THEORY: MOLECULAR DYNAMICS
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4.4.1 Verlet’s Algorithm

The simplest finite-difference method that has been widely used in molecular
dynamics is a third-order Stérmer algorithm, first used by Verlet [4] and
known to simulators as Verlet’s method. The algorithm is a combination of
two Taylor expansions, combined as follows. First write the Taylor series for
position from time ¢ forward to ¢ + A¢:

dx(t 1 d%x(t 1 d3x(t
()At+— (2)A12+ (3)
dt 2 dt 3! ar

x(t+ A1) =x(1) + Ar® +0O(Ar%)

(4.34)
Then write the Taylor series from ¢ backward to ¢ — At:

dx(1) Ars 1d%x(¢) 1 d’x(1)

t—At)=x(t)— = 1°——
(1= A1) =x(1)=—5 2 "4 4T3 g

At® + O(Ar?)
(4.35)

Adding these two expansions eliminates all odd-order terms, leaving

d*x(1)

dt?

x(t+At)=2x(1)—x(t — A1) + At2+0(AtY)  (4.36)

This is Verlet’s algorithm for positions. It has a local truncation error that
varies as (At)* and hence is third order, even though it contains no third-order
derivatives. Nor does (4.36) for positions involve any function of the veloci-
ties; the acceleration in (4.36) is, of course, obtained from the intermolecular
forces and Newton’s second law. To estimate velocities, practitioners have
contrived various schemes, one being an estimate for the velocity at the
half-step:

x(t+At)—x(t)

t+1 = 4,
o(t+}A1) = (437)
Verlet himself used the first-order central difference estimator
x(t+ At)—x(t— At
v(t) = ( ) ( ) (4.38)

2 At

Verlet’s algorithm is a two-step method because it estimates x(¢ + Ar)
from the current position x(¢) and the previous position x(¢ — At). There-
fore it is not self-starting: initial positions x(0) and velocities v(0) are not
sufficient to begin a calculation, and something special must be done at 1 =0
(say, a backward Euler method) to get x(—Ar¢).



Modifications to the basic Verlet scheme have been proposed to tackle these
deficiencies. One of these is a so-called half-step ‘leap-frog’ scheme [Hockney
1970; Potter 1972, Chapter S]. The origin of the name becomes apparent when
we write the algorithm down:

r(t+6t) =r()+dtv(t+16¢) (3.17a)
v(t+46t) = v(t—46¢)+bta(r). (3.17b)

The stored quantitics are the current positions r(t) and accelerations a(t)
together with the mid-step velocities v(t —1/24¢). The velocity equation
(3.17b) is implemented first, and the velocities leap over the coordinates to give
the next mid-step values v(¢ + 1/24¢). During this step, the current velocities
may be calculated

v(t) = d(v(t +40t) + v(t —461)). (3.18)

This is necessary so that the energy (o = X + ¥ ) at time t can be calculated,
as well as any other quantities that require positions and velocities at the same
instant. Following this, eqn (3.17a) is used to propel the positions once more
ahead of the velocitics. After this, the new accelerations may be evaluated ready
for the next step. This is illustrated in Fig. 3.2. Elimination of the velocities
from these equations shows that the method is algebraically equivalent to
Verlet’s algorithm. There are some advantages in programming eqns
(3.17)-(3.18), however, since the velocities (admittedly not at time t) appear
explicitly [Fincham and Heyes 1982]; for example, adjusting the simulation
energy is usually achieved by appropriately scaling the velocities. Numerical
benefits derive from the fact that at no stage do we take the difference of two
large quantities to obtain a small one; this minimizes loss of precision on a
computer. If there is a desperate need to conserve storage space, the
accelerations may be directly accumulated onto the velocities, thus making the
overall requirements of order 6N words [Fincham and Heyes 1982]. The cost
is that eqn (3.18) may no longer be used, and it becomes necessary to estimate
the kinetic energy at time ¢ from the known mid-step values. An example of the
leap-frog technique in use in a low-storage program coded in FORTRAN and
in BASIC (for a microcomputer) is given in F.3. Finally, we note that the lcap-
frog approach may be applied to other algorithms as well as Verlet's [Fincham

and Heyes 1982].



As eqn (3.18) shows, leap-frog methods still do not handle the velocities in a
completely satisfactory manner. A Verlet-equivalent algorithm which does
store positions, velocities, and accelerations all at the same time ¢, and which
minimizes round-off error, has recently been proposed [Swope, Andersen,
Berens, and Wilson 1982]. This ‘velocity Verlet’ algorithm takes the form

r(t+80) =r(t)+dtv(t)+45t%a(r) . (3.19a)
vit+dt) =v(t)+4dt[a()+a(t+60)]. (3.19b)

Again, the Verlet algorithm may be recovered by eliminating the velocities. In
this form, the method resembles a three-value predictor—corrector algorithm
(see Appendix E), where the position corrector coefficient is zero [van
Gunsteren and Berendsen 1977]. The algorithm only requires storage of r, v,
and a. Although it is not implemented in exactly the form of a Gear
predictor—corrector, it does involve two stages, with a force evaluation in
between. Firstly, the new positions at time ¢ + ¢ are calculated using eqn
(3.19a), and the velocities at mid-step are computed using

v(t+46t) = v()+4dta(r). (3.20)

The forces and accelerations at time ¢ + ¢ are then computed, and the velocity
move completed

vit+3t) =v(t+46t)+4 dta(t+d1). (3.21)

At this point, the kinetic energy at time ¢ + d¢ is available. The potential energy
at this time will have been evaluated in the force loop. The whole process is
shown in Fig. 3.2. The method once more uses 9N words of storage, and its
numerical stability, convenience, and simplicity make it perhaps the most
attractive proposed to date. The code for the velocity version of Verlet's
method is a straightforward transcription of eqns (3.19)-(3.21) (see program
F.4).

