Thermodynamics of mixing

Mixtures are systems consisting of two or more different chemical species.
Binary mixtures consist of only two different species. An example of a
binary mixture is a blend of polystyrene and polybutadiene. Mixtures with
three components are called ternary. An example of a ternary mixture is a
solution of polystyrene and polybutadiene in toluene. If the mixture is
uniform and all gomponents of the mixture are intermixed on a molecular
scale, the mixture is called homogeneous. An example of a homogeneous
mixture is a polymer solution in a good solvent. If the mixture consists of
several different phases (regions with different compositions), it is called
heterogeneous. An example of a heterogeneous mixture is that of oil and
water. Whether an equilibrium state of a given mixture is homogeneous or
heterogeneous is determined by the composition dependence of the entropy
and energy changes on mixing. Entropy always favours mixing, but
energetic interactions between species can either promote or inhibit mixing.

4.1 Entropy of binary mixing

Consider the mixing of two species A and B. For the moment, assume that
the two mix together to form a single-phase homogeneous liquid (criteria
for such mixing will be determined later in this chapter). For purposes of
illustration, the mixing is shown on a two-dimensional square lattice in Fig.
4.1. More generally, it is assumed that there is no volume change
on mixing: volume ¥, of species A is mixed with volume Vg of species B
to make a mixture of volume Vs + V. The mixture is macroscopically
uniform and the two components are randomly mixed to fill the entire
lattice. The volume fractions of the two components in the binary mixture
are ¢ and ¢g:

V V
A and ¢ = B

_A _ B | ¢a 4.1
Va+ Vs Va+ Vg oa (4-1)
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While Fig. 4.1 shows the mixing of two small molecules of equal mole-
cular volumes, similar mixing is possible if one or both of the species are
polymers. In the more general case, the lattice site volume v is defined by
the smallest units (solvent molecules or monomers), and larger molecules

> ¢ 4 4
> & ¢ <

LA s

Fig. 4.1
Mixing two species with no volume
change.
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Table 4.1 The number of lattice sites
occupied per molecule

Na Ny
Regular solutions 1 1
Polymer solutions N 1
Polymer blends Na Ng

Thermodynamics of mixing

occupy multiple connected lattice sites. A molecule of species A has
molecular volume

VA = NAVO (42)
and a molecule of species B has molecular volume
VB = NBV(), (43)

where Ny and Ny are the numbers of lattice sites occupied by each
respective molecule.! There are three cases of interest that are summarized
in Table 4.1.

Regular solutions are mixtures of low molar mass species with Ny =
Ng = 1. Polymer solutions are mixtures of macromolecules (N =N>1)
with the low molar mass solvent defining the lattice (Ng=1). Polymer
blends are mixtures of macromolecules of different chemical species
(Na>1and Ng>>1).

The combined system of volume V5 + Vg occupies

Va+ Vg
n=——

(4.4)
Vo

lattice sites, while all molecules of species 4 occupy Va/vo=nga sites.

The entropy S is determined as the product of the Boltzmann constant k
and the natural logarithm of the number of ways ) to arrange molecules
on the lattice (the number of states).

S=klnQ. (4.5)

The number of translational states of a given single molecule is simply the
number of independent positions that a molecule can have on the lattice,
which is equal to the number of lattice sites. In a homogeneous mixture of
A and B, each molecule has

.

Qg = n (4.6)

possible states, where 7 is the total number of lattice sites of the combined
system [Eq. (4.4)]. The number of states 24 of each molecule of species A
before mixing (in a pure A state) is equal to the number of lattice sites
occupied by species A.

QA = ngbA. (47)
For a single molecule of species A, the entropy change on mixing is
Q
A&:kmﬂm—kaAzkmC§%
A (4.8)

=k ln(q%) = —k In ¢a.

A

' The lattice sites are of the order of monomer sizes, but do not necessarily correspond
precisely to either the chemical monomer or the Kuhn monomer.
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Since the volume fraction is less than unity (¢ < 1), the entropy change
upon mixing is always positive ASy= —k In ¢, >0. Equation (4.8)
holds for the entropy contribution of each molecule of species A, with a
similar relation for species B. To calculate the total entropy of mixing, the
entropy contributions from each molecule in the system are summed:

ASpix = nAASA +ngASy = —k(nA In oA + 1B In gbB) (49)
There are ny =n¢a/Na molecules of species A and ng =n¢p/Np molecules
of species B. The entropy of mixing per lattice site ASyix = ASmix/n is an
intrinsic thermodynamic quantity:

o A B
ASy = —k |24 1 B 1n ¢g|.
S Kl moaty Inos

(4.10)
The entropy of mixing per unit volume is ASix/Vo, where vq is the volume
per lattice site.

A regular solution has Ny = Ng =1 and a large entropy of mixing:

-

ASpix = —k [pa In o + ¢p In ¢p] for regular solutions.  (4.11)
A polymer solution has Ny =N and Ng=1:
ASyix = —k % In ¢o + ¢p In ¢p| for polymer solutions.  (4.12)

Equations (4.10)~(4.12) predict enormous differences between the
entropies of mixing for regular solutions, polymer solutions, and polymer
blends. Consider the 10 x 10 square lattice of Fig. 4.2 with three different
mixtures that each have ¢o=¢g=0.5. A regular solution of small
molecules is shown in Fig. 4.2(a), using 50 black balls and 50 white balls.
A polymer solution with five 10-ball black chains and 50 white balls is
shown in Fig. 4.2(b) and a polymer blend with ten 10-ball chains (five
black and five white) is shown in Fig. 4.2(c). The entropies of mixing per
site for these mixtures are summarized in Table 4.2.

Typically N is large, making the first term in Eq. (4.12) negligible com-
pared to the second term. For solutions with ¢4 = ¢g=0.5, as in Fig. 4.2
and Table 4.2, the entropy of mixing for the polymer solution is roughly
half of that for the regular solution. For polymer blends, both N and Ny
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Table 4.2 The mixing entropy per site
for the three situations depicted in
Fig. 4.2

Mixture ASnix /k

50 black balls and 0.69
50 white balls

Five 10-ball black chains 0.38

and 50 white balls
Five 10-ball black chains and  0.069
five 10-ball white chains

Fig. 4.2

Binary mixtures of (a) a regular solution
of 50 white balls and 50 black balls,

(b) a polymer solution of five black
10-ball chains, and (c) a polymer blend
of five white 10-ball chains and five black
10-ball chains.
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Fig. 4.3

The mixing free energy of an ideal
mixture is always favourable and all
compositions are stable. The bottom
curve is a regular solution with
Na=Ng=1. The middle curve is a
polymer solution with Ny =10 and
Np=1.Thetop curveis a polymer blend
with Na = Ng = 10.
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are typically large, making the entropy of mixing [Eq. (4.10)] very small.
For this reason, polymers have stymied entropy. Connecting monomers
into chains drastically reduces the number of possible states of the system.
To illustrate this point, simply try to recreate Fig. 4.2(c) with molecules in
a different state.

Despite the fact that the mixing entropy is small for polymer blends, it is
always positive and hence promotes mixing. Mixtures with no difference in
interaction energy between components are called ideal mixtures. Let us
denote the volume fraction of component 4 by ¢, =¢ and the corre-
sponding volume fraction of component B becomes ¢g =1 — ¢. The free
energy of mixing per site for ideal mixtures is purely entropic:

¢1n¢+Li—mu—¢). (4.13)
B

AFpix = —TASpix = kT |—
Na N

Ideal mixtures are always homogeneous as a result of the mixing entropy
always being positive. Figure 4.3 shows the mixing free energy of an ideal
regular solution, an ideal polymer solution, and an ideal polymer blend.

The mixing entropy calculated above includes only the translational
entropy that results from the many possible locations for the centre of
mass of each component. The calculation assumes that the conformational
entropy of a polymer is identical in the mixed and pure states. This
assumption is very good for polymer blends, where each chain is nearly
ideal in the mixed and pure states. However, many polymer solutions have
excluded volume that changes the conformation of the polymer in solu-
tion, as discussed in Chapter 3. Another important assumption in the
entropy of mixing calculation is no volume change on mixing. Real poly-
mer blends and solutions have very small, but measurable, volume changes
when mixed.

4.2 Energy of binary mixing .

Interactions between species can be either attractive or repulsive. In most
experimental situations, mixing occurs at constant pressure and the
enthalpic interactions between species must be analysed to find a minimum
of the Gibbs free energy of mixing. In the simplified lattice model (Flory—
Huggins theory) discussed in the present chapter, components are mixed at
constant volume and therefore we will be studying the energy of interac-
tions between components and the change in the Helmholtz free energy of
mixing.

The energy of mixing can be either negative (promoting mixing) or
positive (opposing mixing). Regular solution theory allows for both
possibilities, using the lattice model. To estimate the energy of mixing this
theory places species into lattice sites randomly, ignoring any correlations.
Thus, for all mixtures, favourable or unfavourable interactions between
monomers are assumed to be small enough that they do not affect the
random placement. Worse still, the regular solution approach eftectively
cuts the polymer chain into pieces that are the size of the solvent molecules



Energy of binary mixing

tthe lattice size) and distributes these pieces randomly. Such a mean-field
approach ignores the correlations between monomers along the chain (the
chain connectivity). Here, for simplicity, it is assumed that in polymer
biends the monomer volumes of species A and B are identical.

