a function of posi-

tion, f(r) is the electrostatic potential, r(r) is the forces derived by solving the finite-difference equation
in the presence of both proteins, unless the separationcharge density, k is the inverse of the Debye–Hückel

screening length (11), and c(r) defines the volume ac- of the protein surfaces is less than the diameter of the
solvent probe and the desolvation energies of thecessible to counterions; it is 0 inside the solute and the

Stern layer and 1 outside. Aqueous solvent is assigned charges in one protein due to the low dielectric cavity
of the other protein become significant (28).a high relative dielectric constant of about 80, whereas
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Exclusion Forces METHOD
Short-range repulsive forces are treated by an exclu-

sion volume prohibiting van der Waals overlap of the
Procedure for Setting Up and Running BD Trajectoriesproteins. The exclusion volume is precalculated on a

The procedure for carrying out a BD simulation togrid. If a move during a time step would result in van
compute a bimolecular association rate is outlined inder Waals overlap, the BD step is usually repeated with
Fig. 2. The main steps follow.different random numbers until it does not cause an

overlap.
a. Model Protein Coordinates

Hydrodynamic Interactions If starting from a crystal structure, it will be neces-
Hydrodynamic interactions (HIs) between particles sary to add polar hydrogen atoms to the structure and

in a solvent arise because of solvent flow induced by possibly model in residues that were not defined in the
the motions of the particles. They can be incorporated electron density. Protons should be correctly positioned
into BD simulations by using a diffusion tensor [e.g., for the relevant pH and their assignment may be
Oseen or Rotne-Prager (29)] but their computational helped by computing the pKa values of the titratable
requirements increase rapidly with the number of hy- groups in the protein [see (38) and references therein].
drodynamic centers. Their magnitude and importance The proton positions should be optimized by energy
for protein–ligand association have been studied for minimization, and perhaps a Monte-Carlo (39) or mo-
simple protein models. The estimated effects on rates lecular dynamics optimization. As mentioned below,
range from 15% (30–33) to 50% (34) to two-orders of even small adjustments in their positions can alter
magnitude (35), and depend on the treatment of hydro- rates (36).
dynamic boundary conditions and the sizes, shapes,

b. Assign Atomic Parametersand velocities of the solute molecules for which HI ef-
fects were computed. The smaller value appears to hold The protein atoms should be assigned charges and
for conditions relevant for protein–protein association. radii. These can come either from molecular mechanics
HI can both increase and decrease molecular associa- force fields [e.g., OPLS (40), CHARMM (41)] or from
tion rates. For example, consider an elongated protein parameter sets derived specifically for use with a con-
binding in a slitlike cleft of another protein. HI will tinuum solvent model [PARSE (42)].
tend to lower the rate of translational diffusion toward

c. Compute Electrostatic Potentials for Boththe binding site. However, HI torques will favor bind-
Moleculesing of the elongated protein when it is nearly aligned

with the cleft by enhancing the alignment. Thus, the Solvent and protein dielectric constants, ionic
effects of different HIs on association rates may tend strength, width of the ion exclusion (Stern) layer, and
to cancel each other out. temperature of the system should be assigned. Poten-

tials should be computed on grids large enough to in-Modeling Flexibility
clude the volume over which the potential is noniso-

In simulations of protein–protein association per- tropic. If this is very large, an additional inner grid
formed to date, the proteins have been treated as rigid with smaller spacing should be computed and both
bodies. The effects of flexibility have been considered grids should be used in the BD simulations. For effi-
only by generating different sets of trajectories using ciency of handling, grid size should not exceed the size
different protein conformations [see (36) and below]. limited by computer memory requirements; for accu-

For simulations of enzyme–substrate encounter, racy, the spacing for the inner grid should not exceed
other representations of protein flexibility have been 1 Å (and smaller grid spacings are preferable).
used and these could be applied to simulations of pro-
tein–protein encounter: d. Compute Effective Charges

