5.2.1 Energy

The internal energy is easily obtained from a simulation as the ensemb}e average
of the energies of the states that are examined during the course of the simulation:

1 M
U = (E) =H2Ei
i=1

5.2.4 Temperature

In a canonical ensemble the total temperature is constant. In the microcanonical
ensemble, however, the temperature will fluctuate. The temperature is directly
related to the kinetic energy of the system as follows:
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_\pl” _ksT o
A = i§=l: 2 =3 GV =N (5.14)

In this equation, p; is the total momentum of particle i and m; is its mass.
According to the theorem of the equipartition of energy each degree of freedom
contributes kg7/2. If there are N particles, each with three degrees of freedom,
then the kinetic energy should equal 3NkgT/2. N, in equation (5.14) is the
number of constraints on the system. In a molecular dynamics simulation the
total linear momentum of the system is often constrained to a value of zero,
which has the effect of removing three degrees of freedom from the system and
so N would be equal to 3. Other types of constraint are also possible
discuss in section 6.5.



5.2.3 Pressure

The pressure is usually calculated in a computer simulation via the virial theorem
of Clausius. The virial is defined as the expectation value of the sum of the
products of the coordinates of the particles and the forces acting on them. This is
usually written W=} x; p. where x; is a coordinate (e.g. the x or y coordinate of
an atom) and p, is the first derivative of the momentum along that coordinate (p;
is the force, by Newton’s second law). The virial theorem states that the virial is

In an ideal gas, the only forces are those due to interactions between the gas
and the container and it can be shown that the virial in this case equals —3PV.
This result can also be obtained directly from PV = NkgT.

Forces between the particles in a real gas or liquid affect the virial, and thence
the pressure. The total virial for a real system equals the sum of an ideal gas part

(—3PV) and a contribution due to interactions between the particles. The result
obtained is:

= —3PV + Z Z ry

i=1 j=i+1 iJ

= —3NkT (5.12)

The real gas part is derived in Appendix 5.3. If d2+(r;;)/dr;; is written as fjj, the
force acting between atoms i and j, then we have the following expression for the
pressure:

o
P=—I;[NkBT—3k TZ Z ; ,,] (5.13)

i=1 j=i+l

The forces are calculated as part of a molecular dynamics simulation, and so
little additional effort is required to calculate the virial and thus the pressure. The
forces are not routinely calculated during a Monte Carlo simulation, and so some
additional effort is required to determine the pressure by this route. When
calculating the pressure it is also important to check that the components of the
pressure in all three directions are equal.



5.2.2 Heat capacity

At a phase transition the heat capacity will often show a characteristic
dependence upon the temperature (a first-order phase transition is characterised
by an infinite heat capacity at the transition but in a second-order phase transition
the heat capacity changes discontinuously). Monitoring the heat capacity as a
function of temperature may therefore enable phase transitions to be detected.
Calculations of the heat capacity can also be compared with experimental results
and so be used to check the energy model or the simulation protocol. |

The heat capacity is formally defined as the part1a1 derivative of the mtemal
energy with respect to temperature:

oU | .

o= (%) 55

The heat capacity can therefore be calculated by performing a series of

simulations at different temperatures, and then differentiating the energy with

respect to the temperature. The differentiation can be done numerically or by

fitting a polynomial to the data and then analytically differentiating the fitted

function. The heat capacity may also be calculated from a single simulation by
considering the instantaneous fluctuations in the energy as follows:

= {(E?) — (E)*}/ks T? (5.9)
An alternative way to write this expression uses the relationship
(E — (E))") = () — (E)? | (5.10)
giving
Cy = ((E — (E)))/ kg T* (5.11)

A derivation of this result is provided in Appendix 5.2.

The heat capacity can therefore be obtained by keeping a running count of E*
and E during the simulation, from which their expectation values (E%) and (E)
can be calculated at the end of the calculation. Alternatively, if the energies are
stored during the simulation then the value of ((E — (E))?) can be calculated once
the simulation has finished. This second approach may be more accurate due to
round-off errors; (E2) and (E)? are usually both large numbers and so there may
be a large uncertainty in their difference.
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Fig. 5.2 Radial distribution function determined from a 100 ps molecular
dynamics simulation of liquid argon at a temperature of 100 K and a density of
1.396 g cm™3.



5.2.5 Radial distribution functions

To calculate the pair distribution function from a simulation, the neighbours
around each atom or molecule are sorted into distance ‘bins’, or hxstograms The
number of neighbours in each bin is then averaged over the entire simulation. For

or

example, a count is made of the number of neighbours between (say) 2.5 A and
275 A, 275 A and 3.0 A and so on for every atom or molecule in the
simulation. This count can be performed during the simulation itself or by
analysing the configurations that are generated.

