

Figure 3.1: Measuring the depth of the Nile: a comparison of conventional quadrature (left), with the Metropolis scheme (right).

HOW TO DO A MONTE CARLO SIMULATION

CLASSICAL STATISTICAL MECHANICS

PROB. OF OCCURENCE WEIGHT IN AVERAGE

UNIFORM BOLTZMANN

$$\langle a \rangle = \sum_{J} P_{J} Q_{J}$$

METROPOLIS SAMPLING

PROB. OF OCCURENCE WEIGHT IN AVERAGE BOLTZMANN UNIFORM

- 1 DISPLACE XJ -> XJ+1
- @ IF EJ+1 < EJ, THEN KEEP XJ+1. IF Esti > Est, PICK M ON (0,1) AND IF e-B(EJ+1-EJ) > M THEN KEEP XI+1, ELSE XI+1=XI.

MONTE CARLO METHODS:

EDWARD TELLER (1953) I CHEM PHYS 21 1087

BILL JORGENSEN (1978) I AMER CHEM SOC 100 7824

- 1) PERIODIC BOUNDARY CONDITIONS W/ ~100 MOLECULES
- @ MINIMUM IMAGE OF SPHERICAL CUTOFF
- 3 METROPOLIS SAMPLING W/ LINEAR WEIGHTING
- 4 PAIRWISE INTRAMOLECULAR POTENTIALS USED
- 3 ~ 500K CONFIGURATIONS REQUIRED

Let us now "derive" the Metropolis scheme to determine the transition probability $\pi(o \to n)$ to go from configuration o to n. It is convenient to start with a thought experiment (actually a thought simulation). We carry out a very large number (say M) Monte Carlo simulations in parallel, where M is much larger than the total number of accessible configurations. We denote the number of points in any configuration o by $\pi(o)$. We wish that, on average, $\pi(o)$ is proportional to $\mathcal{N}(o)$. The matrix elements $\pi(o \to n)$ must satisfy one obvious condition: they do not destroy such an equilibrium distribution once it is reached. This means that, in equilibrium, the average number of accepted trial moves that result in the system leaving state o must be exactly equal to the number of accepted trial moves from all other states n to state o. It is convenient to impose a much stronger condition; namely, that in equilibrium the average number of accepted moves from o to any other state n is exactly canceled by the number of reverse moves. This detailed balance condition implies the following:

$$\mathcal{N}(o)\pi(o \to n) = \mathcal{N}(n)\pi(n \to o). \tag{3.1.13}$$

Many possible forms of the transition matrix $\pi(o \to n)$ satisfy equation (3.1.13). Let us look how $\pi(o \to n)$ is constructed in practice. We recall that a Monte Carlo move consists of two stages. First, we perform a trial move from state o to state n. We denote the transition matrix that determines the probability to perform a trial move from i to j by $\alpha(o \to n)$; where α is usually referred to as the underlying matrix of Markov chain [43]. The next stage is the decision to either accept or reject this trial move. Let us denote the probability of accepting a trial move from o to n by acc(o \to n). Clearly,

$$\pi(o \to n) = \alpha(o \to n) \times acc(o \to n). \tag{3.1.14}$$

In the original Metropolis scheme, α is chosen to be a symmetric matrix $(acc(o \rightarrow n) = acc(n \rightarrow o))$. However, in later sections we shall see several examples where α is *not* symmetric. If α is symmetric, we can rewrite equation (3.1.13) in terms of the $acc(o \rightarrow n)$:

$$\mathcal{N}(o) \times acc(o \to n) = \mathcal{N}(n) \times acc(n \to o).$$
 (3.1.15)

From equation (3.1.15) follows

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\mathcal{N}(n)}{\mathcal{N}(o)} = \exp\{-\beta[\mathcal{U}(n) - \mathcal{U}(o)]\}. \tag{3.1.16}$$

Again, many choices for $acc(o \rightarrow n)$ satisfy this condition (and the obvious condition that the probability $acc(o \rightarrow n)$ cannot exceed 1). The choice of Metropolis *et al.* is

$$\begin{array}{rcl} \operatorname{acc}(o \to n) & = & \mathcal{N}(o)/\mathcal{N}(n) & \text{if } \mathcal{N}(n) < \mathcal{N}(o) \\ & = & 1 & \text{if } \mathcal{N}(n) \ge \mathcal{N}(o). \end{array} \tag{3.1.17}$$

Other choices for $acc(o \rightarrow n)$ are possible (for a discussion, see for instance [19]), but the original choice of Metropolis *et al.* appears to result in a more efficient sampling of configuration space than most other strategies that have been proposed.

