Ideal chains

In this chapter, we consider the conformations of chains with no interac-
tions between monomers that are far apart along the chain, even if they
approach each other in space. Such chains are called ideal chains. This
situation is never completely realized for real chains, but there are several
types of polymeric systems with nearly ideal chains. Real chains interact
with both their solvent and themselves. The relative strength of these
interactions determines whether the monomers effectively attract or repel
one another. In Chapter 3, we will learn that real chains in a solvent at low
temperatures can be found in a collapsed conformation due to a dom-
inance of attractive over repulsive interactions between monomers. At high
temperatures, chains swell due to dominance of repulsive interactions. At a
special intermediate temperature, called the f-temperature, chains are in
nearly ideal conformations because the attractive and repulsive parts of
monomer—monomer interactions cancel each other. This f-temperature is
analogous to the Boyle temperature of a gas, where the ideal gas law
happens to work at low pressures. Even more importantly, linear polymer
melts and concentrated solutions have practically ideal chain conforma-
tions because the interactions between monomers are almost completely
screened by surrounding chains.

The conformation of an ideal chain, with no interactions between
monomers, is the essential starting point of most models in polymer
physics. In this sense, the role of the ideal chain is similar to the role of the
harmonic oscillator or the hydrogen atom in other branches of physics.

2.1 Flexibility mechanisms

In order to understand the multitude of conformations available for a
polymer chain, consider an example of a polyethylene molecule. The dist-
ance between carbon atoms in the molecule is almost constant /= 1.54 A.
The fluctuations in the bond length (typically £0.05 A) do not affect chain
conformations. The angle between neighbouring bonds, called the tetra-
hedral angle 6 = 68° is also almost constant.

The main source of polymer flexibility is the variation of torsion angles
[see Fig. 2.1(a)]. In order to describe these variations, consider a plane
defined by three neighbouring carbon atoms C; _,, C; _, and C;. The bond
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Fig. 2.1

(a) Torsion angle y; for a sequence of
three main-chain bonds. (b) Trans state.
(c) Gauche-plus state. (d) Torsion angle
dependence of energy.
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Fig. 2.2

All-rrans (zig-zag) conformation of a
short polymer with #» = 10 main-chain
bonds.
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vector 7; between atoms C,;_; and C; defines the axis of rotation for the
bond vector 7,1 between atoms C; and C;; at constant bond angle 0,.
The zero value of the torsion angle ; corresponds to the bond vector 7y
being colinear to the bond vector 7;_; and is called the trans state (f) of the
torsion angle ; [Fig. 2.1(b)].

The trans state of the torsion angle ; is the lowest energy conformation
of the four consecutive CH, groups. The changes of the torsion angle ¢;
lead to the energy variations shown in Fig. 2.1(d). These energy variations
are due to changes in distances and therefore interactions between carbon
atoms and hydrogen atoms of this sequence of four CH, groups. The two
secondary minima corresponding to torsion angles ;= +120° are called
gauche-plus (g+) [Fig. 2.1(c)] and gauche-minus (g — ). The energy differ-
ence between gauche and trans minima Ae determines the relative prob-
ability of a torsion angle being in a gauche state in thermal*equilibrium. In
general, this probability is also influenced by the values of torsion angles of
neighbouring monomers. These correlations are included in the rotational
isomeric state model (Section 2.3.4). The value of Ae for polyethylene at
room temperature is Ae = 0.8k 7. The energy barrier AE between trans and
gauche states determines the dynamics of conformational rearrangements.

Any section of the chain with consecutive trans states of torsion angles is
in a rod-like zig-zag conformation (see Fig. 2.2). If all torsion angles of the
whole chain are in the frans state (Fig. 2.2), the chain has the largest pos-
sible value of its end-to-end distance R,,«. This largest end-to-end distance
is determined by the product of the number of skeleton bonds » and their
projected length /cos(6/2) along the contour, and is referred to as the
contour length of the chain:

6
Ruax = nl cos 7 (2.1)

Gauche states of torsion angles lead to flexibility in the chain conformation
since each gauche state alters the conformation from the all-trans zig-zag of
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Fig. 2.2. In general, there will be a variable number of consecutive torsion
angles in the trans state. Each of these all-trans rod-like sections will be
broken up by a gauche. The chain is rod-like on scales smaller than these
all-trans sections, but is flexible on larger length scales. Typically, all-trans
sections comprise fewer than ten main-chain bonds and most synthetic
polymers are quite flexible.

A qualitatively different mechanism of flexibility of many polymers,
such as double-helix DNA is uniform flexibility over the whole polymer
length. These chains are well described by the worm-like chain model (see
Section 2.3.2).

2.2 Conformations of an ideal chain

Consider a flexible polymer of n + 1 backbone atoms A; (with 0 <i<n) as
sketched in Fig. 2.3. The bond vector 7; goes from atom A; _; to atom A;
The backbone atoms A, may all be identical (such as polyethylene) or may
be of two or more atoms [Si and O for poly(dimethyl siloxane)]. The
polymer is in its ideal state if there are no net interactions between atoms A;
and A, that are separated by a sufficient number of bonds along the chain
so that |i —j| > 1.
The end-to-end vector is the sum of all » bond vectors in the chain:

R, = Z A (2.2)
i=1

Different individual chains will have different bond vectors and hence
different end-to-end vectors. The distribution of end-to-end vectors shall
be discussed in Section 2.5. It is useful to talk about average properties of
this distribution. The average end-to-end vector of an isotropic collection
of chains of n backbone atoms is zero:

(R,) =0. (2.3)

The ensemble average () denotes an average over all possible states of
the system (accessed either by considering many chains or many
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Fig. 2.3
One conformation of a flexible polymer.
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different conformations of the same chain). In this particular case the
ensemble average corresponds to averaging over an ensemble of chains
of n bonds with all possible bond orientations. Since there is no pre-
ferred direction in this ensemble, the average end-to-end vector is zero
[Eq. (2.3)]. The simplest non-zero average is the mean-square end-to-end

distance:
) = &= Ro = (7] (7))
=1 =1

(7 7). (24)

If all bond vectors have the same length /= |;|, the scalar product
can be represented in terms of the angle 6;; between bond vectors ri and 7j
as shown in Fig. 2.3:

7 - F; = I* cos 0. (2.5)

The mean-square end-to-end distance becomes a double sum of average
cosines:

(R =33 (77 = P30S eosty), 26)

i=1 j=1 =1 j=1

One of the simplest models of an ideal polymer is the freely jointed
chain model with a constant bond length /= |;| and no correlations
between the directions of different bond vectors, (cosf;) =0 for i#}.
There are only n non-zero terms in the double sum (cos ;=1 for i=). The
mean-square end-to-end distance of a freely jointed chain is then quite
simple: *

(R*) = nP. (2.7)

In a typical polymer chain, there are correlations between bond vectors
(especially between neighbouring ones) and (cos6;) #0. But in an ideal
chain there is no interaction between monomers separated by a great
distance along the chain contour. This implies that there are no correla-
tions between the directions of distant bond vectors.

lim (cosf;) =0. (2.8)

|i—j|—o0
It can be shown (see Section 2.3.1) that for any bond vector i, the sum over
all other bond vectors j converges to a finite number, denoted by Ci:

n

C. = Z(cos 0;). (2.9)

1
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Therefore, Eq. (2.6) reduces to

Ry =1 -y COSH;‘; =1 y C; = C,,nl s (210)
< 2> 2 > 2 > 2

i=1 j=1

where the coefficient C,, called Flory’s characteristic ratio, is the average
value of the constant C’ over all main-chain bonds of the polymer:

C,,_n;ci. (2.11)

The main property of ideal chains is that (R?) is proportional to the pro-
duct of the number of bonds n and the square of the bond length P
[Eq. (2.10)].

An infinite chain has a C} value for all i given by C.. A real chain has a
cutoff in the sum [Eq. (2.9)] at finite j that results in a smaller C;. This effect
is more pronounced near chain ends.

The characteristic ratio is larger than unity (C, > 1) for all polymers. The
physical origins*of these local correlations between bond vectors are
restricted bond angles and steric hindrance. All models of ideal polymers
ignore steric hindrance between monomers separated by many bonds and
result in characteristic ratios saturating at a finite value C for large
numbers of main-chain bonds (n — o) (see Fig. 2.4). Thus, the mean-
square end-to-end distance [Eq. (2.10)] can be approximated for long
chains:

(R*) = Coonl’. (2.12)

The numerical value of Flory’s characteristic ratio depends on the local
stiffness of the polymer chain with typical numbers of 7-9 for many flexible
polymers. The values of the characteristic ratios of some common poly-
mers are listed in Table 2.1. There is a tendency for polymers with bulkier
side groups to have higher C,, owing to the side groups sterically
hindering bond rotation (as in polystyrene), but there are many exceptions
to this general tendency (such as polyethylene).

Flexible polymers have many universal properties that are independent
of local chemical structure. A simple unified description of all ideal
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Fig. 2.4

Flory’s characteristic ratio C,, saturates

at C, for long chains.

Toble 2.1 Characteristic ratios, Kuhn lengths, and molar masses of Kuhn monomers for common polymers

Polymer Structure Cy b (A) p(gem ™) M, (gmol 1)
1.4-Polyisoprene (PI) —(CH,CH=CHCH(CH3})- 4.6 8.2 0.830 113
1,4-Polybutadiene (PB) —~(CH,CH=CHCH,)- 5.3 9.6 0.826 105
Polypropylene (PP) —(CH,>CH,(CH3))- 5.9 11 0.791 180
Poly(ethylene oxide) (PEO) ~(CH,CH,0)- 6.7 11 1.064 137
Poly(dimethyl siloxane) (PDMS) —(OSi(CH3))- 6.8 13 0.895 381
Polyethylene (PE) —(CH,CH,)- 7.4 14 0.784 150
Poly(methyl methacrylate) (PMMA) —(CH,C(CH;3)(COOCH;))- 9.0 17 1.13 655
Atactic polystyrene (PS) —(CH,>CHC4Hs)- 9.5 18 0.969 720
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polymers is provided by an equivalent freely jointed chain. The equivalent
chain has the same mean-square end-to-end distance (R”) and the same
maximum end-to-end distance R,,.x as the actual polymer, but has N freely-
jointed effective bonds of length 4. This effective bond length b is called the
Kuhn length. The contour length of this equivalent freely jointed chain is

Nb = Riax, (213)

and its mean-square end-to-end distance is
(R*) = Nb* = bRypax = Conl’. (2.14)
Therefore, the equivalent freely jointed chain has

2
= —gm;p (2.15)

equivalent bonds (Kuhn monomers) of length

2 2
b:;R ) :CR“"Z . (2.16)

Example: Calculate the Kuhn length 4 of a polyethylene chain with
C., = 7.4, main-chain bond length /=1.54 A, and bond angle 6 = 68°.

Substituting the maximum end-to-end distance from Eq. (2.1) into
Eq. (2.16) determines the Kuhn length:

C..PPn Cyl
b= nlcos(f/2)  cos(6/2) (2.17)
For polyethylene b2 1.54 A x 7.4/0.83= 14 A.

The values of the Kuhn length 5 and corresponding molar mass of a
Kuhn monomer M, for various polymers are listed in Table 2.1.
Throughout this book, we will use the equivalent freely pinted chain to
describe all flexible polymers and will call N the ‘degree of polymerization’
or number of ‘monomers’ (short for Kuhn monomers) and call 5 the
monomer length (instead of the Kuhn monomer length) and

Ry = \/(R%) = bN'/?, (2.18)

the root-mean-square end-to-end distance (the subscript 0 refers to the
ideal state). This is not to be confused with the chemical definitions of
the degree of polymerization and of monomer size. By renormalizing the
monomer, Eq. (2.18) holds for all flexible linear polymers in the ideal state
with N > 1, with all chemical-specific characteristics contained within that
monomer size (Kuhn length).

