Real chains

In Chapter 2, we studied the conformations of an ideal chain that ignore
interactions between monomers separated by many bonds along the chain.
In this chapter we study the effect of these interactions on polymer con-
formations. To understand why these interactions are often important, we
need to estimate the number of monomer-monomer contacts within a
single coil. This qumber depends on the probability for a given monomer to
encounter any other monomer that is separated from it by many bonds
along the polymer.

A mean-field estimate of this probability can be made for the general
case of an ideal chain in d-dimensional space by replacing a chain with an
ideal gas of N monomers in the pervaded volume of a coil ~R? The
probability of a given monomer to contact any other monomer within this
mean-field approximation is simply the overlap volume fraction ¢*, of a
chain inside its pervaded volume, determined as the product of the
monomer ‘volume’ »? and the number density of monomers in the per-
vaded volume of the coil N/R%:

N
o* b o (3.1)

Ideal chains obey Gaussian statistics in any dimension with R=5N 12
leading to the overlap volume fraction:

o* = pl N N1, (3.2)
(bN'/2)?

The overlap concentration of long ideal coils is very low in spaces with
dimension d greater than 2:

p*~ N« 1 ford>2and N>1. (3.3)

In particular, in three-dimensional space the probability of a
given monomer contacting another monomer on the same chain is
o* ~ N~12 <« 1.

The number of monomer—-monomer contacts between pairs of mono-
mers that are far away from each other along the chain, but get close
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Fig. 3.1
Effective interaction potential between
two monomers in a solution of other

molecules.

Fig. 3.2
The hard-core potential prevents
monomers from overlapping.

Real chains

together in space, is the product of the number of monomers in the chain
and the volume fraction of chains in the pervaded volume of the coil:

Ng* =~ N>~92. (3.4)

In spaces with dimension above 4, this number is small and monomer—
monomer contacts are rare. Therefore, linear polymers are always ideal in
spaces with dimension d>4. In spaces with dimension less than 4 (in
particular, in three-dimensional space relevant to most experiments), the
number of monomer—monomer contacts for a long ideal chain is very large:

No* ~ N2> 1 ford=3and N> 1. (3.5)

It is important to understand how the energy arising from these
numerous contacts affects the conformations of a real polymer chain. The
effective interaction between a pair of monomers depends on the difference
between a monomer’s direct interaction with another monomer and with
other surrounding molecules. An attractive effective interaction means
that the direct monomer—-monomer energy is lower and monomers would
rather be near each other than in contact with surrounding molecules. In
the opposite case of repulsive effective interactions, monomers ‘do not like’
to be near each other and prefer to be surrounded by other molecules. In
the intermediate case, with zero net interaction, monomers ‘do not care’
whether they are in contact with other monomers or with surrounding
molecules. In this case there is no energetic penalty for monomer—
monomer contact and the chain conformation is nearly ideal. In the next
section, this qualitative description of the monomer—-monomer interaction
is quantified.

3.1 Excluded volume and self-avoiding walks
3.1.1 Mayer f-function and excluded volume

Consider the energy cost U(r) of bringing two monomers from oo to within
distance r of each other in a solvent. A typical profile of this function is
sketched in Fig. 3.1. It contains a repulsive hard-core barrier that corres-
ponds to the energy cost of steric repulsion of two overlapping monomers.
Typical monomers ‘like’ each other more than they ‘like’ solvent and
therefore there is usually an attractive well corresponding to this energy
difference. On the other hand, if monomers are chemically identical to the
solvent and there is no energy difference between their interactions, the
energy U(r) will contain only the hard-core repulsion (see Fig. 3.2). For
reasons that become clear later, in this case the solvent is called athermal.
On the other hand, if monomers ‘like’ each other less than surrounding
solvent (for example, similarly charged monomers) there is no attractive
well in U(r) but instead, extra repulsion.

The probability of finding two monomers separated by a distance r
in a solvent at temperature 7 is proportional to the Boltzmann factor
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exp [~ U(r)/(kT)] which is plotted in Fig. 3.3 for the potential of Fig. 3.1.
The relative probability is zero at short distances, corresponding to the
hard-core repulsion (it is impossible to find two overlapping monomers).
The probability is large in the attractive well (it is energetically more
favourable and therefore more likely to find the two monomers at these
distances). The Boltzmann factor is equal to one at large distances if there
are no long-range interactions.

The Mayer f-function is defined as the difference between the Boltzmann
factor for two monomers at distance r and that for the case of no inter-
action (or at infinite distance):

flr) = exp [-U(r)/(kT)] - 1. (3.6)

At short distances, the energy U(r) is large because of the hard-core
repulsion, making the Mayer f-function negative. The probability of
finding monomers at these distances is significantly reduced relative to the
non-interacting case (see Fig. 3.3). The Mayer f-function is positive in the
attractive well and the probability of finding a second monomer there is
enhanced compared to the non-interacting case.

The excluded volume v is defined as minus the integral of the Mayer
f-function over the whole space:

v —/f(r) &= /(1 _exp [FUG) /(T & (3.7)

This single parameter summarizes the net two-body interaction between
monomers. As shown in Fig. 3.4, the hard-core repulsion (r < 1) makes a
negative contribution to the integration of the Mayer f-function and a
positive contribution to excluded volume. The example in Fig. 3.4 also has
an effective attraction between monomers (r > 1) that makes a positive
contribution to the integration of the Mayer f-function and a negative
contribution to excluded volume. The attraction and repulsion largely
offset each other for this example, making the net excluded volume quite
small. A net attraction has a negative excluded volume v <0 and a net
repulsion has v> 0.

3.1.1.1 Non-spherical monomers

The simple calculation of excluded volume in Eq. (3.7) is only valid for
spherical monomers. Particularly because of the ‘monomer’ being defined
as a Kuhn monomer, the monomer is better described as a cylinder of
length equal to the Kuhn length b, but smaller diameter d, as depicted in
Fig. 3.5. Polymers without bulky side groups, such as polyethylene and
poly(ethylene oxide), have effective diameter d=5A. Polystyrene has
d ESA, and the diameter of the cylindrical Kuhn monomer steadily
increases as side groups increase in size. Most flexible polymers have aspect
ratio b/d in the range 2-3, but this ratio is larger for stiffer polymers.
Excluded volume describes the two-body (pairwise) monomer—-monomer
interaction in solution. At low polymer concentrations, the interaction
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The relative probability of finding a
second monomer at distance r from a
given monomer is given by the
Boltzmann factor.

Fig. 3.4
The Mayer f-function and its integration
(shaded regions) to determine excluded
volume.

Fig. 3.5

(a) Chain with symmetric monomers.
(b) Chain with strongly asymmetric
cylindrical Kuhn segments of length
b and diameter d.
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part of the free energy density F,/V can be written as a virial expansion
in powers of the monomer number density c,. The coefficient of the ¢2
term is proportional to the excluded volume v and the coefficient of the
¢ term is related to the three-body interaction coefficient w:

in : N
FI:H(vci+wc2+---)sz(V—A—[——Fw—%—---). (3.8)

V 2 RS R

This virial expansion is analogous to that used for the osmotic pressure in
Chapter 1 [Eq. (1.74)] and we will see in Section 3.3.4, how the excluded
volume is related to the second virial coefficient.

For athermal spherical monomers of diameter d, v~ d° and w~ d®. The
interaction energy must not change if we redefine what is meant by a
monomer. The chain in Fig. 3.5 can be thought of as a chain of n spheres of
diameter d or a chain of N = nd/b cylinders of length b and diameter d. Each
term in the virial expansion must be unchanged by these choices, which
requires:

Ve = VN wen® = weN°. (3.9)

Using the renormalization of N = nd/b and the spherical results v~ d° and
ws~ d®, the cylindrical Kuhn monomer has

ny2 b\*
Vo 55V, (_]\7) ~ Vs (Ez) ~ b2d, (3.10)
~ (ﬁ)% bY’ b33 (3.11)
We R Wy ~ 2 Wy 1) = .

as coefficients in Eq. (3.8). The excluded volume of strongly asymmetric
objects (long rods) v~ b°d is much larger than their occupied volume
v~ bd?, since b > d. The ratio of excluded volume and occupied volume is
the aspect ratio v./vo=b/d. If the aspect ratio of the rod polymer is large
enough, excluded volume creates nematic liquid crystalline ordering in
solutions of rods, originally derived by Onsager. Once the excluded
volumes of neighbouring rods overlap, these rods strongly interact and
prefer to orient predominantly parallel to neighbouring rods. Similar
nematic ordering is seen with polymers as well if the rigidity of the
monomers is large enough (making the aspect ratio b/d large). Further
discussion of strongly asymmetric monomers is beyond the scope of this
book. Here, we focus on flexible polymers, which typically have aspect
ratios in the range 2-3. For this reason, we write results below in terms of
cylindrical monomers, which reduce to the results for a spherical monomer
when b = d. The spherical monomer results are often used in the rest of this
book, owing to the simplicity of a single length scale to describe the
monomer. The excluded volume discussed in this book always refers to
the excluded volume of a Kuhn monomer. The transformation rules of
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Eq. (3.9) can be used to recast the excluded volume in terms of any part of
the chain, including the chemical monomer.

(A) Athermal solvents. In the high-temperature limit, the Mayer
f-function has a contribution only from hard-core repulsion. The excluded
volume becomes independent of temperature at high temperatures,
making the solvent athermal. An example is polystyrene in ethyl benzene
(essentially polystyrene’s repeat unit). The excluded volume in athermal
solvent was derived in Eq. (3.10):

v ~ b*d. (3.12)

(B) Good solvents. In the athermal limit, the monomer makes no ener-
getic distinction between other monomers and solvent. In a typical solvent,
the monomer—monomer attraction is slightly stronger than the monomer—
solvent attraction because dispersion forces usually favor identical species.
Benzene is an example of a good solvent for polystyrene. The net attraction
creates a small attractive well U(r) <0 that leads to a lower excluded
volume than the athermal value:

0<v<bid (3.13)

As temperature is lowered, the Mayer f-function increases in the region of
the attractive well, reducing the excluded volume.