In summary, then, in the Metropolis scheme, the transition probability for going from state o to state n is given by

$$\begin{array}{lll} \pi(o \to n) & = & \alpha(o \to n) & \mathcal{N}(n) \geq \mathcal{N}(o) \\ & = & \alpha(o \to n)[\mathcal{N}(n)/\mathcal{N}(o)] & \mathcal{N}(n) < \mathcal{N}(o) \\ \pi(o \to o) & = & 1 - \sum_{n \neq o} \pi(o \to n). \end{array} \tag{3.1.18}$$

Note that we still have not specified the matrix α , except for the fact that it must be symmetric. This reflects considerable freedom in the choice of our trial moves. We will come back to this point in subsequent sections.

One thing that we have not yet explained is how to decide whether a trial move is to be accepted or rejected. The usual procedure is as follows. Suppose that we have generated a trial move from state o to state n, with U(n) > U(0). According to equation (3.1.16) this trial move should be accepted with a probability

$$acc(o \rightarrow n) = exp{-\beta[\mathcal{U}(n) - \mathcal{U}(o)]} < 1.$$

In order to decide whether to accept or reject the trial move, we generate a random number, denoted by Ranf, from a uniform distribution in the interval [0,1]. Clearly, the probability that Ranf is less than $acc(o \rightarrow n)$ is equal to $acc(o \rightarrow n)$. We now accept the trial move if Ranf $< acc(o \rightarrow n)$ and reject it otherwise. This rule guarantees that the probability to accept a trial move from o to n is indeed equal to $acc(o \rightarrow n)$. Obviously, it is very important that our random number generator does indeed generate numbers uniformly in the interval [0,1]. Otherwise the Monte Carlo sampling will be biased.

Figure 3.4: (left) Typical dependence of the mean-square displacement of a particle on the average size Δ of the trial move. (right) Typical dependence of the computational cost of a trial move on the step-size Δ . For continuous potentials, the cost is constant, while for hard-core potentials it decreases rapidly with the size of the trial move.

The Traveling Salesman

- 1. Configuration. The cities are numbered i = 1 ... N and each has coordinates (x_i, y_i) . A configuration is a permutation of the number 1 ... N, interpreted as the order in which the cities are visited.
- 2. Rearrangements. An efficient set of moves has been suggested by Lin [6]. The moves consist of two types: (a) A section of path is removed and then replaced with the same cities running in the opposite order; or (b) a section of path is removed and then replaced in between two cities on another, randomly chosen, part of the path.
- 3. Objective Function. In the simplest form of the problem, E is taken just as the total length of journey,

$$E = L \equiv \sum_{i=1}^{N} \sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2}$$
 (10.9.2)

with the convention that point N+1 is identified with point 1. To illustrate the flexibility of the method, however, we can add the following additional wrinkle: Suppose that the salesman has an irrational fear of flying over the Mississippi River. In that case, we would assign each city a parameter μ_i , equal to +1 if it is east of the Mississippi, -1 if it is west, and take the objective function to be

$$E = \sum_{i=1}^{N} \left[\sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2} + \lambda (\mu_i - \mu_{i+1})^2 \right]$$
 (10.9.3)

A penalty 4λ is thereby assigned to any river crossing. The algorithm now finds the shortest path that avoids crossings. The relative importance that it assigns to length of path versus river crossings is determined by our choice of λ . Figure 10.9.1 shows the results obtained. Clearly, this technique can be generalized to include many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some random rearrangements, and use them to determine the range of values of ΔE that will be encountered from move to move. Choosing a starting value for the parameter T which is considerably larger than the largest ΔE normally encountered, we proceed downward in multiplicative steps each amounting to a 10 percent decrease in T. We hold each new value of T constant for, say, 100N reconfigurations, or for 10N successful reconfigurations, whichever comes first. When efforts to reduce E further become sufficiently discouraging, we stop.