2.3 Ideal chain models

Below we describe several models of ideal chains. Each model makes dif-
ferent assumptions about the allowed values of torsion and bond angles.
However, every model ignores interactions between monomers separated
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by large distance along the chain and is therefore a model of an ideal
polymer. The chemical structure of polymers determines the populations
of torsion and bond angles. Some polymers (like 1,4-polyisoprene) are very
flexible chains while others (like double-stranded DNA) are locally very
rigid, becoming random walks only on quite large length scales.

2.3.1 Freely rotating chain model

As the name suggests, this model ignores differences between the prob-
abilities of different torsion angles and assumes all torsion angles
— m< ;<7 to be equally probable. Thus, the freely rotating chain model
ignores the variations of the potential U(p;). This model assumes all bond
lengths and bond angles are fixed (constant) and all torsion angles are
equally likely and independent of each other.

To calculate the mean-square end-to-end distance [Eq. (2.4)]

(R?) = (Ry- Ra) =)D (- 7i), (2.19)

the correlation between bond vectors 7; and 7; must be determined. This
correlation is passed along through the chain of bonds connecting bonds 7;
and 7;. For the freely rotating chain, the component of 7y normal to vector
F;_1 averages out to zero due to free rotations of the torsion angle ; (see
Fig. 2.5). The only correlation between the bond vectors that is transmitted
down the chain is the component of vector 7; along the bond vector 7;_;.
The value of this component is /cos 6. Bond vector 7j_; passes this corre-
lation down to vector 7;_», but again only the component along 7j_ sur-
vives due to free rotations of torsion angle ¢;_;. The leftover memory of the
vector 7; at this stage is /(cos 6)>. The correlations from bond vector 7; at
bond vector 7; are reduced by the factor (cos 0)“"' due to independent free
rotations of |j — i| torsion angles between these two vectors. Therefore, the
correlation between bond vectors #; and 7; is

(7 - 7)) = P(cos§)V7. (2.20)
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Fig. 2.5
All torison angles are equally likely in a
freely rotating chain.
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The mean-square end-to-end distance of the freely rotating chain can now
be written in terms of cosines:

=330 f(i<ﬁ-ﬁ>+<ﬁ2>+i<a-fj>)

i=l j= i=1 \(j=1 J=i+l

—Z @) +IZZ(Z (cos ) + Z (cos B~ )

B j= Jj=i+1
n i— n—i
= nl? +122<Z cos 6+ ) " cos® 9). (2.21)
i=l \k=1 k=1

Note that (cos ) = decays rapidly as the number of bonds between bond
vectors 7; and 7; is increased.

(cos 8)7~" = expl|j — i| In(cos §)] = exp [— U; i|] : (2.22)
p

The final relation defines s, as the number of main-chain bonds in a per-
sistence segment, which is the scale at which local correlations between
bond vectors decay:

|
= 2.23
’p In(cos ) (223)

Since the decay is so rapid, the summation in Eq. (2.21) can be replaced by
an infinite series over k:

Z(Zcos G-I—Zcos 9) ~2ZZcos 6= Zanos 6

i=1 k=

cosG a
=on——" . 2.24
nl——cos@ ( )

The mean-square end-to-end distance of the freely rotating chain is a
simple function of the number of bonds in the chain backbone , the length
of each backbone bond / and the bond angle 8:

cos 1+ cosf

R — 2 2 _ '
(R) =nl +2nll—cost9 " 1 —cosé

(2.25)

Polymers with carbon single bonds making up their backbone have a bond
angle of 6 =68°.

1 +cosf
= — >~ 1. 2.26
Coo T eocd 2 and s, (2.26)

Polymer chains are never as flexible as the freely rotating chain
model predicts, since the most flexible polymers with 6 = 68° have C., >4
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(see Table 2.1). This is because there is steric hindrance to bond rotation
in all polymers.

2.3.2 Worm-like chain model

The worm-like chain model (sometimes called the Kratky-Porod model) is
a special case of the freely rotating chain model for very small values of the
bond angle. This is a good model for very stiff polymers, such as double-
stranded DNA for which the flexibility is due to fluctuations of the contour
of the chain from a straight line rather than to trans—gauche bond rota-
tions. For small values of the bond angle (6 < 1), the cos in Eq. (2.23) can
be expanded about its value of unity at 6 =0:

2

cosf=~1-— 5 (2.27)

For small x, In(1 — x)= — x.

2

In(cos §) = —%. (2.28)

Since @ is small, the persistence segment of the chain [Eq. (2.23)] contains a
large number of main-chain bonds.

1 2
= Tln(cosf) 62 (229)
The persistence length is the length of this persistence segment:
2
o = spl = 195. (2.30)

The Flory characteristic ratio of the worm-like chain is very large:

_l+4cosh 2-(0?/2), 4

Co = est - (@2) &

1%

(2.31)

The corresponding Kuhn length [see Eq. (2.16)] is twice the persistence
length:
Coo

4
A (2.32)

For example, the persistence length of a double-helical DNA /, ~ 50 nm
and the Kuhn length is 5 ~ 100 nm.

The combination of parameters //6* enters in the expressions of the
persistence length /, and the Kuhn length b. The worm-like chain is defined
as the limit / — 0 and 8 — 0 at constant persistence length /, (constant 116
and constant chain contour length Ry, = nlcos(6/2) = nl.
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The mean-square end-to-end distance of the worm-like chain can be
evaluated using the exponential decay of correlations between tangent
vectors along the chain [Eq. (2.22)]:

ZZZZ (cosby) = IZZZ cos §)l/ 1

=1 j=1 =1 j=
—lzzZexp( = ) (2.33)
i=1 j=1

The summation over bonds can be changed into integration over the
contour of the worm-like chain:

12’1:% /0 ™ and 12 / A (2.34)

i=1
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p p

R
= 20y Ripax — 212 (1 —exp (— Z‘j‘")). (2.35)

There are two simple limits of this expression. The ideal chain limit is for
worm-like chains much longer than their persistence length.

(R*) = 2I,Ripax = bRmax  fOT Ripax > L. (2.36)

The rod-like limit is for worm-like chains much shorter than their persist-
ence length. The exponential in Eq. (2.35) can be expanded in this limit:

2
exp (_ @) ~1_ Rmax +l (Rmax> +.--  for Riax < 1y, (237)
I, b2\
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(R*) = R}, for Rmay < Ip. (2.38)

max

The mean-square end-to-end distance of the worm-like chain [Eq. (2.35)] is
a smooth crossover between these two simple limits.

The important difference between freely jointed chains and worm-like
chains is that each bond of Kuhn length b of the freely jointed chain is
assumed to be completely rigid. Worm-like chains are also stiff on length
scales shorter than the Kuhn length, but are not completely rigid and can
fluctuate and bend. These bending modes lead to a qualitatively different
dependence of extensional force on elongation near maximum extension,
as will be discussed in Section 2.6.2.

2.3.3 Hindered rotation model

The hindered rotation model also assumes bond lengths and bond angles
are constant and torsion angles are independent of each other. As its name
suggests, the torsion angle rotation is taken to be hindered by a potential
U(y;) [see Fig. 2.1(d)]. The probability of any value of the torsion angle ;18
taken to be proportional to the Boltzmann factor exp [ — U(y;)/kT]. Most of
the torsion angles are in low energy states [near the minima in Fig. 2.1(d)]
but for ordinary temperatures there are some torsion angles corresponding
to high energy states as well. The Boltzmann factor ensures that states with
higher energy are progressively less likely to be populated.

The hindered rotation model assumes independent but hindered rota-
tions of torsion angles at constant bond lengths and bond angles with
different potential profiles U(ip;) corresponding to different polymers. The
hindered rotation model predicts the mean-square end-to-end distance

(R*) = Cool’n, (2.39)
with the characteristic ratio (see problem 2.9)
1 +cos@\ [ 1+ (cosyp)
Co = , 4
(1 — COS 9) <l — (cos ) (2.40)

where (cos @) is the average value of the cosine of the torsion angle with
probabilities determined by Boltzmann factors, exp[— U(p)/kT:

_ fgﬂcoscpexp(—U(ap)/kT) do 5 41
o T e~ Ul kT e 240

2.3.4 Rotational isomeric state model

This is the most successful ideal chain model used to calculate the details of
conformations of different polymers. In this model, bond lengths / and
bond angles 6 are fixed (constant).

For a relatively high barrier between trans and gauche states AE>> kT
the values of the torsion angles ¢; are close to the minima (¢, g, g ) [see
Fig. 2.1(d)]. In the rotational isomeric state model each molecule is assumed
to exist only in discrete torsional states corresponding to the potential
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energy minima. The fluctuations about these minima are ignored. A con-
formation of a chain with # main-chain bonds is thus represented by a
sequence of n — 2 torsion angles:

etg_ttgotg ttg t---. (2.42)
Each of these n — 2 torsion angles can be in one of three states (¢, g, g_)
and therefore the whole chain has 3”2 rotational isomeric states. For
example, n-pentane, with » =4 main-chain bonds and #» —2 =2 torsion
angles, has 3% =9 rotational isomeric states:'

1, 18+, 18—, +l, &1, 818+, 8+8—» &-&+» &8 (2.43)

In the rotational isomeric state model, these states are nor equally
probable. Correlations between neighbouring torsional states are included
in the model. For example, a consecutive sequence of g, and g _ has high
energy due to overlap between atoms and therefore is taken to have very
low probability in the rotational isomeric state model. The relative prob-
abilities of the states of neighboring torsional angles are used to calculate
the mean-square end-to-end distance and C, [Eq. (2.12)].

Table 2.2 summarizes the assumptions of the ideal chain models. The
worm-like chain model is a special case of the freely rotating chain with a
small value of the bond angle §. Moving from left to right in Table 2.2, the
models become progressively more specific (and more realistic). As more
constraints are adopted, the chain becomes stiffer, reflected in larger C,..

Table 2.2 Assumptions and predictions of ideal chain models: FJIC, freely jointed chain;
FRC, freely rotating chain; HR, hindered rotation; RIS, rotational isomeric state

Models FIC FRC HR RIS
Bond length / Fixed Fixed Fixed Fixed
Bond angle 6 Free Fixed Fixed Fixed
Torsion angle ¢ Free Free Controlled by U(y) Lg+, 88—
Next ¢ independent? Yes ?(es 0 Yles N <COS‘9> No

+ cos + cos :
Coo ! T —cos@ (1 — cos 9) (1 — (cos tp)) Specific

2.4 Radius of gyration

The size of linear chains can be characterized by their mean-square end-to-
end distance. However, for branched or ring polymers this quantity is not
well defined, because they either have too many ends or no ends at all. Since
all objects possess a radius of gyration, it can characterize the size of poly-
mers of any architecture. Consider, for example, the branched polymer
sketched in Fig. 2.6. The square radius of gyration is defined as the average
square distance between monomers in a given conformation (position
vector R;) and the polymer’s centre of mass (position vector Ryp):

R==> (Ri— Rm)” (2.44)

! Six of the nine rotational isomers are distinguishable.
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The position vector of the centre of mass of the polymer is the number-
average of all monomer position vectors:’

‘ om = ZR (2.45)

Substituting the definition of the posmon vector of the centre of mass
[Eq. (2.45)] into Eq. (2.44) gives an expression for the square radius of
gyration as a double sum of squares over all inter-monomer distances:
1 = .35 .7
R = —A—[Z(Rf —2RiRew + RZ,)
i=1

Therefore, the expression for the square radius of gyration takes the form

NZZZRZ 2R.R; + RiR;) = szsz RiR))

i=1 j=1

2 In general, the mass of the monomers M; should be included in the definitions of the
radius of gyration and of the centre of mass. Forexample the proper centre of mass definition is

ZMR

-

m_

Z M;
=

We assume that all the monomers have the same mass M;= M, for all j.
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Fig. 2.6

One conformation of a randomly
branched polymer and its centre of mass,
denoted by cm.
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This expression does not depend on the choice of summation indices and
can be rewritten in a symmetric form:

2 I o D2 Bh
R = ﬁz Z(R,. — RiR))

i=1 j=I j=1 i=1
1 L& . -
= 2——2 Y (R —2RR;+ R})
i=1 j=1
| MNL ,
:szmi_ )7 (2.47)

Each pair of monomers enters twice in the double sum of Eq. (2.47).
Alternatively, this expression for the square radius of gyration can be
written with each pair of monomers entering only once in the double sum:

1 N
2 _
R, = >

N2 £ £

=1 j

(R, — R)™. (2.48)

!