(C) Theta solvents. Atsome special temperature, called the f-temperature,
the contribution to the excluded volume from the attractive well exactly
cancels the contribution from the hard-core repulsion, resulting in a net
zero excluded volume:

v=0. (3.14)

The chains have nearly ideal conformations at the f-temperature’ because
there is no net penalty for monomer—-monomer contact. Polystyrene in
cyclohexane at #2234.5°C is an example of a polymer—solvent pair at the
f-temperature.

(D) Poor solvents. At temperatures below 6, the attractive well dominates
the interactions and it is more likely to find monomers close together. In
such poor solvents the excluded volume is negative signifying an effective
attraction:

—bd<v<O0. (3.15)

Ethanol is a poor solvent for polystyrene.

(E) Non-solvents. The limiting case of the poor solvent is called non-
solvent:

v —bd. (3.16)

In this limit of strong attraction, the polymer’s strong preference for its
own monomers compared to solvent nearly excludes all solvent from being

' There are actually logarithmic corrections at the #-temperature that make the chain
conformation not quite ideal.
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within the coil. Water is a non-solvent for polystyrene, which is why
styrofoam coffee cups are made from polystyrene.

In a typical case of the Mayer f~function with an attractive well, repul-
sion dominates at higher temperatures and attraction dominates at lower
temperatures. In athermal solvents with no attractive well there is no
temperature dependence of the excluded volume. It is possible to have
monomer—solvent attraction stronger than the monomer-monomer
attraction. In this case, there is a soft barrier in addition to the hard-core
repulsion and the excluded volume v > b°d decreases to the athermal
value v = b°d at high temperatures.

3.1.2 Flory theory of a polymer in a good solvent

The conformations of a real chain in an athermal or good solvent are
determined by the balance of the effective repulsion energy between
monomers that tends to swell the chain and the entropy loss due to such
deformation. One of the most successful simple models that captures the
essence of this balance is the Flory theory, which makes rough estimates of
both the energetic and the entropic contributions to the free energy.
Consider a polymer with N monomers, swollen to size R> Ry=bN 12,
Flory theory assumes that monomers are uniformly distributed within the
volume R> with no correlations between them. The probability of a second
monomer being within the excluded volume v of a given monomer is the
product of excluded volume v and the number density of monomers in the
pervaded volume of the chain N /R®. The energetic cost of being excluded
from this volume (the energy of excluded volume interaction) is kT per
exclusion or kTvN/R® per monomer. For all N monomers in the chain, this
energy is N times larger [see the first term of Eq. (3.8) with V'~ RY):

N2
Fimszvﬁ. (3.17)
The Flory estimate of the entropic contribution to the free energy of a real

chain is the energy required to stretch an ideal chain to end-to-end distance
R [Eq. (2.101)]:

RZ
Fete ~ kT—. 3.18
ent sz ( )
The total free energy of a real chain in the Flory approximation is the sum
of the energetic interaction and the entropic contributions:

N> R
F:F‘int+Fent%kT(VF+W>. (319)

The minimum free energy of the chain (obtained by setting
OF/OR=0) gives the optimum size of the real chain in the Flory
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theory, R= Rg:
OF N? Rr
— =0=kT| -3v— +2—>
or " ( YR Nbl)’
R} ~ vh*N°,
Rp = v'Pp N3, (3.20)

The size of long real chains is much larger than that of ideal chains with the
same number of monomers, as reflected in the swelling ratio:

R v 1/5 \%
i (ENW) for 75N> 1. (3.21)

If the total interaction energy of a chain in its ideal conformation
Finl(Ro) [Eq. (3.17) for R= Ry =bN"?is less than kT, the chain will not
swell. In this case, le‘rzv/b3 <1 and the chain’s conformation remains
nearly ideal. Excluded volume interactions only swell the chain when the
chain interaction parameter,

o 3\v Fu(Ro) N* v
= | — N2t ~vV— ~ — N2 .
z (m) b3 kT R BT (3:22)

becomes sufficiently large. Equation (3.20) is therefore only valid for chain
interaction parameters that are larger than some number of order unity.
The precise value of this number is discussed in Section 3.3.4.

The predictions of the Flory theory are in good agreement with both
experiments and with more sophisticated theories (renormalization group
theory, exact enumerations and computer simulations). However, the
success of the Flory theory is due to a fortuitous cancellation of errors.
The repulsion energy is overestimated because the correlations between
monomers along the chain are omitted. The number of contacts per chain
is estimated to be b*N?/R* ~ N'°. Computer simulations of random walks
with excluded volume show that the number of contacts between mono-
mers that are far apart along the chain does not grow with N. Hence, Flory
overestimated the interaction energy. The elastic energy is also over-
estimated in the Flory theory because the ideal chain conformational
entropy is assumed. The conformations of real chains are qualitatively
different from the ideal chains as will be demonstrated in the remainder
of this chapter. Simple modifications of the Flory theory that take into
account only some of these effects usually fail. However, Flory theory is
useful because it is simple and provides a reasonable answer. We will make
calculations in a similar spirit throughout this book. Mean-field estimates
of the energetic part of the free energy, ignoring correlations between
monomers, are used with entropy estimates based on ideal chain statistics.
We will refer to such simple calculations as ‘Flory theory’ and will hope
that the errors will cancel again.

It is important to realize that Flory theory leads to a universal power law
dependence of polymer size R on the number of monomers N:

R~ N (3.23)
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Fig. 3.6

Molar mass dependence of the radius of
gyration from light scattering in dilute
solutions for polystyrenes in a §-solvent
(cyclohexane at § =34.5°C, circles) and
in a good solvent (benzene at 25°C,
squares). Data are compiled in L. J.
Fetters, et al., J. Phys. Chem. Ref. Data,
23, 619 (1994).

3
A2

Y,

1 4

Fig. 3.7

A two-dimensional seif-avoiding walk
on a square lattice. The direction of each
step is randomly chosen from four
possible directions (up, down, right or
left) with the requirement that
previously visited sites cannot be
visited again.

Real chains

The quality of solvent, reflected in the excluded volume v, enters only in
the prefactor, but does not change the value of the scaling exponent v
for any v > 0. The Flory approximation of the scaling exponent is v = 3/5
for a swollen linear polymer. For the ideal linear chain the exponent
v =1/2. In the language of fractal objects, the fractal dimension of an ideal
polymer is D = 1/v = 2, while for a swollen chain it is lower D = 1/v =
5/3. More sophisticated theories lead to a more accurate estimate of the
scaling exponent of the swollen linear chain in three dimensions:

v = 0.588. (3.24)

Comparison of Eq. (3.23) with experimental data for polystyrenes in
cyclohexane at the f-temperature (a 6-solvent) and in toluene (a good
solvent) is shown in Fig. 3.6. Both data sets obey Eq. (3.23), with v =1/2
in #-solvent and v 220.59 in good solvent.

While the ideal chain discussed in Chapter 2 has a random walk
conformation, the real chain has additional correlations because two
monomers cannot occupy the same position in space. The real chain’s
conformation is similar to that of a self-avoiding walk, which is a random
walk on a lattice that never visits the same site more than once. An example
of a self-avoiding walk is shown in Fig. 3.7, on a two-dimensional square
lattice.

3.2 Deforming real and ideal chains
3.2.]

In order to emphasize the difference between ideal and real chains, we
compare their behaviour under tension. Consider a polymer containing
N monomers of size b, under tension in two different solvents: a f-solvent
with nearly ideal chain statistics and an athermal solvent with excluded
volume v~ h>. An ideal chain under tension was already discussed in
Section 2.6.1 and is repeated for comparison with that of a swollen chain.
The major difference between ideal and real chains is that in the latter there
are excluded volume interactions between monomers that are far apart
along the chain when they approach each other in space.

The end-to-end distances of the chains in the unperturbed state (with
no applied external force) are given by Eqgs (2.18) and (3.20) with v~ b*:

Polymer under tension

Ry~ bN'? ideal, (3.25)

Rp ~ BN real. (3.26)

Since both ideal and real chains are self-similar fractals, the same scaling
applies to subsections of the chains of size r containing » monomers:

1/2

r = bn ideal, (3.27)

r~bn’®  real. (3.28)
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Note that there are fewer monomers within the same distance r in the
real chain case compared with the ideal chain because the real chain is
swollen.

Let us now employ Maxwell demons to put both chains under tension
with force of magnitude f applied at both ends of each chain, stretching
them out as sketched in Fig. 3.8. As in Section 2.6.1, we subdivide each
chain into tension blobs of size £ containing g monomers each, such that on
length scales smaller than these tension blobs the chain statistics are
unperturbed,

£~ bg'?  ideal, (3.29)
£~ bg’  real, (3.30)

while on larger length scales both chains are fully extended arrays of ten-
sion blobs.

Since each chain is a stretched array of tension blobs, their end-to-end
distance Ryin an extended state is the product of the tension blob size £ and
the number of these blobs N/g per chain:

N Nb R}
Rim~ €=~ —~=2 jdeal, 3.31
R (3.31)
N NbB3 R
Rimé—~= P real. (3.32)

These equations can be solved for the size of the tension blobs in terms of
the normal size (Ry or R) and stretched size (Ry) of the chains:

en B eal (3.33)
~ Rf kY .
R
Ex~—F-  real (3.34)
R

f
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Fig. 3.8

Maxwell demons stretching ideal and
real chains of the same contour length
with the same force f.
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Extensional force f'as a function of
end-to-end distance Ry on logarithmic
scales. Comparison between ideal chains
(upper line) and real chains (lower line).

