
1 
 

The molecular basis for cellular function of 1 

intrinsically disordered regions  2 
 3 
 4 
Alex S. Holehouse1,2 and Birthe B. Kragelund3 5 
 6 
1 - Department of Biochemistry and Molecular Biophysics, Washington University School of 7 
Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA 8 
2 - Center for Biomolecular Condensates, Washington University in St. Louis, 1 Brookings 9 
Drive, St. Louis, MO 63130, USA 10 
3 – REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of 11 
Copenhagen, 5 Ole Maaloes Vej, Copenhagen DK-2200, Denmark 12 
  13 
Correspondence: alex.holehouse@wustl.edu, bbk@bio.ku.dk  14 

Author contributions  15 
The authors contributed equally to all aspects of the article.  16 
 17 
 18 
Abstract:  19 
Intrinsically disordered protein regions exist in a collection of dynamic interconverting 20 
conformations that lack a stable three-dimensional structure. These regions are structurally 21 
heterogeneous, ubiquitous, and found across all kingdoms of life. Despite the absence of a 22 
defined 3D structure, disordered regions are essential for cellular processes ranging from 23 
transcriptional control and cell signalling to sub-cellular organization. Through their 24 
conformational malleability and adaptability, disordered regions extend the repertoire of 25 
macromolecular interactions and are readily tunable by their structural and chemical context, 26 
making them ideal responders to regulatory cues. Recent work has led to major advances in 27 
understanding the link between protein sequence and conformational behaviour in disordered 28 
regions, yet the link between sequence and molecular function is less well-defined. Here, we 29 
consider the biochemical and biophysical foundations that underlie how and why disordered 30 
regions can engage in productive cellular functions, provide examples of emerging concepts, 31 
and discuss how protein disorder contributes to intracellular information processing and 32 
regulation of cellular function.  33 
 34 
 35 
  36 
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Main text: 37 
[H1] Introduction 38 
Molecular interactions directly determine cellular fate and function. Proteins are the central 39 
conduits for the reception, processing, and transmission of cellular information, a collection of 40 
activities we refer to as ‘molecular communication’. Proteins often control biological function 41 
through well-structured molecular interactions mediated by folded domains. However, many 42 
proteins also possess intrinsically disordered regions (IDRs)1–5, protein domains that 43 
additionally can mediate essential cellular interactions without long-lived (stable) structures.  44 
 45 
IDRs are defined by an amino acid sequence that gives rise to dynamic polypeptide chains 46 
which are unable to acquire a stable tertiary structure3. This inability to fold often reflects an 47 
insufficient proportion of hydrophobic amino acids to form a hydrophobic core. Despite the 48 
absence of a well-defined 3D structure, IDRs are essential for cellular function. They are found 49 
across all cellular locations, from integral membrane proteins to soluble cytoplasmic proteins 50 
to chromatin-associated proteins (Fig. 1). They function in cellular processes including but not 51 
limited to transcription, translation, signalling, cell division, genome maintenance, immune 52 
surveillance, circadian biology, and cellular homeostasis6–15. On the molecular scale, IDRs can 53 
function as flexible linkers, as tunable modules for molecular recognition, as binding interfaces 54 
for simultaneous interactions with multiple partners, as cellular sensors, and as drivers of 55 
subcellular organization3,16–22. IDRs range in length from short (5-10 residue) to long (1000+ 56 
residue) regions, and can exist as tails, linkers, and loops. Along an IDR, distinct sequence 57 
properties can be concentrated in specific parts of the sequence, enabling discrete molecular 58 
functions to co-exist in a single IDR23–25. While serving a variety of functions, a common 59 
feature shared by many IDRs is their ability to enable multivalent, tunable, and malleable 60 
molecular recognition that would otherwise be challenging to mediate via folded domains. In 61 
this way, IDRs offer a route to enhance and expand molecular communication. 62 
 63 
Protein disorder is ubiquitous across the kingdoms of life. In eukaryotic proteomes, 30-40% of 64 
residues are in IDRs, with a similar fraction in many viruses25,26. An entire protein can be 65 
disordered, in which case the protein is referred to as an intrinsically disordered protein (IDP). 66 
However, most protein disorder is found in IDRs positioned terminally (tails) or connecting 67 
two folded domains (linkers) (Fig. 2a and Box 1). Around 70% of proteins in the human 68 
proteome possess one or more IDRs of 30 residues or longer (see Box 1). While prokaryotes 69 
contain fewer IDRs (see Box 1), emerging work suggests these also play key roles27.  70 
 71 
Instead of a stable 3D structure, IDRs exist in a collection of rapidly interconverting structurally 72 
distinct conformations known as an ensemble (Fig. 2a,b, Movie M1)2,28,29. An ensemble can 73 
be considered the landscape of accessible IDR conformations. Although folded domains also 74 
exist in ensembles, these are typically much less structurally heterogeneous than those of 75 
IDRs30. Moreover, while it is convenient to discuss IDRs and folded domains as distinct 76 
entities, in reality, they exist along a continuum of structural heterogeneity31. Just as structure 77 
and folds (e.g., four-helix bundle, b-barrel) can quantitatively describe a folded domain, an 78 
IDR can be quantitatively described by its ensemble properties32–34 79 
 80 
Ensemble properties are quantifiable parameters that describe 3D features derived from the 81 
ensemble. They include global IDR dimensions (i.e., how expanded or compact the protein 82 
conformations are in an ensemble), local transient structure (i.e., lowly populated helices and 83 
extended conformations), and inter-residue distances (Fig. 2b). IDR global dimensions are 84 
often quantified by the radius of gyration [G], end-to-end distance [G], or hydrodynamic radius 85 
[G]. Importantly, ensemble properties are determined by molecular interactions encoded by the 86 
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IDR sequence and its context (discussed below) and can be determined using experimental and 87 
computational approaches (see Box 2).  88 
 89 
IDR ensemble properties can play key roles in biological function33. For example, transient 90 
secondary structure can predispose an IDR to bind a specific partner and play important roles 91 
in binding energetics21,35,36. In other instances, the average end-to-end distance of an IDR may 92 
position two folded domains on either end at a functionally-relevant average distance from one 93 
another37–40. As a corollary, the modulation of ensemble properties can influence cellular 94 
function. Understanding that IDRs are defined by sequence-specific ensembles with unique 95 
physicochemical features acknowledges that ensemble properties can alter in response to 96 
molecular interactions, changes in the cellular environment, or post-translational modifications 97 
(PTMs).  98 
 99 
Ensemble properties are best described in terms of probability distributions  (Fig. 2c). 100 
Furthermore, IDR ensembles can possess well-defined structural and conformational 101 
preferences encoded by the underlying protein sequence, biasing them towards certain 102 
functionally relevant conformations or average ensemble properties. Just as folded proteins 103 
have a sequence-structure-function relationship, IDRs possess an analogous sequence-104 
ensemble-function relationship, where that ensemble can be quantified in terms of ensemble 105 
properties (Fig. 2b, c).  106 
 107 
The ensemble properties of an IDR depend on both the IDR sequence and its context. We 108 
define context as i) the local solution context, i.e., the proximity to other biomolecules 109 
(proteins, nucleic acids, lipids, small molecules, etc.), solution temperature, presence of 110 
osmolytes or ions, ii) the chemical context of the IDR, namely PTMs and changes in pH leading 111 
to protonation and deprotonation effects41, and iii) the structural context, i.e., the presence or 112 
absence of adjacent folded domains. Moreover, the binding of IDRs to ligands – be they other 113 
proteins, DNA, RNA, lipids, metal ions, carbohydrates, or other molecules – can influence 114 
ensemble properties and contribute to context42–45. While context can also alter folded domain 115 
ensembles, the absence of a network of stable intramolecular contacts in IDRs means they are 116 
more sensitive to changes in context46. Given that contexts can alter IDR ensemble properties 117 
in various ways and changes in ensemble properties can be synergistic or antagonistic to 118 
specific functions, it stands to reason that IDR function can be tuned or even completely 119 
rewired by different combinations of ensemble-influencing perturbations. This allows IDRs to 120 
integrate complex signalling cascades and crosstalk across many cellular input pathways.  121 
 122 
The molecular details that underlie how IDRs confer biological function are, in many cases, 123 
opaque. This knowledge gap partly stems from the need to integrate molecular biophysics and 124 
cell biology to fully interpret how function emerges, e.g., sequence-specific effects may alter 125 
IDR ensembles and hence function. In this Review, we aim to provide the conceptual tools 126 
needed to tease apart the molecular basis for IDR-mediated cellular function and regulation.  127 
 128 
[H1] Sequence-to-Ensemble Relationships in IDRs  129 
The relative deficiency of hydrophobic amino acids in many IDRs means their sequence 130 
composition often differs from folded proteins. It is therefore possible to assess the probability 131 
of a region being disordered from its sequence alone. Indeed, many accurate and robust 132 
disorder predictors have emerged over the years (see Box 1). Moreover, recent advances in 133 
structure prediction have provided a convenient corollary to disorder prediction; the absence 134 
of a predicted structure from tools such as AlphaFold2 (refs. 47,48) and trRosetta49 implicates a 135 
region as being disordered (although the resulting structure predicted by these tools should not 136 
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be taken as a faithful prediction of the ensemble properties50). As a result, IDRs can generally 137 
be confidently identified from the amino acid sequence51,52.   138 
 139 
Unconstrained by the requirement to fold into a 3D structure, paralogous and orthologous IDR 140 
sequences can be highly variable across evolution (see Box 3)53–55. This can make sequence 141 
alignment difficult and often misleading, necessitating alternative routes to measure 142 
conservation38,55–59. In particular, the underlying physical chemistry encoded by an IDR 143 
sequence dictates the resulting ensemble, and the properties of the ensemble can dictate 144 
function. Thus, one approach for understanding conservation and function in IDRs is by 145 
considering if and how ensemble properties might contribute to function, enabling the decoding 146 
of sequence-ensemble-function relationships24,38,60.  147 
 148 
[H2] Amino Acid Physical Chemistry Defines Sequence-to-Ensemble Relationships  149 
The twenty natural amino acids offer a chemically diverse set of building blocks to encode 150 
distinct ensemble properties33,34,61. The relative abundance and position of different amino 151 
acids are often called sequence features [G]. For sequence-ensemble relationships, certain 152 
sequence features are more influential than others. The number, charge, and relative positioning 153 