For polymers and other fluctuating objects, the square radius of gyration is
usually averaged over the ensemble of allowed conformations giving the
mean-square radius of gyration:

2_lN P B 2___1_N X I A
(R) =D (R Ren)) =35 DD (K= R)). (249)

For non-fluctuating (solid) objects such averaging is unnecessary. The
expression with the centre of mass is useful only if the position of the centre
of mass R;m of the object is known or is easy to evaluate. Otherwise the
expression for the radius of gyration in terms of the average square dis-
tances between all pairs of monomers is used.

2.4.1 Radius of gyration of an ideal linear chain

To illustrate the use of Eq. (2.48), we now calculate the mean-square radius
of gyration for an ideal linear chain. For the linear chain, the summations
over the monomers can be changed into integrations over the contour of
the chain, by replacing monomer indices 7 and j with continuous coordin-
ates # and v along the contour of the chain:

XN:H/ONdu and ie/wdv. (2.50)

=
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This transformation results in the integral form for the mean-square
radius of gyration

(R?) = Nz// (R(u) — R(v))?) dvdu, (2.51)

where E(u) is the position vector corresponding to the contour coordinate
u. The mean-square distance between points « and v along the contour of
the chain can be obtained by treating each section of v — z monomers as a
shorter ideal chain. The outer sections of u and of N — v monomers do not
affect the conformations of this inner section. The mean-square end-to-end
distance for an ideal chain of v — u monomers is given by Eq. (2.18):

(R(u) = R)*) = (v - u)b?. (2.52)

The mean-square radius of gyration is then calculated by a simple
integration using the change of variables v/ =v —u and u'=N-—u

N—u
(R2) = // v—udvdu—m// v'dv'du

)2 _b2 N ,_b2N3 Nb2
N2 2d”2N2 (u')" du N2 36

(2.53)

Comparing this result with Eq. (2.18), we obtain the classic Debye result
relating the mean-square radius of gyration and the mean-square end-to-
end distance of an ideal linear chain:

PN (R*

Ry =—="2" 2.54
(R ==~ =% (2.54)
The radius of gyration of other shapes of flexible ideal chains can be cal-
culated in a similar way and examples of the results are given in Table 2.3.

Yable 2.3 Mean-square radii of gyration of ideal polymers with N Kuhn monomers of
length b: linear chain, ring, f-arm star with each arm containing N/f Kuhn monomers, and
H-polymer with all linear sections containing N/5 Kuhn monomers

Ideal chains Linear Ring f-arm star H-polymer

(R2) Nb*/6 Nb*/12 [(N/D*16] (3 =2/f) (Nb*[6) 89/625

2.4.2 Radius of gyration of a rod polymer

Consider a rod polymer of N monomers of length b, with end-to-end
distance L = Nb. It is convenient to calculate the radius of gyration of a rod
polymer using the original definition, Eq. (2.44), written in integral form:

R lN /0 N[(R‘(u) ~ Ren’]d. (2.55)



Ideal chains

A rigid rod polymer has only one conformation with the distance between
coordinate v along the chain and its centre of mass (coordinate N/2):
N

u__

2

—

|R(u) — Rew| = b. (2.56)

Therefore, no averaging is needed for calculation of the radius of gyration
of arod. The square radius of gyration of the rod polymer is calculated by a
simple integration

b2 N( N>2 b2 N/2 5 N2b2

]T[O Uu——| du=— x“dx

R =
& 2 N J_np 127

(2.57)

where the change of variables x =u — N/2 has been used. Note that the
relation between the end-to-end distance and the radius of gyration for a
rod polymer is different from that for an ideal linear chain [Eq. (2.54)):

o N _ L
g 12 12°
Examples of the radii of gyration of other rigid objects are listed in
Table 2.4.

(2.58)

Table 2.4 Square radii of gyration of rigid objects: uniform thin disc of radius R, uniform
sphere of radius R, thin rod of length L, and uniform right cylinder of radius R and length L

Rigid objects Disk Sphere Rod Cylinder

R R*2 3R%/5 L?/12 (R*[2)+(L*/12)

2.4.3 Radius of gyration of an ideal branched polymer
(Kramers theorem)

Consider an ideal molecule that contains an arbitrary number of branches,
but no loops. This molecule consists of N freely jointed segments (Kuhn
monomers) of length ». The mean-square radius of gyration of this
molecule is calculated using Eq. (2.48):

(R =33 3 D MR~ R). 2.59)

The vector R; — R; between monomers i and j can be represented by the
sum over the bond vectors 7; of a linear strand connecting these two
MONOomers:

J
R—Ri=)> F. (2.60)
k=i+1
Since we have assumed freely jointed chain statistics with no correlations
between different segments,

(Fefe) =0 ifk £k, (2.61)
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the mean-square distance between monomers i and j can be rewritten:

J J J
(R—R)M =3 3 (Fie) = D ()" (2.62)

k=i+1k'=i+1 k=i+1

Each segment of a linear strand connecting monomers / and j contributes
(7.)*= b? to the double sum in Eq. (2.59). There is only one such strand
connecting each pair of monomers because the molecule is assumed to have
no loops. Therefore, the contribution of each segment of the molecule to
the double sum in Eq. (2.59) is equal to b? times the number of strands
between different monomers i and j that pass through this segment. Con-
sider, for example, segment k in Fig. 2.7. It divides the molecule into two
tree-like parts. The lower part contains N; monomers and the upper part
contains N — N; monomers. Monomer i could be any one of N—N,
monomers of the upper part, while monomer j could be any one of N,
monomers of the lower part of the molecule. Therefore, there are
Ny(N — Ny) different strands between all pairs of monomers / and j passing
through segment k. Thus, the segment k contributes N, (KH[N—N 1(k)]H? to
the double sum in Eq. (2.59).

The radius of gyration can be expressed as the sum over all N molecular
bonds, of the product of the number of monomers of the two branches
N, (k) and N — N,(k) that each bond k divides the molecule into:

2 N
(B) =23 NN - Mk (2.6
k=1

The average value of this product is:
1 &
(N\(N = Np)) = 7\,—; Ny (k)N = Ny (k). (2.64)

The Kramers theorem is expressed in terms of this average over all possible
ways of dividing the molecule into two parts:
b2
(R3) = w~ M (N - N1)). (2.65)

This expression is valid for a linear polymer with the average evaluated
by integration.

1 N
(NN — W) =Nf0 NN — Ny)dN,

N 1 N2
= N{dN, — = N7dN
/(; 1 1 N]O 1 1

N2 N2 N?
=S5 =¢ (2.66)
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Fig. 2.7

The Kramers theorem effectively cuts
a randomly branched polymer with
N monomers into two parts, with N,
and N — N; monomers.



A two-dimensional random walk on a
square lattice. The direction of each step
1s randomly chosen from four possible

NS
N

A one-dimensional random walk of a
drunk in an alley, showing all possible
trajectories up to N =4 steps.

Table 2.5 The number of trajectories
W(N, x) for one-dimensional random
walks of N steps that start at the origin
and end at position x

N=2 N=3 N=4

SO O —, O = OO O
SO = OO OO
O = O WO W o =0
—_— o A O ONDO BRO -

Ideal chains

Substituting this average [Eq. (2.66)] into the Kramers theorem [Eq. (2.65)]
recovers the classical result for the radius of gyration of an ideal linear
chain [Eq. (2.54)]. In Section 6.4.6, we apply the Kramers theorem
[Eq. (2.65)] to ideal randomly branched polymers. In this case the average
1s not only over different ways of dividing a molecule into two parts, but
also over different branched molecules with the same degree of poly-
merization N.

2.5 Distribution of end-to-end vectors

A polydisperse collection of polymers can be described by an average
molar mass (such as the number-average or weight-average discussed in
Chapter 1). Much more information is contained in the whole molar mass
distribution than in any of its moments or averages. Similarly, the average
polymer conformation can be described by the mean-square end-to-end
distance (or mean-square radius of gyration). Much more information is
contained in the distribution of end-to-end vectors than in the mean-square
end-to-end vector. In this section, we derive the distribution of end-to-end
vectors for an ideal chain.

Every possible conformation of an ideal chain can be mapped onto a
random walk. A particle making random steps defines a random walk. If the
length of each step is constant and the direction of each step is independent
of all previous steps, the trajectory of this random walk is one conforma-
tion of a freely jointed chain. Hence, random walk statistics and ideal chain
statistics are similar.

Consider a particular random walk on a lattice with each step having
independent Cartesian coordinates of either +1 or —1. The projection of
this three-dimensional random walk onto each of the Cartesian coordinate
axes is an independent one-dimensional random walk of unit step length
(see Fig. 2.8 for an example of a two-dimensional projection). The fact that
the one-dimensional components are independent of egch other is an
important property of any random walk (as well asany ideal polymer chain).

An example of a one-dimensional random walk is a drunk in a dark
narrow alley. Let the drunk start at the doors of the pub at the origin of the
one-dimensional coordinate system and make unit steps randomly up and
down the alley. Figure 2.9 represents random wandering of the drunk up
and down the alley as a function of the number of steps taken. Let W(N, x)
be the number of different possible trajectories for a drunk to get from the
pub to the position x in N steps. For example, after the first step he could
have reached either position x=+1 or x=-1, making W(l,1)=
W(l,—1)=1. The numbers of different trajectories W(XN, x) for the first
four steps of the drunk are shown in Table 2.5.

A general expression for W(N, x) can be obtained in the following way.
Any trajectory of our drunk consists of N, steps up the alley and N_ steps
down the alley. The total number of steps made by the drunkis N=N_ +
N_ and his final position is x = N, — N_. The numbers of steps up N, and
down N _ the alley uniquely specify both the total number of steps N and
the final position x. Therefore, the total number of trajectories W(N, x) is



Distribution of end-to-end vectors

equal to the number of combinations of N, steps up and N _ steps down,
that reach x in a total of N steps, which is a binomial coefficient:
(N, + N_)! N!
W(N,x) = = : 2.67
(NX) =R N T~ [N+ 220 — )2 (267)
The factorial is defined as N!=1-2-3-4---N.

The total number of N-step walks is 2" because on each step the drunk
has two possibilities, which are independent from step to step. All of these
2N walks are equally likely (if there is no wind or stairway in the alley) and
therefore, the probability to find the drunk at position x after N steps 18
W (N, x) divided by 2N

W(N,x) 1 N!

N V(N /2N — )2 (2:68)

This is an exact probability distribution for a one-dimensional random
walk. However, it is not convenient to use for large N because of the dif-
ficulty of calculating factorials for large N (try your calculator for
N =100). For an¥y N, the probability of finding the drunk is highest at the
pub (at x =0 for even N and at x = +1 for odd N). This probability falls off
very fast for large |x| and it is therefore convenient to use the Gaussian
approximation of the distribution function, valid for x < N, derived next.

First, take the natural logarithm of the distribution function:

1n(W(2NN’ "‘)) — _NIn2+In(N)— 1n<N;")! _ ln(N; x)!. (2.69)

Each of the last two terms can be rewritten using the definition of the
factorial function:

(5 =l(3)G) o) - Gl
=In (g)‘ + :éln (g—&-s), (2.70)

x/2

ln<N;x)!:1n<g)!—S;ln(§+l~S>. (2.71)

The logarithm of the probability distribution can now be rewritten as

W(N, x) M, L (N
1n< 5N ) = -Nin2+In(M) - ln(E)! — SE_] ln(3+s>
x/2
N N
(D) Sy

B N, & (N/2) +s
= —Nln2+ln(N!)—21n<5>!—;ln<(N/2)+1_S).
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The logarithm in the last term can be expanded for s < N/2 up to a linear
term (In (14 y)=y for |y| < 1). This expansion is the essence of the
Gaussian approximation.