Regular solution theory writes the energy of mixing in terms of three
pairwise interaction energies (u#aa, tap, and wugp) between adjacent
lattice sites occupied by the two species. A mean field is used to determine
the average pairwise interaction U, of a monomer of species A occupying
one lattice site with a neighbouring monomer on one of the adjacent sites.
The probability of this neighbour being a monomer of species A is
assumed to be the volume fraction ¢, of these molecules (ignoring the
effect of interactions on this probability). The probability of this neigh-
bour being a monomer of species B is ¢g =1 — ¢a. The average pairwise
interaction of an A-monomer with one of its neighbouring monomers is a
volume fraction weighted sum of interaction energies:

Up = uaada + uaBPB- (4.14)

The correspondling energy of a B-monomer with one of its neighbours is
similar to Eq. (4.14):

Up = uapa + Up@s. (4.15)

Each lattice site of a regular lattice has z nearest neighbours, where z is
the coordination number of the lattice. For example, z=4 for a square
lattice and z=6 for a cubic lattice. Therefore, the average interaction
energy of an A monomer with all of its z neighbours is zUa. The average
energy per monomer is half of this energy (zUx/2) due to the fact that every
pairwise interaction is counted twice (once for the monomer in question
and once for its neighbour). The corresponding energy per site occupied by
species B is zUg/2. The number of sites occupied by species A (the number
of monomers of species A) is nga, where # is the total number of sites in the
combined system. The number of sites occupied by monomers of species B
is ngg. Summing all the interactions gives the total interaction energy of
the mixture:

U= % [Uada + Upgpl. (4.16)

Denoting the volume fraction of species A by ¢=d¢a=1-¢s,
Eqs (4.14)-(4.16) are combined to get the total interaction energy of a
binary mixture with » lattice sites:

U= ?{[uAAgb +upp(1 — ¢))0 + [uapd + ups(l — ¢))(1 — @)}

- % [uand® + 2uapd(l — ) + upp(1 — ¢)%). (4.17)

The interaction energy per site in a pure A component before mixing
is zuaa/2, because each monomer of species A before mixing is only
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surrounded by species A. We ignore the boundary effects because of the
very small surface-to-volume ratio for most macroscopic systems. The
total number of monomers of species A is n¢ and therefore the total energy
of species A before mixing is

Zn

) UAAD

and the total energy of species B before mixing is

zZh

—é-uBB(l — ¢)

The total energy of both species before mixing is the sum of the energies of
the two pure components:

zn

Uo = 5 [uand + ups(1 ~ ¢)]. (4.18)

The energy change on mixing is

U—-Uy= ?[HAACbZ + 2uapp(l — &) + upp(l — ¢)* — uand — upp(l — §)]

_ ?[MA(& — ¢) + 2uapd(l — 6) + upp(l — 26 + ¢* — 1 + ¢)]
- % uand(d — 1) + 2uppd(l — ¢) + upp(d — 1)]
= %¢(1 - ¢)(2uAB — UAA — MBB) (419)

It is convenient to study the intensive property, which is the energy change
on mixing per site:

_ U-~-U z )
AUpix = - ’ = iﬁb(l — ¢)(2uap — uaa — UBB)- (4.20)

The Flory interaction parameter y is defined to characterize the difference
of interaction energies in the mixture:

z (2uap — UAA — UBB)
— ) 4.21
2 kT ( )

Il

X

Defined in this fashion, x is a dimensionless measure of the differences in
the strength of pairwise interaction energies between species in a mixture
(compared with the same species in their pure component states). Using
this definition, we write the energy of mixing per lattice site as

A[_]mix = X¢(1 - d))kT (422)

This energy equation is a mean-field description of all binary regular
mixtures: regular solutions, polymer solutions, and polymer blends.
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Combining with Eq. (4.10) for the entropy of mixing, we arrive at the
Helmholtz free energy of mixing per lattice site:

AFmix = Al_]mix - TASmiX

1 4.23
= kT Ni;lnqﬁ%— NBd)ln(l—qb)ﬁ—xqb(l—qS). (4.23)

The free energy of mixing per unit volume is AFpyix/vo. Equation (4.23)
was first calculated by Huggins and later independently derived by Flory,
and is commonly referred to as the Flory—Huggins equation.

For non-polymeric mixtures with Na=Ng=1, this equation was
developed earlier by Hildebrand and is called regular solution theory:

AFmix =kT[p In ¢+ (1 — ¢) In(1 = ¢) + xo(1 — ¢)]. (4.24)

For polymer solutions, No = N and Ng = 1, reducing Eq. (4.23) to the
Flory—Huggins equation for polymer solutions:

AFmixsz%ln¢+(l—¢) In(1—¢)+x6(1—6)|.  (4.25)

The first two terms in the free energy of mixing [Eq. (4.23)] have entropic
origin and always act to promote mixing, although with blends of long-
chain polymers these terms are quite small. The last term has energetic
origin, and can be positive (opposing mixing), zero [ideal mixtures—
Eq. (4.13)], or negative (promoting mixing) depending on the sign of the
interaction parameter x.

If there is a net attraction between species (i.e. they like each other better
than they like themselves), x < 0 and a single-phase mixture is favourable
for all compositions. More often there is a net repulsion between species
(they like themselves more than each other) and the Flory interaction
parameter is positive x > 0. In Section 4.4, we will show that in this case
the equilibrium state of the mixture depends not on the sign of the free
energy of mixing AFy;x at the particular composition of interest, but on
the functional dependence of this free energy on the composition ¢ for the
whole range of compositions. This functional dependence A Fpx(d)
depends on the value of the Flory interaction parameter x as well as on the
degrees of polymerization of both molecules N5 and Ng.

It is very important to know the value of the Flory interaction para-
meter x for a given mixture. Methods of measuring this parameter are
discussed in Section 4.6 and tables of y parameters are listed in many
reference books (see the 1996 review by Balsara).

For non-polar mixtures with species interacting mainly by dispersion
forces, the interaction parameter x can be estimated by the method
developed by Hildebrand and Scott. It is based on the solubility parameter
8 related to the energy of vapourization AF of a molecule. For example,
for a molecule of species A the solubility parameter is defined as

IAE
Sa = AEs (4.26)
VA
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where v is the volume of molecule A [Eq. (4.2)]. The energy of vapour-
ization AEx of a molecule A is the energy of all the interactions between
the molecule and its neighbours that have to be disrupted to remove the
molecule from the pure A state. The ratio AE,/v4 is called the cohesive
energy density and is the interaction energy per unit volume between the
molecules in the pure A state. The interaction energy per site in the pure A
state zuaa/2 [see the paragraph below Eq. (4.17)] is therefore related to the
solubility parameter 4.

zusn _ | BEA o (4.27)
2 VA

where vy is the volume per site. Note that the minus sign is due to the fact
that the interaction energy is negative uaa <0, while the energy of
vapourization is defined to be positive. Similarly, the interaction energy
per site in the pure B state is

ZUBBR . AEB

= voba 4.28
> Vo - V003, ( )

where vy is the volume of molecule B [Eq. (4.3)]. The cohesive energy
density of interaction between molecules A and B is estimated from the
geometric mean approximation

ZUAB

2

Substituting Eqs (4.27)—(4.29) into the definition of the Flory interaction
parameter [Eq. (4.21)] allows it to be written in terms of solubility para-
meter difference.’

_[6A + 65 —26a68] Vo
o _ Y

~

e = (0 = 53‘)2. (4.30)
Since  is related to the square of the difference in solubility parameters it
is clear why the Flory interaction parameter is usually positive x > 0. The
above approach works reasonably well for non-polar interactions, which
only have van der Waals forces between species, and does not work in
mixtures with strong polar or specific interactions, such as hydrogen
bonds.

One of the major assumptions of the Flory—Huggins theory is that there
is no volume change on mixing and that monomers of both species can fit
on the sites of the same lattice. In most real polymer blends, the volume
per monomer changes upon mixing. Some monomers may pack together
better with certain other monomers. The volume change on mixing and
local packing effects lead to a temperature-independent additive constant
in the expression of the Flory interaction parameter. In practice, these

2 Note that since the Flory x parameter is defined in terms of energies per site, it is
proportional to the site volume vo. The site volume, therefore, must be specified whenever x is
discussed.



Energy of binary mixing

effects are not fully understood and all deviations from the lattice model
are lumped into the interaction parameter x, which can display non-trivial
dependences on composition, chain length, and temperature. Empirically,
the temperature dependence of the Flory interaction parameter is often
written as the sum of two terms:

X(T)%A—i—? (4.31)
The temperature-independent term A is referred to as the ‘entropic part’ of
\. while B/T is called the ‘enthalpic part’. The parameters 4 and B have
been tabulated for many polymer blends and we list representative
examples in Table 4.3. Isotopic blends typically have small positive x
parameters (deuterated polystyrene blended with ordinary polystyrene
dPS/PS is an example) making them only phase separate at very high
molar masses. PS/PMMA has four entries in Table 4.3, which reflect the
differences encountered by labelling various species with deuterium. PS/
PMMA is typical of many polymer pairs, for which the x parameter is
positive and of order 0.01, making only low molar mass polymers form
miscible blends. PVME/PS, PS/PPO, and PS/TMPC have a strongly
negative x parameter over a wide range of temperatures (of order —0.01)
but since 4 >0 and B <0, these blends phase separate on heating. PEO/
PMMA, PP/hhPP and PIB/hhPP, all represent blends with very weak
interactions between components (x = 0).