Effective charge sites are usually assigned to the po-—Reduction of atomic radii at the binding site to
implicitly mimic the flexibility of these atoms (25). sitions of the titratable residues (thereby reducing the

number of charge sites), and their magnitude and sign—Modeling the motion of particularly flexible re-
gions, such as protein loops, explicitly during the BD are determined by fitting to reproduce the electrostatic

potential in a shell around the protein using a homoge-simulations. A simplified model is necessary to make
this computationally feasible. A model treating a pep- neous dielectric.
tide loop as a chain of spheres, each sphere represent-

e. Choose b and q Surfacesing an amino acid residue, has been used (37). The
spheres interact via a set of forces designed to mimic The b surface should be chosen by examining the

electrostatic potentials so that at a distance b from eachthe geometry and interactions of an all-atom protein
model. protein, the electrostatic forces on the other protein are
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isotropic and centrosymmetric. The q surface should be ies. The surface-exposed atoms of the other protein (pro-
tein II) are listed. Steric overlap is defined to occur whenplaced much further away where the diffusive flux of

the molecules is centrosymmetric (see Fig. 1). Typical one of the surface-exposed atoms is projected onto a
grid point with value 1 (43). This computation is muchdistances are 50–100 Å for the b surface and 100–500

Å for the q surface. Sensitivity to alteration of these quicker than a pairwise evaluation of exclusion forces,
but requires the assumption that all atoms of proteinvalues should be tested during subsequent BD simula-

tions. II have the same radius as the probe used to define the
probe-accessible surface of protein I.

f. Compute Exclusion Volumes and Surface Atoms
g. Define Reaction CriteriaThe exclusion volume is computed on a grid for one

protein (protein I) by assigning values of 1 to grid points The choice of reaction criteria has a large effect on
rates computed and they must therefore be chosen withinside a probe-accessible surface and 0 outside. A spac-

ing of 1 Å is usually adequate, but a 0.5-Å spacing may care. Reaction criteria are required to define formation
of a diffusional encounter complex. This is the complexgive better convergence and smoother, shorter trajector-

FIG. 2. Schematic diagram showing the steps in the computation of bimolecular diffusion-controlled rate constants by Brownian dynamics
simulation.
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formed at the endpoint of the diffusional association protein as a hydrodynamically isotropic sphere so that
its diffusion constants are defined by sphere radius,phase from which, in the next phase of binding, the
solvent viscosity, and temperature. More sophisticatedproteins would rearrange into a tightly bound complex.
estimations of diffusion constants account for proteinComplete binding does not occur in the BD simulations
surface shape (46, 47). A variable time step should bebecause of the incompleteness of the force model used.
used that is smaller when the proteins are closer toOne or several reaction criteria may be monitored dur-
each other and when protein II is close to the q surface.ing a trajectory. The criteria may be energetic (e.g.,
The smallest time step for protein–protein simulationsbased on electrostatic energy) or geometric (rmsd of
with rigid body proteins should typically be 0.5–1.0 ps.atoms from specified position, arrangement between
For efficiency, rotations may be performed less fre-protein atoms or cofactors) or based on contacts (num-
quently than translations. The number of trajectoriesber of contacts, buried surface area) (see Fig. 3). A crite-
run will depend on the accuracy required and the mag-rion based on the arrangement of heme cofactors has
nitude of the rates computed. The slower the rates, thebeen used for electron transfer proteins (44, 45). More
greater the number of trajectories that will be required.generally, we have found that the energetic criterion
Statistical errors in rates can be estimated either fromshould not be used and that a criterion based on forma-
Poisson statistics as K01/2

r100%, where K is the numbertion of two to three correct contacts performs best for
of encounter events, or by subdividing the trajectories,protein–protein association (see below for details).
computing rates for each subdivision, and then deriving
the error as the rmsd of the rates from their average.h. Define BD Parameters
i. Run BD SimulationsRotational and translational diffusion constants

should be defined. This can be done most simply using Each simulation is started with a randomly chosen
position and orientation of protein II on the b surfacethe Stokes–Einstein relationship and treating each