– termed patterning – of charged residues are key determinants of ensemble properties in IDRs 154 
providing repulsive and attractive electrostatic interactions coupled with favourable free 155 
energies of solvation (Fig. 2d, e, f)58,62–70. Aromatic residues can engage in intramolecular 156 
interactions driven by their sidechain π:π interactions [G] (π-electrons), cation:π interactions 157 
(with arginine, lysine, and protonated histidine), methyl:π interactions, or hydrophobic 158 
interactions (with aliphatic residues) (Fig. 2e, 2f)57,71–73. Aliphatic residues can drive 159 
intramolecular interactions via the hydrophobic effect and desolvation, whereas polar residues 160 
can engage in hydrogen bonds or dipole-dipole interactions18,74–76. Finally, due in part to steric 161 
effects, proline residues generally make chain dimensions more expanded than they would 162 
otherwise be, and, along with glycine, suppress transient helicity and b-strand formation61,63,77–163 
80. In all cases, the clustering and patterning of these different residues can impact ensemble 164 
properties57,61,81–83. In addition to genetically-encoded sequence biases, IDRs are 165 
disproportionately post-translationally modified compared to folded domains84,85. By 166 
dynamically re-writing sequence chemistry through PTMs, IDR ensembles can be modulated 167 
in a reversible and controllable way86–90. In summary, sequence features can be quantified via 168 
recently established sequence parameters, enabling comparison between IDRs without reliance 169 
on (often impossible) sequence alignments4,25,34,55,91–93. 170 
 171 
Sequence features – and hence ensemble properties – can be used for comparisons, 172 
evolutionary analysis, and quantitative predictions relevant to understanding IDR 173 
function55,56,92,94–96. For example, the C-terminal IDR in the Polycomb Repressive Complex 1 174 
protein PSC is essential, poorly conserved as assessed by sequence alignments, yet highly 175 
conserved in terms of disorder and charge properties, highlighting the potential for function to 176 
be maintained with minimal sequence conservation58. More broadly, the preservation of overall 177 
charge or charge clusters in seemingly divergent IDRs has been used to explain functional 178 
conservation across evolutionary lineages or between seemingly unrelated proteins59,97–101. 179 
Finally, changes in IDR sequence features can compensate for evolutionary changes in IDR 180 
length, if ensemble properties are conserved. For example, in a linker IDR from the Adenovirus 181 
protein E1A, the fraction of proline and negatively-charged residues decreases as the linker 182 
sequence becomes longer (more residues), such that the global dimensions of the linker are 183 
conserved, a phenomenon termed conformational buffering38. 184 
 185 
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[H2] Attractive and Repulsive Intramolecular Interactions Determine Ensemble 186 
Properties 187 
Attractive or repulsive intra-molecular interactions encoded by IDR sequence features can 188 
influence ensemble properties (Fig. 2b). These effects can be local or global and can act 189 
synergistically or antagonistically, with consequences for IDR-associated function. 190 
 191 
Local lowly-populated (10-30%) helicity is common in IDRs, and is driven by local sequence 192 
features that stabilize the network of backbone hydrogen bonds found in α-helices17,21,102–106 193 
Transient helicity can oriente sidechains to pre-organize binding interfaces, for example, as 194 
seen for small molecules that bind the androgen receptor107. In some systems, transient helicity 195 
appears to be evolutionarily tuned, in others, it determines molecular specificity, and in others, 196 
mutations that modulate helicity lead to disease21,35,104,108–110. While the presence of transient 197 
helicity does not necessarily imply functional significance, conserved elements that form 198 
transient helices – especially those with aliphatic or aromatic residues along the helix face – 199 
often appear as functionally-important elements within IDRs. 200 
 201 
Attractive and repulsive interactions along the IDR chain can lead to global chain compaction 202 
or expansion, driven by different chemical origins 24,33,60. Compaction here refers to a scenario 203 
in which an ensemble has a smaller global dimensions that expected by chance, whereas 204 
expansion means the ensemble is larger than expected by chance. Evenly-distributed aromatic 205 
or hydrophobic residues can drive labile attractive intramolecular interactions, as is seen in 206 
many low-complexity prion-like domains [G] (Fig. 2e, left)18,57,72,76,111–113. Alternatively,  207 
clusters of oppositely charged residues can interact through long-range electrostatic attraction, 208 
as can aromatic and arginine residues (Fig. 2e, right)72,81–83,114,115. Finally, long repeats of some 209 
polar amino acids can lead to chain compaction via local dipole interactions and hydrogen 210 
bonding. In the case of polyglutamine (polyQ), a combination of helix formation and long-211 
range intramolecular dipole interactions appears to govern global chain dimensions74,116–119. 212 
However, other polar tracts (e.g., glycine-serine repeats) behave as flexible chains that are 213 
neither overly compact nor expanded120,121. Chain compaction serves various functional roles, 214 
including modulating accessibility of binding motifs122 or enhancing the local concentration of 215 
adhesive interactions that can drive the formation of biomolecular condensates18,57,123. The 216 
extent of chain compaction and expansion can also tune the distance between domains or motifs 217 
found at the C- and N-terminal ends of an IDR, as discussed below. 218 
 219 
In addition to attractive interactions, some IDRs are enriched in residues that minimize intra-220 
molecular interactions61,78,124,125. These self-avoiding IDRs serve various roles. For linker IDRs 221 
that connect folded domains, linker length and sequence features influence the interaction 222 
between the folded domains. By setting the effective concentration of the folded domains for 223 
one another, dynamic and flexible (or compact) linkers enhance inter-domain interactions in a 224 
length-dependent manner, while expanded linkers suppress inter-domain interaction (Fig. 2g) 225 
37,38,69,121,126,127. These effects can be regulated by PTMs, offering a route to tune interdomain 226 
interaction22,37,128. Changing the effective concentration of two folded domains can tune partner 227 
binding129, impact autophosphorylation22, and alter allosteric communication between folded 228 
domains40,130,131. Self-avoiding IDRs can also serve scaffolding roles, as seen for the disordered 229 
tail of the transmembrane protein LAT, onto which several SH2 domains can bind at defined 230 
distances132, or in the growth hormone receptor133. Finally, IDRs can exert an entropic force. 231 
This is an intermolecular effect, whereby a reduction in the volume accessible to an IDR-232 
ensemble causes it to “push” against any molecular components that reduce its volume134. 233 
Given the generated entropic force is proportional to the loss of ensemble volume, IDR chain 234 
dimensions can tune the strength of the force by altering the volume occupied by the 235 
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ensemble124,134,135. This entropic force can tune binding events124, sense/influence membrane 236 
curvature125,135,136, or even enable entropy-driven translocation of IDRs through bacterial cell 237 
walls137.  238 
 239 
[H1] IDRs in Context  240 
Many IDRs function by engaging in intermolecular interactions with other biomolecules. IDRs 241 
can interact in various ways (discussed in the following two sections). These include but are 242 
not limited to (i) sequence motifs composed of ~5 – 12 residue elements that encode sequence-243 
specific recognition modules recurrent in many different and even unrelated proteins, known 244 
as Short Linear Motifs (SLiMs)138, (ii) multivalent interactions driven by specific sequence 245 
features (e.g., distributed aromatic residues or clusters of positively charged residues), (iii) 246 
folding-upon-binding to an appropriate partner, or (iv) some combination of these. IDRs can 247 
be highly multivalent, with several SLiMs or repeats orchestrating higher-order complexes, as 248 
seen in signalling hubs13. Moreover, IDRs may possess repetitive features that encode 249 
multivalency and lead to the formation of biomolecular condensates (discussed in the section 250 
IDRs and Biomolecular Condensates )139–141. Intra- and intermolecular interactions driven by 251 
IDRs can be suppressed or enhanced by changes in context that affect the physical chemistry 252 
of the amino acid residues (Fig. 3a–f). These changes in context can be transient or long-lived 253 
and can emerge from various origins. 254 
 255 
[H2] Physicochemical context 256 
Physicochemical context can substantially alter IDR form and function46. For example, 257 
electrostatic interactions can be screened by changes in ionic strength (ionic activity), as can 258 
occur from an influx of Ca2+, Na+, K+, or by cellular sulfation gradients142–144. Interactions can 259 
be enabled or suppressed upon protonation or deprotonation of titratable groups upon pH 260 
changes, as occurs in transit from the cytosol to endosomes, during cellular stress, or in disease 261 
states with high glycolytic activity97,145,146. Macromolecular crowding can alter IDR global 262 
dimensions, e.g., upon hyper-osmotic shock or due to enhanced ribosomal production, 263 
implicating IDRs as potential mechanosensors62,147,148. Many proteins involved in desiccation 264 
tolerance are also disordered prior to desiccation, yet acquire helicity upon desiccation149–151. 265 
Finally, IDRs often show temperature-dependent changes in their molecular interactions, an 266 
effect capitalized on by IDRs that act as cellular thermosensors, as seen in the yeast heat shock 267 
response or in cellular programs that control germination in plants18,152–156.  268 
 269 
[H2] Post-translational modifications  270 
Post-translational modifications (PTMs) offer another way to alter IDR context. PTMs enable 271 
covalent but reversible changes in IDR sequence chemistry, which can influence intra- and 272 
inter-molecular interactions61,67,68. Given the importance of charged residues in determining 273 
IDR global dimensions, phosphorylation (gain of negative charge) and lysine acetylation (loss 274 
of positive charge) are two examples of PTM-mediated charge changes that can directly drive 275 
expansion or compaction, and hence may impact ensemble properties, depending on how these 276 
PTMs alter IDR sequence properties and where they are positioned157,158. Phosphorylation can 277 
also enable switch-like behaviour, whereby adding a phosphate moiety substantially changes 278 
an IDR’s ensemble14,159–161. For example, phosphorylation of the stress granule protein G3BP1 279 
alters long-range intramolecular electrostatic interactions and suppresses RNA binding114, 280 
while the phosphoryl-conditional folder 4E-BP2 can switch from a disordered ensemble to a 281 
stable folded state upon a single phosphorylation event162.  282 
 283 
[H2] Structural context 284 
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Finally, the structural context of an IDR can alter ensemble behaviour and molecular function. 285 
For IDRs connected to folded domains, the folded regions' steric impact and chemical makeup 286 
can significantly influence IDR ensemble properties and function (Fig. 3g)163–167. This is true 287 
for IDRs in the same polypeptide chain but also for those in multiprotein assemblies, as is the 288 