Real chains

As discussed in Section 2.6.1, the free energy cost for stretching the
chains is of the order kT per tension blob (we are neglecting coefficients of
order unity):

) 2
F(N,Ry) = kTﬂ ~ kTB‘Z = kT(BZ) ideal, (3.35)
’ g 3 Ry
FN, R) ~ kT~ k7™ kT(—f> real. (3.36)
g § Rr

The force necessary to stretch the chain to end-to-end distance Ry is of
the order of the thermal energy kT per tension blob of size &:

kT kT kT Ry .
0

kT _ kT s kT (R/\

The same result (up to numerical prefactors of order unity) can be obtained
by differentiation of the free energy with respect to end-to-end distance:

_ OF(N, Ry)

R (3.39)

f

It is very important to notice the difference between the results for ideal and
real chains under tension. Ideal chains satisfy Hooke’s law with force f
linearly proportional to elongation Ry For real chains the dependence of
force fon chain elongation Ris non-linear with the exponent equal to 3/2
for the Flory value of v=3/5. This non-linear dependence of force on
elongation for real chains was first derived by Pincus and tension blobs are
often called Pincus blobs. The differences between real and ideal chains can
be clearly seen when we consider the dimensionless stretching force:

ljj—; ~ % ideal for R, < Nb, (3.40)
R Y2
i_bT ~ (N—;;) real for Ry < Nb. (3.41)

The stretching energy is of order k7 per monomer when either chain is
nearly fully stretched (Ry~ Nb) resulting in f~ kT/b. The force required to
stretch the real chain increases more rapidly with Ry, but is always smaller
than the force required to stretch the ideal chain to the same end-to-end
distance Rg; as shown in Fig. 3.9. Both chains have fewer possible con-
formations when they are stretched, but the real chain has fewer possible
conformations to lose, resulting in a smaller stretching force.
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A similar scaling calculation can be carried out for stretching a linear
chain with fractal dimension 1/v. The free energy cost of stretching a
chain from its original size bN” to end-to-end distance R is (derived in
Problem 3.15)

R 1/(1—v)
Fr kT( va) . (3.42)

The fractal dimension of an ideal chain is 1 /v =2 and Eq. (3.42) reduces to
free energy of stretching an ideal chain [Eq. (3.35)]. The Flory estimate of
the fractal dimension of a real chain is 1/v =5/3 and Eq. (3.42) reduces to
Eq. (3.36). A more accurate estimate of the fractal dimension of a real chain
is 1/v==1/0.588 = 1.7 with corresponding free energy of stretching
[Eq. (3.42)] F ~ kT (R/Re)**.

The divergence of the force near maximal extension (f — oc as Ry —
Rimax) 1s not described by this scaling approach and is not shown in
Fig. 3.9. This divergence is discussed in Section 2.6.2 for freely jointed
and worm-like chain models.

3.2.2 Polymer under compression

Two simple examples comparing the properties of ideal and real chains are
discussed in this section: uniaxial and biaxial compression. A related
example of triaxial confinement shall be discussed in Section 3.3.2 for the
case where polymers collapse into globules due to attraction between
monomers.

3.2.2.1 Biaxial compression

We consider first biaxial compression corresponding to squeezing of a
chain into a cylindrical pore of diameter D. The diameter of the pore
defines a natural compression blob size. On length scales smaller than D,
sections of the chain do not ‘know’ that it is compressed and their statistics
are still the same as the statistics of an undeformed chain:

D~ bg'? ideal, (3.43)
D~ bg’® real. (3.44)

These equations can be solved for the number of monomers g in a
compression blob of size D:

2
g~ (%) ideal, (3.45)

D\ /3
g~ (3) real. (3.46)

The above relations are identical to the corresponding equations for ten-
sion blobs (Section 3.2.1) because in both examples the conformational
statistics are unperturbed on the shortest scales.
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Fig. 3.10
Ideal and real chains of the same length,
confined in a cylinder of diameter D.

Real chains

The length of a tube Ry occupied by an ideal chain can be estimated as a
random walk of N/g compression blobs along the contour of the tube:

A 12

Ry~ D<E> ~ bN'/?  ideal. (3.47)
As expected, the size of the ideal chain along the contour of the tube is not
affected by the confinement. This is an important property of an ideal
chain. Deformation of the ideal chain in one direction does not affect its
properties in the other directions because each coordinate’s random walk
1s independent.

In the case of confinement of a real chain, the compression blobs repel
each other and fill the pore in a sequential array. Therefore, the length of
the tube R occupied by a real chain is the size of one compression blob
D times the number N/g of these blobs:

N A
R =~ D(—) = (5) Nb  real in a cylinder. (3.48)
g
Note that in the case of a real chain confined to a tube, the occupied length
of the tube R is linearly proportional to the number of monomers N in the
chain. The occupied length increases as the tube diameter D decreases.
Ideal and real chains of the same length, confined in a cylinder of diameter
D, are shown schematically in Fig. 3.10. There is no penalty to overlap the
compression blobs of an ideal chain, whereas the compression blobs of the
real chain have strong excluded volume interactions that prevent overlap.
The free energy of confinement is of the order of kT per compression
blob for either chain:

N b\? Ro\> .
FconfszEszN(B> sz<3°> ideal, (3.49)

A

5/3 5/3
Feont ~ krg ~ kTN(%) ~ kT(%F) real. (3.50)

) e
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Ry, and Ry are the end-to-end distances of unconfined ideal and real
chains, respectively. These calculations can be generalized to confinement
a polymer with fractal dimension 1/v from its original size bN” to a
cylinder with diameter D. The confinement free energy in this case is
(derived in Problem 3.16)

Jv
bNV>I , (3.51)

Feont = kT(T
with Eq. (3.49) corresponding to an ideal chain with 1/v =2 and Eq. (3.50)
being the result for a real chain with the Flory estimate of fractal dimension
1'v=5/3. For a more accurate estimate of the fractal dimension of real

chains 1/v =1.70 the confinement free energy is Foonr~kT (Rg/D)'7°.

3.2.2.2 Uniaxial compression

The free energy of confinement of a chain between parallel plates in a slit of
spacing D is the same as in the cylindrical pore (up to numerical prefactors
of order unity [Eqs (3.49) and (3.50)]. The longitudinal size R of an ideal
chain confined hetween parallel plates is still the same as for an unper-
turbed ideal chain [Eq. (3.47)] because the different x, y, z components of
an ideal chain’s random walk are not coupled. In the case of a real chain
confined between parallel plates, the compression blobs repel each other,
leading to a two-dimensional swollen conformation (see Fig. 3.11). The
size of a two-dimensional swollen chain of compression blobs can be
estimated from the Flory theory (Section 3.1.2). The ‘excluded area’ of
each compression blob is ~ D?, making the two-dimensional analogue of
Eq. (3.17) for the repulsive interaction energy of the chain of N/g com-
pression blobs kTD*(N/g)* /Rﬁ, where Rf is the area of the chain. The
entropic part of the free energy that resists increasing the area of the chain
of N/g compression blobs of size D is kTRﬁ [(N/g)D?] for a real chain
confined between two parallel plates:

2
szT(DZ(N/g)2+ i ) (3.52)

Ri  (N/g)D?

Minimizing this free energy with respect to R gives the size of a real chain
between plates of spacing D:

N ¥4 b\ /4
Ry~ D(E) ~ N/*b (5) real between plates (3.53)

The size of the real chain confined between plates is again much larger
than that of an ideal chain (where R ~ bN 12 because the compression
blobs of the real chain repel each other. The maximum confinement cor-
responds to thickness D of the order of the Kuhn monomer size b. In this
case the chain becomes effectively two-dimensional with size

Ry~ N*/*b  real two-dimensional. (3.54)

The exponent v = 3/4 is universal for two-dimensional linear chains with
excluded volume repulsion.
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Fig. 3.11

Uniaxial compression—a real chain in a
slit of spacing D between two parallel
plates.
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Fig. 3.12
A chain adsorbed to a weakly attractive
surface.

Real chains

3.2.3 Adsorption of asingle chain

For the final example comparing the properties of ideal and real chains,
consider a polymer in dilute solution near a weakly adsorbing surface. Let
the energy gain for a monomer in contact with the surface be —6kT, where
we assume that 0 <§< 1 (weak adsorption). The chain would like to
increase the number of monomers in contact with the surface in order
to gain adsorption energy. In order to do that, however, it would have to
confine itself to a layer of thickness smaller than its unperturbed polymer
size (£,4s < R), thereby losing conformational entropy.

3.2.3.1 Scaling calculation

The thickness £,45 of the adsorbed layer defines the adsorption blob size
(see Fig. 3.12). This adsorption blob size is the length scale on which the
cumulative interaction energy of a small section of the chain with the sur-
face is of the order of the thermal energy AT. On smaller length scales, the
interaction energy is weaker than the thermal energy and the chain remains
in an unperturbed conformation, which is Gaussian for ideal chains [Eq.
(3.45)] and swollen for real chains [Eq. (3.46)]. On scales larger than the
adsorption blob, the interaction energy of the chain with the surface is
larger than kT and the consecutive adsorption blobs are forced to be in
contact with the surface. Therefore, the conformation of an adsorbed chain
is a two-dimensional array of adsorption blobs and is similar to that
for a chain confined between two parallel plates, discussed in the previous
section.

In order to calculate the size of the adsorption blob &,45, We need to
calculate the number of monomers in contact with the surface for a chain
section of size &,4,. The average volume fraction in a chain section of size
€ags CONtAINING g,4s MONOMETS 1S ¢:

b3g d b . *
¢~ zf ideal, (3.55)
ads ads
3 4/3
b~ b fads ~ ( b ) real. (3.56)
ads §ads

The number of monomers in each adsorption blob that are in direct con-
tact with the surface (within a layer of thickness 4 from it) is estimated as
the product of the mean-field number density of monomers in the blob o/b
and the volume of this layer within distance b of the surface, §§dsb:

ideal, (3.57)

2/3
E§§dsb = (Eads) real. (3.58)
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The energy gain per monomer in contact with the surface is 0kT.
Therefore, the energy gain per adsorption blob is

6kT% ~ kT ideal, (3.59)
£ads 2/
kT e ~ kT real, (3.60)

leading to the adsorption blob size:

b

ads & E ideal, (361)
b

£ads ~ W real. (3.62)

The free energy of an adsorbed chain can be estimated as the thermal
energy kT per adsorption blob:

N

Fogs ~ —kT— ~ —kTN&* ideal, (3.63)
&ads
N 5/2
Fuqs ~ —kT ~ —kTN6 real. (3.64)
Sads

The adsorbed layer is thicker and bound less strongly for the real chain
(since for weak adsorption 0 < § < 1) because it pays a higher confinement
penalty than the ideal chain. The excluded volume interaction of real
chains make them more difficult to compress or adsorb than ideal chains.
These scaling calculations can be generalized to adsorption of a polymer
with general fractal dimension 1/v:

Fags ~ kTN§YU1—), (3.65)

The same result can be obtained using the Flory theory, as demonstrated
below.