FIG. 3. Schematic representation of different reaction criteria for monitoring encounter complex formation. (a) Criterion based on rms
distance of selected atoms of protein II to their position in bound complex. (b) Criterion based on the number of residue contacts. In both
(a) and (b), any number of atoms may be used and two in each protein are shown for simplicity. (c) Atomic contact criterion. See text for
details.
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and run until protein II escapes from the q surface. colleagues, is designed for BD simulation of enzyme–
substrate encounter to compute steady-state and non-The number of reaction events during each simulation

is counted. Simulations can straightforwardly be run steady-state association rates. It can be used for simu-
lations of protein–protein association when one proteinin parallel on multiple processors.
is treated with a simplified rather than atomic-detail

j. Compute Rates and Analyze Trajectories model. It also has modules for numerical solution of
This is done for diffusional pathways and important the finite-difference linear and full Poisson–Boltz-

regions of the proteins for diffusional encounter. mann equations, electrostatic binding free energies,
stochastic dynamics, molecular mechanics energy min-

Comparison of Simulation of Protein–Protein and imization, and modeling internal protein flexibility in
Protein–Small Molecule Encounters BD simulations.

The theory and the general procedure for computing —SDA (http://www.embl-heidelberg.de/ExternalInfo/
association rates are the same for protein–protein in- wade/pub/soft/sda.html) was developed by us to be gen-
teractions as for protein–small molecule interactions. erally applicable to the simulation of diffusional associ-
However, there are some significant differences that ation of biomolecules with simple or atomic-detail mod-
make the association of two macromolecules more diffi- els. Additional capabilities include a module (ECM) for
cult to simulate than the association of a macromole- computation of effective charges using potential grids
cule with a much smaller molecule: computed with the UHBD program and another mod-

ule to estimate electrostatic enhancement of bimolecu-—There are more degrees of freedom. Rotational
lar rates by the Boltzmann factor analysis method ofdiffusion must be simulated for protein–protein as-
Zhou (49).sociation, whereas small molecules can often be

treated as either a single sphere or two spheres (a
dumbbell) covalently bound together that are treated

EXAMPLE APPLICATION: DIFFUSIONALas separate hydrodynamic objects connected by a con-
strained bond (48). ENCOUNTER OF BARNASE AND BARSTAR

—The low dielectric of both molecules must be
treated; i.e., the test charge model is a worse approxi- The association of barnase, an extracellular ribo-
mation for protein–protein association than protein– nuclease, with its intracellular inhibitor, barstar, pro-
small molecule association. vides a particularly well-characterized example of elec-

—Reaction criteria may be harder to define as there trostatically steered diffusional encounter between
is less likely to be a well-defined concave binding site proteins. The association rate is very fast (Ç108–109

for a protein than for a small molecule. M01 s01 at 50 mM ionic strength), and studies of the
—HIs between two similar-size macromolecules are effects of mutation and variation of ionic strength

likely to have more impact on their association rate clearly show the influence of electrostatic interactions
than HIs between molecules of very different sizes. (7). We have shown that the ionic strength dependence

—While internal flexibility in a substrate may be of of the rate for the two wild-type proteins and the rates
negligible importance for diffusional encounter with an for the wild-type proteins and 11 mutants at 50 mM
enzyme, intramolecular motions in proteins are more ionic strength can be reproduced to within a factor of 2
likely to be important. by BD simulation (36). These simulations also provided

insights into the structure of the diffusional encounterSoftware for BD Simulations
complex in which barstar tends to be shifted from itsSeveral programs are available for performing BD position in the crystal structure of the complex towardsimulations, each with different capabilities: the guanine-binding loop on barnase.

Simulations of the association of barnase with bar-—Macrodox (http://pirn.chem.tntech.edu/macrodox.
star were carried out using the SDA software followinghtml), developed by Scott Northrup and colleagues,
the procedure described above. Many (10,000 per pro-may be used to perform BD simulations of the bimolec-
tein variant) trajectories were generated and the con-ular association with simple and atomic-detail models.
formations sampled in one trajectory are shown in Fig.It was designed particularly for performing BD simula-
4. Here, we draw attention to methodological aspects,tions of the association of electron transfer heme pro-
correct treatment of which is particularly important forteins. Its capabilities also include Tanford–Kirkwood
obtaining agreement with experiment.calculations to estimate pKa values and assign partial

charges and numerical solution of the linear and full
Electrostatic ModelPoisson–Boltzmann equations.