case for histone tails168,169. For example, charged patches on the surface of folded domains can 289 
enable IDR interactions if complementary charged regions are found in the IDR163,166,170. 290 
Similarly, if IDRs are found adjacent to binding sites on folded domains, they can behave as 291 
locally tethered competitive inhibitors171–173. Moreover, even IDRs that do not engage in 292 
attractive interactions but are found adjacent to ligand binding sites can impede ligand binding 293 
through entropic effects, where ligand binding would reduce the accessible volume, incurring 294 
an energetic penalty, as seen by the IDR of the UDP-α-D-glucose-6-dehydrogenase124,134,174. 295 
In summary, the ensemble properties of IDRs are inherently tuned by their context such that 296 
changes in context offer a complex and multifaceted route to recode and reroute IDR function. 297 
 298 
[H2] Sequence and context are inextricably intertwined 299 
Ultimately, IDR function depends on sequence and context (Fig. 3h). Sequence can be viewed 300 
through two complementary lenses: (i) the sequence-encoded 3D ensemble (or 4D ensemble, 301 
if the timescales of conformational re-arrangement are considered) and (ii) the 2D (d1 = residue 302 
identity, d2 = position) sequence-encoded information, such as sequence features or SLiMs. 303 
These two lenses are not independent – IDRs with certain sequence features will reliably show 304 
certain ensemble properties – yet they provide complementary views. For example, sequence 305 
changes to a motif may have no discernible impact on ensemble properties, yet these changes 306 
may entirely abrogate function. Finally, context can impact ensemble properties and sequence-307 
encoded information and may do so to different extents. For example, phosphorylation may 308 
alter the net charge substantially but may have no major impact on global ensemble 309 
properties61,79, or it may induce or decrease local helicity dependent on the position within the 310 
helix and its sequence. 175,176.  311 
 312 
A challenge in studying IDRs is that the functional importance of ensemble properties vs. 313 
sequence features vs. SLiMs is system-specific. A SLiM may be essential for one function, 314 
while the IDR's overall net charge may be the most important factor for another. Moreover, 315 
two IDRs may have similar ensemble properties (e.g., similar overall ensemble dimensions) 316 
even if their sequences differ in composition or length 38,61,69,79. This redundancy leads to a 317 
much looser relationship between sequence and molecular function, raising challenges and 318 
opportunities for evolutionary analysis (see Box 3). As a result, IDRs often appear less well-319 
conserved when assessed by linear sequence alignment53,55,177,178. Exceptions here are SLiMs, 320 
which often have conserved sequence positions, although this is not a requirement179,180. 321 
Notwithstanding these challenges, an interpretable understanding of IDR function is accessible 322 
if the underlying biochemical and biophysical principles are jointly considered.  323 
 324 
[H1] Modes of Molecular Interactions Mediated by IDRs  325 
Molecular recognition reflects the specific, non-covalent interaction between two different 326 
molecules. The canonical model is one in which chemical and shape complementarity 327 
cooperate to enable specific binding events, as a hand fits a glove181–183. For IDRs, where one 328 
or both interacting partners exist as disordered ensembles, the models for molecular recognition 329 
require rethinking. Indeed, as described below, IDRs may comply with known interaction 330 
models, but they also extend the possible mechanisms through which molecular recognition is 331 
achieved. In this way, IDRs expand the cell's communication toolbox by offering 332 
complementary alternatives to the traditional 1:1 model of molecular specificity. 333 
 334 
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IDRs can bind other biomolecules through three main mechanisms: (i) Coupled folding and 335 
binding, where a disordered region folds to enable shape and chemistry complementarity in the 336 
bound complex102,184,185. Coupled folding and binding may involve an entire IDR, a single 337 
subregion, or two or more locally folded anchors connected by a disordered linker 186–188. (ii) 338 
As a fuzzy complex, where a finite number of structurally distinct bound-state configurations 339 
are observed and needed for function189,190. (iii) As a fully disordered bound-state complex, 340 
where both partners remain disordered. 341 
 342 
The delineation of binding modes in this section is convenient from a didactic standpoint. 343 
However, molecular recognition involves a continuum of binding modes and principles from 344 
multiple mechanisms will likely be relevant for any given binding event. Indeed, the same IDR 345 
can bind to different partners with different mechanisms, as seen for the C-terminal tail of RNA 346 
Polymerase II111,113,191. Moreover, binding affinity192,193, specificity194–196, and even the binding 347 
mechanism can be tuned by context, as discussed above196,197. The range of potential partners 348 
bound via different mechanisms enables context-dependent crosstalk between various cellular 349 
programs and pathways. This tunability also has the potential for errors: miscommunication 350 
driven by aberrant interactions, signifying the need for negative design principles to minimize 351 
unwanted interactions.  352 
 353 
[H2] Coupled Folding and Binding 354 
In coupled folding and binding, either a subregion or the entire IDR folds upon binding to a 355 
folded – or disordered - partner, typically with the involvement of a conserved SLiM (Fig. 4a) 356 
198–202. In this situation, the free energy of binding must compensate for the loss of entropy 357 
experienced upon folding a disordered chain. Compared to binding a folded partner, the 358 
magnitude of this can be fairly small (on average ~2.5 kcal mol-1)203,204, but remains within a 359 
range that can determine biological functions205. Compensation may come from enthalpic 360 
contributions from inter or intra-molecular non-covalent bond formation but could also be 361 
entropic, driven by the release of solvent from hydrophobic residues and/or the release of 362 
counterions from charged side chains 36,206,207. Coupled folding and binding can follow induced 363 
fit [G] 102, conformational selection [G] 208, or – as is usually the case – some combination of 364 
the two, and kinetic measurements are needed for teasing these apart209–212. Coupled folding 365 
and binding can involve various interactions, including IDR–protein, IDR–DNA, and IDR–366 
RNA199,213–215. In many ways, coupled folding and binding is analogous to intermolecular 367 
protein folding, as opposed to the intramolecular process one typically associates with protein 368 
folding in general. 369 
 370 
The molecular details surrounding coupled folding and binding are tuned to fit the needs of the 371 
cell. A well-described example is the N-terminal IDR from the master tumour suppressor p53, 372 
which undergoes coupled folding and binding, and for which residual helicity tunes affinity 373 
and specificity in inter-molecular interactions21,35,184,200,216,217. A more recent example shows 374 
evolutionary fine-tuning of helicity and that the correlation between the amount of residual 375 
helicity in the IDR and binding affinity for a folded domain is manifested in altered bound-376 
state lifetime218. In some systems, like the pro-apoptotic BH3-only proteins, the conformational 377 
landscape of coupled folding and binding is encoded by the IDR sequence219, as opposed to 378 
being templated by different folded partners220. In contrast, for the measles virus nucleoprotein, 379 
coupled folding and binding of the C-terminal IDR is driven by an induced folding pathway, 380 
whereby intermolecular contacts form before or in parallel with intramolecular folding102,221. 381 
As a final example, the nuclear co-activator domain NCBD from p300/CBP is a hub domain 382 
that is folded yet metastable. Upon binding one of its many partners – the disordered activation 383 
domain of the nuclear receptor coactivator ACTR – a transient electrostatically-steered 384 
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complex forms, followed by an intramolecular folding reaction that stabilizes both proteins42. 385 
The formation of a stable bound-state complex from states where both partners are partially 386 
(NCBD) or fully (ACTR) disordered reflects the fact that NCBD can form distinct structured 387 
complexes with different disordered partners 217,222–225. In this way, a single partially folded 388 
domain can function as a multi-modal input receptor for cell signalling, transducing the identity 389 
and concentration of potential binding partners into distinct structural complexes. 390 
 391 
[H2] Fuzzy Binding 392 
In fuzzy binding, a number of structurally distinct states make up the bound complex (Fig. 393 
4b)190,226,227. Fuzzy binding may involve static disorder, where each individual binding event 394 
yields a structurally distinct bound state that remains stable for its lifetime without exchanging 395 
to another state228. An extreme example of static disorder is the assembly of amyloid fibrils 396 
formed from disordered proteins229–231. While structurally-distinct fibres can and do form, 397 
interconversion between fibres of different structural states appears effectively impossible once 398 
formed. Alternatively, fuzzy binding may involve dynamic disorder, in which the bound state 399 
complex rearranges on timescales that are fast when compared to the timescales for 400 
dissociation. For dynamic disorder, fuzzy complexes could involve just a handful of 401 
structurally-distinct bound conformations that interconvert, or could reflect a scenario in which 402 
IDR conformational heterogeneity is similar in the bound and unbound states17,187,232. A classic 403 
example is the complex formed between the activation domain of the yeast transcription factor 404 
GCN4 and the co-activator Gal11 (refs. 233–236).  405 
 406 
Fuzzy interactions are ubiquitous across IDR-mediated molecular recognition events. As one 407 
example, nuclear import and export rely on nuclear transport receptors, folded proteins that 408 
enable the passage of an appropriate cargo through the lumen of the nuclear pore complex237,238. 409 
The phenylalanine-glycine (FG) repeats from IDRs of nuclear pore proteins form fuzzy 410 
complexes with nuclear transport receptors239. This dynamic interaction is central to the ability 411 
of the nuclear pore to provide a chemical selectivity filter, a feature conserved across 412 
evolution240–242.  413 
 414 
Transcription factor IDRs and their cognate co-activators can also form fuzzy complexes with 415 
some folding-upon-binding of local motifs7,187,233,243. Indeed, modulation of transcription factor 416 
interactions by competing binding partners or PTMs may enable fine-tuning of gene expression 417 
in a manner that allows different inputs to enhance or suppress transcriptional output, in effect 418 
acting as a network switch for signal integration 7,42,187,233,234,236,244. For example, the interaction 419 
between the folded TAZ1 domain of a transcription coactivator and IDRs from two 420 
transcription factors (HIF-1α and CITED2) provides a remarkable example of dynamic 421 
allosteric regulation enabled by a fuzzy complex188. When measured independently, HIF-1α 422 
binds TAZ1 and CITED2 with an equal affinity. Consequently, it might seem impossible for 423 
CITED2 to ever fully outcompete HIF-1α if the three are mixed. However, upon the interaction 424 
of CITED2 with the HIF-1α–TAZ1 complex, a transient ternary complex involving all three 425 
proteins is formed. Here, CITED2 takes over a shared binding site on TAZ1, leading to a 426 