3.2.3.2 Flory theory of an adsorbed chain

A mean-field estimate of the free energy of adsorption and the thickness of
the adsorbed chain can be made by assuming the monomers are uniformly
distributed at different distances from the surface up to thickness &,4s.
Then the fraction of monomers in direct contact with the surface (within
distance b from the surface) is b/€,4s. The number of adsorbed monomers
Nb/€,4s is multiplied by the adsorption energy per monomer—surface
contact (—6kT) to calculate the energetic gain from the surface interaction:

b
gads '

Fu ~ —6kTN (3.66)
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The thickness £,45 of an adsorbed ideal
chain decreases rapidly as the
adsorption energy E is increased above
the adsorption transition E,.

Real chains

In order to gain this energy, the chain must pay the entropic confinement
free energy F.onp, derived in the example above [Eqs (3.49) and (3.50)].
Therefore, the total free energy of a weakly adsorbing chain is

2
b
F = Foonf + Fiy = kTN( b ) —kTNS ideal, (3.67)
ads ads
5/3 A
F=F.p+ Fu ~ kTN( ) —~kTNd real. (3.68)
éads <Eads

The minimum of the free energy corresponds to the optimal thickness
of the adsorbed layer, determined from OF/0€,4s=0:

s~y ideal, (3.69)

b
Sads N 557 real. (3.70)

These estimates are identical to the scaling results [Eqs (3.61) and (3.62)].
Substituting Egs (3.69) and (3.70) into each individual term? in Eqs (3.67)
and (3.68) shows that each term is actually of order the free energy of
adsorption [Egs (3.63) and (3.64)].

The adsorbed layer thickness for a polymer with general fractal
dimension 1/v is derived in Problem 3.18:

Eads ~ b5™/17Y), (3.71)

Substituting this adsorbed layer thickness into the confinement free energy
[Eq. (3.51)] or into the interaction free energy [Eq. (3.66)] gives the expected
result for the free energy of adsorption [Eq. (3.65)].

3.2.3.3 Proximity effects

Both theories of single-chain adsorption, described above, ignore a very
important effect—the loss of conformational entropy of a gtrand due to its
proximity to the impenetrable surface. Each adsorption blob has 1/6
contacts with the surface and each strand of the chain near these contacts
loses conformational entropy due to the proximity effect. In order to
overcome this entropic penalty, the chain must gain finite energy E
per contact between a monomer and the surface. This critical energy E,
corresponds to the adsorption transition. For ideal chains E.,~kT. The
small additional free energy gain per contact k76 should be considered in
excess of the critical value E,,

E = Eq + 6kT. (3.72)

Polymer adsorption is, therefore, a sharp transition with chain thickness
changing rapidly in the small interval 6k T of monomer—surface interaction
energy E above E.; (Fig. 3.13). Strictly speaking, this correction [Eq. (3.72)]

2 Notice that if Eqs (3.69) and (3.70) are blindly substituted into Eqs (3.67) and (3.68), the
conclusion would be that the adsorption free energy is zero for both ideal and real chains. This
exemplifies the disadvantage of scaling calculations. There are unspecified prefactors of order
unity in both terms of Egs (3.67) and (3.68), which invalidates the blind substitution.
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for the proximity effect is valid only for ideal chains. It is much harder to
take into account the proximity effect for real chains due to strong cor-
relation effects in these polymers. However, qualitatively there is still a
threshold value of energy needed for the real chain to adsorb, as depicted in
Fig. 3.13. For adsorption of real chains, the actual concentration inside
each adsorption blob decays as a power law in distance from the surface.
This power law decay modifies the exponent in Eqgs (3.62) and (3.70) (see
Problem 3.22).

3.3 Temperature effects on real chains
3.3.1 Scaling model of real chains

Several examples of scaling with different types of scaling blobs have
already been introduced for tension, compression, and adsorption. The
main idea in all scaling approaches is a separation of length scales. The
blob in each case corresponds to the length scale at which the interaction
energy is of the order of the thermal energy A7T. On smaller scales the
interaction is not important and smaller sections of the chain follow the
unperturbed statistics (either ideal or swollen). On length scales larger
than the blob size, the interaction energy is larger than k7 and polymer
conformations are controlled by interactions.

In this section, we will consider the excluded volume interaction follow-
ing a similar scalingapproach. The mainideais that of a thermal length scale
(the thermal blob). On length scales smaller than the thermal blob size &7,
the excluded volume interactions are weaker than the thermal energy kT
and the conformations of these small sections of the chain are nearly ideal.
The thermal blob contains g monomers in a random walk conformation:

e~ bey’ (3.73)

The thermal blob size can be estimated by equating the Flory excluded
volume interaction energy [Eq. (3.17)] for a single thermal blob and the
thermal energy k7.

g7
kT|v| ) ~kT. (3.74)
T
In this section, we discuss both good (v > 0) and poor (v < 0) solvents and
therefore, use |v| in the definition of the thermal blob. The above two

equations are combined to estimate the number of monomers in a
thermal blob

b6
and the size of the thermal blob
b4
€r TR (3.76)

in terms of the monomer size b and the excluded volume v.
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Fig. 3.14

The conformation of a single chain in a
good solvent (left side) is a self-avoiding
walk of thermal blobs while the
conformation in a poor solvent (right
side) is a collapsed globule of thermal
blobs.
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Fig. 3.15

End-to-end distance of dilute polymers
in various types of solvents, sketched on
logarithmic scales. In a #-solvent the
thermal blob size is infinite. For
athermal solvent and non-solvent the
thermal blob is the size of a single
monomer. Good and poor solvents have
intermediate thermal blob size (shown
here for the specific example of
equivalent thermal blobs in good and
poor solvent.

Real chains

The thermal blob size is the length scale at which excluded volume
becomes important. For v ~ b°, the thermal blob is the size of a monomer
(&7 ~ b) and the chain is fully swollen in an athermal solvent [Eq. (3.12)].
For v ~ —b?, the thermal blob is again the size of a monomer (7 ~ b) and
the chain is fully collapsed in a non-solvent [Eq. (3.16)]. For |v| < PN-1/2,
the thermal blob is larger than the chain size (7 > Rp) and the chain is
nearly ideal. For #’N~1/2 < |v| < b® the thermal blob is between the
monomer size and the chain size, with either intermediate swelling in a
good solvent [v > 0, Eq. (3.13)] or intermediate collapse in a poor solvent
[v <0, Eq. (3.19)}.

3.3.1.1 Excluded volume repulsion (v > 0)

On length scales larger than the thermal blob size £, in athermal and good
solvents, the excluded volume repulsion energy is larger than the thermal
energy kT and the polymer is a swollen chain of N/gr thermal blobs
(Fig. 3.14). The end-to-end distance of this chain is determined as a self-
avoiding walk of thermal blobs with fractal dimension D=1/v=1.7:

R~ gf<g;)uz b(b%)zy‘ljvu.

For the swelling exponent v220.588 the expression for the chain size is
R~ b (v/p*)* 1B NO388 Note that this scaling result reduces to the prediction
of the Flory theory [Eq. (3.20)] for exponent v = 3/5.

(3.77)

3.3.1.2 Excluded volume attraction (v < 0)

In poor solvents on length scales larger than the thermal blob size {7, the
excluded volume attraction energy is larger than the thermal energy k7.
This causes the thermal blobs to adhere to each other, forming a dense
globule (Fig. 3.14). The size of the globule is calculated by assuming a dense
packing of thermal blobs:

M'? o p
Ry ~ — ~—— N3,
o R €T (gT> WUE

.

(3.78)

Thermal blobs in a poor solvent attract each other like molecules in a liquid
droplet. The shape of the globule is roughly spherical to reduce the area of
the unfavourable interface between it and the pure solvent. The volume
fraction inside the globule is independent of the number of monomers &
and is the same as inside a thermal blob:
_Nb* | 3.79
R 5 (37)
The dependence of the size R of the chain on the number of monomers N.
for solvents of different quality, is sketched in Fig. 3.15. In athermal solvent
(v="5%), in §-solvent (v=0) and in non-solvent (v= —b%) the dependence
of size R on number of monomers N is a single power law R~ bN" for
N> 1. The scaling exponent v adopts three values: » = 3/5 in an athermal
solvent, v =1/2 in a #-solvent, and v =1/3 in a non-solvent. In good and
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poor solvents the dependence follows the ideal chain scaling for polymers
(or sections of polymers) smaller than the thermal blob £7. On larger scales,
the chain follows the corresponding limiting scaling, with good solvent
exponent v 2 3/5 for v > 0 and with collapsed globule exponent v = 1/3 for
v < 0. Fig. 3.15 shows that finite length chains have essentially ideal con-
formations for small values of the excluded volume. Chains have
approximately ideal conformations as long as N < g~ b°/v* because the
net excluded volume interaction in the whole chain is still of smaller
magnitude than the thermal energy. Note that Fig. 3.15 suggests the
crossover at the thermal blob size is abrupt, while in reality the crossover
will be smooth with intermediate effective slopes observed over limited
ranges of data.

3.3.2 Flory theory of a polymer in a poor solvent

The scaling result for a polymer in a poor solvent can also be found using
Flory theory. The Flory free energy for a polymer chainis given by Eq. 3.19:

-

R? N?