1n((N</]§/)2ﬁf ) =in(- (12:/%85\?2/1\0)

2s 2s 2
:1n<1 +N> —ln<l _N+N>

~_— (2.72)

The logarithm of the probability distribution can be simplified using this
approximation.

x/2
W(N,x)\ _ | NY, 4s 2
ln( 5N >_ Nin2 + In(N!) 21n(2). E N
‘c/Z x/2

= —NIn2+In(N) - 2ln( )'———ZS 21
n<_];_f)!_i(x/2)(x/2+l)+x

& —NlIn2 +In(N) - 21

N 2 N
N x?

o~ N — — ). 2.
NiIn2 +In(N) 2ln(2) N (2.73)

This gives the Gaussian approximation of the probability distribution:

W(N,x) 1 N x?
> 2.74
= i o) 279
Using Stirling’s approximation of N! for large N
MY ‘

N =27 (;) , (2.75)

the coefficient in front of the exponential can be rewritten:

1 N! 1 V27NN" exp(—N) 2
1 a == (276)

IIZ

The final expression for the Gaussian approximation of the probability
distribution is quite simple:

W(N,x) _ x?

— —— . 2.77
v 7TN P\ TN (2.77)
Recall from Table 2.5 that W(N, x) is non-zero only either for even or odd x

(depending on whether N is even or odd). Therefore, the spacing between
non-zero values of W(N, x) is equal to 2 along the x axis. The probability
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distribution function P;4(N, x) is defined as the probability P(N, x)dx that
the drunk will be found in the interval dx along the x axis. Thus, the
probability distribution function differs from Eq. (2.77) by a factor of 2:

Pia(N,x) = (2.78)

1 ex (,_ x_z)
Varn P\"2N)
The square of the typical distance of the drunk from the pub after N stepsis
determined from the mean-square displacement averaged over all the
walks the drunk makes day after day:

1 oC 5 x2>
x“ exp|l —— |dx = N. (2.79
V27N J - p( 2N (2.79)

Therefore, the probability distribution function can be rewritten in terms
of this mean-square displacement:

This function has a maximum at x = 0 and decays fast for distances larger
than the root-mean-square displacement x >+/(x?) as can be seen from
Fig. 2.10.

This probability distribution function for the displacement of a one-
dimensional random walk can be easily generalized to three-dimensional
random walks. The probability of a walk, starting at the origin of the
coordinate system, to end after N steps, each of size b, within a volume
dR.dR,dR, of the point with displacement vector R is P3(N, R)
dR; dR dR, (see Fig. 2.11). Since the three components of a three-
dlmensmnal random walk along the three Cartesian coordinates are
independent of each other, the three-dimensional probability distribution
function is a product of the three one-dimensional distribution functions:

(x*) = /_OO x*Pig(N,x)dx =

P14(N, x) (2.80)

Pi(N, R)dR,dR, dR. = Pia(N,R,) dRP1a(N, R;) dR,P14(N, R;) dR..
(2.81)

The mean-square displacement of a random walk from the origin 1s
equal to the mean-square end-to-end vector of a freely jointed chain with
the number of monomers N equal to the number of steps of the walk and
the monomer length b equal to the step size <R2) Nb?. This mean-square
displacement is composed of three mean-square displacements of the three
independent one-dimensional walks:

(R?) = (RY) +

Since each of the three Cartesian axes are equivalent, the mean-square
displacement along each of them must be one-third of the total:

R}) + (R} = Nb*. (2.82)

Nb?
(B) =5

(R) = (R) = .

(2.83)
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Fig. 2.10

Normalized one-dimensional Gaussian
probability distribution function for
occupying position x after random N
steps from the origin (x=0).

&

Z

Fig. 2.11

One conformation of an ideal chain
with one end at the origin and the other
end within volume dR, dR, dR; of
position R
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Fig. 2.12

Normalized distribution function of
end-to-end distances for an ideal linear
chain.

Ideal chains

The one-dimensional probability distribution function for the components
of a random walk along each of these three axes can be obtained by sub-
stituting these mean-square displacements into Eq. (2.80)

! R,
Pig(N,Ry) = N <_ 2<1;§>>

/3 3R?
=\ 2w exp(—szz) (2.84)

The probability distribution function for the end-to-end vector R of an
ideal linear chain of N monomers is the product of the three independent
distribution functions [Eq. (2.81)]:

q 3 0\? 3(RZ+ R+ R)
FaalN. R) = <—) eXp(_ N

3\ 3R
= (27rNb2> exp (— 2Nb2) . (2.85)

As a function of each Cartesian component R; of the end-to-end vector R,
this probability distribution function looks the same as sketched in
Fig. 2.10. The average of each component is (R;) = 0. As a function of the
end-to-end distance R = |ﬁ 1 this probability distribution can be rewritten
in the spherical coordinate system:

2

) 30\*? 3R2N
Psa(N, R)4xR2dR = 47 —— _ R*dR. (286
a(N, R)r ”(2wa2) exP( 2Nb2> (2.:86)

The probability distribution for the end-to-end distance R is the prob-
ability for the end-to-end vector R to be in the spherical shell with radius
between R and R+dR. This probability of the end-to-end distance
[Eq. (2.86)]is shown in Fig. 2.12. The Gaussian approximation is valid only
for end-to-end vectors much shorter than the maximum extension of
the chain (for |R| < Rumax = Nb). For |R| > Nb, Eq. (2.85) predicts finite
(though exponentially small) probability, which is physically unreason-
able. For real chains P34(N, R) = 0for R > Nb and this strong stretching is
treated properly in Section 2.6.2.

2.6 Free energy of anideal chain

The entropy Sis the product of the Boltzmann constant k and the logarithm
of the number of states €2:

S=klnQ. (2.87)

Denote Q(N, ﬁ) as the number of conformations of a freely jointed chain
of N monomers with end-to-end vector R. The entropy is then a function
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of N and R:
S(N, R’) - kan(N, R‘). (2.88)

The probability distribution function is the fraction of all conformations
that actually have an end-to-end vector R between R and R + dR:

) Q (N, R’)
Pag (N, R) T (N’ ﬁ) — (2.89)

The entropy of an ideal chain with N monomers and end-to-end vector Ris
thus related to the probability distribution function:

s(zv, R) — kIn P (N, R’) tkin { / Q(N, ﬁ) dﬁ]. (2.90)

Equation (2.85) for the probability distribution function determines the
entropy:

" 3 R 3 3 2\ =
S(N.R)= = Sks + Q-kln(mbz)wln[/Q(N,R)dR}. (2.91)

The last two terms of Eq. (2.91) depend only on the number of monomers
N, but not on the end-to-end vector R and can be denoted by S(N, 0):

R2
S(N, R) 2k 5+ S(V. 0). (2.92)
The Helmholtz free energy of the chain F is the energy U minus the
product of absolute temperature T and entropy S:

F(N, R’) - U(N, R‘) - TS(N, R). (2.93)

The energy of an ideal chain U(N, R) is independent of the end-to- end
vector R, since the monomers of the ideal chain have no interaction energy.’
The free energy can be written as
F(N,R 3kTE2 F(N,0 2.94
(N, R) = SkT o5 + F(N.0), (2.94)
where F(N, 0) = U(N,0) — TS(N, 0) is the free energy of the chain with both
ends at the same point. As was demonstrated above, the largest number of
chain conformations correspond to zero end-to-end vector. The number of
conformations decreases with increasing end-to-end vector, leading to the
decrease of polymer entropy and increase of its free energy. The free energy
of an ideal chain F(X, R) increases quadratically with the magnitude of the
end-to-end vector R. This implies that the entropic elasticity of an ideal

3 The ideal chain never has long-range interactions, but short-range interactions are
possible, and their consequences are discussed in problem 7.19.
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Fig. 2.13

An elongated chain is only stretched on
its largest length scales. Inside the
tension blob, the conformation of the
chain is essentially unperturbed by the
stretch.

Ideal chains

chain satisfies Hooke’s law. To hold the chain at a fixed end-to-end vector
R, would require equal and opposite forces acting on the chain ends that
are proportional to R. For example, to separate the chain ends by distance
R, in x direction, requires force f.:

OF(N.R) 37
L= = R.. 2.95
f aRx sz X ( )
The force to hold chain ends separated by a general vector R is linear in R,
like a simple elastic spring:

- 3kT -
f= N R. (2.96)
The coefficient of proportionality 3kT/(Nb?) is the entropic spring constant
of an ideal chain. It is easier to stretch polymers with larger numbers of
monomers N, larger monomer size b, and at lower temperature 7. The fact
that the spring constant is proportional to temperature is a signature of
entropic elasticity. The entropic nature of elasticity in polymers distin-
guishes them from other materials. Metals and ceramics become softer as
temperature is raised because their deformation requires displacing atoms
from their preferred positions (energetic instead of entropic elasticity).
The force increases as the chain is stretched because there are fewer
possible conformations for larger end-to-end distances. The linear entropic
spring result for the stretching of an ideal chain [Eq. (2.96)] is extremely
important for our subsequent discussions of rubber elasticity and polymer
dynamics. This linear dependence [Hooke’s law for an ideal chain,
Eq. (2.96)] is due to the Gaussian approximation, valid only for |ﬁ| <
Riax = Nb. If the chain is stretched to the point where its end-to-end vector
approaches the maximum chain extension |ﬁ| < Rnux, the dependence
becomes strongly non-linear, with the force diverging at | K| = Rpax, as will
be discussed in Section 2.6.2. .

2.6.1 Scaling argument for chain stretching

The linear relation between force and end-to-end distance can also be
obtained by a very simple scaling argument. The key to understanding the
scaling description is to recognize that most of the conformational entropy
of the chain arises from local conformational freedom on the smallest
length scales. For this reason, the random walks that happen to have end-
to-end distance R > bN'/? can be visualized as a sequential array of smaller
sections of size £ that are essentially unperturbed by the stretch, as shown
in Fig. 2.13.

The stretched polymer is subdivided into sections of g monomers each.
We assume that these sections are almost undeformed so that the mean-
square projection of the end-to-end vector of these sections of g monomers
onto any of the coordinate axes obeys ideal chain statistics [Eq. (2.83)]:

&~ bg. (2.97)
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There are N/g such sections and in the direction of elongation they are
assumed to be arranged sequentially:
N Nb?
Romf—~—.
g £

This can be solved for the size £ of the unperturbed sections and the number
of monomers g in each section:

(2.98)

Nb?

£ = R (2.99)
N2b?

g~ 5 (2.100)

The number of monomers g and the size £ of these sections were specially
chosen so that the polymer conformation changes from that of a random
walk on smaller size scales to that of an elongated chain on larger length
scales. Such sections of stretched polymers are called tension blobs. Being
extended on only its largest length scales allows the chain to maximize its
conformational éntropy.

The physical meaning of a tension blob is the length scale £ at which
external tension changes the chain conformation from almost undeformed
on length scales smaller than ¢ to extended on length scales larger than &.
The trajectory of the stretched chain (Fig. 2.13) shows that each tension
blob is forced to go in a particular direction along the x axis (rather than in
a random direction as in an unperturbed chain). Therefore one degree of
freedom is restricted per tension blob and the free energy of the chain
increases by kT per blob:*

N R
F~ kTg R~ kTsz. (2.101)
In comparing Egs (2.94) and (2.101), we see that the scaling method gets
the correct result within a prefactor of order unity. This is the character of
all scaling calculations: they provide a simple means to extract the essential
physics but do not properly determine numerical coefficients.

Equation (2.101) is the first of many instances where the free energy
stored in the chain is of the order of kT per blob, because the blobs gen-
erally describe a length scale at which the conformation of the chain
changes and is the elementary unit of deformation. In the case of stretch-
ing, the free energy is F/N per monomer. On length scales smaller than the
tension blob, the thermal energy kT that randomizes the conformation is
larger than the cumulative stretching energy, and the conformation is
essentially unperturbed. On length scales larger than the tension blob, the
cumulative stretching energy is larger than k7, and the ideal chain gets
strongly stretched (see Fig. 2.13). Similar arguments apply to other prob-
lems involving conformational changes beyond a particular length scale,
making the free energy of order kT per blob quite general.