conformational re-arrangement of TAZ1 and a subsequent reduction in affinity for HIF-1α. 427 
This complex allosteric mechanism highlights how IDRs can reshape folded domain ensembles 428 
to modulate molecular function. 429 
 430 
[H2] Fully Disordered Complexes 431 
The third mechanism of IDR-mediated recognition is one in which two IDRs bind one another 432 
and remain disordered in their bound state (Fig. 4c). For disordered bound-state ensembles, 433 
binding can be driven by distributed complementary chemical interactions that undergo fast 434 
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timescale conformational re-arrangements, leading to a highly dynamic, heterogeneous bound-435 
state ensemble245. These distributed chemical interactions can be driven by electrostatic 436 
interactions, aromatic interactions, or, in principle, any interaction mode whereby degenerate 437 
multivalency, i.e., the presence of many binding interfaces with approximately the same 438 
interaction strength, is encoded in an IDR. 439 
 440 
The first rigorously characterized example of a fully disordered complex is the interaction 441 
between the negatively-charged histone chaperone prothymosin a and the positively-charged 442 
linker histone H1.0 (refs. 169,246–248). The interaction between such oppositely and highly 443 
charged proteins could be considered an extreme case of multivalency, with many short-lived 444 
and rapidly exchanging interactions between the individual charged groups. It could 445 
alternatively be considered as an average (mean field) electrostatic attraction that holds the two 446 
dynamically interconverting chains in very close proximity to one another with ultra-high 447 
affinity. Importantly, due to the electrostatic nature of this interaction, the measured affinity is 448 
exquisitely sensitive to salt, enabling binding affinities to be tuned by ionic strength in a 449 
rheostat-like manner (Fig 4C). Dynamic, high-affinity interactions offer advantages to fast 450 
regulation of biology. Histone H1.0 also forms a high-affinity disordered complex with the 451 
nucleosome. The strength of this interaction should, in principle, impede nucleosome 452 
remodelling. However, enabled by the molecular dynamics found in H1.0 bound states, 453 
prothymosin a can dynamically outcompete the nucleosome, dislodging H1.0 by forming a 454 
transient H1.0–prothymosin a–nucleosome heterotrimer, followed by the release of H1.0, in a 455 
process of competitive substitution169,247. This ensures that nucleosomal remodelling can occur 456 
on timescales compatible with biological regulation. Similarly, disordered complexes have 457 
been observed for IDR–RNA interaction43,44. In the SARS-CoV-2 nucleocapsid protein, 458 
preprinted works shows that a short N-terminal IDR adjacent to the canonical, folded RNA 459 
binding domain enhances RNA binding ~50-fold, yet this IDR remains fully disordered in the 460 
bound complex44,174. Another example can be drawn from the nuclear pore complex. The 461 
interior of the nuclear pore provides a local chemical environment defined by tethered IDRs 462 
with FG repeats240,242,249. These disordered FG repeats interact with one another (homotypic 463 
interactions) via distributed phenylalanine residues, leading to a finely tuned chemical portal 464 
that enables efficient nucleo-cytoplasmic transport based on the surface-exposed chemistry of 465 
molecules in transit250. As a point of comparison, if those molecules in transit are folded 466 
domains (e.g., nuclear import receptors), they will interact with individual FG-rich IDRs as a 467 
fuzzy complex (as discussed above). 468 
 469 
[H2] IDR-mediated Binding is Multifaceted 470 
The separation of IDR-mediated binding modes into three subclasses might imply mechanistic 471 
stringency of interactions, making it possible to neatly categorize a given molecular complex. 472 
Yet, in reality, IDR-associated binding events can involve multiple modes. Fuzzy complexes 473 
often involve some degree of folding upon binding226. Folded domains are far from rigid, and 474 
IDR-associated binding may enhance or suppress molecular dynamics in folded domains251. 475 
We emphasize that this continuum of binding modes reflects the structural malleability 476 
associated with IDRs, and that it is generally worth considering all the types of interactions 477 
when understanding how an IDR may interact with a partner.  478 
 479 
[H1] Molecular Specificity in IDR-mediated Interactions  480 
Given the many different binding modes available, IDRs may appear poised to be promiscuous 481 
and adaptable. However, lack of specificity is not a general trait, and it may not be obvious if 482 
and how IDRs can encode specific molecular recognition. Specificity is defined in terms of 483 
both affinities and the availability of ligands252. The importance of affinity is obvious — if a 484 
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protein/IDR binds many ligands with equal affinity, it would be considered promiscuous, such 485 
that binding one ligand with higher affinity than all others is typically how specificity is 486 
described. However, ligand availability is also key. A protein/IDR may — in principle — bind 487 
many different ligands, but if one is highly abundant, then it will behave with high specificity 488 
252,253. Thus, specificity is tunable by the cell. As a result, in a situation where affinities are low 489 
and/or many different binding-competent ligands are present, an IDR may appear promiscuous, 490 
despite that under a different scenario (a single binding-competent ligand), it may appear 491 
specific. While specificity can be encoded in canonical sequence-specific structured interfaces, 492 
emerging work suggests that specificity can also be obtained by combining several molecular 493 
interfaces on a single IDR. 494 
 495 
[H2] SLiM-Mediated Specificity 496 
One source of binding specificity is through SLiMs (Fig. 4d)138,186,254,255. SLiMs can bind to 497 
partner proteins in concert with the acquisition of secondary structure, as is seen for the PIP-498 
Box motifs  that bind PCNA, a trimeric DNA clamp that plays a central role in DNA 499 
replication192,256. SLiMs may also bind without taking on any specific structure, as is seen for 500 
the Disordered Ubiquitin-Binding Motif, a SLiM seen across many proteins257. Some folded 501 
binding partners can accommodate different SLiM-carrying IDRs that bind with different 502 
degrees (and kinds) of structure and disorder20,258.  The converse is also true; the same SLiM 503 
can bind folded partners that differ substantially in tertiary structure, likely because of closely 504 
overlapping SLiMs259. As such, SLiMs offer one route through which many-to-many 505 
interactomes can emerge260. 506 
 507 
SLiMs enable specific molecular recognition, yet they often possess substantial redundancy. 508 
Redundancy here reflects the fact that for a SLiM binding to a specific partner, a subset of 509 
SLiM positions may be essential for binding, while other redundant positions can tolerate 510 
sequence changes (i.e., are partially or fully redundant) 138,261–263. This architecture means that 511 
SLiMs are frequently described in terms of so-called regular expressions, a computer science 512 
term used for pattern-matching that encompasses one or more unique sequences. For example, 513 
one such regular expression is  “LxCxE”, where ‘x’ implies any residue is tolerated, whereas 514 
the Leu (L), Cys (C), and Glu (E) are required138,255,264. This scenario is further complicated 515 
because this redundancy can depend on the binding partner. For example, for one partner, the 516 
appropriate regular expression might be LxCxE, while for another, it might be the more 517 
restrictive L[K|R]CxE – i.e., the second position must be positively charged. The potential for 518 
multiple constraints on SLiM variation depending on which binding partners are relevant can 519 
lead to complex patterns in sequence conservation and divergence 178,265.  520 
 521 
Another source of complexity in SLiM-mediated binding is via overlapping SLiMs, a scenario 522 
in which several SLiMs partially overlap one another. Overlapping SLiMs enable competition-523 
based regulation of intracellular communication (e.g., in signalling cascades). For example, the 524 
intracellular IDR from the transmembrane Growth Hormone Receptor (GHR) possesses 525 
overlapping SLiMs for two different kinases, such that direct competition between these 526 
kinases leads to distinct downstream signalling profiles depending on which kinase is bound266. 527 
Similarly, SLiMs in the N-terminal IDR of p53 bind several partners with different affinities 528 
and structures, leading to distinct downstream responses21,216,217,267–272. In short, overlapping 529 
SLiMs that define mutually exclusive binding interfaces provide a means to build biological 530 
exclusive “OR” (XOR) logic gates, where either one or another bound state can exist. 531 
 532 
Specific mutations in SLiMs can have devastating phenotypic consequences273. Mutations in a 533 
degron SLiM embedded in the N-terminal IDR of β-catenin lead to unfettered proliferative 534 
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growth in a variety of cancers274. Similarly, in cases with overlapping SLiMs, mutation can 535 
change the balance between interactors, rewiring downstream signalling138,260,275. While IDRs 536 
are often less susceptible to individual point mutations, SLiMs are an exception, where single 537 
mutations can abrogate or instigate function178,179,273,276. 538 
 539 
The importance of understanding SLiM-mediated molecular recognition has catalyzed efforts 540 
to systematically measure SLiM binding using high-throughput methods260,277–279. Identified 541 
SLiMs are catalogued in a database of curated entries, which includes both specific instances 542 
and inferred regular expressions264. In essence, SLiMs can be thought of as short, flexible 543 
sequence-specific protein interfaces that enable molecular targeting for intracellular 544 
communication.  545 
 546 
[H2] SLiM Context 547 
Recent work has implicated the importance of the local sequence context into which a SLiM 548 
has evolved, or has evolved around a SLiM17,31,41,178,224,262,280,281. Rather than existing as 549 
independent binding modules, the N- and C-terminal regions flanking a SLiM can influence 550 
molecular recognition, either by ensuring a SLiM is fully accessible or by providing additional 551 
auxiliary interactions that contribute to productive binding encounters (Fig. 4e)41,224,280. A 552 
SLiM and its sequence context can cooperate synergistically to enhance the affinity and 553 
specificity of interactions of IDRs with their cellular targets. For example, a C-terminal lysine-554 
rich region is required adjacent to the PxxPxK proline-rich motif for correct SH3 domain 555 
recognition in the HS1–HPK1 interaction282. Similarly, flanking regions and phosphorylation 556 
sites around the LxCxE motif of the human papillomavirus E7 protein tune binding affinity, 557 
controlling molecular interactions that impact cellular proliferation283. Finally, work on 558 
proteins that interact with, PCNA revealed that most PCNA-binding motifs reside in IDRs, and 559 
that changes in flanking regions that increase the number of positive charges in the IDR tune 560 
affinity across four orders of magnitude192. These results implicate an emerging hierarchical 561 
model for specificity, where motifs and flanking regions cooperate to enable short-term fine-562 
tuning via PTMs and long-term (evolutionary) fine-tuning via changes in the protein sequence.  563 
 564 
The emerging importance of flanking regions in determining SLiM binding affinity and 565 