—UHBD (http://chemcca10.ucsd.edu/Çjmbriggs/ The importance of accounting for the dielectric heter-
eogeneity and ion exclusion volumes of both proteinsuhbd.html) (11), developed by Andrew McCammon and
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is seen by comparing the results obtained with an effec- Geometric Criterion
tive charge model with those obtained with a test Two atoms on the binding face of barstar were re-
charge model. As shown in Fig. 5, the use of test quired to approach within a specified rmsd, d, of their
charges to compute electrostatic forces leads to under- positions in the crystallographically observed complex,
estimation of the steering forces. The experimentally as shown in Fig. 3a. This criterion could reproduce the
observed 18-fold drop in association rate on changing effects on rate for only some mutants. Moreover this
the ionic strength from 50 to 500 mM is modeled cor- was at an rmsd d of 6.5 Å, which is too large a distance
rectly with effective charges, but is modeled as only to be a realistic measure of the distance at which short-
a 10-fold drop with test charges. The ionic strength range interactions between the proteins become strong
dependence of the rate is most severely underestimated enough to ensure that complexation occurs subsequent
at ionic strengths of 300 to 500 mM, implying that to formation of the diffusional encounter complex.
the test charge interactions at these and higher ionic
strengths are very small at the encounter contact dis- Energetic Criterion
tances. On the other hand, with effective charges, ionic

The electrostatic interaction energy was required tostrength dependence is reproduced from 50 to 500 mM
be more favorable than a defined threshold. This crite-ionic strength and interactions are significant at the
rion does not reproduce differences between mutantshigher ionic strengths. This shows that the association
with a single threshold and is not recommended be-mechanism is the same at all salt concentrations in
cause it leads to an overestimate of the effects of elec-this range and that the ionic strength dependence of trostatic steering which are effectively counted twice.the rates may be ascribed solely to changes in the elec-

trostatic steering forces.
Residue Contact Criterion

A defined number of correct residue–residue con-
Definition of Formation of Diffusional Encounter tacts between the two proteins were required in which
Complex the distance between specified atoms in the residues

Reaction criteria based on geometry, energy, and in- was shorter than a defined length dC, as shown in Fig.
termolecular contacts were tested for this system as 3b. Contact pairs were defined to be as mutually inde-

pendent as possible. Formation of two contacts shorterfollows:

FIG. 4. Trajectory simulated by BD of barstar diffusing toward its binding site on barnase. The trajectory is started with barstar placed
at a random position on the sphere shown with a radius of 100 Å centered on barnase. The trajectory is about 68 ns long and the positions
of the center of the diffusing barstar are plotted at approximately 200-ps time intervals. The position of the center of barstar in the crystal
structure of the complex with barstar is indicated by the dot in the small circle. Most trajectories are shorter than the one shown and in
most, barstar does not reach the barnase binding site before diffusing away.
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than 5.25 Å or three contacts shorter than 7.5 Å was listing dependent pairs of contacts, i.e., those contacts
in which either atom is within dmin of an atom of thefound to give computed rates in good agreement with

experimental data and reproduce the effects of ionic other contact within the same protein. During a BD
trajectory, donor–acceptor atom contacts shorter thanstrength (see Fig. 5) (36). The distance of 5.25 Å can be

interpreted as a direct, rather than solvent-separated, dC are monitored. Then the number of independent con-
tacts is computed by ensuring that no more than oneinteraction distance between atoms. A better fit for the

diverse set of mutants studied was obtained at three contact from any dependent pair of contacts is counted.
With this definition, computed rates for barnase–times the experimentally measured association rate

with dCÅ 6.25 Å for two contacts (see Fig. 6), indicating barstar association agreed well with experimental
rates when two contacts shorter than dC Å 4.5 Å werethat BD is better suited to model the formation of the

transition state than the bound complex. required. Computed rates were more accurate than
those obtained for the residue contact criterion for vari-

Atom Contact Criterion ants in which mutation affected the number of residue
contacts monitored with the residue contact criterion.This is similar to the above criterion but the atom–

atom contacts are assigned in a fully automated way
Sensitivity of Modelindependent of which residue each atom is in (see Fig.