4 This is the consequence of the equipartition theorem.
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The force needed to stretch the chain is given by the derivative of the free
energy:
oF R, kT

R KTy e (2.102)

Ju=

The tension blobs provide a simple framework for visualizing the chain
stretching (Fig. 2.13) and provide simple relations for calculating the
stretching force and free energy. They define the length scale at which
elastic energy is of order k7. Since the force has dimensions of energy
divided by length, Eq. (2.102) immediately follows from a dimensional
analysis with length scale of tension blob £ corresponding to kT of stored
elastic energy.

The stretching along the x axis, shown in Fig. 2.13, makes the stretched
conformation of an ideal chain a directed random walk of tension blobs.
This conformation is sequential in the x direction, but the y and z directions
have the usual random walk statistics that are unaffected by the stretching.
The mean-square components of the end-to-end vector orthogonal to the
stretching direction are obtained from one-dimensional random walks of
N/g sections of step length &:

>N

(R)) = (R2) ~ ¢ 7~ NB?. (2.103)

The linear relation between force f, and end-to-end distance R,
(Hooke’s law) is valid as long as there are many Kuhn monomers in each
tension blob. As the end-to-end distance R, approaches a significant
fraction of its maximal value R,.., a deviation from Hooke’s law is
expected. Note that the Gaussian approximation assumes R, < Ry.x and
always leads to Hooke’s Law. Below we derive the non-linear relation
between force and elongation for strongly stretched chains. The limit of the
linear regime corresponds to a force of the order of

kT 138 x 1073 JK™' x 295K
b 1 x 10 m

>~ 4% 107N (2.104)

for a chain with Kuhn length 5 = 1 nm at room temperature. Stiffer chains
with larger Kuhn length get nearly fully stretched at weaker extension
forces. For double-helical DNA with Kuhn length 4 22 100 nm (persistence
length /, = 50 nm) the force corresponding to the linear response limit is
100 times smaller (4 x 10714 N).

2.6.2 Langevin dependence of elongation on force

Consider a freely jointed chain of N bonds subject to a constant elonga-
tional force f applied to its ends along the z axis. An example could be a
chain with two opposite charges +¢ and —g at its ends in a constant electric
field E applied along the z axis as sketched in Fig. 2.14. If the direct
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(a) (b)
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Coulomb interagtion between the charges is ignored, there is a constant
force f = qE acting along the z axis on the positive charge and an opposite
force —f acting on the negative charge. Different chain conformations are
no longer equally likely, because they correspond to different energy of the
chain in the external electric field. The energy of the chain is proportional
to the projection of the end-to-end vector on the direction of the field:

U= —qE-R=—f-R=—fR.. (2.105)

This energy is equal to the work done by the chain upon separation of the
charges by vector R in an external electric field E. The direction of the end-
to-end vector R of the chain is chosen from the negative to the positive
charge at its ends. Displacement of the positive charge down the field with
respect to the negative charge, lowers the electrostatic energy of the chain
and corresponds to a more favorable conformation. Thus, different chain
conformations have different statistical Boltzmann factors exp(—U/kT)
that depend on their corresponding energy U [Eq. (2.105)].

The sum of the Boltzmann factors over all possible conformations of the
chain is called the partition function:

Z=> exp (— %) =) exp (%) (2.106)

states states

The partition function is useful because we will calculate the free energy
from it in Eq. (2.111). States with higher energy make a smaller con-
tribution to the partition function because their Boltzmann factor deter-
mines that those states are less likely.

Different conformations in the freely jointed chain model correspond to
different sets of orientations of bond vectors 7; in space [see Fig. 2.14(a)].
The orientation of each bond vector 7; can be defined by the two angles of
the spherical coordinate system 6; and ¢; [Fig. 2.14(b)]. Therefore, the sum
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Fig. 2.14

(a) Freely jointed chain elongated

by a pair of forces applied to its ends.
(b) Spherical coordinate system for
orientation of a bond.
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Average end-to-end distance as a
function of stretching force for a
Gaussian chain [Eq. (2.995), thin line],

a freely jointed chain [Langevin
function, Eq. (2.112), dashed line], and a
worm-like chain [Eq. (2.119), thick line].

Ideal chains

over all possible conformations of a freely jointed chain corresponds to the
integral over all possible orientations of all bond vectors of the chain:

N
Z=Y exp (f;) — / exp (%) I sin6:d6: dg;.
i=1

states

(2.107)

N
The notation [ denotes the product of N terms. The z component of the

end-to-end Veg’[lor can be represented as the sum of the projections of all
bond vectors onto the z axis:
N
R.= b cosb;. (2.108)
i=1

Therefore, the partition function [Eq. (2.107)] becomes a product of N
identical integrals:

N N
Z(T.f,N) = / exp (I{B—;, > " cos 9,-) I sin6: d6; de;
i=1 i—=1

— N
= - /0 27 sin §; exp (%cos 6,-) de,}

[ainleo(f) (B e
_ [4r Sl;:/((f:;g”))} . (2.110)

The Gibbs free energy G can be directly calculated from the partition
function:®

G(T.f,N) = —kT In Z(T, f, N)

——ersfin(ar snn(22)) ~(2)]

The average end-to-end distance corresponding to a given force can be
obtained as the derivative of the free energy:

(R) =~ =N {“’th (k%) - fbim] |

The expression in the square brackets of Eq. (2.112) is called the Langevin
function:

(2.111)

(2.112)

1

L(5) = coth(6) — 5.

The Langevin function relates average chain elongation (R)/Rmax
and normalized extensional force 3 = fb/(kT) for a freely jointed chain, as
sketched in Fig. 2.15.

(2.113)

> The Gibbs free energy is used here because the ensemble of chains corresponds to
constant force f, not constant end-to-end distance R (analogous to the isothermal-isobaric
ensemble, which has constant pressure instead of constant volume).
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For small relative elongations ((R) < Rmax = bN) the dependence is
approximately linear,

W[

L(B) = for 8 <1, (2.114)
and follows Hooke’s law derived above [Eq. (2.96)] (R)/(bN) = fb/(3kT).
For larger relative elongations, the Langevin function significantly devi-
ates from linear dependence and saturates at unity (see Fig. 2.15). For large
extensional force /> kT/b, the Langevin function has another simple limit:

1
E(ﬁ)%l»—B for 3> 1. (2.115)
This means that the extension for strong stretching has a simple form
AR) g kT
Rmax - fb ’

where Rmax = Nb, The extensional force of the equivalent freely jointed
chain diverges reciprocally proportional to Rmax — (R):

fb Rmax <R>
I~ % forl-— 1. 116
KT R — (B O " Ry (2.116)

In the case of the worm-like chain model (Section 2.3.2), the extensional
force diverges reciprocally proportional to the square of Ryax — (R):

w1 Roae \° (R)
L [ — for 1 — 1. 2.117
kT 2 Rmax - <R> Or Rmax << ( )

The differences between divergences of force near maximum extension
[Egs (2.116) and (2.117)] are due to bending modes on length scales shorter
than Kuhn length b. These modes do not exist in freely jointed chains
because sections of length b are assumed to be absolutely rigid. In the
worm-like chain model these bending modes with wavelength £ < b lead to
much stronger divergence of the force [Eq. (2.117)].

At small relative extensions ((R) < Rpax) worm-like chains behave as
Hookean springs:

L
kT Rmax

12

for (R) < Ruax. (2.118)

There is no simple analytical solution for the worm-like chain model at all
extensions, but there is an approximate expression valid both for small and
for large relative extensions:

2
.fﬁg2<R>+1(R—R-““"<—m) —%. (2.119)

max

6 J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
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Fig. 2.16

Comparison of experimental force for
97 kilobase A-DNA dimers with the
worm-like chain model [solid curve is
Eq. (2.119) with Rpax =33 pm and

b =100 nm]. The dotted curve
corresponds to the Langevin function of
the freely jointed chain model

[Eq. (2.112)]. Data are from

R. H. Austin et al., Phys. Today, Feb.
1997, p. 32.

Fig. 2.17

A monomer can only reach other
monomers with its CB radio if they are
within the range of the radio.

Ideal chains

Strong deviations from linear elasticity have been measured in polymer
networks at large elongation (see Chapter 7). Optical tweezers and atomic
force microscopy have been used to measure the dependence of the force
applied to the ends of isolated chains on their elongation. In the optical
tweezer experiments, beads were attached to the ends of long DNA seg-
ments. DNA is a biopolymer that exists as a double-stranded helix. Such
stiff chains are best described by the worm-like chain model. The chain
length of DNA is typically described in terms of the number of base pairs
along the helix. The positions of the beads at the ends of DNA chains were
manipulated by a focused laser beam (hence the name ‘optical tweezers’).
The force exerted on the chain ends was measured by the calibrated relative
displacement of the beads with respect to the optical traps. In another type
of nano-manipulation experiment a 97 kilobase A-DNA dimer was chem-
ically attached by one of its ends to a glass slide and by the other end to a
small (3 pm) magnetic bead. The DNA was stretched by applying a known
magnetic and hydrodynamic force to the bead. The stretching was
measured by observing the position of the bead in an optical microscope.
The extension of DNA as a function of applied force is compared
with predictions of freely jointed and worm-like chain models in Fig. 2.16.
The worm-like chain model is in excellent agreement with the experi-
mental data.

2.7 Pair correlations of an ideal chain

Consider a monomer of an ideal polymer trying to reach fellow monomers
of the same chain via a CB radio (see Fig. 2.17). The number of monomers
it can call depends on the range r of its transmitter. It can contact any
monomer within the sphere of radius r of itself. The number of monomers
m that can be reached via a CB radio with range r is given by random walk

statistics:
2
m~ (-] .
3)

The number density of these monomers within the volume 7> is m/r>. The
probability of finding a monomer in a unit volume at a distance r from a
given monomer is called the pair correlation function g(r). It can be
approximated by the average number density within the volume 7°:

L)

(2.120)

m 1
B b2
The exact calculation of the pair correlation function of an ideal chain
leads to an additional factor 3/

g(r) = (2.121)

3

g(r) = - (2.122)

Note that the pair correlation function decreases with increasing distance r.
It is less likely to find a monomer belonging to the chain further away from
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a given monomer because the average number density of monomers within
the sphere of radius r decreases. Large polymer coils are almost empty.

To illustrate this concept, divide the cube of size R, containing an ideal
polymer with N monomers of size » and end-to-end distance R=bN'"2,
into smaller cubes of size r (Fig. 2.18). There will be (R/r)* such smaller
cubes. But only (R/r)* of these smaller cubes contain monomers of the
chain. The average number of monomers in each of these occupied smaller
cubes is m ~ (r/b)*. The remaining (R/r)® — (R/r)* smaller cubes are empty.
The local density of monomers strongly fluctuates from cell to cell. There
are holes of all sizes inside a polymer chain.

This description is a manifestation of the self-similarity (fractal nature)
of polymers, discussed in Section 1.4. The fractal nature of ideal chains
leads to the power law dependence of the pair correlation function g(r) on
distance r. This treatment for the ideal chain can be easily generalized to a
linear chain with any fractal dimension D. The number of monomers
within range r is m ~ rP. We use the proportionality sign ‘~" if the
dimensional coefficient (in the particular case above ~ 1/bP) is dropped
from the relation. The pair correlation function is still proportional to
the ratio of m and r*:

g(r) =2~ D3, (2.123)

Hence, Eq. (2.121) is a special case of this result, with D = 2 for an ideal
chain. The fractal dimension of a rod polymer is D = 1 and the pair cor-
relation function is g(r) ~r 2.

2.8 Measurement of size by scattering

Polymer conformations are studied by various scattering experiments
(light, small-angle X-ray and neutron scattering). These techniques are
based on the contrast between the polymer and the surrounding media
(solvent in the case of polymer solutions and other polymers in the case of
polymer melts or blends). The contrast in light scattering arises from dif-
ferences in refractive index between polymer and solvent, and the scattered
intensity is proportional to the square of the refractive index increment
dn/dc [see Eq. (1.86)].