In poor solvent, the excluded volume is negative, indicating a net attraction
and the minimum of the free energy of Eq. (3.80) corresponds to R=0.
Both entropic and energetic contributions decrease with decreasing R.
Such strong collapse of a polymer into a point is unphysical and we need
to add a stabilizing term to this free energy.

3.3.2.1 Entropy of confinement

Earlier in this chapter, we have discussed the entropic cost due to con-
finement of an ideal chain into a cylindrical tube or in a slit between two
parallel walls. A similar entropic penalty has to be paid if a chain is con-
fined within a spherical cavity of size R < bN'?. Each compression blob
corresponds to a random walk that fills the cavity. Thus, the number of
monomers in each compression blob is determined by ideal chain statistics

within the blob:
R 2
~|—1. &1
e~ (3) (.81)

The N/g compression blobs of the ideal chain fully overlap for a chain
confined in a spherical pore. The free energy cost of confinement within the
spherical cavity is of the order of the thermal energy k7 per compression
blob:

N Nb?
Fconf% kng kTF (382)
The entropic part of the free energy, that includes both the penalty for
stretching and one for confinement, and is valid for both R > bN"/? and for
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R < bN'2 is a simple sum of the stretching and confinement terms:

R? Nb2>

Fa ~ kT(— ). (3.83)

Nb2  R?

Note that this entropic free energy alone has a minimum at R= Nb*, which
is the conformation of an ideal chain.

Adding the excluded volume interaction term, we obtain a total free
energy of the chain with three terms:

R?  Nb? NZ)

Nb?
This free energy still has a minimum at R=0. The confinement entropy
term is not strong enough to stabilize the collapse of the chain due to
excluded volume attraction because Nb*/R> < |v|N*/R? for R— 0.

3.3.2.2 Three-body repulsion

The stabilization of the collapsing coil comes from other terms of the
interaction part of the free energy. The interaction energy per unit volume
is an intrinsic property of any mixture, that is often expressed as a virial
expansion in powers of the number density of monomers ¢, [Eq. (3.8)]. The
relevant volume of interest here is the pervaded coil volume R°. The
excluded volume term is the first term in the virial series and counts two-
body interactions as vc2. The next term in the expansion counts three-body
interactions as wc, where w is the three-body interaction coefficient:

Fin
R; ~ kT(ve2 +we, + ). (3.85)

At low concentration, the two-body term dominates the interaction. The
three-body term becomes important at higher concentrations and can
stabilize the collapse of the globule (since w > 0). The interaction free
energy within the coil is estimated using the monomer concentration inside
the coil ¢,= N/R>:
2 3
Fie ~ kT(V% + w%) (3.86)

The total free energy of the chain is dominated by the interaction terms at
higher densities (smaller chain sizes R):

R? +Nb2 +V1\/2 N N3
—_— — — w_
Nb2  R2 R3 RS

N? N3
=~ kT<V—+ w—) for R < Ry.

Fr kT(
(3.87)
R3 RS

The globule seeks to minimize this free energy, by balancing the two-body
attraction (v < 0) and three-body repulsion (w > 0) terms:

wN 1/3
Rgl ~ (W) . (3.88’
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A typical value of the three-body interaction coefficient for almost sym-
metric monomers is w = b® leading to the prediction of the globule size
identical to that of the scaling approach [Eq. (3.78)]. For the cylindrical
Kuhn monomer of length » and diameter d, Eq. (3.11) gives w = (bd)’,
making the globule size

A\ 13
Rglzbd(m> , (3.89)

and the volume fraction within this globule is proportional to the magni-
tude of the excluded volume:
N Nbd* vl

b~ R~ b (3.90)

In a non-solvent, v~—b°d [Eq. (3.16)] and the globule is fully collapsed
with volume fraction ¢ ~ 1 and size Ry~ (bdzN)l/ 3. This state is the result
of a dense packing of N monomers, since the volume of the cylindrical
Kuhn monomer is bd”.

-

3.3.3 Temperature dependence of the chain size

All results for chain size are now written in terms of the excluded volume.
To understand how the chain size changes with temperature, we simply
need the temperature dependence of the excluded volume. There are two
important parts of the Mayer f-function, from which the excluded volume
is calculated [Eq. (3.7)]. The first part is the hard-core repulsion, encoun-
tered when two monomers try to overlap each other (monomer separation
r< b). In the hard-core repulsion, the interaction energy is enormous
compared to the thermal energy, so the Mayer f-function for r <b is —1:

f(r) =exp [— l]]{(]’:)} —~ 1=~ —1 forr<b, where U(r) > kT. (3.91)

The second part is for monomer separations larger than their size (r > b),
where the magnitude of the interaction potential is small compared to the
thermal energy. In this regime, the exponential can be expanded and the
Mayer f-function is approximated by the ratio of the interaction energy
and the thermal energy:

fr) =exp {— []]{(;)} -1 = —%(—;) for r > b, where |U(r)| < kT. (3.92)

The excluded volume v can be estimated using Eq. (3.7) with these two
parts of the Mayer f-function:

00 b oc
4
V= —47r/ f(r)rzdr':d47r/ rzdr+—7r/ U(r)r* dr
0 0 kT Jy

g
~(1-=\p.

(3.93)
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Temperature dependence of radius of
gvration in universal form. Upper plot
shows Monte-Carlo simulation data on
Lennard-Jones chains, with the filled
squares from W. W. Graessley et al.,
Macromolecules 32, 3510 (1999) and the
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Real chains

The first term is the contribution of the hard-core repulsion, and is of
the order of the monomer volume 4°. The second term contains the
temperature dependence, and the coefficient of 1/T defines an effective
temperature called the #-temperature:
1 o
b3k ),
Since U(r) <0 in the attractive well, the 6-temperature is positive. This

results in a very simple approximate temperature dependence of the
excluded volume [Eq. (3.93)]:

0~ U(r)rtdr. (3.94)

-8
~
VETT

For T <6 the excluded volume is negative, indicating a net attraction
between monomers (poor solvent). For temperatures far below 6, the chain
collapses into a dry globule that excludes nearly all solvent (with v~ — 5°)
at 8 — T~ T and Eq. (3.95) does not apply below this temperature. For
T'= 6 the net excluded volume is zero and the chain adopts a nearly ideal
conformation (6-solvent). 7> 6 has a positive excluded volume, resulting
in swelling of the coil (good solvent). For 7> 6, excluded volume becomes
independent of temperature (v ~ b*) and such solvents are termed athermal.

The temperature dependence of the radius of gyration, reduced by
the radius of gyration at the 6-temperature R, = bN'/?, is shown in Fig. 3.16
for both experimental data and Monte-Carlo simulations of chains made
of N freely jointed monomers interacting via a Lennard-Jones potential:

=]

The abscissa of Fig. 3.16 is proportional to the chain interaction parameter
[Eq. (3.22)]:

(3.95)

(3.96)

\% T-46
—NI/Z’N\’————-—NI/z. .
b3 T

Note that the square of the chain interaction parameter z is equal to the
number of thermal blobs in a chain z°~ N/g7-

N (T 2
gT~22~ T—-60/) "

The data reduction for R,/ Ry as a function of chain interaction parameter =
in Fig. 3.16 is remarkable for both simulation and experiment. Notice in
Fig. 3.16 that the 6-temperature is a compensation point where the excluded
volume happens to be zero. Below the #-temperature, the chains are col-
lapsed in poor solvent (v < 0), while above the §-temperature, the coils are
swollen in good solvent (v > 0).

The relative contraction of chains in poor solvents can be expressed in
terms of the chain interaction parameter z [Egs. (3.78) and (3.97)]:

R b —1/3
BN VPATs ~ |z for T < 6.

Z =

(3.97)

(3.98)

(3.99)
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The relative swelling in good solvents can also be written as a function of
the chain interaction parameter z [Eq. (3.21)].
R 2v—1
NI 2 for T > 6. (3.100)

The relative swelling is proportional to z*'® for ©220.588.

3.3.4 Second virial coefficient

The second virial coefficient A, is determined from the concentration
dependence of osmotic pressure [Eq. (1.76)] or scattered light intensity
[Eq. (1.91)] from dilute polymer solutions. A4, is a direct measure of
excluded volume interactions between pairs of chains.

In solvents near the #-temperature, the thermal blob is larger than the
chain (g7> N meaning |z|<1 or |T—6]/T<N '?) and the excluded
volume interactions are weak. The interaction energy of two overlapping
chains is less than the thermal energy k7, so chains can easily inter-
penetrate each other. In this limit, monomers interact directly and A4, is
proportional to the excluded volume v of a Kuhn monomer The second
virial coefficient of Egs (1.76) and (1.91) has units of m 3 mol kg™2, making
the relation

T
A, for

2M> -y
v="-0 ‘ < N7, (3.101)

N av T

as will be derived in Chapter 4 [see Eq. (4.72)]. Using Eq. (3.97), 4> can be

written in terms of the chain interaction parameter z:

NAVV ~ NAvb3 Z
Mé M(3)/2 M1/2

A =~ for |z| < 1. (3.102)

For good solvents (z > 1), chains repel each other strongly and do not
interpenetrate. The volume excluded by a chain is of the order of its per-
vaded volume R> and the molar mass of the chain is M:

M s T -

N R°  for T
Using Eq. (3.100) for the chain size R allows the second virial coefficient in
good solvent to be determined:

N Ay R~ N agb3 26773
M2 ~ M3/2 M2

0
> N~12, (3.103)

AzRﬂ

for z > 1. (3.104)

The second virial coefficient is proportional to %3 for exponent v 22 0.588.
Combining Eqs (3.102) and (3.104), we see that both 6#-solvent and
good solvent should have A,M 12 a function of chain interaction para-
meter z alone:

A M2 z |zl <1
WZJ”(Z) ~ {Z(wa |Z|> 1 } (3.105)

The success of this functional form is demonstrated in Fig. 3.17 for poly-
styrene of various molar masses in decalin from slightly below 6 to
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Universal plot of second virial coefficient for linear polystyrenes in decalin (filled circles have
M, = 4400000 gmol™', open circles have My, = 1 560000 gmol~", filled squares have

M,, = 1050000 gmol ™!, open squares have M, = 622000 g mol ™', filled triangles have

M, = 186000 gmol ', open triangles have M,, = 125000 g mol ™~ and filled inverted triangles
have M, =48200 gmo]‘l. Data from G. C. Berry, J. Chem. Phys. 44, 4550 (1966).