The absolute magnitude of the rate computed is3c). The contacts are between hydrogen bond donor and
much more sensitive to modifications in parameters oracceptor atoms. The specific contacts are selected so
protein structure than the relative rates for the set ofthat they are approximately equivalent in terms of
mutants or the ionic strength dependence. The im-their contribution to the bimolecular interaction en-
portant effects of reaction criteria and charge model onergy. This is achieved by requiring donor–acceptor
rates computed has been discussed above. Modificationpairs to be separated by distances greater than dmin (6
of the following additional features of the model alteredÅ). A contact between two side chains is counted as one
the absolute rates at 50 mM ionic strength, but didcontact even if there are two or three contacts between
not produce any significant change in the correlationdonor and acceptor atoms in the side chains. Potential
between computed and experimental rates for the setcontacts are defined by, first, tabulating all intermolec-
of mutants studied.ular donor–acceptor atom contacts shorter than a dis-

tance dmax (5 Å) in the experimental structure of the • A factor of up to 10 decrease in rates could be ob-
bimolecular complex and, second, generating a table tained by using the coordinates of the unbound barnase

from either the crystal structure or the ensemble of
structures from the NMR determination, instead of co-
ordinates from the crystal structure of the barnase–
barstar complex.

FIG. 5. Ionic strength dependence of the barnase–barstar associa-
tion rate: ---, Experimentally measured values (plain) and experi-
mentally measured values multiplied by 3 (boldface); rrr, values
computed with test charges; —, values computed with effective
charges. For defining encounter complex formation, two contacts
were required with contact distances less than 6.5 Å (lower line,
plain) and 7.5 Å (upper line, boldface) for test charges and 5.25 Å
(lower line, plain) and 6.00 Å (upper line, boldface) for effective FIG. 6. Comparison of experimental and computed association

rates for wild-type barnase and barstar and 11 mutants. A contactcharges. Note that the commonly used test charge approximation
results in an underestimate of the ionic strength dependence and distance of 6.25 Å was required when computing the rates. The

dashed line presents the dependence log(computed rate) Å 3∗log(ex-that this can be corrected by using effective potential-derived
charges. perimental rate).
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• A factor of 2 decrease in rates could be obtained by CONCLUDING REMARKSremoving the 2-Å-thick Stern layer, or by minimizing
hydrogen atom positions with the proteins separated
rather than positioned in their bimolecular complex, or Besides the barnase–barstar case described above,
by using snapshots from a molecular dynamics simula- BD simulation has been used to compute protein–pro-

tein association rates in a range of applications: elec-tion of the barnase–barstar complex rather than the
tron transfer heme proteins, antigen–antibody bind-crystallographic coordinates.
ing, and protein self-association (17). The first• No noticeable difference was observed for this sys-
applications using detailed protein models related totem when the nonlinear Poisson–Boltzmann equation
the heme protein cytochrome c and its electron transferwas used instead of the linearized equation to compute
partners, cytochrome c peroxidase (44) and cytochromeelectrostatic forces.
b5 (45). Electron transfer rates were computed by cou-
pling models describing the electron transfer event toIn summary, the application to barnase–barstar as-
diffusional encounter trajectories of the proteins. Ionicsociation shows the following:
strength dependencies were reasonably reproduced,
qualitative insights into the effects of mutations were

• The BD simulation method can reproduce experi- obtained, and structural information about encounter
mental rates well. The accuracy is such that BD simu- complexes was derived. For cytochrome c–cytochrome
lations should be useful for the design of mutants with c peroxidase association, two distinct binding modes
altered on-rates. were obtained, each containing many alternative con-

• In the encounter complex (transition state) for this formations, indicating a multitude of electron transfer
enzyme, two correct contacts are formed. Rotational orientations rather than a single dominant complex.
freedom is not yet fully lost (see Fig. 7). After the simulations of cytochrome c–cytochrome c

• Some residues are more important than others for peroxidase association were performed, the crystal
steering binding. Barstar tends to bind first to residues structure (50) was solved but showed specific complex
in the guanine-binding loop of barnase and their muta- formation. This apparent discrepancy may arise be-
tion has a greater impact on association rates than cause the crystal structure should represent the unique

bound state, whereas the BD simulations model transi-other barnase residues in the binding interface.

FIG. 7. Encounter complexes for barnase–barstar association. Barnase and barstar are shown in boldface at their positions in the crystal
structure of their complex. The gray lines show 17 encounter positions of barstar obtained in different trajectories. The two views differ by
a 907 rotation about the vertical axis. Residues 57–60 in the guanine-binding loop of barnase are indicated by circles.
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