Figure 4.1: Configurations of a 100-city travelling salesman problem obtained after 0, 68, 92 and 123 steps of the algorithm. The initial tour looks very chaotic (a) (high entropy). Gradually, the tour becomes less chaotic, (b) and (c) (the entropy decreases). The final tour (d) shows a highly regular pattern (minimum cost and entropy)

Table II Simulated Annealing of Polyalanines: AcNH-(Ala).-CONHCH.

n	No. Dihedrals	CPU Time (10 Runs)	Energy (Kj/mole) ^b (No. of Runs)	No. of 1-13 H Bonds' (Helical Residues)	
2	4	0:24:12	- 103.11(5)	0	
			- 97.31(5)		
3	6	0:39:16	-151.83(3)	1	
			-145.6 5(3)		
			-140.54(2)		
			-137.78(1)		
			-108.70(1)		
4	8	0:43:28	-210.83(7)	2	
		·	-199.03(1)	· 2	
•			-194.81(1)	1	
			-186.81(1)		
-5	10	0:59:57	-269.48(3)	3	
			-256.42(1)	1	
			- 246.34(1)		
			-236.47(1)	1	
			-227.35(2)	_	
,			-219.74(1)		
			-216.92(1)		
6	12	2:34:04	-332.02 (5)	4	
			-311.85(3)	3	
			-294.50(1)	2	
			- 289.49 (1)	1	
7	14	1:39:47	- 39 4.96 (5)	5	
•	••	2,00711	-37 4.95 (1)	4	
			-366.90(1)	3	
			- 364.96(2)	3	
			-336.08(1)	•	
8	16	2:03:22	-458.42(4)	6	
•	10	2.00.22	-437.83(1)	5	
			-411.40(1)	ě	
			-411.40(1) -408.89(1)	4	
			-409.17(1)	3	
			-404.39(1)	3 ·	
^	•6	0.00.10	-374.28(1)	2	
9	18	2:20:18	-521. 72(3)	7	
		•	500.82(1)	6	
			-439.54(1)	1	
			-436.86(1)		
			-433.05(1)		
			-419.47(1)	1	
			-416.88(1)	1	
••		0.07.00	- 395.67(1)		
10	20	2:25:06	-585. 63 (7)	8	
			-544.04(1)	5	
			-533.41(1)	4	
			-502.33(1)	1	

^aThe number of steps in the random walk was 250 at each temperature except for Ala_a where 500

steps were used.

The lowest energy conformation for cases n=3-20 was 100% α -helix confirmed by ϕ/ψ angles

the characteristic hydrogen-bonding pattern (1-13).

The C = 0 of residue i is H-bonded to the N - H of residue i + 4. A complete α -helix shows n - 2 hydrogen bonds. All helices are right-handed.

Table III Simulated Annealing of Larger Polyalanines^a AcNH-(Ala)_n-CONHCH₃

n	No. Dihedrals	CPU Time (per Run)	Energy (Kjoul/mol)	No. of 1–13 H Bonds ^c (Helical Residues)
20	40	2:24:00	-1224.07 ^b	18
			-1187.75	14
			-1082.72	10
			-1020.12	10
40	80	4:56:06	-2220.05^{d}	26
			-1966.49	26
80	160	26:10:30	-4713.81	72
			-4501.94	54

^{*}Starting geometry for each run was a sheet with 1 or 2 bends to allow it to fit on the screen. ^bOne-hundred percent α -helix.

The C=0 of residue i is H-bonded to the N-H of residue i+4. A complete α -helix shows n-2 hydrogen bonds. All helices are right-handed.

Comparison Ala₄₀ α -helix has amber E=-2475.25 Kjoul/mol.

Umbrella sampling

Umbrella sampling attempts to overcome the sampling problem by modifying the potential function so that the unfavourable states are sampled sufficiently. The method can be used with both Monte Carlo and molecular dynamics simulations. The modification of the potential function can be written as a perturbation:

$$\mathscr{V}'(\mathbf{r}^N) = \mathscr{V}(\mathbf{r}^N) + W(\mathbf{r}^N)$$

 $W(\mathbf{r}^N)$ is a weighting function, which often takes a quadratic form:

$$W(\mathbf{r}^N) = k_W(\mathbf{r}^N - \mathbf{r}_0^N)^2$$

For configurations that are far from the equilibrium state \mathbf{r}_0^N the weighting function will be large and so a simulation using the modified energy function $\mathcal{V}'(\mathbf{r}^N)$ will be biased away from the configuration \mathbf{r}_0^N . The resulting distribution will, of course, be non-Boltzmann. The corresponding Boltzmann averages can be extracted from the non-Boltzmann distribution using a method introduced by Torrie and Valleau [Torrie and Valleau 1977]. The result is:

$$\langle A \rangle = \frac{\langle A(\mathbf{r}^N) \exp[+W(\mathbf{r}^N)/k_B T] \rangle_W}{\langle \exp[+W(\mathbf{r}^N)/k_B T] \rangle_W}$$