specificity reflects the conceptual challenge that regions around SLiMs are often poorly 566 
conserved, as assessed by linear sequence alignment. This apparent lack of conservation has 567 
given way to an appreciation that sequence features (discussed above) may be conserved 568 
despite divergence in primary structure (see Box 3) 6,55–57,59,92,178,244,284. When viewed through 569 
this lens, specificity can be dually encoded via two distinct types of interactions. If we accept 570 
that SLiMs enable sequence specificity (i.e., SLiMs cannot tolerate being shuffled; the action 571 
of randomly re-ordering the sequence without changing composition), then flanking regions 572 
essential for binding that lack bona fide SLiMs can be considered to possess sequence feature 573 
specificity (i.e., chemical specificity). Chemical specificity reflects local sequence chemistry 574 
that is complementary to a binding partner (Fig. 4e) 41,89,90,178,252. While conservation of SLiMs 575 
may require specific residues to be retained, conservation of sequence features can be achieved 576 
despite large-scale remodelling of the underlying amino acid sequence. Finally, flanking 577 
regions can overrule a SLiM by presenting incompatible features that prohibit binding. Thus, 578 
the presence of a sequence that — in principle — matches a known SLiM regular expression 579 
is not necessarily sufficient to define a bona fide SLiM (i.e., a motif that reliably binds its 580 
expected partner). For molecular communication, this hierarchical recognition that combines 581 
SLiMs with local sequence context enables specific, and in some cases high-affinity binding, 582 
with only a few conserved amino acids.  583 
 584 
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[H2] Balancing Affinity and Specificity 585 
Although presenting a relatively limited binding interface, individual SLiMs can be highly 586 
specific. For example, TFIIS N-terminal domain (TND)-interacting motifs (TIMs) are SLiMs 587 
from transcription regulators that selectively recognize specific domains in the eukaryotic 588 
elongation machinery20. Although SLiMs can be high-affinity206,285, in many cases, the binding 589 
of individual SLiMs — especially if surrounded by sub-optimal flanking regions — can be 590 
relatively weak262. One way to enhance the binding affinity (and specificity) of an IDR is to 591 
embed multiple SLiMs that bind non-overlapping sites in a partner. If each SLiM binds a 592 
different recognition interface and only the appropriate partner possesses the full set of 593 
recognition interfaces, binding can be both high affinity (due to an avidity effect, Fig. 4f) and 594 
high specificity (due to the combinatorics) despite individually weak binding affinities 595 
associated with any single SLiM (Fig. 4g)38,110,286,287.  596 
 597 
An alternative to carrying multiple SLiMs is for an IDR to possess a single SLiM with specific 598 
sequence features that interact via chemical specificity with a given partner or set of partners. 599 
This is similar to how SLiM context influences binding, but in this case sequence features may 600 
stretch far (10s-to-100s of residues) from the SLiM location, as opposed to simply defining a 601 
local permissive context. These sequence features may not offer the same degree of specificity 602 
that multiple SLiMs would. However, because these sequence features operate at the level of 603 
distributed chemical interactions instead of sequence-specific binding interfaces (as SLiMS 604 
can), they place a much lower burden on sequence conservation in the IDR or, indeed, sequence 605 
or structural conservation in the folded domain17,55,110,178,288. Moreover, an IDR with a single 606 
SLiM can interact specifically with many different partners that share only a single SLiM-607 
binding interface, e.g., a PDZ-binding SLiM can bind many different proteins as long as each 608 
possesses a PDZ domain with surface chemistry complementary to the flanking sequence 609 
around the SLiM38,262,289. If intracellular communication lines depend on the fidelity of 610 
messages passed, the repertoire of molecular interfaces — from sequence-specific motifs to an 611 
appropriate net charge offer a broad toolkit for ensuring reception, transmission, and fine-612 
tuning of those messages 18,120,146,152,154,160,162,290–292. 613 
 614 
Combining multiple equivalent binding sites (i.e., SLiMs, repeats, or individual residues) in a 615 
single IDR can also enhance affinity through allovalency (Fig. 4f)189,275,293. Allovalency refers 616 
to a multiplicative increase in affinity brought about by a high copy number of independent 617 
binding sites that bind to the same site on a partner. For example, increasing the number of FG 618 
repeats in a nuclear pore IDR revealed that the low per-FG repeat affinity avoids high-avidity 619 
interaction between FG-nucleoporins and nuclear transport receptors while the many FG 620 
repeats promote frequent FG-NTR contacts, resulting in enhanced selectivity294.  621 
 622 
The dynamic ranges of affinities, timescales, and specificities available to IDRs are no different 623 
from those observed for folded domains203. Indeed, fully disordered complexes can form with 624 
picomolar affinity246, while individual SLiMs that fold upon binding may bind with high 625 
discriminatory power yet weak affinities262. Although there are numerous examples of IDRs 626 
that fold upon binding225,295, they likely only constitute a fraction of complexes involving IDR, 627 
allowing for a much broader view of how disorder contributes to molecular communication in 628 
cells. As biophysical/biochemical studies typically examine binding between small fragments 629 
from larger IDRs and cognate partners, it raises the question of how disorder-based interaction 630 
may manifest in full-length proteins. Moving towards studying proteins in context, we are only 631 
beginning to understand where and how disordered complexes contribute to function and 632 
cellular regulation. IDRs provide a broad toolkit of distinct mechanisms of molecular 633 
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recognition that can enable complex, highly tunable interactions that underlie transcriptional 634 
networks, signalling pathways, and cellular organization. 635 
 636 
[H1] IDRs and Biomolecular Condensates  637 
Recently, the role of IDRs in biomolecular phase transitions has captured increasing attention 638 
(Fig. 5a, b). Assemblies formed via phase transitions are often called biomolecular 639 
condensates, a catch-all term defining membrane-less non-stochiometric assemblies that 640 
concentrate specific biomolecules and exclude others296. Condensates can range in diameter 641 
from a few nanometers (e.g., transcriptional condensates) to micrometers (e.g., membraneless 642 
organelles such as nucleoli or P-granules)19,297–299. Condensates can also possess different 643 
material properties, with some behaving like liquids and others like solids300. While all droplets 644 
formed by phase separation are condensates, not all condensates form via phase separation296. 645 
The physical principles underlying phase transitions in biology have been reviewed extensively 646 
elsewhere140,301–305, as has the form and function of biomolecular condensates296,300,306,307. As 647 
such, our focus here is on the roles IDRs can play in biomolecular condensates but not on the 648 
underlying physical principles.  649 
 650 
[H2] Molecular Basis for Phase Transitions 651 
In general, IDRs are neither necessary nor sufficient for phase transitions308. Nevertheless, 652 
there are many specific examples where IDRs are both necessary and sufficient and many more 653 
cases where IDRs modulate phase transitions. One reason why IDRs are often found to be 654 
associated with phase transitions is the same reason that IDRs enable dynamic, tunable 655 
molecular recognition: multivalency (Fig. 5b)39,57,309. Phase separation requires multivalent 656 
interactions that enable networks. IDRs provide a convenient platform upon which SLiMs and 657 
surrounding sequence features can cooperate to enable multivalency301,308.  658 
 659 
One framework for describing multivalent IDRs is in terms of “stickers” and “spacers”, a 660 
framework originally developed for associative polymers [G] 39,57,301,305,310–316. Stickers are 661 
defined as regions or residues that are the primary drivers of attractive multivalent interactions, 662 
while spacers connect stickers and influence overall solubility as well as sticker–sticker 663 
cooperativity (Fig. 5c). This is a deliberate simplification when applied to biomolecules in that 664 
“spacer” regions can and do contribute crucial attractive or repulsive interactions to tune 665 
biomolecular phase transitions112,163,313,317. Nonetheless, the stickers-and-spacers offers a 666 
convenient approach to capture the most important sequence-determinants of IDR-mediated 667 
phase transitions39,57,72,318–323. If multivalent IDRs are fully flexible and interact via homotypic 668 
interactions, there exists a symmetry between the degree of chain compaction (intra-molecular 669 
interaction) and the extent of phase separation (inter-molecular interaction) (Fig. 5d)57,123,324. 670 
While multivalency is not sufficient for phase separation (i.e., multivalent molecules can form 671 
system-spanning gels rather than locally dense droplets), it is certainly necessary39,311.  672 
 673 
[H2] Roles of IDRs in Condensates 674 
The biophysical roles of IDRs in condensates are manifold. In some systems, IDRs can be the 675 
drivers of condensate formation, whereas in others, IDRs tune condensate formation, dictate 676 
condensate material properties (e.g., liquid-like, solid-like), prevent amorphous aggregation, 677 
or enable condensate regulation via PTMs. Within condensates, IDRs could – potentially – 678 
interact via all the possible mechanisms described in Section Modes of Molecular 679 
Interactions Mediated by IDRs. As such, in addition to influencing condensate formation, 680 
IDRs can facilitate the recruitment or exclusion of other molecular components, called clients, 681 
into condensates325. While it is often convenient to think of clients as passive bystanders, the 682 
influence that client recruitment can have – either on the chemical environment within a 683 
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condensate or on the species that enable recruiting – means condensates are unavoidably 684 
responsive to changes in their composition311,323,326.  685 
 686 
IDRs in pan-kingdom DEAD-box helicases (DDXs) are at least in some cases necessary and 687 
sufficient to drive condensates in vitro and in vivo 327–333. For human DDX4, the N-terminal 688 
IDR drives condensate formation via distributed multivalent interactions mediated by aromatic 689 
and arginine residues along with clusters of charged residues248,329,334. This particular molecular 690 
grammar [G] has been identified in many other IDRs as mediating attractive interactions for 691 
phase transitions, as have additional sequence features, including contributions from aliphatic 692 
and polar residues57,72,99,111–113,240,241,248,310,335–339. Moreover, these features are readily altered 693 
via PTMs, which can enhance or suppress attractive interactions that drive condensate 694 
formation98,114,340–344.  695 
 696 
Condensates formed by the DDX4 N-terminal IDR reduce the stability of duplexed nucleic 697 
acids, illustrating the ability of condensates to form unique chemical environments that 698 
facilitate specific chemistries (Fig. 5e) 345. By doing so, condensates offer the potential to 699 
enhance biological processes like RNA folding and enzyme catalysis19,326,346. In this way, 700 
condensates provide a means to define local states, augmenting lines of communication by 701 