#+ 100 K. The collapse of the data is superb. The solid curve is the large
z branch of Eq. (3.105), 0.29 [N'?(1 — 8/T)]® ~ 3. The slope of the dashed
line drawn in Fig. 3.17 is 0.39. The crossover between these two branches
occurs when there is a single thermal blob per chain (N=gr). Using
Eq. (3.98) allows the second virial coefficient to be written in terms of the
number of thermal blobs per chain N/gr.

1/2343/2
AMIM” 0.20{ (N/gr)'? N < i (3.106)

Nach? (N/ )0.264 N>gr
This identifies the prefactors in Eq. (3.98) .
T \2
~0.25{ —— 107
er 025(T_9) , (3.107)
and in Eq. (3.95)
A% T-6 0.39
—= =078 —— = —. 3.108
b3 T /—MgT ( )

Examples of excluded volume and numbers of Kuhn monomers per
thermal blob are given in Table 3.1.

Indeed, data on the temperature dependence of second virial coefficient
for a variety of polymer—solvent combinations and from computer simul-
ation show that Eq. (3.106) can be written as a simple crossover function:

,4211/‘[1/2114(3)/2 g\ 132 /gp 0.70] 7038
W_o.zo{(ﬁ) +(W) ] ‘ (3.109)
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Table 3.1 Number of Kuhn monomers per thermal blob and excluded volume of a Kuhn
monomer for polystyrene in various solvents

Polymer/solvent T (°C) T—6 (K) gr v/b> v (A%
Polystyrene/cyclohexane 50 15 120 0.036 210
Polystyrene/cyclohexane 70 35 24 0.079 460
Polystyrene/decalin 115 100 4 0.21 1200
Polystyrene/benzene 25 ~ 200“ 0.6 0.5 3000

“For benzene (and most other good solvents) the #-temperature is far below all measurement
temperatures and use of Eq. (3.107) to extrapolate to the f-temperature has considerable error.

Measurement of the temperature dependence of second virial coefficient
4, for polymers with known molar mass M and Kuhn length 5 allows
estimation of the number of thermal blobs per chain N/grusing Eq. (3.109).

3.4 Distribution of end-to-end distances

We have seen numerous examples of the qualitative difference in properties
between ideal and real chains with excluded volume interactions. It is
therefore not surprising that the distribution of end-to-end vectors of real
chains is significantly different from the Gaussian distribution function of
ideal chains [Eq. (2.86)].

Relative probabilities to find chain ends at distances much larger than
the average end-to-end distance are related to the free energy penalty due
to chain elongation [see Problem 3.15 and Eq. (3.42):

é
sz:r(%) : (3.110)

where the exponent § = 1/(1 — v) is related to the exponent v of the root-
mean-square end-to-end distance of the chain:

(R2) ~ bN. (3.111)

For ideal chains, v=1/2 and §=2 [see Eq. (3.35)], while for real chains
in a good solvent v220.588 and §222.43 [see Eq. (3.36)]. The tail of the
probability distribution function for end-to-end distances is determined by
the Boltzmann factor arising from this free energy penalty [Eq. (3.110)]

6
pivor) o ) o | o) | e ),

(3.112)

where « is a numerical coefficient of order unity. For ideal chains (6 =2)
this leads to the Gaussian distribution function [Eq. (2.86)]. For real
chains, a faster decay of the distribution function is expected due to the
higher power §222.43 in the exponential:

2.43
P(N,R) ~exp|—« (—%) for R > y/(R?). (3.113)
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Fig. 3.18

Distribution function P(x) of
normalized end-to-end distances

x = R/+/{R?). Thin curve, ideal chain;
thick curve, real chain.

Real chains

Another major difference between ideal and real chains is the reduced
probability of two ends of a real chain to be near each other due to
excluded volume repulsion of these and neighboring monomers. Recall
from Section 2.5 that the probability of finding one end of an ideal chain
within a small spherical shell of volume 47R*dR around the other end is
proportional to the volume of this shell [see Eq. (2.86) for R < bN'/?]. This
probability is significantly reduced for real chains by an additional factor

g
PN, R) ~ [ —2 for R < /(R?), (3.114)
(\/ <R2>)

due to excluded volume repulsion between sections of the polymer, as they
approach each other. The exponent g =0 for ideal chains because there is
no reduction of probabilities for small end-to-end distances. For real
chains, the exponent g=20.28 in three dimensions and g=11/24 in two
dimensions.

By combining the two limits [Eqs. (3.113) and (3.114)], the distribution
function of normalized end-to-end distances can be constructed:

P(x) ~ x% exp (—ax?), (3.115)
where
R
= (3.116)

An approximate expression for the three-dimensional distribution func-
tion for real chains results:

P(x) 2 0.278x%% exp (—1.206x**)  real. (3.117)

For ideal chains, the corresponding function is Gaussian:

3\ 32
P(x) = (E) exp (—1.5x%) ideal. (3.118)
The two functions are compared in Fig. 3.18. Note the dramatic difference
between them. Real chains in an athermal solvent rarely have ends in close
proximity. The probability to find chain ends within relative distance dx of
x is 4mx?P(x) dx. The coefficients of the distributions of end-to-end dis-
tances are chosen so that they are normalized:

/P(x) d’x = / P(x)4nx*dx = 1. (3.119)
0
Their second moment is also equal to unity
/sz(x) d’x = / x*P(x)4rx’ dx = 1, (3.120)
0

due to the definition of the relative distance x [Eq. (3.116)].

3.5 Scattering from dilute solutions

The size and shape of a polymer chain in dilute solution is best studied
using scattering methods. Each monomer absorbs the incident radiation
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Intermolecular Guinier Fractal
regime regime regime

N

S(q)

v

1/R 1/b

and re-emits it in all directions. If there is contrast between monomers and
solvent they can be distinguished. The scattered intensity at a given scat-
tering wavevector is determined by this contrast and by the coherence
of the re-emitted radiation from pairs of monomers. The scattering
function S(g) is defined as a sum over all pairs of » monomers in the scat-
tering volume,

S@ =13 Y expl-ig (7~ o)), (3.121)
=1 k=1

where § is the scattering wavevector [Eq. (2.131)] and 7} is the position
vector of jth monomer. This scattering function is simply a dimensionless
version of the ratio of scattering intensity at wavevector § and con-
centration. The isotropic scattering function from dilute solution is sket-
ched in Fig. 3.19. At large wavevectors q>> 1/R for each monomer j the
sum over k has contribution of order unity from each of the n, monomers
within distance 1/¢ from monomer j since for §- (7; — F) < 1 the expo-
nential is close to one. On the other hand, the contribution from monomers
further away from monomer j averages to zero. The scattering function at
large wavevectors is

l n
S(g) ~ — = fi 1 122
(q) - ;nq n, forqg>1/R (3 )

where 7, is the number of monomers in the volume 1/¢°. The number of
monomers #, is related to the size of the chain segment 1/g through the
fractal dimension of the chain D:

S(q) = n,~ (gh)"" for I/R< q<1/b. (3.123)

This power law extends from the monomer size b to the size of the chain R,
provided that the entire chain has the same fractal dimension D. Scattering
on such small scales is dominated by intra~molecular scattering from

123

Fig. 3.19
Scattering function for a dilute solution
on logarithmic scales.
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monomers inside individual coils and is related to the pair correlation
function within the coil [Eq. (2.123)]:

g(r) = :”—3 ~ P73, (3.124)
For real chains in an athermal solvent, D = 1/v = 1.7, 50 S(¢) ~¢ "7 and
g(r) ~r~ ' within the coil.

For smaller wavevectors ¢ < 1/R, the number of monomers n, within
distance 1/g from monomer j saturates at the number of monomers in the
chain N. The exact form of the scattering function in this Guinier regime
enables calculation of the radius of gyration R, [Eq. (2.152)]. In both the
Guinier and fractal regimes, the scattering comes from pairs of monomers
on the same chain and the scattering function is proportional to the form
factor:

A\ 1/3
NQ:MW)mw>G® . (3.125)
The inter-molecular scattering dominates the scattering function at wave-

vectors ¢ smaller than the reciprocal distance between chains (co/ N,

where ¢, is the number density of monomers in solution. The inter-mole-
cular regime is controlled by concentration fluctuations arising from the
difference in the number of chains in volumes 1/¢°. Assuming there are no
interactions between chains (strictly valid only in very dilute solutions), the
mean-square fluctuation in the number of chains in the volume 1/ g’ is of
the order of the average number n,/N ~ ¢,/(Ng?). The fluctuation in the

number of monomers in volumes of size 1/¢° is ((6nq)2) = Ny/ca/(Ng?).
The scattering function is the mean-square fluctuation in the number of
monomers in the volume 1/¢° normalized by the number of monomers 7, in
this volume:

_{(6n))*)  N?c,/(Ng?)
S = T Naw Vg

e\ 1/3
=N forg« (—)‘ . (3.126)
N

Note that this value matches the low-g end of the fractal regime. It is hardly
surprising that the scattering function contains information about the
chain length, since in Chapter 1 we demonstrated how light scattering can
be used to determine molar mass from the low concentration limit of
Ry/(Kc), where Ry is Rayleigh ratio [Eq. (1.87)], K 1s the optical constant
[Eq. (1.89)], and ¢ is mass concentration. The scattering function for light
scattering is related to the Rayleigh ratio as

Ry

89 = keate”
where M| is the molar mass of a monomer. We give this relation for light
scattering for completeness, but scattering inside the polymer coils is
usually measured using neutrons and X-rays, which extend the range of
wavevectors to 1 nm~'. The scattering function from all of these scattering
experiments is the same, with the prefactor relating the scattering function
to scattered intensity being specific to the type of radiation used.