While neutron sources are not available in most laboratories, small-
angle neutron scattering (SANS) has become a routine characterization
method for polymer research using large-scale national and multinational
facilities. To obtain the contrast needed for neutron scattering, some of the
chains in a polymer melt have their hydrogen atoms replaced by deuterium.
In a polymer solution, the solvent is often deuterated. This deuterium
labelling appears to not alter the conformations of polymers.

2.8.1 Scattering wavevector

Consider an incident laser beam with wavelength A illuminating a polymer
sample, represented by the large circle in Fig. 2.19, along the direction with
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Fig. 2.18
Fractal nature of an ideal chain.
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Fig. 2.19
Radiation scattered through angle 6

from two distinct parts of the sample.

Ideal chains

5 2
_ A Y Rj Jo N
" ]
- C
R;
T
1
. (0]
Pl - fr e s D
AN
-
4
N
0 “s >
- ‘?= 5?—51:
qs

unit vector #. This incident beam can be characterized by the incident
wavevector:

2mn

G = =i, (2.124)

where n is the refractive index of the solution. The incident light is scattered
through angle 6 and leaves the sample along the direction with unit vector
iis. The scattered beam is characterized by the scattered wavevector:

g, = 2%”5[ (2.125)

The incident beam is coherent, meaning that all photons are in-phase.
When the incident beam enters the sample, monomers absorb the radiation
and re-emit it in all directions. The difference in optical paths between the
light scattered by different monomers makes the scattered beam inco-
herent, meaning that the scattered photons are no longer in-phase.” In
the example sketched in Fig. 2.19, the difference in optlcal paths of the
radiation scattered by the monomer j at position R (at pomt C) and by the
monomer at the origin O is easily calculated:

AC +CD - OD' = AC - OB. (2.126)

The section AC s the projection of the vector R onto the incident direction
and has length ; - R The section OB is the pr0ject10n of the vector R onto
the scattered d1rect1on and has length i - R Thus, the difference in the
optical paths can be written in terms of these vectors:

AC—-OB=1i;-R i R = (& — i) R, (2.127)

This difference in optical paths results in the phase difference ¢;, which is
2mn/ ) times the optical path difference [see Eq. (1.77) with A replaced by the
wavelength in the dielectric medium A/n).

271'7’1 g - — = - D
0 = T(u‘ — i) -Ri=(G—-q) R=q R, (2.128)

7 1t is assumed that there is no multiple scattering, although this is not always a valid
assumption.
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The scattering wavevector ¢ is defined as the difference of the incident
and scattered wavevectors:

i=q — g (2.129)

From their definitions in Egs (2.124) and (2.125), the magnitudes of the
incident and scattered wavevectors are the same:

27mn

|@'i|:|67s|=T- (2-130)

The isosceles triangle of wavevectors in Fig. 2.19 shows that half of the
magnitude of the scattering wavevector is equal to the magnitude of
wavevectors g; or g, times the sine of half the angle 6 between them:

S . (O 4mn . (0
q = |q| = 2|ql|sm<§) = ——/\—Sln(-z—). (2131)

2.8.2 Form factor

We concentrate Rere on light scattering, but similar results are valid for
small-angle X-ray and neutron scattering. We describe scattering from a
single molecule, assuming that the solution is dilute, which is the relevant
regime for determining the size and shape of individual coils.

The electric field of light scattered by the jth segment is

E; = EiA cos(2mvt — ¢;), (2.132)

where ¢; is the phase difference [(Eq. (2.128)], v is the frequency, E; is the
amplitude of the incident electric field [Eq. (1.77)] and the coefficient 4
contains the factors such as polarizability «, the distance r to the detector,
the wavelength of light A, etc. [see Eq. (1.81)]. Summing over the N
monomers gives the electric field scattered by an isolated polymer coil:

N
Ey = E Y A cos(2mvt — ¢)). (2.133)
j=1

The intensity of scattered light is the energy of radiation that falls onto a
unit area per unit time. It is proportional to the square of the electric field
averaged over one oscillation period 1/v:

1w N 2
I, = 2]1A2V/0 2008(271'1/1 - goj)} dr

(2.134)
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The final result used the equation for the product of cosines:

cos{a + 3) + cos(a — f)

. (2.135)

cosa cos 3 =

The first term in Eq. (2.134) oscillates exactly two full periods (47) and
its integral over the time interval 0 <¢<1/v is thus equal to zero. The
second term (cosine of the phase difference) is time independent and
determines the intensity of light scattered by the molecule

= ZZ s(k — ©7); (2.136)
k=1 j—1

where the phases ; are determined by the positions R}- of the corres-
ponding monomers and the scattering wavevector g [Eq. (2.128)].

The dependence of the scattered intensity on the size and the shape
of the polymer is usually described by the form factor defined as the ratio
of intensity scattered at angle 6 (scattering wavevector ¢) to that extra-
polated to zero angle (# — 0) and therefore, zero scattering wavevector

(I4] = 0):

P(g) = (2.137)

All optical paths are the same at zero scattering angle (¢ =0) and there is
no phase shift (¢;=0 for all j) because the scattering wavevector ¢ =0
[Eq. (2.131)]. The intensity of light scattered by the molecule at zero angle,

N N
L(0) = [A*) ) 1= [AN, (2.138)

k=1 j=1

leads directly to the form factor, defined by Eq. (2.137):

Il
~

il

—

R; =R, — R (2.140)

enters into the form factor.

The form factor in Eq. (2.139) is defined for a specific orientation of the
molecule with respect to the scattering wavevector ¢. Often (but not
always!), the system is isotropic with equal probabilities of all molecular
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orientations in space. In this case, Eq. (2.139) can be averaged over all these
orientations. This averaging can be carried out in the spherical coordinate
system with the z axis along the scattering wavevector ¢ and the angle
between ¢ and R',j denoted by . The polar angle in this spherical coord-
inate system is denoted by (3. The scalar product of wavevector § and
the relative vector between monomers i and j is

7 (R} _ R‘,) = qR;cos o, (2.141)

where Rj; is the distance between monomers i and j. Averaging the cosine
of this scalar product over all orientations of the molecule leads to

(cos[7- (R; — R))]) = : /27r [/Wcos(qR,;, cosa)sinada|df

4’7'( 0
1 /‘ sin(qR;;)

= - cos(gR;x)dx = ——22, 2.142
2/, (qR;x) qR; ( )

where the integral was taken by the change of variables x = cos c.. Thus, the
form factor for any isotropic system is quite simple:

Z Z sin(gRy) (2.143)

N Z o aRy
2.8.3 Measuring R; by scattering at small angles

One important property of the form factor in dilute solutions is that at low
scattering angle (¢R, < 1) it becomes independent of any assumption about
the shape of the molecule. Using the Taylor series expansion,

sin x xz Xt

=l (2.144)

the form factor at low angles can be rewritten, as

N
zl—q—ZZR?Jr-.- for gRg <1, (2.145)

1
P(q) = —§q2<R2>+--- for gRy < 1. (2.146)

In the final relation, Eq. (2.47) was used for Ré and the average (- - -) is over
different polymer conformations contributing to scattering.

Substituting the relation (2.131) between scattering wavevector ¢ and
scattering angle 6 provides the low-angle expression of the form factor in
light scattering:

167T2n2 2 -2 6
Plg)=1- W(RQ sin (E) A (2.147)
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Recall from Chapter 1 that it is convenient to plot the reciprocal
Rayleigh ratio times concentration and optical constant K [Eq. (1.96)] to
determine the weight-average molar mass from the zero concentration
limit. In Chapter 1, we considered the Rayleigh ratio in the zero wavevector
limit, and since the Rayleigh ratio is a normalized intensity [Eq. (1.87)] it
has the same ¢ dependence as the form factor [see Eq. (2.137))].

Kc 1 1 16m°n* /) o\ . 20

(&)~ wmg 3 |1+ e () (5) + ) e
Note that the plus sign in front of the <R2> term arises because
(1 — x) =~ ] + x for small values of x. Thus, extrdpolatlon of the ratio
Kc/Ry to zero concentration plotted as a function of sin’(6/2) allows
determination of the radius of gyration of the polymer (or any other
scattering object) from the slope for low scattering angles (¢ R, < 1) and the
mass of the object from the y-intercept. For polydisperse samples, this
method leads to the weight-average molar mass M, and the z-average
square radius of gyration (Ré)z. In order to understand this, we write the
Rayleigh ratio for a mixture of different species with molar mass My,
mean-square radius of gyration (R%), and concentration cy:

2
:K[ZCNMN——%ZCNMN<R§V>+
N N
Z cnMy E=p3 S evMy(R%)
- K 11N
ZCN ZCN 3 ZCNMN +

— KcM, [1 - % (RY), +-- } (2.149)
The z-average mean-square radius of gyration is defined as
> enMy(RY) .
(R, =+ S oniie (2.150)
5

and the low-concentration limit of the scattering expansion for a poly-
disperse solution takes a form similar to Eq. (2.148):

Kc | 167212 7
—_— = —— 1 2 i 2 - vt . 2.]51
(RQ)C_,O M, [ 3 (Res (z) + 1 (2.151)

An expansion similar to Eq. (2.151) for non-zero concentrations is the basis
for the Zimm plot (see Problem 2.47).

The coil size of chains in dilute solution is typically measured by light
scattering, using a laser. Visible light has a wavelength of order A = 500 nm,
which is much longer than the wavelength of neutrons (A~ 0.3 nm). This
means that much smaller scattering wavevectors g are realized in light
scattering than in neutron scattering. The limit gR, < 1, required for the
expansion of the form factor in Eq. (2.146), is satisfied for all but the
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highest molar mass chains in small-angle light scattering. At low scattering
angles (for gRy < 1), the form factor can also be approximated by an
exponential:

2R2
P(q) =~ exp (— 1 3 g) for gR, < 1. (2.152)

This last result is known as the Guinier function and is the basis for deter-
mining the radius of gyration from small-angle scattering experiments
for objects with unknown form factor.

2.8.4 Debye function

Debye first calculated the form factor for scattering from an ideal chain in
1947. This form factor will be useful in interpretation of a wide variety of
scattering experiments on polymers. The form factor for an ideal linear
chain is obtained by averaging the form factor of isotropic scatterers
[Eq. (2.143)] over the probability distribution for distances R; between
monomers i and j on the ideal chain:

N N

1 *sin(qR;; o
P(q):ﬁZZ/ ——(rf)Pgd(lz—J|,Rg)47rR$deg. (2.153)
0 qu

The probability distribution function P34 (|i —j|, R;) is given by Eq. (2.86):

3/2 3R2
N . 2 _ ij 9

(2.154)

The integral over R; can be evaluated by converting it into a Gaussian
integral (by writing the complex representation of sine and completing the
square in the exponent):

00 R2 1/2,,.3/2 2
/ R;; sin(gRy) exp (~ _ﬂ) dR; = %exp (_ q__)f) (2.155)
0 X 4 4

The variable

oo il

3 (2.156)

was defined for convenience and the form factor for an ideal linear chain
becomes a double sum of exponentials:.

N 20207 _
P(q) = %ZZexp (— W) (2.157)

=1 j=1
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Fig. 2.20

T-2 Debve function is the form factor of
= :dzal linear chain.

Ideal chains

Replacing the summations over monomer indices by integrations provides
the integral form of the form factor of an ideal chain:

P(q) = N2/ [/ exp(——-%ilu-wodu}dv (2.158)

Next, we change the variables of integration s=u/N and t=v/N and
denote the coefficient in the exponent by Q = ¢*b’N/6 = ¢*(R3) [we have
used Eq. (2.54) for the radius of gyration of an ideal linear chain].