Additionally, the parameters 4 and B are often found to depend weakly
on chain lengths and composition. Shortcomings of the Flory-Huggins
theory are usually lumped into the interaction parameter x. The Flory-
Huggins equation (with all the corrections combined in x) contains all
of the thermodynamic information needed to decide the equilibrium

Table4.3 Temperature dependence of the Flory interaction parameters of polymer blends
[Eq. (4.31)] with vo=100 A’

Polymer blend A B (K) T range (°C)
dPS/PS —0.00017 0.117 150-220
dPS/PMMA 0.0174 2.39 120-180
PS:dAPMMA 0.0180 1.96 170-210
PS'PMMA 0.0129 1.96 100-200
dPS/dPMMA 0.0154 1.96 130-210
PVME/PS 0.103 —43.0 60-150
dPS/PPO 0.059 -325 180-330
dPS/TMPC 0.157 —81.3 190-250
PEO/dPMMA —0.0021 - 80-160
PP/hhPP —0.00364 1.84 30-130
PIB/dhhPP 0.0180 -7.74 30-170

dPS—deuterated polystyrene; PS—polystyrene; PMMA—poly(methyl methacrylate); PMMA—
deuterated poly(methyl methacrylate); PVME—poly(vinyl methyl ether); PPO—poly(2,6-
dimethyl 1,4-phenylene oxide); TMPC—tetramethylpolycarbonate; PEO—poly(ethylene oxide);
PP—polypropylene; hhPP—head-to-head polypropylene; PIB—polyisobutylene; dhhPP—deuter-
ium labelled head-to-head polypropylene (after N. P. Balsara, Physical Properties of Polymers
Handbook, AIP Press, 1996, Chapter 19).
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The states of a brick.

Fig. 4.5

Composition dependence of free energy,
with examples of systems that are

(a) unstable and (b} locally stable. Local
stability is determined by the sign of the
second derivative of free energy with
respect to composition.
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state of a mixture and whether any metastable states are possible, as
discussed next.

4.3 Equilibrium and stability

The definition of thermodynamic equilibrium is the state of the system with
minimum free energy. Consider the states of a brick, shown in Fig. 4.4. The
angle that the long side of the brick makes with the ground is §, as defined in
state A. The stable equilibrium state, or ground state of the brick, is shown
as state B in Fig. 4.4, with the brick lying on the ground. This state is
stable because any perturbations in the angle that the brick makes with the
ground lead to its centre-of-mass being higher above the ground than
the ground state, thereby increasing its potential energy. If the brick is
balanced on its edge (state A in Fig. 4.4), any small fluctuations would lead
toits fall and state A is called unstable. When standing on one end (state C),
the brick has its centre-of-mass at half of the height of the brick. Any small
change in 6 from state C will increase the potential energy by raising the
centre-of-mass of the brick. Thus, state C is metastable: small perturbations
do not allow the brick to move from state C to state B, even though state B
has lower energy and thus is the equilibrium state of the brick. Indeed, the
brick in state C would stand until an earthquake causes it to move to state B.
Hence, a long time duration of a given state is insufficient information
to conclude that the state is the equilibrium state. The graph in Fig. 4.4
summarizes the free energy of the brick as a function of angle 6.

Consider the local stability of a homogeneous mixture of composition
do with free energy Fui(do) that is either locally concave or convex, shown
in Fig. 4.5. Stability is determined by whether the free energy of the mixed
state Foi<(¢o) is higher or lower than that of a phase separated state,
F.p(¢o). If the system with overall composition ¢ is in a state with two
phases, with volume fraction of A species in the o phase ¢, and the fraction
of A component in the B phase ¢p (see Fig. 4.5), the relative amounts of
each phase are determined from the lever rule. With the fraction f; of the
volume of the material having composition ¢, (and fraction fg=1—f,
having composition ¢g), the total volume fraction of A component in the
system is the sum of contributions from the two phases:

B0 = fas + fpPp- (4.32)
() f (b) F
Fol|
Fog
Fmix -_--45
Fy [ !
&oc ‘:bO ¢B > ¢
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This equation can be solved for the fractions of the material that will have
each composition (since fg=1—f,):

_9p— o G0 — Py
¢B"’¢o¢ qu_d)fx-

The free energy of the demixed state is the weighted average of the free
energies of the material in each of the two states (F, and Fp), neglecting the
interfacial energy (surface tension) between the two phases:

(¢B - ¢0)Fa + (¢O - ¢d)Fﬁ
¢l3 — Oy .

This linear composition dependence of the free energy of the demixed state
F,p(¢) results in the straight lines in Fig. 4.5 that connect the free energies
F, and Fp of the two compositions ¢, and ¢g. The local curvature of
the free energy determines local stability, as demonstrated in Fig. 4.5. If
the composition dependence of the free energy is concave [Fig. 4.5(a)], the
svstem can spontaneously lower its free energy by phase separating into
two phases, since Fyp(¢o) < Fiix(90)-

On the other hand, when the composition dependence of the free energy
is convex, as shown in Fig. 4.5(b), any mixed state has lower free energy
than any state the blend could phase separate into Fpix(do) < Fup(do)s
making the mixed state locally stable. The criterion for local stability 1s
written in terms of the second derivative of the free energy:

aszix

(4.33)

fi and fy=1-/f, =

(4.34)

Fup(go) = fuFx + fpFp =

952 < 0 unstable, (4.35)
2F .
0 5 (;2‘“‘ >0 locally stable. (4.36)

Ideal mixtures with AUpix =0 have their free energy of mixing
[Eq. (4.13)] convex over the entire composition range, as can be seen in
Fig. 4.3. To understand why it is convex, we differentiate Eq. (4.13) with
respect to composition

OAFnmix . OASkix lng 1 In(l—¢) 1

— T I i S B .
3 R A 7 At v RS

Notice that this purely entropic contribution diverges at both extremes of
composition (OAFyix/0¢p — —co as ¢—0 and OAFn/0p — oo as
o—1). This divergence means that a small amount of either species will
always dissolve even if there are strong unfavourable energetic interac-
tions. Differentiating the free energy of mixing a second time determines
the stability of the mixed state for ideal mixtures
0% A F i _T82A§mix 1 1

=—-T———=kT

re 902 NA¢+NB(1 By > 0. (4.38)
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At T=0 K, the mixing free energy is
determined by the energy of mixing. If
B >0, mixing is unfavourable and all
blend compositions are unstable. If

B < 0, mixing is favourable and all blend
compositions are stable.
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Homogeneous ideal mixtures are stable for all compositions because
entropy always acts to promote mixing, and the ideal mixture does not have
any energetic contribution to its free energy.

The opposite case where the energy dominates is found at 7=0 K.
because the entropic contribution vanishes. The free energy only has an
energetic part given, for example, by Eq. (4.22) for regular mixtures.
Differentiating Eq. (4.22) twice with respect to composition determines
whether the blend is locally stable at 0 K

P AFpix P AUnix
I voa 2xkT (4.39)
The stability criterion at 7= 0 K can be determined from either Eq. (4.21)
or Eq. (4.31)

62Aﬁmix
0¢p?

The parameter B describes the temperature dependence of x in Eq. (4.31).
If the components of the mixture like themselves more than each other

= —z(2uap — uaa — upp) = —2kB (4.40)

UAA + UBB B>0

UAR > ————— Of
B 2

the free energy of mixing is concave (Fig. 4.6, top curve) and homogeneous
mixtures are unstable for all compositions at 7=0 K because the second
derivative of the free energy of mixing is negative [Eq. (4.35)]. Any mixture
phase separates into the two pure components at 7=0 K since entropy
makes no contribution at this special temperature. This case corresponds
to positive Flory interaction parameter x > 0.

If the components like each other better than themselves

Uag < MB— or B<O

the free energy of mixing is convex (Fig. 4.6, bottom curve) and homo-
geneous mixtures of any composition are stable at 7=0 K. This case
corresponds to negative Flory interaction parameter x < 0.

Real mixtures have both energetic and entropic contributions to their
free energy of mixing. The local stability of the mixture is determined
by the sign of the second derivative of the free energy with respect to
composition:

azAFrnix . O*A Umix TazASmiX

992 05? 07

1 n |
Nad  Np(l - 9)
At finite temperatures, AFy; is convex at both ends of the composition

range because its second derivative is positive due to the diverging slope of
the entropy of mixing ASpix.

— kT — 2xkT. (4.41,




Equilibrium and stability

For example, consider a polymer blend with Na =200 and Ng = 100, for
which x7'= 5 K. At high temperatures the entropic term of the mixing free
energy dominates, and all blend compositions are stable, as shown in Fig.
4.7 at 350 K.

As temperature is lowered the entropic term diminishes, allowing the
repulsive energetic term to start to be important at intermediate com-
positions. Entropy always dominates the extremes of composition (due to
the divergent first derivative) making those extremes stable. Below some
critical temperature 7, (defined in detail in Section 4.4), a composition
range with concave free energy appears, which makes intermediate com-
positions unstable. Below 7, there is a range of compositions for which
there are phase separated states with lower free energy than the homo-
geneous state. Many demixed states have lower free energy than the
homogeneous state, but the lowest free energy state defines the equilibrium
state. Straight lines connecting the two phase compositions determine
the free energy of the phase separated state. In order to minimize the
free energy, the system chooses the compositions that have the lowest
possible straight line, which is a common tangent. The phases present are
thus determined by the common tangent rule. This common tangent mini-
mization of the free energy of mixing effectively requires that the chemical
potential of each species in both phases are balanced at equilibrium. The
two equilibrium compositions ¢’ and ¢” at 250 K correspond to a common
tangent line in Fig. 4.7. For any overall composition in the miscibility gap
between ¢’ and ¢”, the system can minimize its free energy by phase
separating into two phases of composition ¢’ and ¢”. The amounts of each
phase are determined by the lever rule outlined above [Eq. (4.33)]. The
composition ranges 0 < ¢ < ¢’ or ¢" < ¢ < 1 are outside the miscibility gap
and the homogeneously mixed state is the stable equilibrium state for these
blend compositions.