Thermodynamic properties can be calculated using the radial distribution

function, if pairwise additivity of the forces is assumed. These properties are
usually given as an ideal gas part plus a real gas part. For example, to calculate
the energy of a real gas, we consider the spherical shell of volume 4nr?6r that
contains 472 pg(r)dr particles. If the pair potential at a distance » has a value
¢ (r) then the energy of interaction between the particles in the shell and the
central particle is 4nr*pg(r) ¢ (r)or. The total potential energy of the real gas is
obtained by integrating this between 0 and co and multiplying the result by N/2
(the factor 1/2 ensures that we only count each interaction once). The total
energy is then given by:

E= %NkBT + 2nNp j e (r)g(r)dr (5.16)
0

In a similar way the following expression for the pressure can be derived:

00

2nNp de(r)
- —_ 5.17
PV = NkgT 3kBTJ;2r = g(r)dr (5.17)
0
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Fig. 5.6. The normalized time correlation function,

C,() = {Aqﬁ(t) Afﬁ(O).) /{4¢(0) 44(0)), for @orsi.onal ﬂpctuations A4¢ of
the tyrosine 21 ring in a molecular dynamics simulation of the
pancreatic trypsin inhibitor (McCammon et al., 1979).
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Fig. 2.3 (a) The velocity autocorrelation function and (b) its Fourier transform, for the
Lennard-Jones liquid near the triple point (p* = 0.85, T* = 0.76).

The temporal Fourier transform (see Appendix D) of the velocity
autocorrelation function is proportional to the density of normal modes in a
purely harmonic system, and is often loosely referred to as the ‘density pf

states’ in solids and liquids.



We shall consider the formulae for two properties in detail because these
will be calculated in the example program of the next section. The first
property is the diffusion coefficient for a species i, D;, which is proportional
to the time integral of its velocity autocorrelation function:

D; = % /OW dt (v} (H)v,(0)) (10.8)

This equation can be integrated by parts to give the following expression
which is valid at long times, ¢:

61D; = (ri(1) — 1,(0))) ©(109)

Equation (10.9) is an example of an Einstein relation for a transport coeffi-
cient. The average on the right-hand side of equation (10.9) is closely related
to that of a time correlation function and it can be calculated in a very similar
fashion. The only difference is that, instead of taking the average of the
product of the property at two different times as in equation (10.7), the

averaging is performed over the square of the difference of the property at
the two times.

Plots of the simulation results are shown in figures 10.1 and 10.2. The value
of the diffusion coefficient can be calculated from the slope of the line in
figure 10.1 at large times, giving a value of 0.42 A?pstord42x 10 m?s7!,
which is large relative to the experimental value of 2.3 x 10~ m? s™! at 25 °C.
To verify this result fully, a similar analysis would have to be carried out on a
longer trajectory to ensure that the function plotted in figure 10.1 had indeed
reached its limiting value at long times.
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Figure 10.1. The function -‘3-((r(t) — r(0))?) calculated for the oxygen atoms of the
water molecules using the molecular dynamics trajectory generated in Example 16.
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Fig. 5.5 Periodic cells used in computer simulations: the cube, parallelepiped,
truncated octahedron, hexagonal prism and rhombic dodecahedron.



Point Charges

Let us first consider a system consisting of positively and negatively charged
particles. These particles are assumed to be located in a cube with diameter
L (and volume V = L3). We assume periodic boundary conditions. The
total number of particles in the fundamental simulation box (the unit cell)
is N. We assume that at short distances the particles repel one another. In
addition we assume that the system as a whole is electrically neutral; that is,
> . zi = 0. We wish to compute the Coulomb contribution to the potential

energy of this system,

N
1
Ucou = 5 § zid(ri), (B.1.1)
i=1

where ¢ (1) is the electrostatic potential at the position of ion i:

Zj

N/
$(ri) = )Zn ri; +nl|’ (B.1.2)
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Fig. 5.13 The variation in the electrostatic interaction energy of the water dimer
as a function of the O—O distance without a cutoff.
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Fig. 5.14 The variation in interaction of the water dimer as a function of the
O-O distance with an 8 A atom-based cutoff.
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Figure B.1: A set of point charges may be considered a set of screened
charges minus the smoothly varying screening background.

After this brief sketch of the method to evaluate the electrostatic contri-
bution to the potential energy, let us now consider the individual terms. We
assume that the compensating charge distribution surrounding an ion i is a
Gaussian with width {/2/« :

OGauss (1) = —zi(a/m) exp(—ar?),

where the choice of o is determined later by considerations of computational
efficiency. We shall first evaluate the contribution to the Coulomb energy
due to the continuous background charge, then compute the spurious “self”
term, and finally the real-space contribution due to the screened charges.