(3.127)
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3.6 Summary of real chains

Real chains have interactions between monomers. If the attraction
between monomers just balances the effect of the hard core repulsion, the
net excluded volume is zero (v =0) and the chain will adopt a nearly 1deal
conformation (see Chapter 2):

Ry = bN'"?  for #-solvent. (3.128)

Such a situation with zero net excluded volume is called the #-condition,
corresponding to a particular #-temperature for a given solvent.

If the attraction between monomers is weaker than the hard-core
repulsion, the excluded volume is positive and the chain swells. This cor-
responds to a good solvent at a temperature above the f-temperature, and
the coil size is larger than the ideal size:

-1 0.18
Rp ~ b(l> N = b(%) N8 for good solvent. (3.129)

*

The chain conformation is a self-avoiding walk of thermal blobs, whose
size decreases as temperature is raised.

In an athermal solvent, the monomer—solvent energetic interaction is
identical to the monomer-monomer interaction. This makes the net
interaction between monomers zero, leaving only the hard core repulsion
between monomers. The excluded volume is independent of temperature
(v~ b%), and the chain is a self-avoiding walk of monomers:

R~ bN” ~ bN**® for athermal solvent. (3.130)

If the attraction between monomers is stronger than the hard-core
repulsion, the excluded volume is negative and the chain collapses. This
occurs below the f-temperature, and corresponds to a poor solvent. In a
poor solvent, the polymer is in a collapsed globular conformation corre-
sponding to a dense packing of thermal blobs. The size of a globule is
smaller than the ideal size:

Ry ~ Iv|~'26 N3 for poor solvent. (3.131)

A chain in a poor solvent collapses into a globule with significant amounts
of solvent inside. Most chains agglomerate with other chains and pre-
cipitate from solution. Only a very small number of polymers remain in the
solvent-rich phase of a poor solvent in a globular conformation described
by Eq. (3.131). Far below the #-temperature, the attraction dominates
completely and the excluded volume v~ — b*. This limit is called a non-
solvent, and an individual chain in that solvent would have a fully col-
lapsed conformation:

R~ bN'3  for non-solvent. (3.132)
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In this case, most chains precipitate from solution into a melt excluding
nearly all solvent, and the chains then adopt ideal conformations to
maximize their entropy.

The good solvent and poor solvent results only apply to chains that are
sufficiently long. Short chains with degree of polymerization less than the
number of monomers in a thermal blob remain ideal, as depicted in
Fig. 3.15.

Several examples were given of scaling models that utilize blobs to
separate regimes of chain conformation. The common idea in these scaling
models 1s that, on the smallest length scales (inside the blobs), there is not
enough cumulative interaction to alter the chain conformation. On length
scales larger than the blob size, the cumulative interactions become larger
than the thermal energy, and can then modify the conformation of the
chain of blobs. Since the cumulative interaction energy of each blob is
roughly the thermal energy k7, the total interaction energy can be con-
veniently estimated as kT per blob.

The free energy of stretching a real linear chain in a good solvent has
a stronger dependence on size R than the quadratic dependence of the
ideal chain:

R V1) R\ 24
A — =~ — . |
resr(2) i (2) .

The stretching force for a real chain increases non-linearly with elongation:

fb b OF R v/(1-v) R 1.43
s S (ﬁ) ~ (N_b) . (3.134)

The free energy of confining a real lincar chain in a good solvent
either into a slit of spacing D or to a cylindrical pore of diameter D is
larger than for an ideal chain because the real chain has repulsive
interactions:

RF I/v RF 1.7
~ — ~ — 1 . A
F kT(D) kT(D (3.135)

Excluded volume changes with temperature in the vicinity of the
f-temperature:

T—6
~ b2, 1
Vb(T) (3.136)

Good solvents typically have 7> 6, and their f-temperature is not
accessible because the solvent crystallizes at much higher temperatures.
Similarly, #-solvents cannot usually be heated far enough above the
f-temperature to reach the athermal limit because the solvent will boil at a
lower temperature.
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Problems
Section 3.1

3.1 (i) Taking the volume of a cylindrical Kuhn monomer to be bd”, derive an
expression for the cylindrical monomer diameter 4 in terms of the
characteristic ratio, molar mass per backbone bond, melt density, Kuhn
length b and bond angle 6.

(ii) Using the melt density of polyethylene p=0.784 gem ™ and the melt
density of polystyrene p=0.784 gcm_3, along with the data of Table 2.1
for C.. and b, calculate the diameter of the Kuhn cylindrical monomer for
these two polymers.

3.2 Consider the excluded volume interaction between hard spheres of radius R.

(i) What is the shortest possible distance between their centres?
(i) What is the interaction potential between these spheres?
(ili) Demonstrate that the excluded volume of hard spheres is eight times
larger than the volume v, a sphere:

32
v= —3—“R3 — 8.

-

3.3 Consider the excluded volume interaction between spherical particles with
effective pairwise interaction potential

0 for r <2R
U(r)={ —kTy(2—r/(2R)) for 2R<r<4R 3,
0 for r > 4R

where kTj is the strength of the attractive potential with 7, = 100 K.

(i) Calculate the excluded volume of these particles.
(i) Plot the dimensionless excluded volume v/R? as a function of temperature
and determine the #-temperature of these particles.

3.4 Consider two cylindrical rods of length » and diameter d with > d. Fix the
centre of one of the rods at the origin of the coordinate system, pointing in the
x direction.

(i) Estimate the volume excluded for the second rod if it is fixed to always
point in the y direction (perpendicular rods).
(ii) Estimate the volume excluded for the second rod if it is fixed to always
point in the x direction (parallel rods).
(iii) How do you expect the excluded volume to change at different fixed
angles between the two rods?

3.5 Consider a linear polymer chain with N monomers of length b, restricted to
the air-water interface (two-dimensional conformations). Repeat the
Flory theory calculation and demonstrate that the size R of the chain as a
function of the ‘excluded area’ a per monomer (two-dimensional analogue of
excluded volume v) is

R = a'/*p'2N3/4, (3.137)

Compare the size of this chain at the interface to that in the bulk for para-
meters N=1000, b=3A, a=72A% v=21.6A".

3.6 Consider a randomly branched polymer in a dilute solution. Let us assume
that the radius of gyration for this polymer in an ideal state (in the absence of
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excluded volume interactions) is
Rg = bN'/*,

where b is the Kuhn monomer size and N is the number of Kuhn monomers.
Use a Flory theory to determine the size R of this randomly branched polymer
in a good solvent with excluded volume v. What is the size Rof a randomly
branched polymer with N =1000, b =3 A, v=21.6A% Compare this size to
the size of a linear chain with the same degree of polymerization in the same
good solvent and in #-solvent.

3.7 Using the results of Problem 3.6, calculate the overlap volume fraction for the
three cases:

(i) randomly branched monodisperse polymer in good solvent.
(11) linear chain in good solvent.
(iii) linear chain in #-solvent.

3.8 Consider a randomly branched polymer with N monomers of length b. The
polymer is restricted to the air—water interface and thus assumes a two-
dimensional conformation. The ideal size of this polymer R in the absence of
excluded volume interactions is

Ry = bNV4,

(i) Repeat the Flory theory calculation to determine the size R of the
branched polymer at the interface as a function of the ‘excluded area’ a
per monomer (two-dimensional analogue of the excluded volume v).
degree of polymerlzatlon N and monomer length b.

(11) Calculate the size of the branched polymer with N=1000, b= 3A.
a=17.2 A? at the air-water interface.

(i) Calculate the surface coverage (number of monomers per square
Angstrom) at overlap for this randomly branched polymer at the air-
water interface in good solvent.

(iv) How much higher is the surface coverage at the overlap of randomly
branched chains with N=100, b= 3A a=7.2A2% at the air-water
interface, compared with N = 10007

3.9 Consider a linear polymer chain with N =400 Kuhn monomers of Kuhn
length b=4A in a solvent with #-temperature of 27°C. The mean-field
approximation of the interaction part of the free energy for a chain of size Ris

N\? N\?
RO

where the excluded volume of a monomer is

0
~(1—-=)b
v ( T)b,

and w= b® is the three-body interaction coefficient.

Fint ~ kTR

(i) Use Flory theory to estimate the size of the chain swollen at the
6-temperature due to three-body repulsion.

(i) For what values of the excluded volume v does the two-body repulsion
dominate over the three-body repulsion? Is the chain almost ideal or
swollen if the two interactions are of the same order of magnitude?

(iii) For what values of temperature 7 does the two-body repulsion
dominate over the three-body repulsion?
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3.11

3.12

3.13

3.14

Problems

(iv) Use Flory theory to estimate the size of the chain swollen at 60 °C due to
excluded volume repulsion (ignore the three-body repulsion).

(v) Estimate the overlap volume fraction ¢* of the chain at 60 °C.

(vi) What is the number of Kuhn monomers in the largest chain that stays
ideal at 60 °C?

Consider an oligomer with N = 3 bonds occupying four lattice sites on a two-
dimensional square lattice with lattice constant b. One end of the oligomer is
fixed at the origin of the lattice.

(i) How many different conformations would such an oligomer have
if it can occupy the same lattice site many times (simple random
walk)?

(i) How many different conformations would such an oligomer have if it
cannot occupy the same lattice site (self-avoiding walk)?

(iii) Find the root-mean-square end-to-end distance of the oligomer for the
first case.

(iv) Find the root-mean-square end-to-end distance of the oligomer for the
second case.

Why is there no temperature dependence of the excluded volume in an
athermal solvent?

If the monomer—solvent interaction potential is identical to the monomer—
monomer interaction potential, the solvent is called:

(i) good,

(1) 4,

(11) athermal.
Explain your answer.

(i) Construct a Flory theory for the free energy of a polyelectrolyte
chain consisting of N monomers of length » and net charge of the
chain Q =efN, where f is the fraction of Kuhn monomers bearing a
charge.

Hint: The electrostatic energy of the chain is Q?/(eR), where € is the dielectric
constant of the solvent and R is the size of the chain.