Within the miscibility gap there are unstable and metastable regions,
separated by inflection points at which the second derivative of the free
energy is zero (8?AFpyx/0¢* = 0). Between the inflection points, the
second derivative of the free energy is negative and the homogeneously
mixed state is unstable. Even the smallest fluctuations in composition
lower the free energy, leading to spontaneous phase separation (called
spinodal decomposition). Between the infection points and the equilibrium
phase separated compositions, there are two regions that have positive
second derivative of the free energy of mixing. Even though the free energy
of the homogeneous state is larger than that of the phase-separated state
(on the common tangent line) the mixed state is locally stable to small
composition fluctuations. Such states are metastable because large fluctu-
ations are required for the system to reach thermodynamic equilibrium.
Phase separation in this metastable regime occurs by nucleation and growth.
The nuclei of the more stable phase must be larger than some critical size in
order to grow in the metastable region because of the surface tension
between phases (see Problem 4.15). The new phase can grow only when a
sufficiently large fluctuation creates a domain larger than the critical size.
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Composition dependence of the free
energy of mixing at three temperatures
for a hypothetical blend with N4 =200
and Ng = 100, for which x = (5 K)/T.
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4.4 Phase diagrams

By considering the temperature dependence of the free energy of mixing.
a phase diagram can be constructed to summarize the phase behaviour of
the mixture, showing regions of stability, instability, and metastability.
Recall the free energy of mixing for a polymer blend

¢ -9

AFmix = xr
kT[NA In ¢ + N

In(1 — ) + xo(1 - ¢>] )

The phase boundary is determined by the common tangent of the free
energy at the compositions ¢’ and ¢” corresponding to the two equili-

brium phases
<8AFmix> B (BAFmiX) (4.43)
06 ) yep 06 ) ygr '

This derivative of the free energy of mixing per site with respect to volume
fraction of component A is
In ¢ In(l —¢) 1

1
= kT |— +— —— " 1—2¢)]. 4.44)
|JVA +NA NB NB+X( QS)] (

8AF mix
oo

For the simple example of a symmetric polymer blend with Ny = Ng=N.
the common tangent line is horizontal.

(@AFm) B (8AFmix>
9 ) sy 00 ) g=gr

In¢ In(l—9)
N N

= kT{ + x(1 — 2¢)] =0. (4.45,
The above equation can be solved for the interaction parameter corres-
ponding to the phase boundary—the binedal (solid line in the bottom part
of Fig. 4.8) of a symmetric blend:

_ 1 e W(-¢)] _In(/(1-9)
Xb_quwl[N TN ]_ Go—DN -+

Using the phenomenological temperature dependence of the interaction
parameter [Eq. (4.31)], this relation can be transformed to the binodal of
the phase diagram in the space of temperature and composition:

B
T n[p/(1-9)]/[(2¢ — N — 4’

The binodal for binary mixtures coincides with the coexistence curve, since
for a given temperature (or Ny) with overall composition in the two-phase
region, the two compositions that coexist at equilibrium can be read
off the binodal. Any overall composition at temperature 7" within the
miscibility gap defined by the binodal has its minimum free energy in a

Ty (4.47)
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phase-separated state with the compositions given by the two coexistence
curve compositions ¢’ and ¢”.

Returning to the general case of an asymmetric blend, the inflection
points in AFx(¢) can be found by equating the second derivative of the
free energy [Eq. (4.41)] to zero:

1 1

OZAFmix +
Na¢  Np(l —¢)

0¢?

- kT{ - 24 = 0. (4.48)

The curve corresponding to the inflection point is the boundary between
unstable and metastable regions and is called the spinodal (the dashed
line in the bottom part of Fig. 4.8):

1] 1 1
72 {Nm TNl - ¢>} ‘ 44

This spinodal can also be transformed to a phase diagram in the
temperature—composition plane by using the experimentally determined
x(T) via Eq. (4.31):

B

T = 1/ Nad) T 1/ Na(l — )] — A (4.50)

In a binary blend the lowest point on the spinodal curve corresponds to
the critical point:

Oxs 1 1 1
B —0. 4.51
¢ 2[ NA¢2+NB—(1 —¢)2] 0 (4.31)
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Fig. 4.8

Composition dependence of the free
energy of mixing for a symmetric
polymer blend with the product
xN=2.7 (top figure) and the
corresponding phase diagram (bottom
figure). Binodal (solid curve) and
spinodal (dashed curve) are shown on
the phase diagram.
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The solution of this equation gives the critical composition:

U
N Y, (4:52)

Substituting this critical composition back into the equation of the spi-
nodal [Eq. (4.49)] determines the critical interaction parameter:

_IWNa+VNe)? 11 1Y
"2 NaNg "2 (m i \/—N—B> . “53)

Equation (4.31) can again be utilized to determine the critical temperature
from x.:

Xe

=25 B (4.54)

“TXe—A L{I/VNa+1/VNa) - A

For a symmetric polymer blend (Ny=Ng=N), the whole phase
diagram is symmetric (see Fig. 4.8) with the critical composition

e == 4.55
be =3 (4:55)
and very small critical interaction parameter

2 .

Since this critical interaction parameter is very small for blends of long
chains, most polymer blends have x > x. and thus are phase separated
over some composition range (within the miscibility gap). Only blends
with either very weak repulsion (0 < x < x), Or a net attraction between
components of the mixture (x <0) form homogeneous (single-phase)
blends over the whole composition range.

In polymer solutions (No=N and Ng=1), the. phase diagram is
strongly asymmetric with low critical composition

1 1
= = 4.57
Y R (437
and critical interaction parameter close to 1/2
1 1 1 1 1
— (4.58)

Xczz+ﬁ+ﬁ:§+\/_ﬁ.

Note that the spinodal and binodal for any binary mixture meet at the
critical point (Fig. 4.8). For interaction parameters x below the critical one
(for x < x.) the homogeneous mixture is stable at any composition
0 < ¢ < 1. For higher values of the interaction parameter (for x > x.) there
is a miscibility gap between the two branches of the binodal in Fig. 4.8. For -
any composition in a miscibility gap, the equilibrium state corresponds to |
two phases with compositions ¢’ and ¢” located on the two branches of
the coexistence curve at the same value of y. :
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Experimentally, the interaction parameter is most conveniently changed
by varying temperature T [see Eq. (4.31)]. Phase diagrams are typically
plotted in the temperature — composition plane. Examples of phase dia-
grams for a polymer blend and a polymer solution are shown in
Fig. 4.9. The binodal line separates the phase diagrams into a single-phase
region and a two-phase region.

If B>0 in Eq. (4.31), then x decreases as temperature is raised. This
situation is depicted in Fig. 4.10. The highest temperature of the two-phase
region is the upper critical solution temperature (UCST) T.. For all T> T,
the homogeneous mixtures are stable. On the other hand, if B<0 in
Eq. (4.31), then x decreases as temperature is lowered. The lowest tem-
perature of the two-phase region is the lower critical solution temperature
(LCST), and this case is shown in Fig. 4.11. While the case of B >0 is more
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Fig. 4.9

Phase diagrams of polymer blends and solutions (open symbols are binodals and filled
svmbols are spinodals). (a) Polymer blends of poly(vinyl methyl ether) (M = 51 500 g mol™!)
and various molar masses of polystyrene (circles have M = 10 000 g mol ™', squares have

M =20400 g mol™', hexagons have M =51000 g mol ™!, diamonds have M =200000 g
mol™ "), data from T. K. Kwei and T. T. Wang, in: Polymer Blends, Vol. 1 (D. R. Paul

and S. Newman, editors), Academic Press, 1978. (b) Polyisoprene solutions in dioxane
(upside-down triangles have M =53300 g mol ™!, triangles have M = 133000 g mol™"),
data from N. Takano ef al., Polym. J. 17, 1123 (1985).
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Fig. 4.10

Temperature dependence of x for
mixtures of hydrogenated polybutadiene
(88% vinyl) and deuterated
polybutadiene (78% vinyl) and the
calculated phase diagram from Flory-
Huggins theory with Ny = Ng = 2000
and v, = 100 A>. The binodal is the solid
curve and the spinodal is dashed.
Adapted from N. P. Balsara, Physical
Properties of Polymers Handbook

(J. E. Mark, editor), AIP Press, 1996,
Chapter 19.
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Fig. 4.11

Temperature dependence of x for
mixtures of polyisobutylene and
deuterated head-to-head polypropylene
and the calculated phase diagram from
Flory-Huggins theory with
Na=Np=6000 and vo= 100 A>. The
binodal is the solid curve and the
spinodal is dashed. Adapted from N. P.
Balsara, Physical Properties of Polymers
Handbook (J. E. Mark, editor), AIP
Press, 1996, Chapter 19.
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common and better understood, there are many examples of polymer
blends that phase separate when temperature is raised, such as poly-
styrene/poly(vinyl methyl ether). There are also examples where B varies
with temperature, changing sign as temperature is changed and resulting
in both UCST and LCST, as seen for the polymer solution polystyrene;
cyclopentane.

