Figure 3.1: Measuring the depth of the Nile: a comparison of conventional
quadrature (left), with the Metropolis scheme (right).
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Let us now “derive” the Metropolis scheme to determine the transition
probability (o — n) to go from configuration o to n. It is convenient to
start with a thought experiment (actually a thought simulation). We carry
out a very large number (say M) Monte Carlo simulations in parallel, where
M is much larger than the total number of accessible configurations. We
denote the number of points in any configuration o by m(o). We wish that,
on average, m(o) is proportional to A'(0). The matrix elements t(o — n)
must satisfy one obvious condition: they do not destroy such an equilibrium
distribution once it is reached. This means that, in equilibrium, the average
number of accepted trial moves that result in the system leaving state o must
be exactly equal to the number of accepted trial moves from all other states .
to state o. It is convenient to impose a much stronger condition; namely, that
in equilibrium the average number of accepted moves from o to any other
state n is exactly canceled by the number of reverse moves. This detalled
balance condition implies the following:

N(o)rt(o = n) = N(n)w(n = o). (3.1.13)

Many possible forms of the transition matrix t(o — n) satisfy equation
(3.1.13). Let us look how m(o — n) is constructed in practice. We recall
that a Monte Carlo move consists of two stages. First, we perform a trial
move from state o to state n. We denote the transition matrix that deter-
mines the probability to perform a trial move from i to j by a(o — n); where
o is usually referred to as the underlying matrix of Markov chain [43]. The
next stage is the decision to either accept or reject this trial move. Let us
denote the probability of accepting a trial move from o to n by acc(o — n).
Clearly,

mt(o = n) = a{o = n) x acc(o = n). (3.1.14)

In the original Metropolis scheme, « is chosen to be a symmetric matrix
(acc(o = n) = acc(n — o0)). However, in later sections we shall see sev-
eral examples where « is not symmetric. If « is symmetric, we can rewrite
equation (3.1.13) in terms of the acc(o — n}):

N(o0) x acc(o = n) = N(n) x ace(n = o). (3.1.15)

From equation (3.1.15) follows

acclo = n) N(n; — exp(—BlU(n) = U(0)]}. (3.1.16)

acc(n =2 0)  MN(o



Again, many choices for acc(o — n) satisfy this condition (and the obvious
condition that the probability acc(o — n) cannot exceed 1). The choice of
Metropolis et al. is

N()/Nn) if N(n) < N(o)
1 if N(n) > N(o). (3.1.17)

Other choices for acc(o — n) are possible (for a discussion, see for instance
[19]), but the original choice of Metropolis et al. appears to result in a more
efficient sampling of configuration space than most other strategies that have
been proposed.

In summary, then, in the Metropolis scheme, the transition probability
for going from state o to state n is given by

acc(o = n)

nlo—=n) = afo—=n) N(n) > N(o)
= afo = n)WN1n)/N(o)] N(n)<N(o) (3.1.18)
nmlo—o0) = 1-— Zn# (o = n).

Note that we still have not specified the matrix a, except for the fact that it
must be symmetric. This reflects considerable freedom in the choice of our
trial moves. We will come back to this point in subsequent sections.

One thing that we have not yet explained is how to decide whether a
trial move is to be accepted or rejected. The usual procedure is as follows.
Suppose that we have generated a trial move from state o to state n, with
U(n) > U(o). According to equation (3.1.16) this trial move should be ac-
cepted with a probability

acc(o = n) =exp{—BU(n) —U(0)]} < 1.

In order to decide whether to accept or reject the trial move, we generate
a random number, denoted by Ranf, from a uniform distribution in the in-
terval [0,1]. Clearly, the probability that Ranf is less than acc(o — n) is
equal to acc(o = n). We now accept the trial move if Ranf < acc(o — n)
and reject it otherwise. This rule guarantees that the probability to accept a
trial move from o to n is indeed equal to acc(o — n). Obviously, it is very
important that our random number generator does indeed generate num-
bers uniformly in the interval [0, 1]. Otherwise the Monte Carlo sampling
will be biased.
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Figure 3.4: (left) Typical dependence of the mean-square displacement of a
particle on the average size A of the trial move. (right) Typical dependence
of the computational cost of a trial move on the step-size A. For continuous
potentials, the cost is constant, while for hard-core potentials it decreases
rapidly with the size of the trial move.



The Traveling Salesman

1. Configuration. The cities are numbered¢ = 1... N and each has coordinates
(zi,y:). A configuration is a permutation of the number 1... N, interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin [6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function. In the simplest form of the problem, F is taken just
as the total length of journey,

N
E=L=) (@i—zi1)? + W — pi41)? (10.9.2)

=1

with the convention that point N + 1 is identified with point 1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
In that case, we would assign each city a parameter u;, equal to +1 if it is east of the
Mississippi, —1 if it is west, and take the objective function to be

N
E=)_ [\/ (Ti = Tig1)? + (¥i — ¥it1)? + M(ps — #i+1)2] (10.9.3)