Before we leave Verlet, we should mention the investigation by Beeman
[1976] of several algorithms, one of which reduces to eqn (3.14) when the
velocities are eliminated [Sangster and Dixon 1976; Hockney and Eastwood
1981]. The algorithm is

rt+80) =r()+otv(e)+ $5c2a(t)—35e2a(t—61) (3.22a)

V(it+6t) = v()+ $6ta(t+dt)+26ta()—$ota(t—ot). (3.22b)

The method stores r(t), v(t), a(t), and a(t — &¢). Offsetting the complexity of
these formulae, and the need to store the ‘old’ accelerations, is a more accurate
equation for the velocities than eqn (3.16), and consequently an apparent
improvement in energy conservation. However, once again, all the methods
described in this section are essentially equivalent in that they have identical
global errors and in fact generate identical position trajectories.
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Fig. 3.2 Various forms of the Verlet algorithm. (a) Verlet’s original method. (b) The leap-
frog form. (c) The velocity form. We show successive steps in the implementation of each
algorithm. In each case, the stored variables are in grey boxes.
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Table 3.1. Typical features of some internal motions of proteins and

nucleic acids

Log,, of
Spatial extent Amplitude characteristic
Motion (nm) (nm) time (s)
Relative vibration 0.2t0 0.5 0.001 to 0.01 —14t0 —13
of bonded atoms
Longitudinal motions 0.5 0.01 —14to —13
of bases in double
helices (nucleic acids)
Lateral motions of bases 0.5 0.1 —13to —12
in double helices
(nucleic acids)
Global stretching 1 to 30 0.03t0 0.3 —13to —11
(nucleic acids)
Global twisting 1 to 30 0.1t0 1.0 —13to —11
(nucleic acids)
Elastic vibration of 1to2 0.005 to 0.05 —12to —11
globular region
Sugar repuckering 0.5 0.2 —12to -9
(nucleic acids)
Rotation of sidechains 0.5t 1 0.5t 1 —11to —10
at surface (protein)
Torsional libration 0.5t0 1 0.05 —11to -9
of buried groups
Relative motion of 1to?2 0.1t00.5 —1l1to -7
different globular
regions (hinge bending)
Global bending 10 to 100 S5to 20 —10to -7
(nucleic acids)
Rotation of medium-sized 0.5 0.5 —4t00
sidechains in interior
(protein)
Allosteric transitions 0.5t0 4 0.1to0.5 -5t 0
Local denaturation 05t 1 05to 1 —-5to +1
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Table 12.1. Selected biomolecular sampling methods. Continuum solvation includes em-
pirical constructs, generalized Born models, stochastic dynamics, or Poisson Boltzmann
solutions, as discussed in Chapter 9. See Figure 12.1 and Figure 13.17 for illustrations of

these techniques.

tion [703, 712, 704,
711, 701, 702]

environment and reduces model’s
cost; useful information on ionic
atmosphere and intermolecular asso-
ciations

Method Pros Cons CPU
° Molecular || continuous  motion,  experimen- | expensive, short | high
Dynamics (MD) tal bridge between structures and | timespan
[37, 38, 834] macroscopic kinetic data
° Targeted MD || connection between two states; use- | not necessarily physi- | moderate
(TMD) [835] ful for ruling out steric clashes and | cal

suggesting high barriers
e  Stochastic Path || high-frequency motion filtering; ap- | expensive (global | high
Approach [836] proximate long-time trajectories optimization of entire

trajectory)

e Continuum Solva- || mean-force potential approximates | approximate high  (f

repeated in
time)

porated

® Brownian Dynam- || large-scale and long-time motion approximate hydrody- | moderate
ics (BD) [703, 269] namics; limited to sys-

tems with small inertia
e Monte Carlo || large-scale sampling; useful statistics | move definitions are | low
(MC) [833] difficult; unphysical

paths
° Minimization || valuable equilibria information; ex- | no dynamic informa- | low
[758] perimental constraints can be incor- | tion
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Figure 12.4. Time evolution of the end-to-end distance of butane for different timesteps.
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Figure 12.3. The rapid divergence of dynamic trajectories for four water molecules differ-
ing slightly in initial conditions.
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Figure 12.2. Heating and equilibration of a hydrated DNA dodecamer system of 12389
atoms in a hexagonal-prism periodic domain.
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Fig. 6.3 Variation in total energy versus time for the production phase of a
molecular dynamics simulation of 256 argon atoms at a temperature of 100K and
a density of 1.396 gcm™3(top). The time step was 10 fs and the equations of
motion were integrated using the velocity Verlet algorithm. The variations in the
kinetic and potential energies are also shown. The graphs have different scales.