Consider a sudden temperature jump that brings a homogeneous mix-
ture at the critical composition ¢, into the two-phase region. The system
will spontaneously phase separate into two phases with compositions
given by the values on the coexistence curve at that new temperature. This
spontaneous phase separation, called spinodal decomposition, occurs
because the mixture is locally unstable. Any small composition fluctuation
is sufficient to initiate the phase separation process. At any point inside the
spinodal curve, the mixture is locally unstable and spontaneously phase
separates by the spinodal decomposition process.

The points of the phase diagram between the spinodal and binodal
curves correspond to metastable mixtures. The metastable homogeneous
state is stable against small composition fluctuations and requires a larger
nucleation event to initiate phase separation into the equilibrium phases
given by the coexistence curve. This phase separation process is called
nucleation and growth.

4.5 Mixtures at low compositions

Consider adding a small amount of A molecules to a liquid of B molecules
(¢ < 1). The free energy of mixing per site

AFmiXZkTilan)—l—l ¢

_ 4.
A A (4.59)

In(1-¢)+x¢ (1-9¢)

can be expanded into a power series in composition ¢ of the A-molecules.
For small values of composition ¢ < 1, the expansion of the logarithm is
In(l —¢p)= — ¢ — #%/2 — $*/3—--- The second term in the free energy of
mixing [Eq. (4.59)] becomes a power series for small ¢ (written here up to
the third order in ¢):

(1-¢) I (_ s )

In(l = ¢) =~ (¢ +5+c+ (4.60)

Ng N 6
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The free energy of mixing per site can then be rewritten for small ¢:

= ¢ 1 ¢* (1 ¢’
AFmix*“kTLv_Aln ¢+¢(X_N—B) +7<N—B—2X) +m+--},

(4.61)

4.51 Osmotic pressure

Imagine a semipermeable membrane that prevents passage of A mol-
ecules, but allows passage of B molecules. The difference of pressure
across this membrane is called the osmotic pressure of A molecules (see
Section 1.7.1). The osmotic pressure is defined as the rate of change of
the total free energy of the system AFpix = nAFp,;, with respect to volume
at constant number of A molecules:

aAFmix
M=-—02 (4.62)

nA
L

The volume fraction ¢ of np molecules each with Ny monomers is the ratio
of their volume to the volume V of the system:

3
5=2 "?/N A (4.63)

The derivative with respect to volume V' can be expressed in terms of
the derivative with respect to composition ¢ at constant number of
A-molecules na:

1

3
oY — (b3nANA)6(—> _ _ b'naNa

¢2

3 86. (4.64)

Note that the number of lattice sites » can be expressed in terms of
the number of A molecules na asn=naN, a/®. The osmotic pressure is then
calculated from the derivative of AFpx/¢ with respect to composition:

B 8<I1Alex) . ¢2 a(nA]VAAFmix/(fﬁ)
oV nA_ b3nANA 8¢> fa
2 0 AFmix
_ %_(_TW) (4.65)

Differentiating the ratio of free energy of mixing AFy,;, and composition ¢
with respect to composition gives the mean-field expression for osmotic

pressure, valid for small ¢:

kT[¢ ¢ (1 ¢’
-t s ) | e
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This expression of osmotic pressure can be written in the form of the
virial expansion in terms of number density of A monomers ey =o/b°
[see Eq. (3.8)]

2 6
H:kT{iJr (L—zx)bﬁu—b—ch..}

Ns  \Vp 2 3N
:kTI:;—;—}-%Cﬁ—FWCi—F“':I, (4.67)
where
v = (i — 2X> b’ (4.68)
Ny

is the measure of two-body interactions called excluded volume [see
Eq. (3.8)] and

b6

W’:m

(4.69)
is the three-body interaction coefficient (see Section 3.3.2.2).

The first term of this virial expansion [Eq. (4.67)] is linear in composi-
tion and is called the van’t Hoff Law [Eq. (1.72)], which is valid for very
dilute solutions:

kT ¢

Cn
[ = s = kT2 = kTv. 470
AN (4.70)

The concentration ¢, = ¢/b’ is the number density of A monomers and
v=rc,/N4 is the number density of A molecules. The last relation of the
above equation is a general statement of the van’t Hoff Law, as each solute
molecule contributes kT to the osmotic pressure in very-dilute solutions.
The membrane allows the B molecules to pass freely, but restricts all
A molecules to stay on one side. This restriction leads to a pressure which
is analogous to the ideal gas law (the osmotic pressure is kT per restricted
molecule IT = kTv). This pressure is due to the translational entropy loss
caused by the confinement of the A molecules.

In polymer solutions Na=N and Ng=1, so the osmotic pressure
[Eq. (4.66)] at low polymer concentrations has the virial expansion form

kT [d) @ ¢

=3 —+(1—2x)—+—+~--} (4.71)

N 2 3

At the 6-temperature, the interaction parameter x = 1/2 and the energetic
part of two-body interactions exactly cancels the entropic part, making the
net two-body interaction zero (v=(1-2x) b*=0). For x<1/2, the
two-body interactions increase the osmotic pressure of dilute polymer
solutions. Hence, measurement of the osmotic pressure in dilute solutions
provides a direct way of determining the Flory interaction parameter x.
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Near the 6-temperature, the second virial coefficient A, is related to x and
v by comparing Eqs (1.74) and (4.71), remembering that mass concentra-
tion ¢ = My¢/(b> N ay) and molar mass M = MyN:

v 2M; -0

- Ayl -2y~ 2, 4,
BT BN, X~ (4.72)

As y is lowered, the polymer likes the solvent more, increasing the osmotic
pressure. However, the mean-field theory that is the basis of Eq. (4.71) is
only valid close to the #-temperature, where chains interpenetrate each
other freely [Eq. (3.102)]. Far above the #-temperature (in good solvent),
the second virial coefficient A4, is related to chain volume [Eq. (3.104)]
rather than monomer excluded volume v. Recall that the second virial
coefficient can also be determined from the concentration dependence of
scattering intensity [Eq. (1.91)].

4.5.2 Polymer melts

Consider a binafy blend of chemically identical chains with a small con-
centration of chains with N, monomers in a melt of chains with Ny
monomers. For such a blend there is no energetic contribution to mixing
(x = 0) and the excluded volume contains only a small entropic part:

b3

V=—,.
Np

(4.73)

This parameter describes the excluded volume interactions of an A mol-
ecule with itself, mediated by the melt of B molecules. This excluded
volume is small for polymer melts because each chain has difficulty dis-
tinguishing contacts with itself from contacts with surrounding chains.
This very important result was first pointed out by Flory: melts of long
polymers have v = 0 and adopt nearly ideal chain conformations.

The effect of this interaction on the conformations of an A chain can be
analysed using the scaling approach described in detail in Chapter 3. On
small length scales (smaller than the thermal blob size £7), the excluded
volume interactions barely affect the Gaussian statistics of the chain
Er =~ bg]T/ ? where g7 1s the number of monomers in a thermal blob. The
thermal blob is defined as the section of the chain with excluded volume
interactions of order of the thermal energy:

g5 v g7
kTveL ~ kT 525 ~ kT. (4.74)
&1 b g3/

The number of monomers in a thermal blob is very large when the
excluded volume is small:

6

b
gr~ =~ Ny, (4.75)
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The size of the long A chain as functions
of (a) the number of monomers in the
A chain and (b) the number of monomers
in the B chain, on logarithmic scales.
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The thermal blob has random walk statistics:
&7 ~ bgy” ~ bNg. (4.76)

If an A chain is smaller than the thermal blob (N < Né), its conformation
is almost ideal. In a monodisperse melt with Ns = Ng, or in a weakly
polydisperse melt, all chains have ideal statistics. On the other hand,
strongly asymmetric binary blends of dilute long chains in a melt of short
chains with No > N3 have swollen long chains. The size of these swollen
long chains can be estimated as a self-avoiding walk of thermal blobs (as
described in Chapter 3):

o) =ow(5E)
Ra ~ —— ] =~ bNy| —
A &(gr B M
N v-1/2
_ L_N; = hNY? (N—A) . (4.77)

The swelling coefficient (NA/N]23)()‘()88 ~ (NA/gT)O'O88 for v=0.588
increases as the number of monomers in the long chains N, increases
beyond that in a thermal blob gr ~ N}. The size of the A chain Rx
is plotted as a function of N, in Fig. 4.12(a) and as a function of Ny in
Fig. 4.12(b). When Ny =1, the thermal blob is one monomer and the
athermal solvent chain size is recovered [Eq. (3.130)]. Figure 4.12(b) shows
how the long chain deswells and eventually crosses over to the ideal chain
size at Ng ~ /N4 as the length of the short chains increases.

Three-dimensional polymer melts are strongly interpenetrating. To
demonstrate this point, consider a monodisperse melt with Ny = Ng=N.
The average number of other chains that are inside the pervaded volume of
a given polymer (the overlap parameter P, defined in Chapter 1) is the
product of this volume R*=N°?p’ and polymer numbér density 1/Nb*
and is equal to P =+/N. Since N is large, chains are strongly inter-
penetrated in three-dimensional polymer melts. The presence of so many
other chains means that each chain has difficulty distinguishing the intra-
molecular contacts, that give rise to the excluded volume interaction, from
intermolecular contacts. The surrounding chains in the melt have effec-
tively screened the excluded volume interaction, with v:b3/N ~(. For
this reason, Flory’s insightful conjecture that chains in the melt are nearly
ideal is correct.