P(q) = /01 /01 exp(—Qls — tl)dS] dr

= /01 :/Ozexp[—Q(t —5)]ds+ /Il exp[—Q (s — 1)] ds] dr

= /01 :exp(—Qt)/Otexp(Qs) ds + exp(Q?) /t] exp(—Qs) ds] de

1
= é/o [exp(—Q1) (exp(Q1)—1)— exp(Q1) (exp(—Q)—exp(—Q1))] dt

!
= é/o [2 — exp(—Q1t) — exp(—Q) exp(Q1)] d¢

1 exp(-0) -1 5 xp(@) 1
=0 {“ 0 ap(=0) =5 ]
sz exp(—0) — 1+ Q. (2.159)

This form factor of an ideal linear polymer is called the Debye function
and can be rewritten in terms of the product of the squaye of scattering
wavevector ¢” and the mean-square radius of gyration of the chain (Ré):

P(g) = ————s lexp(~g(RY) — 1+ #(RY). (2.160)

(4*(R2))’

The Debye function is plotted in Fig. 2.20.
In the limit of small scattering angles, where gR, < 1, the exponential can
be expanded to simplify the Debye function:

2
(¢2(R))*

’ [1 gy + D @)

2 6

1%

(1 —q2<f§> +) for g4/ (R2) < 1. (2.161)
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Note that we recover Eq. (2.146) for a general form factor for small values
of ¢,/ (R2).

At large scattering angles, the form factor describes the conformations
of smaller sections of the chain on length scales 1/q < | /(R?):

Plg) = (7%2—))— exp(—a*(R)) = 1+ (R
¢* (R
'=Vq2<2Rz> for gy/(R2) > 1. (2.162)

This power law character of the form factor is related to the power law
decay of the pair correlation function of an ideal chain [Eq. (2.121)]. Quite
generally, the form factor is related to the Fourier transform of the intra-
molecular pair correlation function g(r):

. 1
‘P(‘])—N

ll +/g(7) exp(i7 - 7) d3r] (2.163)
Equation (2.162) is a special case for a form factor of a fractal (with fractal
dimension D = 2). For any fractal, the wavevector dependence of the form
factor gives a direct measure of the fractal dimension D:

D
P(q)~(q <R§>) for ¢,/(R2) > 1. (2.164)

The reciprocal form factor 1/P(g) for a ideal linear chain [Eq. (2.160)] is
shown in Fig. 2.21 as a function of ¢*(R;) (medium line) and is compared
with the reciprocal form factors for a rigid rod (thin line) and for a solid
sphere (thick line). The form factors of a rod,

\/ﬁqR . .‘ 2
P(g) = — / ssing g, (sin(V3gRe) ) (2.165)
\/§ng 0 t \/§ng

1/P(g)

S = N W AR NN 0O
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Fig. 2.21
Reciprocal form factors for simple
objects: a solid sphere [Eq. (2.166), thick
curve], an ideal linear chain [reciprocal
Debye function, Eq. (2.160), medium
line], and a rigid rod [Eq. (2.165), thin
curve].
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Fig. 2.22
Small-angle neutron scattering data fit
to the Debye function multiplied by a
zero wavevector scattering. Data are for
0.31% (circles), 0.63% (squares), 0.93%
(triangles), and 1.19% (upside down
triangles) PMMA with

M., =250000 gmol ~ ' in a melt of
perdeuterated PMMA, from R. Kirste
et al., Polymer 16, 120 (1975).
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and a sphere,

2
P(g)= (W/—éqlz—g)} [sin(\/%ng)—(\/S/_?)ng) Cos(qug)]) s

(2.166)

are derived in Problems 2.44 and 2.45. Since all curves are plotted in
Fig. 2.21 as functions of qz(Ré), the initial slope of all of them is the same
and is equal to 1/3 [see Eq. (2.146)].

The Debye function describes the ¢ dependence of scattering data from
dilute solutions of ideal chains. Such dilute solutions can either be obtained
in a #-solvent or by having a dilute solution of ordinary chains in a melt
of perdeuterated chains. Small-angle neutron scattering data for four dilute
concentrations of poly(methyl methacrylate) (PMMA with M, =
250000 g/mol ~ ') in perdeuterated PMMA are shown to be fit by the Debye
function in Fig. 2.22. Two parameters are used in the fits, R, = 13.3nm and
a multiplicative intensity scale factor.

2.9 Summary of ideal chains

Polymers with no interactions between monomers separated by many
bonds along the chain are called ideal chains. Chains are nearly ideal
in polymer solutions at a special compensation temperature (the
B-temperature) as well as in polymer melts.

The mean-square end-to-end distance for an ideal chain with » main-
chain bonds of length / is (R?) = C,nl?, where C, is called Flory’s char-
acteristic ratio. For long chains, this characteristic ratio converges to
Co., leading to a simple expression for the mean-square end-to-end dis-
tance of any long ideal linear chain:

(R*) = Cyonl®. (2.167)
It is convenient to define the Kuhn monomer of length # and the number of
Kuhn monomers N such that the mean-square end-to-end distance of an
ideal linear chain is a freely jointed chain of Kuhn monomers:

(R*) = Nb%. (2.168)

The mean-square radius of gyration is defined as the averaged square
distance from all monomers to the center of mass of the polymer [Eq. (2.44)]
and is related to the averaged square distance between all pairs of mono-
mers [Eq. (2.48)]. The mean-square radius of gyration of an ideal linear
polymer is one-sixth of its mean-square end-to-end distance:

(R2) = Nb* /6. (2.169)

The radius of gyration of ideal branched polymers can be calculated using
the Kramers theorem [Eq. (2.65)].



Summary of ideal chains

The probability distribution of the end-to-end vector of an ideal chain is
well described by the Gaussian function:

- 3\ 3R R
Falle )= (ZWNbZ) exp| —5yg | for [R| < Rux = Nb.

(2.170)

The free energy of an ideal chain is purely entropic and changes quad-
ratically with the end-to-end vector:
3 R .
F-—kT—b—2 for |R| < Nb. (2.171)
The quadratic form of the free energy implies a linear relationship between
force and the end-to-end vector, that is valid for small extensions:
~+ 3kT .,
f—WR for |R| < Nb. (2.172)
Thus, the ideal chain can be thought of as an entropic spring and obeys
Hooke’s law for elongations much smaller than the maximum elongation
(|R| < Rmax = bN). For stronger deformations, the Langevin function
[Eq. (2.112)] for freely jointed chains or Eq. (2.119) for worm-like
chains can be used to describe the non-linear relation between force and
elongation.
The probability to find a monomer within a distance r of a given mono-
mer is called the pair correlation function g(r). For ideal linear chains, g(r)
is reciprocally proportional to the distance r:

3

g(r)=—. (2.173)

The radius of gyration of any polymer can be determined from the wave-
vector g dependence of the scattering intensity at low angles (7R, < 1) in the
limit of zero concentration:

|
Pg)=1-34 2(R2) 4+ for gy /(R2) < 1. (2.174)
Distributions of monomers and correlations between them inside the chain
can be determined from the angular dependence of scattering intensity in the
range of higher wavevectors g, /(RZ) > 1:

-D
P(q)w(q <R§>) for ¢,/(R2) > 1, (2.175)

where D is the fractal dimension of the polymer (D = 2 for ideal chains).
The Debye function is the form factor for scattering from an ideal linear
chain:

2 (PR — 1 4 LR
P(f])—(q2<R§>)2 [exp(=¢7(Ry)) — 1 + " (Ry)]. (2.176)
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Problems
Section 2.2

2.1

2.2

23

Prove that {cos §;;) = 0 for the angle §;; between two bonds i and j if there are
no correlations between bond vectors (see Fig. 2.3).

Calculate the mean-square end-to-end distance of atactic polystyrene with
degree of polymerization 100 assuming that it is an ideal chain with char-
acteristic ratio Co, =9.5. (Note that the characteristic ratio is defined in
terms of the main-chain bonds of length /= 1.54 A rather than monomers.)
Calculate the root-mean-square end-to-end distance for polyethylene with
M=10"gmol ! in an ideal conformation with C., =7.4. Compare the
end-to-end distance with the contour length of this polymer.

Section 2.3

24

25

2.6

2.7

2.8*

2.9*
2.10

Calculate Flory’s characteristic ratio C, for a freely rotating chain con-
sisting of n bonds of length / with bond angle 6. Plot C,/C,, as a function of
n for bond angles # = 68° and 10°.

Calculate the Kuhn monomer length b and number of Kuhn monomers N
of a freely rotating chain consisting of » bonds of length / with angle 6.
Consider a restricted random walk on a square lattice. Let us assume that a
walker is not allowed to step back (but can go forward, turn right, or turn
left with equal probability). Calculate the mean-square end-to-end distance
for such a restricted n-step random walk. What is the characteristic ratio
C. for this walk? The lattice constant is equal to /.

Consider a restricted random walk on a 3D cubic lattice. Let us assume
that a walker is not allowed step back (but can go forward, turn up, down,
right, or left with equal probability). The lattice constant is equal to /.

(i) Calculate the mean-square end-to-end distance for such a restricted n-

step random walk.
(i1) What is the C,, for this walk?

Hint: Recall for a freely rotating chain C,, = (1 4+ cos 8)/(1 —cos 8).
Demonstrate that the mean-square end-to-end distance of a worm-like
chain with contour length Ry, and persistence length /; is

(R*) = 2Rmaxly — 21 (1 - exp(— R}“")), (2.177)
p

and the mean-fourth end-to-end distance is

R4 _ R2 2 R 3 f4 max

+ 32 (1 — exp (— Rmax)) — 8 Rmnax /3 exp (— Rmax) .
L A

Derive the characteristic ratio of the hindered rotation model [Eq. (2.40)].
What are the common features of all models for ideal linear chains?

(2.178)

Section 2.4

2.11

2.12

The radius of gyration of a polystyrene molecule (M, =3x 10" gmol ')
was found to be R,=1010A. Estimate the overlap concentration ¢* in
gem 2, assuming that the pervaded volume of the chain is a sphere of
radius R,.

Consider a polymer containing N Kuhn monomers (of length 5) in a dilute
solution at the #-temperature, where ideal chain statistics apply.



2.13

2.14

2.15
2.16

2.17
2.18

2.19

2.20
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2.22

2.23

Problems

Answer questions (i)—(vi) symbolically before substituting numerical
values.

(i) What is the mean-square end-to-end distance R} of the polymer?
(ii) What is its fully extended length Ry,,?
(iii) What is the mean-square radius of gyration Ré of this polymer?

The molar mass of the polymer is M

(iv) Estimate the overlap concentration ¢* for this polymer, assuming that
the pervaded volume of the chain is a sphere of radius R,. (Hint: It is of
the order of the concentration inside the coil.)

(v) How does this overlap concentration depend on the degree of
polymerization?

(vi) What is the ratio of its fully extended length to the average (root-mean-
square) end-to-end distance Ryax/Ro?

(vii) Consider an example of a polymer with molar mass M = 10* gmol ™"
consisting of N=100 Kuhn monomers (of length »=10A) and
determine Ry, Ry, Rmax, ¢* and Rpax/Ro.

One property of an ideal chain is that its subsections are also ideal. Derive
the general relation between the end-to-end distance of the chain R, the end-
to-end distapce of the section £, the number of monomers in the chain N and
the number of monomers in the section g.

The previous problem showed that the equivalent freely jointed chain fol-
lows random walk statistics even if the effective monomer is renormalized to
be larger than 5. What is the smallest effective monomer size for which this
renormalization works?

Calculate the radius of gyration of a rod polymer with N monomers of
length b using Eq. (2.51).

Calculate the radius of gyration of a uniform disc of radius R and negligible
thickness.

Calculate the radius of gyration of a uniform sphere of radius R.

Calculate the radius of gyration of a uniform right cylinder of radius R and
length L.

Consider a fractal line with fractal dimension D. The mean-square distance
between monomers u and v along this line is

(R(u) — R(v))?) = B*(v — u)*/P. (2.179)

Calculate the mean-square end-to-end distance R? and radius of gyration Ré
for this fractal line. Determine the ratio Rz/Ré symbolically and then cal-
culate this ratio for fractal dimensions D=1, 1.7 and 2.