creating filters (local regions that are only accessible to certain biomolecules), amplifiers (small 702 
changes in the intracellular environment can manifest in the formation or dissolution of entire 703 
organelles), and resistors (condensates that buffer the concentration of soluble components) 704 
311,326,345,347.   705 
 706 
While some IDRs are essential for condensate formation, in many situations, they tune or 707 
modulate assembly153,348–350. The N-terminal IDRs in the yeast prion protein Sup35 and the 708 
fruit fly RNA binding protein Me31b prevent adjacent folded domains from forming kinetically 709 
arrested (i.e., “irreversible”) condensates, and instead facilitate the formation of reversible 710 
liquid-like assemblies (Fig. 5f) 97,330. In the yeast RNA binding protein Pab1, the major IDR is 711 
dispensable for condensate formation in vitro and in vivo, yet acts as a tunable thermosensor, 712 
where the  hydrophobicity of the IDR tunes the temperature at which condensates form18. More 713 
broadly, IDRs in condensates have been implicated in environmental sensing in other contexts, 714 
including thermosensing in plants155,351, cellular crowding352, pH sensing18,97, osmotic 715 
shock353,354, and water availability355. In many of these examples, condensate behaviour is 716 
correlated with distinct biological phenotypes, including plant flowering, seed germination, 717 
cellular survival, and gene expression. Indeed, a growing body of work suggests IDRs may be 718 
poised to act as sensors of the cellular environment, with condensates offering one such 719 
mechanism 46,120,356.  720 
 721 
In addition to driving or tuning the formation of condensates, IDRs can influence condensate 722 
material properties with consequences for cellular function. These include intra-condensate 723 
viscosity, surface tension, permeability, and elasticity. Even seemingly subtle sequence 724 
changes (arginine to lysine) can change condensate viscosity by orders of magnitude357,358. 725 
While it is tempting to expect functional condensates to be liquid-like, many studies suggest 726 
variability and that condensate material properties must be tuned for condensate function359. 727 
For example, the Caulobactor crescentus protein PopZ forms a large condensate at the cell 728 
poles, where it plays key roles in asymmetric cell division360–362. Mutations that enhance or 729 
suppress PopZ condensate viscosity impact cellular fitness, yet large-scale mutations that 730 
preserve material properties have no effect on fitness, highlighting the importance of the 731 
properties of the material state349. The ability to orthogonally permutate IDR sequence features 732 
in a manner that preserves condensate properties (e.g., exchanging one set of chemical 733 
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interactions that drive attractive interactions for an alternative, chemically distinct set) is one 734 
route to test the biological importance of condensates. If two chemically orthogonal types of 735 
interactions give rise to condensates with similar properties and preserved function, this is 736 
strong evidence that the condensate, not the specific chemical properties of the IDRs, are key 737 
for function. 738 
 739 
 740 
The physics of phase transitions offer many features that could be co-opted for molecular 741 
communication and cellular function, including force generation, hypersensitivity spurred by 742 
abrupt changes, concentration buffering, molecular selectivity, and the ability to integrate 743 
disparate input signals (e.g., pH, temperature, ligands) that lead to a common output (the 744 
formation of the same condensates) 18,242,329,347,363,364. Condensates can form via many different 745 
modes of molecular interactions. While it may be tempting to ascribe molecular functions to 746 
IDR-dependent condensates, it is worth remembering that many IDRs are intrinsically 747 
multivalent. The sequence features that enable IDRs to drive or modulate condensates are the 748 
same as those driving IDR-mediated molecular interactions. One possibility is that the primary 749 
function of a condensate-associated IDR is to form or modulate condensates (as illustrated for 750 
the Pab1 IDR18). An alternative explanation is that condensate formation is an unavoidable 751 
epiphenomenon associated with multivalency and that multivalent IDRs can and will form 752 
condensates regardless of whether those assemblies have biological roles. A key challenge for 753 
the field is delineating between these two possible explanations. 754 
 755 
[H1] Conclusions and perspective  756 
IDRs are ubiquitous and essential for normal cellular regulation, yet many questions regarding 757 
the molecular basis for their functions remain unanswered. A primary challenge in studying 758 
IDRs comes from their inherently context-dependent functions. 759 
 760 
Interpreting the functional roles of folded domains benefits from the fundamental paradigm 761 
that form (i.e., structure) dictates function, allowing folded domains to be classified as a 762 
dehydrogenase, a kinase, an immunoglobulin domain etc. 365. In these examples, a complex 763 
biomolecule is captured (rightly or wrongly) in a way that allows us to exchange the molecular 764 
complexity of a 3D structure with a single interpretable descriptor. By contrast, IDRs are 765 
conformationally heterogeneous, and their behaviour and function are multifaceted and 766 
context-dependent. Their function depends on an often yet-to-be-deciphered combination of 767 
ensemble properties, sequence features, and motifs, where the relative importance of these 768 
three factors varies from IDR to IDR and from function to function. Consequently, simple 769 
terms that would describe an IDR as a “binding domain” or as a “proline rich domain” are at 770 
best insufficient and at worst misleading. Instead, we suggest embracing the underlying 771 
biochemistry and biophysics of IDRs is essential to make sense of sequence–ensemble–772 
function relationships. 773 
 774 
Based on emerging work by many groups, we propose that a core role of IDRs is in the 775 
reception, processing, and transmission of cellular information (i.e., molecular 776 
communication). The various molecular interaction modes enabled by IDRs extend the 777 
repertoire of molecular functions offered by folded domains. Importantly, the context-778 
dependent nature of IDR-mediated interactions means that through splicing, changes in the 779 
cellular environment, changes via PTMs, and presence/absence of different binding partners, 780 
IDR function can be tuned or entirely re-defined. An important open question is how the 781 
cellular environment alters - or mirror - biochemical and biophysical insights typically gleaned 782 
from in vitro or in silico work292,366–369. Moreover, while most insights into IDR functions are 783 
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made from studies of proteins found within the cell, extracellular communication may well rely 784 
on IDRs in similar manners. Currently understudied is also the role of isoforms and 785 
proteoforms, two ways of regulating protein function for which IDRs are statistically enriched 786 
84,370–373.  787 
 788 
Although most annotated disease-causing mutations affect structured regions of proteins374, 789 
over 20% of human disease mutations occur in IDRs276,375–378. While IDRs are — in general 790 
— less sensitive to single-point mutations, there are many examples in which seemingly small 791 
changes in sequence chemistry can have substantial effects on IDR-dependent molecular 792 
recognition. For example, given their often loose determinants of specificity, SLiMs may 793 
appear or be removed seemingly out of nowhere (ex nihilo)179, as seen in the lung-cancer-794 
related P495T mutation in the GRH IDR in which a binding site for a negative regulator is 795 
lost108, or the glucose transporter GLUT1 where the appearance of a di-leucine motif causes 796 
mis-trafficking in GLUT1 deficiency syndrome276. For IDRs that mediate intermolecular 797 
interactions, even small changes can lead to aggregation-prone proteins that drive aberrant 798 
cellular assemblies377,379–383. Finally, repeat expansions, frameshift mutations, and large-scale 799 
genetic rearrangements can all lead to novel IDR-containing proteins that drive human 800 
disease338,339,377,382–388. Despite clear examples, our understanding of how mutations in IDRs 801 
contribute to pathophysiology is in its infancy, necessitating detailed biochemical investigation 802 
to decode the principles that underlie the sequence-ensemble-dysfunction in human disease. 803 
 804 
One common perception of IDRs is that their interactions may be “weak” or “non-specific”. 805 
As discussed, specificity by IDRs is, in many cases, enabled by multivalency, where a 806 
combination of SLiMs or sequence features can act synergistically to define specificity and 807 
affinity, linking sequence to function. While it is tempting to consider binding affinity as a 808 
proxy for the importance of a given interaction, sensitive and responsive regulation of high-809 
affinity interactions raises many challenges. Weaker binding affinity may reflect interactions 810 
that are most easily regulated. Indeed, the importance of weak, motif-based interactions for 811 
cellular physiology is implied by the fact that many viruses rewire cellular programmes through 812 
molecular mimicry of host protein SLiMs 279,389,390. While weaker interactions are harder to 813 
measure in vitro, are more strongly influenced by their solution context, and may only be 814 
functionally important under specific conditions, their importance in determining cellular state 815 
and in enabling tunable intracellular communication is abundantly clear. As such, we propose 816 
that IDRs are poised to enable a specific class of regulatable, evolutionarily-prone interactions 817 
that allow for adaptation over short (minutes), medium (epigenetic/generational), and long 818 
(evolutionary) timescales. 819 
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 837 
BOXES 838 
 839 
Box 1 Identifying IDRs  840 
Early work on IDRs was driven by bioinformatics, with initial predictors enabling disordered 841 
and folded domains to be delineated 391–394. Over the last twenty-five years, disorder predictors 842 
have become increasingly accurate. In 2021, the first Critical Assessment of Intrinsic Disorder 843 
(CAID) competition was held, comparing different predictors in terms of accuracy and 844 
performance51. Based on results from the most recent CAID competition, the accuracy among 845 
the top ten predictors is similar, with AlphaFold2 also performing well52. Predictors have also 846 
gotten faster. For example, using one of the top-performing predictors, metapredict V2-FF, all 847 
IDRs in the human proteome can be predicted in a few minutes24,395. Disorder predictors 848 
provide a linear assessment of whether a residue falls within a disordered region or not (see 849 
figure, disorder profile for the human RNA binding protein hnRNPA1; RNA Recognition 850 
Motifs [RRMs] are folded domains). Proteome-wide analysis with metapredict (V2-FF) reveals 851 
that across the human proteome, ~40% of proteins have IDRs that are 100 residues or longer 852 
(18,074 IDRs), and ~70% of proteins possess IDRs that are 30 residues or longer (29,698 853 
IDRs). Of those 29,698 IDRs, ~37% are linkers, ~34% are N-terminal tails, ~25% are C-854 
terminal tails, and the remainder are fully disordered proteins. Such proteome-wide analyses 855 
have helped reveal that IDRs are common in eukaryotes and viruses while generally less 856 
common in bacteria and archaea26.  857 

 858 
In addition to predicting IDRs, a repository of known SLiMs exist in the Eukaryotic Linear 859 