The subscript W indicates that the average is based on the probability $P_{W}(\mathbf{r}^{N})$, which in turn is determined by the modified energy function $\mathscr{V}'(\mathbf{r}^{N})$.

- Step 1: Carry out a conformational search to find the set of low-energy conformers—call these X_i . Evaluate the internal coordinate transformations that interconvert all pairs (i,j) of the conformers in the X_i list—call these transformations T_{ij} .
 - Step 2: Pick an initial conformation—call this structure Y_0 .
- Step 3: Find the conformer on the X_i list that is closest to Y_0 —call this conformer X_0 .
- Step 4: Randomly choose a conformer from the X_i list—call this conformer X_T .
- Step 5: Apply transformation Tx_0x_T to structure Y_0 to generate structure Y_1 .
- Step 6: Apply small random variations to internal coordinates of Y_1 to generate the new trial structure Y_2 .
- Step 7: Compare energies of Y_0 and Y_2 , accepting Y_2 with a probability defined by Metropolis; $p = \min\{1, \exp[-(E(Y_2) E(Y_0))/kT]\}$.
- Step 8: Define the resulting structure as Y_0 and go back to Step 3.

Figure 3. Convergence plots from the MD (left) and MC10 and MC20 (right) simulations for the potential energy, torsional energy, and density.

Figure 5. Convergence plots for the *trans* and *gauche* populations in percent for each dihedral angle of hexane from the MD simulation.

Figure 4. Convergence plots for the *trans* and *gauche* populations in percent for each dihedral angle of hexane from the MC10 and MC20 simulations.

Figure 2. A schematic diagram illustrating the effects of our energy transformation for a one-dimensional example. The solid line is the energy of the original surface and the dashed line is the transformed energy \tilde{E} .