Real-Space Sum

Finally, we must compute the electrostatic energy due to the point charges
screened by oppositely charged Gaussians. Using the results of section B.1,
in particular equation (B.1.10), we can immediately write the (short range)
electrostatic potential due to a point charge z; surrounded by a Gaussian
with net charge —z;:

Pshort range(r) = % - %erf (\/o_cr)
= %erfc (Var), (B.1.12)

where the last line defines the complementary error function erfc(x) = 1 —
erf(x). The total contribution of the screened Coulomb interactions to the
potential energy is then given by

1N
Ushort range = 3 Z zizjerfc (vary;) /ﬂ'j . (B.1.13)
i#j

The total electrostatic contribution to the potential energy now becomes
the sum of equations (B.1.6), (B.1.11), and (B.1.13):

4nv
Uos = 33 o IolI)P exp(—2/acr)
k#0
N
— (a/m)? Z
2Zz,lzc,erfc arij) /T‘.l‘ (B.1.14)

i#£j



Fourier Part

We must compute the electrostatic potential at a point i due to a charge
distribution p1 (7) that consists of a periodic sum of Gaussians:

N
or(r) =Y 3 zla/mi exp [—air— (5 +nL)F].
j=1 n

To compute the electrostatic potential ¢ () due to this charge distribution,
we use Poisson's equation:

—V2¢1 (1) = 4mpy (1),

or in Fourier form,
k201 (k) = 4npy (k).

U

%Zadﬁ(ﬂ)

= 3 Z Z exp[xk (r; — ;)] exp(—k?/4a)

k#o i.)-l

= 3 Yy & 27 le(k)I* exp(—k?/4a),
k¥#0

where we have used the definition

plk) = 5 Z z; exp(ik - ;).
i_.

Correction for Self-Interaction

The contribution to the potential energy given in equation (B.1.6) includes a
term (1/2)z; seif(Ti) due to the interaction between a continuous Gaussian
charge cloud of charge z; and a point charge z; located at the center of the
Gaussian. This term is spurious, and we should correct for it. We therefore
must compute the potential energy at the origin of a Gaussian charge cloud.

The charge distribution that we have overcounted is
PGauss(1) = z4(o/m)  exp(—ar?).

To compute the spurious self term to the potential energy, we must compute
bGauss(T) at T = 0. Tt i$ easy to verify that

BGauss (T = 0) = 2z; (/7).

Hence, the spurious contribution to the potential energy is
1 N
Uset = 2 ‘; Z; Poere(Ti)

N
= (a/m)? sz
i=1



A flow chart of the steps involved in
computing the electrostatic energy, force and
pressure tensor by the PME scheme [9]. E;,
E,oc and E,, denote the direct and reciprocal
summations, and the correction terms.
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Unit cell containing N atoms, each with g; charge at position r;; ag, L - S

a=1,2,3 form edges of unit cell; a,* = conjugate reciprocal vector;

the fraction coordinate of charge q; is s,; = a,"*r;

;) Replicate infinitsly in three-dimensions

v2

Electrostatic energy of the unit cell E(r‘ ',,'r") = %Z' ) Z q'qi {prime means i=j and n=0 terms omitted)
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means n=0, i=] terms omitted or () EM M is the set of bond pairs and other masked terms
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Choose 3 so that Eg, E,,
can be evaluated efficiently

No. operations e O(N)
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iy Z, o s(ms(-m

wheem=3Y mea, (m, not all zero)
Q

N
S(m) = ¥ o, expl[2&i(} m,8,)] = 'Structure factor’

TE

At each step of dynamics evaluate F‘{(Q), Orpc
oF (Q)

=F(B-C),
B0 =5

,and 8, *F~'(Q) by 3D FFT

Then compute E,,c,%_—EEand I, (pressure tensor)
Ol gj

No. operations « O(N* gN)

6 Establish grid. Writet E,. as a discrete
Fourier transr rm of cardinal B-spline
(——— interpolation arrays Q, B and C. These
complex arrays are defined in [9].

The pair potential 6, and S are
discrete Fourier transforms of B-C and
Q, respectively.
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Figure B.4: The same level cells (shaded) of which the multipole potentials
are transferred to the current cell to give the local expansion. The current
cell is denoted by C, the neighbors of C do not contribute because they
touch C. The white cells of the parent level did not touch the parent cell
of C (indicated with a thick line) and therefore did contribute to the local

expansion of the parent cell.



°
.
[]
-
.
[]
°
[
® le
®
°
.
[ .
. ° e
.
L4 [
(]
°
.
. ° .
° .
. (]
. [}
[]
° ]
.
.
.
. .
.
. .
.
. .
°
°
. .
° °
o °
[} L]
e [®
[ o [}
°
. .
.
°
.
.
.
.

Figure 1.2: Two-dimensional representation of the Barnes-Hut adaptive oct-tree spatial decom-

position. In this case, subdivision into squares, rather than cubes, continues down the quad-tree
until each cell (square) contains only one particle. |
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Figure 1.3: A comparison of the well-separatedness criteria for several algorithms. Multipole
Acceptance Parameter (MAP) is a number used to determine whether an interaction is well-
separated enough to occur based on the contribution to error. If the interaction fails for a given
MAP, the participating particles must interact further down the tree. Except for the FMA,
the MAP is a number such that 0 < MAP < 1. For the Barnes-Hut tree code, the criterion is
based on the separation of a particle and the center of mass of a cell. All other criteria shown
are based on cell-cell separations and depend on the cell geometries rather than the location of

particles in the cells.