=1

A penalty 4] is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice of A. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to mclude
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of AE that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest AF normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decrease
in T. We hold each new value of T" constant for, say, 100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduce £
further become sufficiently discouraging, we stop.
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Figure 4.1: Configurations of a 100-city travelling salesman problem
obtained after 0, 68, 92 and 123 steps of the algorithm. The initial tour
looks very chaotic (a) (high entropy). Gradually, the tour becomes less
chaotic, (b) and (c) (the entropy decreases). The final tour (d) shows
a highly regular pattern (minimum cost and entropy)



TableII Simulated Annealing*® of Polyalanines: AcNH-(Ala),,-CONHCH,

CPUTime Energy (Ki/mole® No. of 1-13 H Bonds®
n No. Dihedrals (10 Runs) (No. of Runs) (Helical Residues)

2 4 0:24:12 —103.11(5) . 0
- 97.31(5)
3 6 0:39:16 —161.8%3) 1
—145.65(3)
- 140.64(2)
—137.78(1)
—108.70(1)
4 8 0:43:28 —2108%(7)
—189.09(1)
—194.81(1)
—186.81(1)
5 10 0:59:57 —269.48(3) 8
—25642(1) 1
—246.34(1)
—236.47(1) 1
—227.35(2)
—219.74(1)
| -usse)
6 12 2:34:04 - —332.02(5)
—311.85(3)
—294.50(1)
—2894%(1)
7 14 1:39:47 — 394.95(5)
—37495(1)
—366.90(1)
—364.96(2)
—336.08(1)
8 16 2:03:22 — 458.42(4)
—43183(1)
—411.40(1)
—408.8%(1)
—409.17(1)
—404.39(1)
' : —374.28(Q1)
9 18 -2:20:18 —521.72(3)
- ~ 500.82(1)
—439.54(1)
—436.86(1)
—433.0(1)
—419.47(1).
—416.88(1)
—395.67(1)
10 20 2:25:06 —585.63(7)
- ~ 544.04(1)
—533.41(1)
- 502.33(1)

“The number of steps in the random walk was 250 at each temperature except for Alag where 500
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Table III Simulated Annealing of Larger Polyalanines®* AcNH-(Ala),-CONHCH,

CPU Time Energy No. of 1-13 H Bonds®
n No. Dihedrals (per Run) (Kjoul /mol) (Helical Residues)
20 40 2:24:00 —1224.07° 18
—1187.75 14
- 1082.72 10
: —1020.12 10
40 80  4:56:06 —2220.05¢ 26
—1966.49 26
80 160 26:10:30 —4713.81 72
- —4501.94 b4

'Starﬁnggeometrjforeachrﬂnwasasheetwithl or 2 bends to allow it to fit on the screen.

®One-hundred percent a-helix.

“The C = O of residue i is H-bonded to the N — H of residue i + 4. A complete a-helix shows
n — 2 hydrogen bonds. All helices are right-handed.

4Comparison Ala,, a-helix has amber E =_—2475.25 Kjoul /mol.



Umbrella sampling

Umbrella sampling attempts to overcome the sampling problem by modifying the
potential function so that the unfavourable states are sampled sufficiently. The
method can be used with both Monte Carlo and molecular dynamics simulations.
The modification of the potential function can be written as a perturbation:

') = v ")+ wiV)
W(r") is a weighting function, which often takes a quadratic form:
W) = by -}y’

For configurations that are far from the equilibrium state rj the weighting
function will be large and so a simulation using the modified energy function
¥"'(r™) will be biased away from the configuration r). The resulting distribution
will, of course, be non-Boltzmann. The corresponding Boltzmann averages can
be extracted from the non-Boltzmann distribution using a method introduced by
Torrie and Valleau [Torrie and Valleau 1977]. The result is:

(4) = (AN exp[+W () / kg T y
(exp[+W (r’“")/ kg T)) w

The subscript W indicates that the average is based on the probability Py(r"),
which in turn is determined by the modified energy function ¥™(r™).




Step 1: Carry out a conformational search to find the set of
low-energy conformers—call these X;. Evaluate the internal
coordinate transformations that interconvert all pairs (i,j) of the
conformers in the X; list—call these transformations T.

Step 2: Pick an initial conformation—call this structure Yj.

Step 3: Find the conformer on the X; list that is closest to
Yo—call this conformer X.

Step 4: Randomly choose a conformer from the X; list—call
this conformer Xr.

Step 5: Apply transformation Txoxt to structure Yy to
generate structure Y.

Step 6: Apply small random variations to internal coordinates
of Y| to generate the new trial structure Y>.