Two-dimensional melts are quite different. The thermal blob for a dilute
A polymer in a two-dimensional melt of chemically identical B polymers
with excluded area a=5b?/Ng can be estimated in a similar way. The
excluded area interactions of a thermal blob with g7 monomers and size
= bng/2 is written by analogy with Eq. (3.74):

2 2
kTa®L ~ kTa-8T- ~ kT for two-dimensional melts. (4.78)
& b’gr
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The number of monomers in a two-dimensional thermal blob is smaller
than in the three-dimensional thermal blob.
b2

gr ~ - ~ Np for two-dimensional melts. (4.79)
The chains in a monodisperse two-dimensional melt are roughly the size of
a thermal blob and are therefore barely ideal. The number of the other
chains in a pervaded area of a given chain is the product of this area
R?~ Nb* and the two-dimensional number density of chains 1/Nb?* and is
of the order of unity (P~ 1). Thus, chains do not significantly interpene-
trate each other in two dimensions. This is the expected result whenever the
fractal dimension of the object and the dimension of space are the same.

4.6 Experimental investigations of binary mixtures

The Flory interaction parameter x can be determined in homogeneous
single-phase blends by measuring composition fluctuations using scatter-
ing. Consider a’homogeneous blend at equilibrium with average compo-
sition of A monomers ¢. In a small volume containing » total monomers
with ny, =¢n A monomers, a small fluctuation in composition é¢ can
occur spontaneously at equilibrium:

56 =6 — ¢. (4.80)

This fluctuation corresponds to a transfer of én4 A monomers from the
rest of the blend into the small volume with a concurrent transfer of the
same number of B monomers out of the small volume (an effective
exchange of A and B monomers):

Sna = nép. (4.81)

The free energy of mixing in this small volume AF,;x can be expanded in
powers of this fluctuation 6¢:

OAFyi 0 1 1 P AFpiy
d¢ 27 992

AFpix(¢) = AFnix(6) + (60)* + -+ (4.82)

The term linear in 8¢ can be rewritten in terms of the number of monomers
exchanged:

OA Fix 56 = OA Frix nép = OA Fix
8nA

50 5nd) Sna. (4.83)

The derivative of the free energy of mixing with respect to the number of
A monomers is the exchange chemical potential, the change in free energy
of mixing arising from the exchange of one A monomer for one B mono-
mer. The exchange changes the free energy in the rest of the blend by the
exchange chemical potential multiplied by the change in number of
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A monomers (—dn,) in the rest of the blend:

OAF, mix
on A

(—5]’1A).

The free energy change in the system §F arising from this fluctuation is
the sum of the free energy change in the small volume containing #» mono-
mers and the free energy change in the rest of the blend:

n aAFmix
OF = Alex(¢) - AFmix(Qb) - (91’1/.\ 6’1A

Note that the rest of the blend is considered very large and exchange of éna
A monomers does not change its composition significantly. The typical
free energy change is of the order of the thermal energy, 0F~ kT, giving a
simple relation for the mean-square composition fluctuation:’

PAFpi\ ™" kT [P AFmi\ ™"

The final relation involves the free energy of mixing per site, AFpi, an
intensive quantity. Hence, Eq. (4.85) clearly shows that thermally-driven
composition fluctuations diminish as the volume considered (reflected in
the number of sites ») increases. Small volumes with only a few monomers
(small n) can have large fluctuations, but any macroscopic volume (large n)
has a composition that is indistinguishable from the mean blend compo-
sition. The mean-square fluctuation is related to the low wavevector limit
of the scattering function [Eq. (3.126)]

2
S(g) = @ =n((60)’), (4.86)

where the number of monomers in the small volume is n=(gh)>. Since

(6¢)2 ~ 1/n, S(q) saturates at small values of the wavevector. The
scattering function at zero wavevector S(0) is thus related to the second
derivative of the free energy of mixing:

S(0) = n<(5¢)2> — kT(%) ‘1. (4.87)

This is an example of a much more general thermodynamic relationship
between S(0) and osmotic compressibility [see Eq. (1.91)].

? The real derivation of the mean-square fluctuation is obtained from an average over all
magnitudes of the composition fluctuation with the corresponding Boltzmann factor

exp(— 6F/kT):
o\ [ (60) exp (=6F/KT) d(8¢) (8 AFmi)
(07) =< o sy 50 =k1(755=)
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Using Eq. (4.48), the Flory—Huggins theory predicts

1 1 OPAF 1 1
SO) KT 00~ Nag Ma(i-g) X (48

This means that the Flory interaction parameter x can be determined from
the low wavevector limit of the scattering function of a single-phase blend
of A chains (with N4 monomers) and B chains (with Ng monomers), where
o is the volume fraction of A chains. In practice, the concentration fluc-
tuations in the blend provide sufficient scattering contrast for neutron
scattering, as long as one of the components is at least partially labelled
with deuterium.

The standard assumption, called the random-phase approximation,
extends Eq. (4.88) to non-zero wavevectors ¢ using the form factor of an
ideal chain P(gq, N):

1 1 1
S(q) ~ NadP(q,Na)  Na(l - 6)P(q, No

Recall from Section 2.8.4 that the form factor for an ideal chain is the
Debye function [Eq. (2.160)]. The high ¢ limit of the Debye function is

2 1
P(q,N) = 2 for ¢ > 1/R,, (4.90)

= = TONR2
q2<R§> qNb

where we used the standard radius of gyration for an ideal chain
<R§> = Nb*/6 [Eq. (2.54)]. The low ¢ limit of any form factor is
P(q, N)=1, and a simple crossover expression emerges for the reciprocal
of the Debye function:*

7~ 2x. (4.89)

1 ¢*Nb*
=1+ :
P(q, N) 12

(4.91)

Substituting this result into Eq. (4.89) (twice) gives a simple result for the
reciprocal scattering function:

1 1 ¢ 1 q*b?
S Nas 126 TRa(l—g) 21 -9 X
LA —2x+q2b2(l+ 1 )
Na¢ Np(l —9) 12 \¢ 1-9
1 q2b2

= + . 4.92
50 " 129(1—9) (492
The final result made use of Eq. (4.88).

This form for scattering is actually far more general, valid for many
systems with scattering arising from random fluctuations. Small angle

4 This crossover expression is never more than 15% different from the Debye function
over all g. For small gR, a better expression is Eq. (2.146) or (2.161).
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Fig. 4.13

SANS intensity for a ¢ = 0.5 miscible
blend of polyisobutylene (M, =
160000 g mol~') and a random
copolymer of ethylene and butene

(66 wt% butene, M,, = 114000 gmol ~ h
at three temperatures with fits to

Eq. (4.93) (curves). Open circles are at
27 °C, where /(0)=1180m ' and ¢ =
3.3 nm. Filled squares are at 51°C,
where 7(0)=2180 m™' and £ = 4.5 nm.
Open diamonds are at 83 °C, where
1(0)=8850 m~' and £=9.1 nm. Data
from R. Krishnamoorti et al.,
Macromolecules 28, 1252 (1995).

Thermodynamics of mixing

neutron scattering data on miscible polymer blends are customarily fit
to the Ornstein—Zernike scattering function:

S(0)
S(g)=—"3
I+ (¢€)
Comparing Eqs (4.92) and (4.93) reveals the correlation length for the
mean-field theory of binary mixtures:

25(0)
12¢(1 — ¢)

The correlation length effectively divides the form of the scattering into
two regions. For ¢ < 1/¢, the scattering function approaches its zero
wavevector limit S(0). For g>> 1/£, the scattering function decreases as a
power law S(q) ~ ¢~ 2. Ideally, experiments would extend to sufficiently
low g at which the zero wavevector limit would be nearly realized. How-
ever, in practice this is often not the case, with ¢ of order 1/¢ for most
small-angle neutron scattering (SANS) data on single-phase blends. SANS
data at three temperatures for a blend of a polyisobutylene with a
deuterium-labelled ethylene-butene random copolymer are shown in
Fig. 4.13. This blend phase separates on heating at 95+ 5 °C. The scat-
tering intensity increases as temperature is raised, which means that con-
centration fluctuations are getting stronger. The data at all three
temperatures are reasonably fit by the Ornstein—Zernike equation [curves
are fits to Eq. (4.93)]. The scattering intensity is independent of tempera-
ture at high ¢>> 1/£ because

S(0)  126(1 - )
S(g) = -
D=’ ™ (@)

(4.93)

= (4.94)

for g > 1/¢ (4.95)

in this limit.