TABLE 1: Global Minima of LJ_N for $N \le 110$

2 D— -1.000 000 2 57 C, -28.342 623 4 T4 -6.000 000 23 59 C, -294.378 148 4 T4 -6.000 000 23 59 C, -294.378 148 5	N	point group	energy/€	ref*	N	point group	energy/€
7 Da	2					C,	-288.342 625
7 Da	3					C ₃ ,	-294.378 148
7 Da	4					C _{2v}	
7 Da	2					G	-305.875 476
1	0					C _{2v}	-312.008 896
9		D_{Sh}				C ,	-317.353 901
10	8					Cı	-323.489 734
11						C,	
12				2		C₂	
15		C ₂ _v		2		C_1	
15						C,	
15						Ci	
16						C50	
17				2			
18				2		C _{5v}	
19 D _{3h} -72.659 782 2 74 C ₁ -390.988 500 20 C _{2v} -77.177 043 2 75 D _{3h} -397.492 331 21 C _{1v} -81.684 571 2 76 C ₂ -402.894 866 22 C ₁ -86.809 782 10 77 C _{2v} -409.83 517 23 D _{3h} -92.844 472 8 78 C ₂ -414.794 401 24 C ₃ -97.348 815 9 79 C _{2v} -421.810 897 25 C ₄ -102.372 663 2 80 C ₄ -428.803 564 26 T ₄ -108.315 616 2 81 C _{2v} -434.343 643 27 C _{2v} -112.873 584 10 82 C ₁ -440.550 425 28 C ₄ -117.822 402 10 83 C _{2v} -446.524 094 29 D _{3h} -123.587 371 2 84 C ₁ -452.657 214 30 C _{2v} -128.286 571 10 85 C _{3v} -452.657 214 31 C ₄ -133.586 422 10 86 C ₁ -452.657 299 31 C ₄ -133.586 422 10 86 C ₁ -465.384 493 32 C _{2v} -139.635 524 10 87 C ₄ -472.098 165 33 C ₄ -144.842 719 10 88 C ₄ -472.098 165 34 C _{2v} -150.044 528 10 89 C ₄ -486.053 911 35 C ₁ -167.033 672 10 91 C ₄ -492.433 908 36 C ₄ -161.825 363 10 91 C ₄ -492.433 908 37 C ₁ -167.033 672 10 92 C _{3v} -505.185 309 38 O _h -173.928 427 13714 93 C ₁ -510.877 688 39 C _{5v} -180.033 185 10 94 C ₁ -512.646 131 40 C ₄ -185.249 839 10 95 C ₁ -523.640 211 41 C ₄ -190.536 277 10 96 C ₁ -523.640 211 42 C ₄ -190.536 277 10 96 C ₁ -523.640 211 43 C ₄ -202.364 664 10 98 C ₄ -543.642957 44 C ₁ -207.688 728 10 99 C ₄ -553.6681 383 47 C ₁ -137.398 462 10 10 00 C ₇ -553.6681 383 47 C ₁ -137.398 462 10 10 00 C ₇ -553.6681 383 47 C ₁ -137.384 862 10 10 00 C ₇ -553.666 326 46 C _{2v} -220.680 330 10 10 101 C _{7v} -553.661 313 49 C _{3v} -220.680 330 10 10 101 C _{7v} -553.661 313 49 C _{3v} -220.680 330 10 10 101 C _{7v} -553.661 313 49 C _{3v} -220.680 330 10 10 101 C _{7v} -553.661 313 50 C ₁ -226.012 256 10 102 C _{7v} -593.636 652 51 C _{2v} -251.253 964 10 106 C ₇ -559.661 072 52 C _{3v} -222.8661 10 100 C _{7v} -553.6661 255 52 C _{3v} -222.8661 10 100 C _{7v} -553.661 11 600 C _{7v} -272.208 661 11 10 109 C _{7v} -665.301 11 10 109 C _{7v} -553.61						C _s	-378.637 253
20				2		$C_{\mathbf{s}}$	
20				2		C_{\bullet}	-390 .908 500
22				2		D_{2a}	
23 D _{3h} — 92.844 472 8 78 C ₁ — 409.083 517 24 C ₂ — 97.348 815 9 79 C ₂ — 421.810 897 25 C ₁ — 102.372 663 2 80 C ₂ — 422.083 564 26 T ₄ — 108.315 616 2 81 C ₂ — 440.50 425 27 C ₂ — 112.873 584 10 82 C ₁ — 440.50 425 28 C ₁ — 117.822 402 10 83 C ₂ — 445.924 094 29 D _{3h} — 123.587 371 2 84 C ₁ — 445.924 094 29 D _{3h} — 123.587 371 10 85 C ₂ — 459.055 799 31 C ₂ — 133.586 422 10 86 C ₁ — 452.657 214 30 C ₂ — 133.586 422 10 86 C ₁ — 452.657 214 31 C ₁ — 133.586 422 10 86 C ₁ — 452.384 493 32 C ₂ — 139.635 524 10 87 C ₁ — 472.098 165 33 C ₂ — 139.635 524 10 87 C ₂ — 479.093 165 33 C ₃ — 144.842 719 10 88 C ₄ — 479.092 630 34 C ₂ — 150.044 528 10 89 C ₃ — 486.053 911 35 C ₁ — 155.756 643 10 90 C ₄ — 498.811 060 37 C ₁ — 161.825 363 10 91 C ₄ — 498.811 060 37 C ₁ — 167.033 672 10 92 C ₃ — 505.185 309 38 O _h — 173.928 427 13/14 93 C ₁ — 510.877 688 39 C ₃ — 180.033 185 10 94 C ₁ — 510.877 688 39 C ₃ — 180.033 185 10 99 C ₄ — 510.877 688 40 C ₄ — 190.536 277 10 96 C ₁ — 523.640 211 41 C ₄ — 190.536 277 10 96 C ₁ — 523.640 211 42 C ₄ — 190.536 277 10 96 C ₁ — 523.640 211 43 C ₄ — 202.364 664 10 98 C ₄ — 533.642 957 44 C ₁ — 207.688 728 10 99 C ₃ — 550.666 526 45 C ₁ — 226.012 256 10 102 C ₃ — 553.666 526 526 C ₃ — 221.195 529 10 103 C ₄ — 557.66 131 308 47 C ₁ — 226.012 256 10 102 C ₃ — 559.363 652 53 C ₂ — 225.1253 964 10 106 C ₁ — 588.266 501 53 C ₂ — 225.1253 964 10 106 C ₁ — 588.266 501 53 C ₂ — 225.1253 964 10 106 C ₁ — 588.266 501 53 C ₂ — 225.1253 964 10 106 C ₁ — 595.061 072 52 C ₃ — 225.203 016 10 107 C ₁ — 609.033 011 54 C ₂ — 225.203 016 10 107 C ₁ — 609.033 011 54 C ₂ — 225.203 016 10 109 C ₁ — 615.411 166		C ₂ v		2		C,	-402 .894 866
Date						C ₂	-409 .083 517
27						C,	
27		C _s		9		C _{2v}	
27		C _s		2		C,	
29	20	T_d		2		C ₂ ,	
29		C ₂ v				C_1	
Data	28 20					C ₂ ,	-446.924 094
31						C ₁	
32						C _{3v}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						C_1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _{2v}				C,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 35	C _{2v}				C _{3v}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{C_1}$				G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _s				C,	
36 Ch -173.928 427 13/14 93 C1 -510.877 688 39 C3v -180.033 185 10 94 C1 -517.264 131 40 Cz -185.249 839 10 95 C1 -523.640 211 41 Cz -190.536 277 10 96 C1 -529.879 146 42 Cz -196.277 534 10 97 C1 -536.681 383 43 Cz -202.364 664 10 98 Cz -543.642 957 44 C1 -207.688 728 10 99 C2v -550.666 526 45 C1 -213.784 862 10 100 Cz -557.039 820 47 C1 -226.012 256 10 101 C2v -563.411 308 48 Cz -232.199 529 10 103 Cz -575.766 131 49 C3v -239.091 864 10 104 C2v -582.086 642 50 Cz -2		$\mathbf{C_1}$				C _{3v}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-173.928 427	13/14	93	Cı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _{5v}	-180.033 185	10	94	C_{i}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _i			95	Cı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _i				C_1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _i				C_1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\mathbf{i}}$				C,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{C_{l}}$				C _{2v}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_1				$C_{\mathbf{i}}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{2\nu}$				C _{2v}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{C_1}$			102	C _{2v}	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C,				$C_{\mathbf{i}}$	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C _{3v}				C _{2v}	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C,			105	Cı	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C_{2v}				Cı	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C _{3v}			107	C,	
$C_{5v} = -272.208631 10 109 C_{5} = -615.411.166$		C _{2v}				C,	
55 I _h		Csv				Ci	
$C_{3v} = -283.643 105 = 10$		I _h				$C_{\mathbf{i}}$	
	30	C _{3v}	-283.643 105	10		-	- -