Step 7: Compare energies of Yo and Y, accepting Y, with
a probability defined by Metropolis;? p= mm{l exp[—(E(Y>)
— E(Y0))/kT]}.
- Step 8: Define the resulting structure as Yo and go back to
Step 3.
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Figure 3. Convergence plots from the MD (left) aﬁd MC10 and MC20
(right) simulations for the potential energy, torsional energy, and density.
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Flgure S. Convergence plots for the trans and gauche populauons in
percent for each dihedral angle of hexane from the MD simulation.
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Figure 4. Convergence plots for the trans and gauche populations in
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simulations. h
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Figure 2. A schematic diagram illustrating the effects of our energy
transformation for a one-dimensional example. The solid line is the
energy of the original surface and the dashed line is the transformed

energy E. |



TABLE 1: Global Minima of LJy for N < 110

N point group energy/e ref* N point group energy/e
2 Dey -1.000 000 2 57 G —288.342 625
3 Du —~3.000 000 23 58 Ca =294.378 148
4 Ty —6.000 000 23 59 Cay =299.738 070
5 Dy, =9.103 852 23 60 G -305.875 476
6 Oy —12.712 062 3 61 Ca —312.008 896
7 Dg —16.505 384 3 62 G -=317.353 901
8 C —19.821 489 23 63 C —323.489 734
9 Cav —24.113 360 yIx] 64 G =329.620 147
10 Csv —28.422 532 2 65 C: =334.971 532
11 Cav —32.765 970 2 66 G —341.110 599
12 Csv —37.967 600 2 67 G —347.252 007
13 L —44.326 801 23 68 G =353.394 542
14 Csv —47.845 157 273 69 Csy —359.882 566
15 Cay —-52.322 627 2 70 Csv —366.892 251
16 C —56.815 742 2 71 Csv —373.349 661
17 C; —61.317 995 7 72 Cs —-378.637 253
18 Csv —66.530 949 2 73 G —384.789 377
19 Ds =72.659 782 2 74 G =390.908 500
20 Cay =77.177 043 2 75 Da —397.492 331
21 Cay —81.684 571 2 76 G —402.894 866
22 G —86.809 782 10 i Cay —409.083 517
23 D —92.844 472 8 78 G —414.794 401
24 C —97.348 815 9 9 Ca —421.810 897
25 C —102.372 663 2 80 G —428.083 564
26 Ta —108.315616 2 81 Ca =434.343 643
27 Cay —112.873 584 10 82 G —440.550 425
28 C —117.822 402 10 83 Ca —446.924 094
29 D —123.587 371 2 84 G —452.657 214
30 Cay —128.286 571 10 85 Cs —459.055 799
31. Cs —133.586 422 10 86 G —465.384 493
32 Cay —139.635 524 10 87 G —472.098 165
KX C, —144.842 719 10 88 G -479.032 630
34 Ca —150.044 528 10 89 Cav —486.053 911
35 C —155.756 643 10 90 G —492.433 908
36 C, —161.825 363 10 91 G —498.811 060
37 C —167.033 672 10 92 Cyv —505.185 309
38 Ou —173.928 427 13/14 93 C —510.877 688
39 Csv —180.033 185 10 94 C —517.264 131
40 C —185.249 839 10 95 & —523.640 211
4] C —190.536 277 10 96 G —529.879 146
42 (o —196.277 534 10 97 G —536.681 383
43 C —202.364 664 10 98 G —543.642 957
44 G —207.688 728 10 99 Cay —550.666 526
45 C —213.784 862 10 100 G —557.039 820
46 G, —220.680 330 10 101 Ca -563.411 308
47 C —226.012 256 10 102 Cyy —569.363 652
48 G —232.199 529 10 103 G —575.766 131
49 Csy —239.091 864 10 104 Cay —582.086 642
50 G —244.549 926 10 105 C —588.266 501
51 Cay —251.253 964 10 106 C —595.061 072
52 Csy —258.229 991 10 107 G —602.007 110
53 Cay —265.203 016 10 108 G —609.033 011
54 Csv —272.208 631 10 109 G —615.411 166
55 L —279.248 470 4 110 G —621.788 224
56 Csy —283.643 105 10
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Figure 1. Nonicosahedral Lennard-Jones global minima.
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FIG. 1. Energy profile of a pathway between the two low-
est energy minima of LJss, namely the fcc truncated octa-
hedron (bottom left) and a structure based on the Mackay
icosahedron with Csy point group symmetry (top right).
2'/%¢ is the equilibrium pair separation of the LJ poten-
tial. The method by which this pathway was obtained is
described in Ref. [15]. '
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FIG. 2. Equilibrium thermodynamic properties of the un-
transformed LJss PES. (a) The probability of the cluster be-
ing in the fcc, icosahedral and ‘liquid-like’ regions of bound
configuration space. (b) The heat capacity, Cy. These re-
sults were obtained by summing the anharmonic partition
functions for a sample of minima appropriately weighted to
compensate for the incompleteness of the sample[16]). The
liquid-like region of configuration space is defined as those
minima with E > —171.6¢.
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FIG. 3. Equilibrium thermodynamic properties of the
transformed LJss PES. (a) The probability of the cluster be-
ing in the fcc, icosahedral and ‘liquid-like’ regions of bound
configuration space. (b) The configurational component of
the heat capacity.



Fig. 2. Minima on the LJ3g pathway from the truncated octahedron to the lowest energy icosahedral minimam. The minima are numbered by their position
along the pathway )
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Fig. 3. Reaction profile of a pathway on the LJ3g PES from the truncated
octahedron to the lowest energy icosahedral minimum. Stationary points are
denoted by diamonds. The minima are numbered by their position along
the pathway