(ii) Show that the size of the chain at temperature T is

I 1/3
R =~ Nbf*3 (F) ,

where the Bjerrum length is defined as /g = ek T).

(i) What is the relation of the fourth virial coefficients of spherical (vy4)
and cylindrical (v,4) monomers if there are b/d spheres per cylinder?

(i) What is the relation of the kth virial coefficients of spherical (vt ) and
cylindrical (v ) monomers?

Section 3.2

3.15

3.16

Calculate the free energy F(N, Ry) and the force ffor stretching a chain with
an arbitrary scaling exponent v in the dependence of the end-to-end distance
on the number of monomers R =5bN".

Calculate the free energy for compressing a real chain into a cylindrical
tube with diameter D. Assume an arbitrary scaling exponent v in the
dependence of end-to-end distance of the chain on the number of monomers
R=bN".
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3.17

3.18

3.19

3.20

3.21

3.22

Calculate the free energy for squeezing a real chain between parallel plates
into a slit of width D. Assume an arbitrary scaling exponent v in the
dependence of the end-to-end distance of the chain on the number of
monomers R=5bN".

Calculate the thickness &,4s of the adsorbed layer for a polymer with N
monomers of size 5. The interaction energy of a monomer in contact with the
(planar) surface is —6KT. Assume an arbitrary scaling exponent v in the
dependence of end-to-end distance of the chain on the number of monomers
R=bN".

Scaling theory of two-dimensional adsorption.

Consider a linear chain confined to an air-water interface. The attraction of
each monomer at the contact line between the edge of the interface and the
walls of the container is —6k 7.

(i) Estimate the thickness and length of the ideal adsorbed chain of N Kuhn
monomers with Kuhn length 5.

(ii) Calculate the energy of adsorption of the ideal polymer of part (i) to the
contact line.

(iii) Estimate the thickness and length of the real adsorbed chain of N
Kuhn monomers with Kuhn length b. Recall that the unperturbed size of
the real chain confined to the air—water interface in good solvent is
R~bNY*[Eq. (3.54)].

(iv) Calculate the energy of adsorption of the real polymer of part (iii) to the
contact line.

Flory theory of adsorption from a two-dimensional interface onto a one-
dimensional line.

Consider a real linear chain confined to an air-water interface. The
attraction of a monomer at the contact line between the edge of the interface
and the walls of the container is —6k7.

Calculate the thickness &,45 of the adsorbed real chain and the energy of
adsorptionusing Florytheory. Recallthat theunperturbedsize of therealchain
confined to the air—water interface in good solvent is given by Eq. (3.54).
Consider a polymer chain consisting of N Kuhn monomers of length b.
adsorbed from a good solvent onto a solid substrate. A monomer in contact
with the surface has interaction energy —6kT.

(i) What is the thickness £,45 of the adsorbed chain?
(i) What is the size of the adsorption blob if N= 1000, b=3 A, and 6 =0.4?

Suppose that one of the ends of the adsorbed chain is attached to the tip of an
atomic force microscope and is pulled away from the surface (still in a good
solvent) with force f.

(iii) What is the minimal force f required to pull the chain away from the
surface at room temperature?

(iv) What would be the minimal force f required to pull the chain away
from the surface if the tip of the atomic force microscope were
attached to a middle monomer rather than to the end monomer?

(v) Would the minimal force required to pull the chain away from the
surface in a f-solvent be smaller or larger (as compared to a good
solvent) for the same attractive energy —okT? Explain your answer.

Consider a real chain adsorbed at a surface with an excess free energy gain

per monomer dk7. Assume that the monomer concentration decreases as a

power law of the distance z from the surface

c(z) = ¢(0) (é)a for 0 < z < &ags»

<

where exponent 0 < a < 1 and &,q; is the thickness of the adsorbed chain.
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Problems

(i) Calculate the fraction of monomers within distance b of the surface.
These are the monomers that lower their energy by favourable contacts
with the surface.

(ii) Construct a modified Flory theory for the adsorption of a real chain and
estimate the thickness £,4s of the adsorbed chain as a function of the
excess free energy gain per monomer 8k T Ignore the effects of the density
profile ¢(z) on the confinement free energy penalty.

The effective interaction between each monomer and an adsorbing surface is

3
W(z)=—kT %A,

where A4 is the Hamaker constant of the polymer—surface interaction.
Consider an ideal chain adsorbed at the surface. Find the relation between
the free energy gain per contact — 6k T and the effective Hamaker constant 4.

Section 3.3

3.24

3.25

3.26

Calculate the force needed to stretch a chain, of N = 1000 Kuhn monomers
with Kuhn length »=5 Ain a good solvent with excluded volume
v=37.5A% by a factor of 4 from its unperturbed root-mean-square end-to-
end distance at room temperature.

Consider a chain of N Kuhn monomers with Kuhn length & in a good solvent
with excluded volume v confined between parallel plates in a slit of width D.

(i) What is the size of a thermal blob and the number of monomers in a

thermal blob?

(i) What is the size of a compression blob?

(iii) What is the number of monomers in a compression blob? Note: Be
careful with respect to relative sizes of compression and thermal blobs.

(iv) What is the free energy of confinement of the chain in a slit?

(v) Atwhat thickness of the slit D does the free energy change form between
real and ideal chain expressions?

(vi) Estimate the value of this crossover thickness D for a chain with
N = 1000 Kuhn monomers with Kuhn length =35 A in a good solvent
with excluded volume v =20 A3,

Consider a randomly branched polymer in a dilute solution. The ideal size of
this polymer, Ry, in the absence of excluded volume interactions is

Ro = bN'/*,
where b is the monomer size and N is the degree of polymerization.

(i) Use the scaling theory to determine the size R of this randomly
branched polymer in a good solvent with excluded volume v.

(ii) What is the number of monomers in a thermal blob for this randomly
branched polymer as a function of excluded volume v and monomer size
b. How does it compare to the similar expression for the number of
monomers in a thermal blob in linear polymers?

(iii) What is the size, &7, of a thermal blob for a randomly branched
polymer? How does it compare to the similar expression for the size of
the thermal blob in linear polymers.

Hint: Recall that the cumulative energy of all excluded volume interactions
inside a thermal blob is equal to k7.
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3.27

3.28

3.29

3.30

(iv) What is the size of a randomly branched polymer with N = 1000,
b= 3A in a good solvent with v=2. 7A%

(v) What is the size of a linear chain for the same set of parameters?
(vi) What are the size and the number of monomers in the largest randomly

branched polymer that stays ideal for monomer length b= 3A, and
excluded volume v =2.7 A> (Hint: Thermal blob.)

(vii) What are the size and the number of monomers in the largest linear
polymer that stagfs ideal for monomer length »=3 A, and excluded
volume v=2.7 A°? (Hint: Thermal blob.)

Assume the simple approximation for a temperature dependence of the

excluded volume:
8
=(1-=]b.
\% ( T)b

Consider a chain with degree of polymerization N = 1000 and monomer size
h=3 A in a solvent with 6- -temperature of 30 °C.

(i) What would be the chain size at temperatures: 7 = 10, 30, and 60 °C?
(ii) Sketch the temperature dependence of the size of this polymer.

(iii) What is the degree of polymerization of the largest chain that stays ideal
at T=60°C (Hint: Thermal blob)?

(iv) Estimate the degree of polymerization of the largest chain that dissolves
in the solvent at 7= 10 °C (Hint: Thermal blob)?

Use the following light scattering data for the temperature dependence
of the second virial coefficient of a linear poly(methyl methacrylate) with
M,, = 2380000 g mol~! in a water/-butyl alcohol mixture to determine the
temperature dependence of excluded volume, assuming the Kuhn length of
PMMA is 7 A:

T (°C) 37.0 38.0 40.0 438 50.0 55.8
10° 4, (cm*mol g ™) —6.4 -3.4 —0.4 0.5 3.5 4.1

(i) Estimate the excluded volume at each of the six temperatures.
(i) Estimate the #-temperature from these data.
(iii) To measure the excluded volume of this polymer/solvent system at lower
temperature, should a higher or lower molar mass sample be studied?

Data from M. Nakata, Phys. Rev. E 51, 5770 (1995).

Derive an equation for the second virial coefficient in a solution of collapsed
globules below their f-temperature, in terms of the number of Kuhn
monomers per chain N, the Kuhn monomer size b and the reduced
temperature (§ — T)/T. Can this second virial coefficient be related to the
chain interaction parameter of Eq. (3.97)?

Determine the relation between the chain interaction parameter z [defined in
Eq. (3.22)] and the number of thermal blobs per chain N/gr.

Section 3.4

3.31

Polymerization of ring polymers.
Ring polymers are synthesized by linking two reactive ends of linear
polymers in dilute solution. The cyclization probability can be defined as the
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probability of two ends of a chain being found within monomeric distance b
of each other.

(i) What are the cyclization probabilities of N-mers in #-solvent and in good
solvent? What is the ratio of these probabilities for N = 1007

(i) Are the resulting ring polymers obtained by cyclization in #-solvent and
good solvent statistically equivalent? In other words will these rings have
the same size if they are placed in the same solvent? If they are different,
which one 1s larger? Explain your answer.

Section 3.5

3.32 A paircorrelation function g(7") was defined in Section 2.7 as the probability
of finding a monomer in a unit volume at distance 7 away from a given
monomer (labeled by j = 1). Note that j =1 is not necessarily the end
monomer of any chain. The pair correlation function g(7’) can be written in
terms of the delta function summed over all monomers except for theoneat 7

g(7) = <26(?—(?j—7’|))> (3.138)

J#1

(i) Show that the Fourier transform of the pair correlation function is

§(@) = [ s(F)exp(-i7 o 7)o’ = S (exp[-iT o (7 - 71)]) — 1
Jj=1
(3.139)

(ii) Recognize that the choice of the j = 1 monomer was arbitrary and use
the definition of the scattering function (Eq. 3.121) to show that

S(q)=1+¢(q) =1 +/g(7’)exp(-i7-7’)d3r (3.140)
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