Like S(0), the correlation length £ has important physical significance
and is related to concentration fluctuations. On length scales smaller than
the correlation length, correlated chain sections of (gb) ~2 monomers
fluctuate in and out of the volume ¢ . Mean-square fluctuations in the
number of A and B chain sections is proportional to (gb) ~ ', the number of
these sections in the volume ¢ ~>. Mean-square fluctuations in the number
of A and B monomers in this small volume is the product of the mean-
square fluctuations in the number of chain sections and the square of the
number of monomers in each chain section ((6n4)>) ~ (¢gh) ~>. From Eq.
(4.86) we find that coherent fluctuations of chain sections on length scales
smaller than the correlation length (¢~ ' <€) lead to S(g) ~ ((én D
~(gb)~? [Eq. (4.95)] independent of £ or x. This makes the scattered
intensity at high ¢ in Fig. 4.13 independent of temperature [Eq. (4.95)].
Concentration fluctuations in different correlation volumes are inco-
herent, so on length scales larger than the correlation length, mean-square
fluctuations in the number of 4 and B monomers in the large volume ¢ ~*
is proportional to the product of the mean-square fluctuations within a
correlation volume (£/b)° and (€¢) ~ >, the number of correlation volumes
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in the volume q*3 . From Eq. (4.86), it follows that the structure factor
saturates at low ¢ <&~ with S(0) ~ (¢/b)* [Eq. (4.94)]. Both S(0) and &
contain the same information about the Flory interaction parameter y and
it is important to realize that this information is only obtained at low g.
Since SANS has a limited g-range, in practice S(0) and £ are determined by
fitting data to Eq. (4.93), as shown in Fig. 4.13.

The astute reader will recognize that the scattering function for polymer
blends [Eq. (4.86)] is defined in a subtly different manner than for polymer
solutions [Eq. (3.126)]. In both cases, the scattering function is normalized
by the number of monomers in the system. In Section 3.5, monomers
occupy volume fraction ¢ of the total volume, while in the blend the
combined volume fraction of monomers of type A and B is unity. The
scattering function of Section 3.5 is related to that of the present section as
S(g)/¢. To facilitate comparison, we rewrite Eq. (4.88):

¢ _ 1 ¢
SO "N Mg X (4.96)

For a polymer solution Ng=1 and ¢ < |

¢ 1
S(0) = Na + (1 -=2x)¢, (4.97)
which is the usual virial expansion in dilute solutions [Eq. (1.91)].

The equilibrium concentrations of two-phase blends are calculated from
the phase diagram—a coexistence curve in the temperature-composition
plane. The phase diagram can be conveniently determined by monitoring
light scattering as a function of temperature for various overall composi-
tions, as long as sufficient time is allowed to reach equilibrium at each
temperature. Starting at a temperature in the single-phase state, the blend
is transparent and the scattering is low. When the temperature reaches the
binodal curve, the scattering increases, as phase separation creates
domains with different refractive indices.” Simple thermodynamic con-
siderations link the phase boundary to the interaction parameter, as
described in this chapter.

4.7 Summary of thermodynamics

In this chapter, the thermodynamics of binary mixtures was discussed
in the framework of a lattice model. For simplicity, polymers were
divided into ‘monomers’ that fit onto this lattice and the free energy of
mixing was written per lattice site (AFpix). Rescaling the monomers to
more conventional definitions (such as either the chemical monomer of
Chapter 1 or the Kuhn monomer of Chapter 2) is trivial because the
volume of an A chain vao = Navy and the volume of a B chain vg = Npvy
must be independent of the choice of lattice site volume v,. In practice,
fitting the monomers onto the lattice is inconvenient and in this summary
results are given for the more usual case of mixing two polymers with

5 For this reason, the binodal is often referred to as the cloud point.
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different monomer volumes, in terms of the free energy per unit volume
(called the free energy density AFmix/Vo).

The free energy of mixing has two parts: entropic and energetic. The
entropic part per unit volume,

TASmix TASmix ¢ 1 — ¢
— —_ — k7| L @ - 4.98
> I = KT| S Ing = In (1-6)[,  (498)

simply counts translational entropy of the mixed state compared with the
pure component states. Entropy always promotes mixing. Mixtures of two
small molecules have large entropy of mixing, solutions of polymers in
small molecule solvents have less entropy of mixing, and blends of two
polymers have very little mixing entropy.

The energetic part of the free energy density

AUnis ~ AUmix X 1 o _ Kk _
=S AT (= 0) = AT+ B) ¢ (1—¢)  (499)

is the difference of intermolecular interaction energies in the mixed
and pure states, and is reflected in the Flory interaction parameter x.
Equation (4.99) clearly points out the importance of specifying the refer-
ence volume v, when stating the value of the Flory y parameter.® The
energy of mixing can be either positive (meaning that the different species
prefer to be next to themselves) favouring segregation, or negative
(meaning that the different species prefer each other) promoting mixing.
Interactions between components are often of the van der Waals type,
meaning that they are weak and repulsive. Despite this repulsion, many
simple liquid pairs form regular solutions that have entropically driven
mixing. It is somewhat less likely for a polymer to dissolve in a solvent
simply because of lower entropy of mixing for larger molecules. However,
most polymers will dissolve in a number of common solvents. On the other
hand, miscible polymer blends are very unlikely because the entropy of
mixing two long-chain polymers is extremely small. The rule of thumb is
that polymers never mix, but there are many exceptions to this rule
because interactions between components are not always repulsive.

The shape of the free energy density of mixing as a function of
composition

AFmix _ AFmix _ AUmix TASmix

V Vo Vo Vo
| @ 1-9¢ X o1
_ka lng + - ln(1—¢)+V0¢(1 ¢)}
_ ¢ 1-¢ A
_kT[K 1n¢+~VT In(1 —¢)+V—0¢(1 —¢)}
5B s — o). (4.100)
Vo

% All numbers for the Flory y parameter in this book use a reference volume of vo = 100 A3,
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determines the stability of a homogeneously mixed state. This function is
always convex near the boundaries of the composition range (for small ¢
and for ¢ near unity) because the entropic part always dominates there at
any practical (non-zero) temperature. If the composition dependence of
the free energy of mixing is convex over the whole composition range, the
mixture is homogeneous at all compositions. If the free energy is concave
in some part of the composition range, the line of common tangent to the
free energy curve determines the range of the miscibility gap (see Fig. 4.7).

The mean-field lattice model of Flory and Huggins predicts that 4 =0
but in practice this is not observed. If 4 <0 and B <0, then all four terms
in Eq. (4.100) are negative and miscible mixtures are stable at all tem-
peratures. If 4 > 0 and B <0, the blend has a LCST and phase separates at
high temperatures. If B > 0, the blend has an UCST and phase separation
occurs as temperature is lowered.

The Flory interaction parameter in miscible polymer blends is measured
using small-angle neutron scattering, usually involving deuterium label-
ling of one blend component. The x parameter is determined from the zero
wavevector limit of the scattering function S(0):

Cwll 111
X“zlvm*vBu—w] 25(0)° (4.101

The binodal separates the homogeneous (single phase) and hetero-
geneous (two phase) regions in the phase diagram (see Figs 4.10 and 4.11).
For binary mixtures, the binodal line is also the coexistence curve, defined
by the common tangent line to the composition dependence of the free
energy of mixing curve, and gives the equilibrium compositions of the two
phases obtained when the overall composition is inside the miscibility gap.
The spinodal curve, determined by the inflection points of the composition
dependence of the free energy of mixing curve, separates unstable and
metastable regions within the miscibility gap.

Melts of long chains have nearly ideal conformations because the
excluded volume is screened by the presence of other chains (v~0). The
excluded volume in a melt is v~ b’/ N. Excluded volume therefore gradu-
ally increases as the short chains in a polymer blend are shortened. The
short B chains make the A chains swell when N > N%. Hence, miscible
blends of high molar mass polymers with Nao < N3 have nearly ideal
conformations.

Problems
Section 4.1

4.1 (i) Calculate the number of ways to arrange 10 identical solute molecules on a
lattice of 100 sites. Each molecule occupies one lattice site.
(ii) Calculate the number of ways of arranging an oligomer consisting of
10 repeat units on a cubic lattice of 100 sites. Each repeat unit occupies
one lattice site. Ignore long-range (along the chain) excluded volume
interactions. Assume that each site has coordination number z = 6 (ignore
the boundary effects).
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4.2

Calculate the entropy of mixing per site ASyx on a three-dimensional cubic
lattice of:

(i) 100 black 50-ball chains with 100 white 50-ball chains on a lattice with
10 000 sites (one ball per site).

(i) 100 black 50-ball chains with 100 identical black 50-ball chains on a lattice
with 10 000 sites (one ball per site).

Explain the difference between cases (i) and (i1).

Section 4.2

4.3

4.4

4.5

4.6

Estimate the Flory interaction parameter x between polystyrene and poly-
butadiene at room tem ?erature if the solubility parameter of polystyrene is
Sps=1.87x 10* (J m and the solubility parameter of Qolybutadwne 1s
Spp=1.62x10*Jm~ 3)l 2 For simplicity assume vy 22 100 A°.
What is the free energy of mixing 1 mol of polystyrene of molar mass M =2 x
10° g mol, with 1 x 10% L of toluene, at 25 °C (Flory interaction parameter
x =0.37). The density of polystyrene is 1.06 gcm ™ 3. the density of toluene is
0.87 g cm . Assume no volume change upon mixing.
Compare the magnitudes of the two terms in Eq. (4.31) for x using the data
for the 11 polymer blends in Table 4.3 at the lowest temperature studied
(corresponding to the largest value of B/T). Is the Flory-Huggins assumption
that |B/T| > |A| correct?
(i) Derive the relation between 4 and B in Eq. (4.31) and the Hildebrand—
Scott solubility parameter difference.

(ii) What values of 4 and B are possible in the solubility parameter approach?