Motif Resource 264. Although the number of known SLiMs now approaches the thousands, it 860 
is estimated that up to 100,000 different SLiMs could exist255. While consensus SLiMs can be 861 
identified from sequence, whether these function as bona fide SLiMs typically requires direct 862 
experimental validation, highlighting the importance of context in licensing SLiM function. 863 
 864 
 865 
Box 2 Characterizing IDRs  866 
Experimental characterization of IDR ensemble properties can be achieved via a range of 867 
experimental approaches. Measuring residue-specific interactions relies on techniques that 868 
provide residue-specific information. These include NMR spectroscopy396,397, single-molecule 869 
Förster Resonance Energy Transfer (smFRET) with specific positions labeled398,399, and 870 
hydrogen-deuterium exchange mass spectrometry400. NMR and smFRET also enable global, 871 
ensemble properties to be measured401,402, as do additional techniques, including ensemble 872 
FRET120, small angle X-ray scattering (SAXS)403–405, dynamic light scattering (DLS)18, 873 
fluorescence correlation spectroscopy (FCS)406, circular dichroism (CD)407, and collision 874 
cross-section mass spectrometry (CCS-MS)408. While measuring both local (e.g. helicity, NMR 875 
chemical shifts) and global (e.g. radius of gyration, end-to-end distance) IDR ensemble 876 
properties for the same IDR can be time-consuming and challenging, integrative biophysical 877 
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studies — in which several methods measure distinct properties of a single IDR — have played 878 
key roles in developing our current understanding of sequence–ensemble 879 
relationships32,57,61,64,87,246,402,409–415. 880 
 881 
Computational characterization of IDR ensembles has been essential in understanding 882 
sequence-to-ensemble relationships416. Computational approaches can generally be classified 883 
as either top-down or bottom-up. Bottom-up approaches offer predictions of ensemble 884 
properties without experimental data. Top-down approaches take experimental data and 885 
construct ensembles consistent with those data. For bottom-up approaches, molecular 886 
simulations at a range of resolutions have proven invaluable64,112,113,117,410,411,417,418. While – 887 
historically speaking – many all-atom forcefields [G] lead to the over-compaction of IDRs, 888 
recent efforts to address this weakness have led to major improvements419–425. In parallel, 889 
improvements in coarse-grained forcefields have also enabled rapid characterization of 890 
ensemble properties 335,426–429. In a recent preprint, ensemble properties of all IDRs in the 891 
human proteome were calculated from coarse-grained simulations60, while instantaneous 892 
predictions of global dimensions using deep learning [G] based approaches trained on coarse-893 
grained simulations enable ensemble properties (e.g., radius of gyration, end-to-end distance) 894 
to be predicted directly from sequence in milliseconds 24. For top-down approaches, tools 895 
including flexible-meccano430 and EOM431 for building ensembles from experimental data and 896 
various approaches for selecting an ensemble from the larger set of conformations and 897 
reweighting to optimize correspondence with the experimental data (e.g., ASTEROIDS432, 898 
Bayesian inference433,434, maximum entropy approaches435, metainference436, and deep 899 
learning437) have been applied to construct experimentally consistent ensembles at atomistic 900 
resolution438,439.  901 
 902 
 903 
Box 3 The Evolution of IDRs 904 
IDRs often show poor sequence conservation when assessed by alignment-based 905 
metrics53,54,178,440,441. This poor conservation could be interpreted as a lack of important cellular 906 
function, yet the realization that IDRs play many critical roles in molecular and cellular biology 907 
invalidates this interpretation. An emerging paradigm suggests that conservation in IDRs can 908 
operate at the level of sequence features as opposed to on specific amino acid sequences38,55–909 
58,72,92,174,178,442. If the conserved features include SLiMs, these may ‘diffuse’ around within an 910 
IDR, such that even if a SLiM is well-conserved, its relative or absolute position need not be 911 
178,179. IDRs in which certain regions are highly conserved, as based on multiple sequence 912 
alignment, may reflect evolutionary coupling between that region and a folded partner, 913 
whereby the rate of change for this region has been slowed to match the partner’s surface, as 914 
shown recently for the bacterial tubulin homolog FtsZ442–444. Alternatively, variation in IDR 915 
sequences across evolutionary timescales may lead to compensatory changes in protein 916 
interaction networks, such that the overall function of a cellular programme is preserved even 917 
as individual disordered regions change445. 918 
 919 
There are at least two related possible reasons for the limited sequence conservation observed 920 
in IDRs. First, because IDRs lack a specific 3D structure, they are not sensitive to (i) 921 
destabilizing mutations, (ii) mutations that impact folding pathways, or (iii) mutations that 922 
disrupt specific finely tuned allosteric networks. By contrast, in the case of folded domains, 923 
mutations can impact all three of these. As an example, mutations across enzymes can have a 924 
substantial impact on their function by altering stability, folding, and/or allosterically 925 
regulating function446,447. In effect, a stable 3D structure imparts a tight and cooperative 926 
coupling between sequence, fold, and function, and its absence loosens this coupling. Second, 927 
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as discussed in the main text, IDR-mediated functions often depend on sequence features 928 
instead of specific sequences. Given that natural selection operates on the level of function, not 929 
on sequence, two IDRs with equivalent functionality are equally fit, regardless of how similar 930 
their sequences are. In this way, combining IDR sequence analysis with evolutionary analysis 931 
is one route to aid in identifying sequence features that may be important for molecular 932 
function55,59,92,178,263. 933 
 934 
 935 
 936 
 937 
  938 



21 
 

Figures Captions 939 

 940 
Figure 1: IDRs are central to cellular function.  941 
IDRs play critical cellular roles across cellular compartments. From top left clockwise. (a) The 942 
nuclear pore complex is a macromolecular portal that controls the partitioning of biomolecules 943 
between the nucleus and cytosol and regulate passage through the nuclear envelope. The central 944 
lumen of its pore is filled with a chemically-tuned meshwork of IDRs — phenylalanine-glycine 945 
(FG) repeats — from nucleoporin (Nup) proteins that enable selectivity through favourable 946 
transient interactions with nuclear transport receptors. (b) Histones are among the most 947 
abundant proteins in Eukaryotes and act as positively charged counterions to compact negative 948 
DNA into chromatin. Histone tails are IDRs that undergo extensive post-translational 949 
modification (PTM), enabling both changes to the intrinsic biophysical behaviour and the 950 
recruitment or exclusion of partner proteins to determine epigenetic state. (c) G-protein coupled 951 
receptors (GPCRs) are a large class of membrane-bound receptors that transduce extracellular 952 
stimuli into chemical information. Many GPCRs contain IDRs in their intracellular and 953 
extracellular loops and tails. These IDRs are highly variable in composition and length, 954 
suggesting they may act as evolutionary-labile sensors connected to a more conserved signal-955 
transduction machine. (d) For many organisms, resilience to  low levels of water is among the 956 
strongest selective pressures. Most identified desiccation-resistance proteins (e.g., 957 
hydrophilins, CAHS proteins etc.) are disordered when in aqueous environments, although 958 
many also acquire helicity upon desiccation. The molecular details that underlie how and why 959 
disordered proteins appear to play key roles in desiccation tolerance remains enigmatic. (e) 960 
Stress granules are an evolutionarily conserved class of cytoplasmic condensate that form in 961 
response to cellular stress. In humans, stress granule formation often depends on the largely 962 
disordered paralogous proteins G3BP1/2. More broadly, however, many core stress granule 963 
proteins contain large IDRs, potentially related to their roles in RNA binding and 964 
environmental responsiveness. (f) IDRs are often found in multidomain proteins that facilitate 965 
the formation of large dynamic macromolecular complexes. In these, they may act as flexible 966 
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linkers connecting folded domains, or as molecular recognition modules that facilitate complex 967 
formation. (g) IDRs can exert entropic force, here shown in membrane proteins. Any reduction 968 
in available volume of an IDR – for example, by the presence of an adjacent membrane – results 969 
in a corresponding force proportional to the entropic cost levied  by the lost volume 970 
(highlighted by arrows). (h) IDRs are often found in RNA binding proteins. They can bind 971 
RNA directly and can enhance or suppress the binding affinity of canonical RNA binding 972 
domains. Given the size mismatch between mRNA and most proteins, productive RNA 973 
recognition events may require the collective behaviour of many proteins, and IDRs may 974 
contribute to both protein–protein and protein–RNA interactions. (i) Transmembrane 975 
signalling proteins (e.g., T-cell receptors, cytokine receptors, and growth factor receptors) often 976 
contain intracellular disordered regions that contribute to signal amplification upon receptor 977 
clustering. These regions can interact with other IDRs, act as a platform upon which 978 
downstream signalling molecules can co-assemble or undergo PTMs (especially 979 
phosphorylation) to indicate signalling status. (j) Genome maintenance represents an essential 980 
set of cellular programmes conserved from yeast to humans. Many of the core proteins that 981 
drive central steps in different aspects of genome maintenance contain large IDRs with 982 
important cellular functions (e.g., p53, BRCA1, BRCA2, ATM, MLH, XPA). These IDRs may 983 
aid in the coordination of DNA repair by recruiting other proteins but may also interact directly 984 
with DNA. (k) Transcription factors are DNA-binding proteins that dictate the set of genes 985 
being expressed at any given moment. Most transcription factors contain IDRs. In addition to 986 
mediating the recruitment of appropriate co-factors – with themselves typically contain IDRs 987 
– to activate or repress gene expression (often via folding-upon binding), emerging work 988 
suggests transcription factor IDRs can even guide the specific of transcription factors for DNA 989 
sequences. (l) Biomolecular condensates are membrane-less non-stochiometric assemblies that 990 
concentrate specific biomolecules and exclude others. IDRs, owing to their multivalency, can 991 
participate in phase transitions associated with biomolecular condensate formation. In 992 
particular, the nucleolar substructure observed in vitro and in vivo is coordinated at least in part 993 
by sequence features in IDRs. These observations illustrate how mesoscopic organization can 994 
emerge despite disorder at the level of individual molecules. 995 
  996 
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 997 
Figure 2: IDRs exist in ensembles dictated by protein sequence features. (a). IDRs exist in 998 
ensembles — a collection of dynamic conformations that are energetically accessible to a 999 
disordered region. Although folded domains also exist in ensembles, the conformations 1000 