Figure 1. Nonicosahedral Lennard-Jones global minima.

FIG. 1. Energy profile of a pathway between the two lowest energy minima of LJ₃₈, namely the fcc truncated octahedron (bottom left) and a structure based on the Mackay icosahedron with C_{5v} point group symmetry (top right). $2^{1/6}\sigma$ is the equilibrium pair separation of the LJ potential. The method by which this pathway was obtained is described in Ref. [15].

FIG. 2. Equilibrium thermodynamic properties of the untransformed LJ₈₈ PES. (a) The probability of the cluster being in the fcc, icosahedral and 'liquid-like' regions of bound configuration space. (b) The heat capacity, C_v . These results were obtained by summing the anharmonic partition functions for a sample of minima appropriately weighted to compensate for the incompleteness of the sample[16]. The liquid-like region of configuration space is defined as those minima with $E > -171.6 \epsilon$.

FIG. 3. Equilibrium thermodynamic properties of the transformed LJ₃₈ PES. (a) The probability of the cluster being in the fcc, icosahedral and 'liquid-like' regions of bound configuration space. (b) The configurational component of the heat capacity.

Fig. 2. Minima on the LJ₃₈ pathway from the truncated octahedron to the lowest energy icosahedral minimum. The minima are numbered by their position along the pathway

Fig. 3. Reaction profile of a pathway on the LJ₃₈ PES from the truncated octahedron to the lowest energy icosahedral minimum. Stationary points are denoted by diamonds. The minima are numbered by their position along the pathway