Section 4.3

4.7

4.8

At T=0K, the entropic contributions to the free energy of mixing disappear.
and only the energetic contributions remain. Substitute Eq. (4.31) into the
Flory—Huggins equation to write the free energy of mixing in terms of the
parameters 4 and B. Sketch the composition dependence of the free energy
for cases where B< 0, B=0, and B >0, and discuss whether any of those
situations lead to a stable mixture at T=0 K. Does your answer depend on
whether regular solutions, polymer solutions, or polymer blends are con-
sidered?

Plot on a single graph, the composition dependence of the free energy of
mixing per site (normahzed by the thermal energy) AFyix /kT of a symmetric
polymer blend with Ny = Ng = 100 using five different choices for the para-
meter x =0, 0.01, 0.02, 0.03, 0.04. Which choices of x make the blends
miscible in all proportions (i.e. over the whole composition range 0 < ¢ < 1)
and why?

Section 4.4

4.9

The free energy of mixing (per mole of lattice sites) for the regular solution
theory can be written as

RT[¢ Ingp+ (1 —¢) In (1—¢)+ xo(l — o),

where R is the gas constant and the interaction parameter is x = B/T.
where B=600K. Construct the binodal and spinodal curves in the
temperature—composition phase diagram.
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4.11

4.12

4.13

4.14

Problems

The free energy of mixing (per mole of lattice sites) of a polymer solution
(according to the Flory—Huggins model) is

RT%Inqﬁ—i—(l—Qﬁ)ln(l —6) +xo(1 - 6)|,

where R is the gas constant and the interaction parameter is x = B/T where
B =300 K. Plot the critical parameters (¢, x., and T,) for the solution as a
function of the degree of polymerization N.
Calculate the free energy density AFpnx/V of mixing polystyrene of molar
mass 20 000 g mol ~ ' with cyclohexane at 34 °C, to make up a 5% by volume
solution? Assume no volume change upon mixing.

Note that 34 °C is the #-temperature for a polystyrene solution in cyclo-
hexane (Flory interaction parameter x = 1/2):

the density of polystyrene is 1.06 g cm™>;
the density of cyclohexane is 0.78 g cm ™ >;
the molar mass of cyclohexane (C¢H,,) is 84 g mol™".

(i) What is the free energy of mixing 1 g of polystyrene of molar mass
M =10° gmol ~ !, with 1 mol of cyclohexane at 34 °C? Note that 34 °C s
the f-temperature for a polystyrene solution in cyclohexane (Flory inter-
action parameter x = 1/2). The molar volume of polystyrene is vps =
9.5 x 10* em® mol !, the molar volume of cyclohexane is Veye= 108 cm?
mol ~!. Assume no volume change upon mixing and assume that the
volume of one solvent molecule is the lattice site volume v.

(ii) What does the sign of the free energy of mixing imply about the stability
of a homogeneous solution?

(iii) Under what conditions does the homogeneous solution spontaneously
phase separate by spinodal decomposition?
(iv) When is the homogeneous solution metastable?

Since the mean-field Flory—Huggins theory puts everything that is not
understood about thermodynamics into the x parameter, this parameter is
experimentally found to vary with composition and temperature. For
solutions of linear polystyrene in cyclohexane, the interaction parameter

90.65K

X = 0.2035 + +0.3092¢ + 0.1554¢ (4.102)

was determined by R. Koningsveld er al., J. Polym. Sci. A4-2 8, 1261
(1970).

(i) What is the critical temperature for a very high molar mass polystyrene
in cyclohexane with polymer volume fraction ¢ =0.01?

(ii) Does the polystyrene/cyclohexane system have a UCST or an LCST?
(ili) Determine the #-temperature at a volume fraction ¢ =0.1.

(i) Derive a general expression for the critical temperature of a mixture in
terms of the solubility parameter difference 64 — 65 and the number of
monomers in each component N, and Np.

(il) What is the criterion for miscibility in this approach?

(ili) What is the largest solubility parameter difference that allows small
molecule mixtures (with Ny = Ng = 1) to be miscible?



Thermodynamics of mixing

4.15

4.16

(iv) What is the largest solubility parameter difference that allows polymer
solutions (with N5 = 10% and N = 1) to be miscible?

(v) What is the largest solubility parameter difference that allows polymer
blends (with Ns = Ny = 10%) to be miscible?

Consider a nucleation process from a uniform metastable state of a polymer
solution. Denote by Ay = u; — po the chemical potential difference between
N-mers in a uniform solution y; and in a phase separated solution p,. If Ay
is positive, the phase separated solution is the equilibrium state. However, a
small drop of a phase with higher concentration of molecules ¢/N formed in
the homogeneous phase could be unstable due its positive surface energy
with surface tension ~. Calculate the Gibbs free energy of a spherical drop of
concentrated phase of radius R and determine the critical radius R; for
nucleation in terms of v, Ayx and the number density of chains. Nuclei
smaller than R, shrink and disappear, while larger ones grow into domains
of the dense phase.

(i) What is the critical value of x required for high molar mass polymers to
dissolve in a solvent in all proportions?

(ii) In Chapter 5, we will learn that polymer solutions are not described well
by the mean-field theory because the connectivity of the chains keeps
monomers from being uniformly distributed in solution (particularly at
low polymer concentrations). An empirical form that better relates x to
the Hildebrand solubility parameters in polymer solutions is widely used
with an entropic part of x of 0.34:

X =034+ ]Z—QT((SA ~ ) (4.103)
Use the following table to decide which solvents will dissolve poly
(dimethyl siloxane) (6ppms=14.9 (MPa)'’?) and which will dissolve
polystyrene (0ps = 18.7 (MPa)]-‘"‘z) at room temperature.

Solvent n-Heptane Cyclohexane Benzene Chloroform Acetone

Molar volume 195.9 108.5 29.4 80.7 74.0
(cm® mol ™) .

Sotubility 15.1 16.8 18.6 19.0 20.3
parameter § (MPa)'/?

(iii) Which solvent is closest to the athermal limit for each polymer?

Section 4.5

4.17

4.18

Consider a melt of B chains with degree of polymerization Ng= 100 and
Kuhn length » =3 A. What is the root-mean-square end-to-end distance of
isolated chemically identical A-chains in this melt with degree of poly-
merization:

(i) Na=10%? (i) Na=10% (iii) No=10%

Consider a monodisperse melt of randomly branched polymers with
N Kuhn monomers of length . Randomly branched polymers in an ideal
state (in the absence of excluded volume interactions) have fractal dimen-
sion D=4. Do these randomly branched polymers overlap in a three-
dimensional monodisperse melt?
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Hint: What would be the N-dependence of density if monodisperse
randomly branched polymers overlapped in the melt?

4.19* Demonstrate that the excluded volume in a polydisperse melt is v = 5/N,,

where N, is the weight-average molar mass of the melt.

Section 4.6

4.20

4.21

4.22

Ginzburg criterion for polymer blends

Estimate the size of the critical region near the critical point in a sym-
metric polymer blend by comparing the mean-square composition fluctua-
tions ((6¢,4)°) with the square of the difference in volume fractions of the
two phases (¢" — ¢’ )? in the miscibility gap. Such considerations determine
the point where mean-field theory (which assumes fluctuations are small)
fails, known as the Ginzburg criterion.

(i) Expand the equation for the binodal (Eq. 4.47 with 4 =0) near the
critical composition ¢.=1/2 to derive the dependence of the order
parameter ¢” —¢’ on the relative temperature difference from the
critical temperature (7 — T,)/T..

T.- T
. & — ¢ = “T forT < T.

¢

(i) Demonstrate that the mean-square composition fluctuations on the
scale of the correlation length are of order

<(6¢>)2> ~ %TT_ T forr<T,

(111) Estimate the size of the critical region (Ginzburg criterion) by compar-
ing the square of the order parameter (¢” — ¢')?> with the mean-square
composition fluctuations on the scale of correlation length ((66)?).

T.—-T 1
T b forT < T,

For blends of long chain polymers (large N) the critical region is very
small and the mean-field theory applies at nearly all temperatures.
Use the data in Table 4.3 to calculate the zero wavevector limit of the scat-
tering function S(0) and the mean- square concentratlon fluctuation ((6¢)°)
at a 50 A scale (at ¢ =27/50 A-1=0.126 A~ 1) assuming the Ornstein—
Zernike form for S(g), for the blends listed below (with Ny = Ng=100 in
each case). For each blend, plot S(0) and ((6 ¢3) ) as functions of temperature
over the temperature range of Table 4.3.

(i) 50% by volume poly(vinyl methyl ether) mixed with polystyrene;
(i1) 50% by volume polyisobutylene mixed with deuterated head-to-head
polypropylene;
(iii) 30% by volume poly(ethylene oxide) mixed with deuterated polymethyl
(methacrylate).

Identify the blends that phase separate and state whether they have an
LCST or a UCST.

(1) Use the fitting results in the captlon of Fig. 4.13 for the three different
temperatures to plot S(0) against &* to demonstrate their proportion-
ality. What is the physical significance of S(0) ~ £*?
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(i) The correlation length diverges at the critical temperature 7. as a
power law:

~1/2
£~ (TCT_C T) : (4.105)

Use the fitting results in the caption of Fig. 4.13 for the three different
temperatures to estimate the critical temperature 7.. How does this
critical temperature compare with the observed cloud point for this
blend of 95 £ 5 °C?

(iii) Determine  at each of the three temperatures in Fig. 4.13 and fit those
determinations to Eq. (4.31).
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