Show that the mean-square radius of gyration of a worm-like chain is

28 28 R
(Ré):lRmaxlp—lf)Jr L 2 (l—exp(— ;““)). (2.180)
p

Rmax a R2

3 max

Verify that in the two simple limits (ideal chains Ry,x >/, and rigid rods
Rumax < Ip) the correct limiting expressions for the radius of gyration are
recovered.

Calculate the radius of gyration of an ideal symmetric f~arm star polymer
with N monomers of length b. Hint: Each arm of a symmetric star polymer
can be treated as an ideal chain of N/f monomers.

Calculate the radius of gyration of an ideal H-polymer with all five sections
containing equal number (N/5) of Kuhn monomers with length b.

(i) Calculate the radius of gyration of an asymmetric three arm star poly-
mer with a short arm consisting of # = N/4 Kuhn monomers of length b
and two equal long arms containing 3N/8 Kuhn monomers each.



Ideal chains

2.24

2.25%

2.26*

2.27

(ii) Evaluate R, of this asymmetric star for N = 1000, n =250, and b =3 A.
(iii)) What length of the asymmetric arm n corresponds to the largest and
smallest radii of gyration of a star polymer for constant N and 5?

Consider an ideal f-arm star with n; Kuhn monomers in the jth arm
(j=12,...,f) and with Kuhn length b. The total number of Kuhn

monomers in a molecule is N = Z n;. Show that the mean-square radius of
gyration of this star is J=1

;
(R: Nb2< N2Zn - j). (2.181)

Consider a tree polymer consisting of f branches (but no loops). Each of
these branches contains N/f Kuhn monomers with Kuhn length b. Let v;; be
the number of branches along the linear chain connecting branch i and
branch j. Demonstrate that the mean-square radius of gyration of this
polymer is

(R) = NB (Zf 7t Z Zvu) (2.182)

i=1 j=i+l

Calculate the radius of gyration of an ideal ring polymer with N Kuhn
monomers of length b, and compare it to the radius of gyration of a linear
chain with the same number of monomers.

The radius of gyration of a spherical globule containing a single polymer
and some solvent is 450 A. Calculate the polymer dens1ty 1ns1de this globule
if the molar mass of the polymer is M =2.6 x 107 gmol !

Section 2.5

2.28

2.29

2.30

2.31

2.32
2.33

2.34*

Derive Stirling’s approximation for large N:

N = V27NN" exp(—N). (2.183)

Demonstrate that the Gaussian probability distribution function of a one-
dimensional random walk is normalized to unity:

/_ZPId(N’x)dx_\/Zw—N/ exp( 2)dx 1. (2.184)

Show that the mean-square displacement of a one-dimensional random
walker is

/ x*P1g(N, x)dx = Nors x? exp( 2XN> dx = (2.185)
-0 s -0

Suppose a person walks from the origin in one dimension forward or
backward. The probability for a step in each direction is 1/2. What is the
probability of finding the person five steps (x = 5) forward from the origin
after N =25 steps.

Calculate the location of the maximum of the distribution of end-to-end
distances (Fig. 2.12) of an ideal chain with N Kuhn monomers of length b.
Calculate the average end-to-end distance of an ideal linear chain with N
Kuhn monomers of length 5.

Demonstrate that the higher moments of the end-to-end vector of an ideal
chain with N Kuhn monomers of length & is

—p (20 + 1)
(R?) = T

within the Gaussian approximation [with probability distribution Eq. (2.85)].

(Nb*Y (2.186)



Problems

2.35* Show that the mean-square distance of the jth monomer from the centre of
mass of an ideal chain with N Kuhn monomers of length 5 is

3 N?

within the Gaussian approximation. What are the maximum and mini-
mum values of this mean-square distance?

2.36* The mean-square radius of gyration is the second moment of the dis-
tribution of monomers around the centre of mass of the chain [Eq. (2.44)].
The mean-square radius of gyration of an ideal linear chain with N Kuhn
monomers of length b is related to its mean-square end-to-end vector
[Eq. 2.54)]:

(R - Ren)?) = [1 YW ‘”} (2.187)

N
(R) = -3 (R~ Ren) = £ (R2). (2.188)
=1

(i) Show that higher moments of the distribution of monomers around the
centre of mass are related to the corresponding higher moments of the
end-to-end vector:

1 Y 23 n 4 1 242 1 =4

ﬁ;((Ri_Rcm) ) =g (Vb)) =35 (RY), (2.189)
- D 2 29 =6

Z (R = Rem)®) 972 (' = 3750 (K (2.190)

(i) Demonstrate that higher moments of the radius of gyration are
li“(z?. R )2 N1 B vy = B ey (2.191)
N T 540 15780 '

N 3
(-]} - e

i=1

2.37* Consider an ideal linear chain with N Kuhn monomers of length 5 and
fixed end-to-end vector R directed along the x axis. Demonstrate that the
mean-square projection of the radius of gyration onto the direction of its
end-to-end vector is

P2
#Zu? Rem)?) _sz( fvf;) (2.193)

while the mean-square projection of the radius of gyration onto the per-
pendicular direction is independent of the magnitude of the end-to-end

vector

A 1 &, - &
S~ R = 5 (s~ Bon)?) =3 NE (2.194)
i=1

Note that for .RJ = 0 the mean-square radius of gyration of a ring
polymer (RZ) = Nb’/12 is recovered, for |R| = bN'/? the mean-square
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2.38*

2.39

Section 2.6

2.40

2.41

radius of gyration of an ideal linear chain (Ré) Nb?/6 is recovered, and
for | R| = bN the mean-square radius of gyration of a rod (R2) = (Nb)*/12
is recovered. It is interesting to point out that the asymmetry of the ideal

linear chain,
1+ 3R
Nb2 |’

is quite large and a typical shape is better represented by an elongated
ellipsoid than by a sphere.

Show that the one-dimensional probability of finding a monomer of an
ideal chain whose ends are fixed at positions X; and X, is the following
Gaussian function.

/| 3 3(x — x,)’
Pld(S,x) = mﬁxp(*(:?‘Tqb;L) (2195)

Written in this way, the position of the monomer that is s monomers from
the end of the chain at X is described as though that monomer was the end
monomer of a single ‘effective chain’ of

B 1 _s(N-y)
ks = 1/s+1/(N-s) N (2.196)

monomers, whose other end is at position

N-—s s

N + X3 N
Consider a linear chain consisting of m + N monomers. The ends of this
chain are fixed in space. The x coordinates of the ends are
X, and X5, while the junction point fluctuates with x coordinate
R’. What is the mean-square x coordinate of the end-to-end vector of the
section containing N monomers ((R — X} ) )?

X, =X (2.197)

Consider an ideal chain with N Kuhn monomers of length 5. The chain is
carrying a positive charge + e at one end and a negative charge — e at the
other end. What will be its average end-to-end distance R, in an electric
field E=10* chAI acting along the x axis at room temperature, if
N=10*and b =6 A? What is the ratio of this average distance R, and root-
mean-square projection R, of the end-to-end vector along the x axis in the
absence of the field? Ignore the direct Coulomb interaction between the
charges.

Consider an ideal chain with N Kuhn monomers of length . The chain
has two multivalent positive charges +Ze at both of its ends (it is called a
telechelic polymer). These two charges repel each other and stretch the
polymer. '

(1) Whatis the expression for the average distance R between the chain ends
in a polar solvent with dielectric constant e at temperature 7 (in terms of
Z,e,N,b, T, e, etc.)?

(i1) What is the ratio of this average distance R and the root-mean-square
projection of the end-to-end vector along the x axis R, in the absence of
Coulomb interaction for the chain with N =100 Kuhn monomers



2.42*

Problems

of length =3 A in water (dielectric constant e = 80) at room temperature
(20°C) for charges of valency Z =10?

Hint: The Coulomb force between two charges + Ze separated by distance
R in a solution with dielectric constant ¢ is (Ze)*/(eR?).

In order to avoid complicated conversions of units note that a combi-

nation of variables, called the Bjerrum length, is Iy =e*/(¢kT) = 7A in
water at room temperature.
Demonstrate that the probability distribution function of the end-to-end
distance R of a freely Jomted chain can be expressed in terms of the inverse
Langevin function £~ ( ) of the ratio x = R/Rp,x of the end-to-end dis-
tance R to its maximum value R, = Nb:

£ ()
P(R) = 3/2 -1 1, 201/2
(2eNb2)"“x{1 — [L7 (x)csch L7 (x)]"}
sinh £7'(x) !
X
X Q== - . (2.198)
LT (x) expleL (%)
Compare this distribution function with the Gaussian approximation
[Eq. (2.85)].
2.43  What is the difference between the probability distribution function and
the pair correlation function?
Section 2.8
2.44  Calculate the form factor of a uniform sphere of radius R.
2.45 Calculate the form factor of a long thin rod of length L.
246 (i) Use the tabulated small-angle neutron scattering data® for a 1%

solution of M =254000gmol ~' deuterium-labelled polystyrene in
M = 110000 gmol ~ ! ordinary polystyrene to determine the radius of
gyration by fitting the data to the Debye function [Eq. (2.160)].

(i) Why is the Guinier limit [Eq. (2.146) or (2.152)] not useful for
determining R, for these data?

(iii) IfEq.(2.146) were used to estimate R, from the five lowest g data points,
is R, overestimated or underestimated? Why?

q(l,/;\) 0.00980 0.0128 0.0158 0.0188 0.0218 0.0248 0.0278
1(q) 4.43 3.37 2.55 2.05 1.58 1.23 0.966

g (1/A) 0.0308 00338 00368 00399 0.0429 0.0459 0.0504
1q) 0804 0758 0592  0.509 0445 0370 0275

q(l/;\) 0.0564 0.0624 0.0684 0.0744 0.0804 0.0864 0.0940
I(q) 0.246 0.197 0.175 0.139 0.128 0.107 0.081

g (1/A)  0.1060
1(q) 0.077

5 Data from M. R. Landry.
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2.47

2.48

In Chapter 1, we learned how to determine weight-average molar mass M,
and second viral coefficient A, from the concentration dependence of light
scattered at a very small angle from a polymer solution. In this chapter, we
learned that the angular dependence of light scattering gives information
about the radius of gyration R, of the polymer coil. In practice, these
analyses are often combined to obtain My, 4,, and R, using a Zimm plot.
The following equation is the basis of the Zimm plot and was obtained by
combining the concentration expansion of Eq. (1.96) with the angular
expansion of Eq. (2.147):

Ry

Kc 1 16mn* _, (0
_ — e 2.1
[Mw+2A2c+ J [1 + e R, sin (2) + } (2.199)

Use the following table of data for K¢/ Ry of a polystyrene in benzene at four
concentrations and five angles, to construct a Zimm plot by plotting Kc/Ry
against 100c¢ + sin’(9/2) with ¢ in gmL~! and extrapolating to ¢ — 0 and
¢ — 0 to determine My, 4>, and R,.

Table of 10°K¢/R, (in mol g ') for a polystyrene in benzene:

cmgmL™Y)  6=30° 6=45 6=60° 0=75 O=90°

0.5 1.92 1.98 2.16 2.33 2.51
1.0 2.29 2.37 2.53 2.66 2.85
1.5 2.73 2.81 2.94 3.08 3.27
2.0 3.18 3.25 3.45 3.56 3.72

For the laser used, A =546 nm and the refractive index for light of this
wavelength travelling though benzene is n=1.5014. After plotting the 20
data points, the data at each angle must be extrapolated to zero con-
centration, making a ¢=0 line of five points (corresponding to the five
angles) whose slope determines R,. The data at each concentration must be
extrapolated to zero angle, making a =0 line of four points (corre-
sponding to the four concentrations) whose slope determanes 4,. Both the
c¢=0 line and the # =0 line should have the same intercept, which is the
weight-average molar mass M.

Calculate the radius of gyration and the mean-square end-to-end distance
of an ideal linear diblock copolymer consisting of N; Kuhn monomers of
length b, connected at one end to N, Kuhn monomers of length b,.
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