associated with a folded domain are typically structurally similar. By contrast, for IDRs, 1001 
ensemble conformations are highly heterogeneous. Here we compare structural models for IDR 1002 
ensembles in different molecular contexts (bottom) with schematized representations of IDR 1003 
ensembles (top). Only a small number of separate conformations are shown for visual 1004 
accessibility, however in reality, IDRs exchange between tens of thousands of different 1005 
conformations. The four proteins depicted here are examples of IDRs from either a fully 1006 
disordered protein (furthest left) or IDRs in different structural contexts. In each representation, 1007 
one specific conformation is highlighted, and a collection of additional conformations are 1008 
superimposed in shaded lines, with the goal of illustrating the structural heterogeneity 1009 
associated with an ensemble. For a clearer demonstration of an ensemble see Movie M1, a 1010 
rendering from an all-atom simulation of the low complexity domain from the RNA binding 1011 
protein hnRNPA1 (see Box 1). (b) Because IDRs exist in ensembles, they cannot be 1012 
represented by a single 3D structure. Consequently, IDR ensembles are described in terms of 1013 
ensemble properties: specific metrics that can be measured, calculated, or predicted for the 1014 
collection of conformations to quantify the ensemble. Commonly used ensemble properties 1015 
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include the radius of gyration and the end-to-end distance (measures of global ensemble 1016 
dimensions), asphericity (a measure of ensemble shape), transient secondary structure (a 1017 
measure of local structural acquisition) and inter-residue distances (a measure of specific 1018 
ensemble dimensions). These properties can be calculated from simulations or measured 1019 
experimentally (see Box 2). (c) IDR ensemble properties should ideally be described in terms 1020 
of probability distributions. For example, the distribution of the radius of gyration is shown for 1021 
two IDRs. One IDR (red) is compact, while the other IDR (black) is more expanded. (d) IDR 1022 
ensembles often depend on residue patterning, which quantifies how segregated/clustered 1023 
residues of one chemical group (here depicted as white or grey beads) are with respect to 1024 
another. (e) Local sequence properties can influence IDR ensembles, such as charge patterning 1025 
(left) and evenly spaced aromatic residues (right). (f) Overall, IDR ensemble properties are a 1026 
consequence of the sequence-encoded physical chemistry and the context-dependence of 1027 
interactions endowed by that physical chemistry. (g) Ensemble properties of IDR linkers tune 1028 
the effective concentration of folded domains to one another. Two folded domains connected 1029 
by a short IDR are inherently close to one another, yet if long IDRs are relatively compact, 1030 
folded domains will remain close, despite the superficially “large” intervening disordered 1031 
linker (see panel 2c). For two domains that interact with one another, linker properties 1032 
(modulated via post-translational modifications or changes in linker sequence over evolution) 1033 
can therefore tune inter-domain communication, thereby influencing local inhibition or 1034 
activation, or altering binding affinity for target molecules. 1035 
  1036 



25 
 

 1037 
Figure 3: IDR ensemble properties are context dependent. Behaviour of the IDR ensemble 1038 
is highly context dependent. (a) Highly charged IDRs can be sensitive to changes in salt, 1039 
although how salt influences ensemble properties depend on the IDR sequence features and the 1040 
salt. If IDRs possess clusters of oppositely charged residues, these clusters can interact with 1041 
one another driving chain compaction, an effect that is reduced as salt concentration is 1042 
increased (top). By contrast, if charged residues are uniformly patterned, an increase in salt 1043 
concentration may have a comparatively modest impact on IDR dimensions as no strong 1044 
intramolecular interactions are found (bottom). Finally, divalent ions can bind to clusters of 1045 
negatively charged residues with effects on local and global compaction (not shown). (b) 1046 
Changes in pH can influence IDRs with amino acids that may be protonated (Asp, Glu, His) or 1047 
deprotonated (Lys, Tyr, Arg, His) within physiological regimes. As a note, arginine 1048 
deprotonation would seem to be almost impossible under physiological conditions. For 1049 
uncharged IDRs with many histidine residues, a reduction in pH can lead to histidine 1050 
protonation, driving intramolecular repulsion and leading to chain expansion (top). Conversely, 1051 
if an IDR contains histidine and aromatic residues, protonation can lead to strong cation:π 1052 
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interactions between positively charged histidine and aromatic residues, driving chain 1053 
compaction (bottom). (c) IDR dimensions respond to crowders differently; if crowders have 1054 
weakly favourable non-specific interactions with IDRs then small crowders can drive IDR 1055 
expansion while large crowders drive compaction. As a result, some IDRs may be well-poised 1056 
to act as sensors of cellular crowding on specific length scales. (d) IDRs are sensitive to 1057 
changes in temperature. For IDRs enriched in aliphatic hydrophobic residues (i.e., valine, 1058 
leucine, isoleucine, methionine, alanine), the enhanced strength of the hydrophobic effect at 1059 
higher temperatures leads to chain compaction (top). For IDRs enriched in aromatic residues, 1060 
p:p interactions are enthalpically dominated, such that as temperature increases p:p interactions 1061 
become weaker, and these chains become more expanded (bottom), and for IDRs in general, 1062 
there is a loss of polyproline-II structures - an extended left-handed secondary structure that 1063 
usually but not necessarily involves prolines - with temperature, leading to compaction. (e) 1064 
Phosphorylation can have opposing effects on IDR dimensions. Phosphorylation of an 1065 
uncharged region can lead to chain expansion driven by electrostatic repulsion between 1066 
phosphate groups (top). However, phosphorylation of IDRs with clusters of positively charged 1067 
residues can lead to chain compaction, driven by electrostatic interactions between 1068 
phosphorylated residues and residues with positively charged clusters (bottom). Both effects 1069 
can occur within a single IDR. Phosphorylation also impacts local structure and can stabilize 1070 
and destabilize transient helices in a position dependent manner (not shown) (f) Arginine 1071 
methylation weakens cation:p interactions between arginine and aromatic groups, which could 1072 
lead to an increase in IDR dimensions (top). However, methylation does not neutralize 1073 
arginine, such that intramolecular interactions driven by arginine-acidic residue interactions 1074 
would likely be largely unaffected. (g) As solution context can influence IDR properties, folded 1075 
domains adjacent to IDRs can do so too. The impact that folded domain surface features have 1076 
on IDR ensemble properties depends on the chemistry of the folded domain and the IDR 1077 
sequence. From left to right: Same charged residues on a folded domain surface and an IDR 1078 
will repel one another, preventing intramolecular interaction and ensuring an IDR is projected 1079 
into solution, away from the folded domain. Oppositely charged residues on a folded domain 1080 
surface and an IDR will attract one another, driving intramolecular interaction. Hydrophobic 1081 
interactions between aliphatic and/or aromatic residues on folded domain surfaces and IDRs 1082 
can lead to intradomain interaction. If many IDRs are projected from a filament formed from 1083 
folded domains, inter-IDR interaction and repulsion can lead to a bottle-brush architecture and 1084 
a resulting entropic force. (h) Figure summarizing a current model for IDR function. IDRs are 1085 
encoded by their amino acid sequence (left). That sequence determines the presence of SLiMs 1086 
(middle top), the overall ensemble (middle center) and the presence of sequence features 1087 
(middle bottom). All three properties and/or their functionality are influenced by IDR context. 1088 
Ultimately, these context-dependent properties dictate both molecular function and the 1089 
evolutionary constraints that govern IDR sequence variation over generations. 1090 
  1091 
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 1092 
Figure 4: IDRs enable a range of molecular recognition modes. (a) IDRs can bind partners 1093 
via coupled folding and binding, where an IDR (or a subregion) folds upon interaction with its 1094 
partner, be it DNA, RNA, protein, or a membrane. (b) IDRs can bind partners via fuzzy 1095 
interactions, whereby multiple structurally distinct bound states are relevant to function. 1096 
Illustrated here is a scenario where an IDR consistently interacts with the same interface in 1097 
structurally distinct bound states, but fuzzy interactions could also involve a scenario whereby 1098 
an IDR possesses several non-overlapping motifs or binding residues that exchange in binding 1099 
a single interface on the surface of a folded domain. (c) IDRs can bind disordered partners to 1100 
form fully disordered complexes where no persistent structure or contacts are seen in either 1101 
partner in the bound state. (d) IDR molecular recognition is often facilitated by SLiMs. These 1102 
are often well-described as a consensus motif with evolutionary conserved and invariant 1103 
positions, while other positions are partially or fully redundant. As a result, SLiMs can be 1104 
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described in terms of “regular expressions” (RegExs), a term borrowed from computer science 1105 
that describes patterning matching when a subset of positions in a sequence are under some set 1106 
of constraints (e.g., the PIP box binding to PCNA (QxxLxxFF), where X is any amino acid). 1107 
(e) The sequence context around SLiMs is a critical determinant of binding. The same SLiM 1108 
present in different proteins may bind with high affinity or not all, depending on the 1109 
complementary chemical interactions between the residues flanking a SLiM and the surface 1110 
surrounding the binding site. Thus, when the features of the flanking regions match those of 1111 
the binding partner, the context is favourable (top), when no determining features are present, 1112 
only the SLiM is deterministic for binding (middle) and when the features of the flanking 1113 
regions and those of the binding partner surface do not match, the context is repressive 1114 
(bottom). (f) Binding of IDRs often involves avidity and allovalency. Avidity emerges when 1115 
multiple binding sites (e.g. SLiMs) enable two molecules to interact through two or more 1116 
independent binding interfaces (top). Allovalency reflects the situation in which a single 1117 
binding site on one partner is complemented by multiple identical binding interfaces on another 1118 
(bottom). (g) IDRs can encode binding specificity in a variety of ways. Multiple SLiMs within 1119 
a single IDR offer one route to high-specificity (and high affinity) binding, whereby only a 1120 
limited set of partners possess binding interfaces common to all the SLiMs present, providing 1121 
specificity combinatorily via many weak motifs (left). While conceptually this may be 1122 
straightforward to understand, a growing body of work suggests the existence of a continuum 1123 
of multivalent binding modes, whereby a combination of SLiMs and sequence features enable 1124 
a trade off between sequence conservation and binding to a specific target (middle). Finally, 1125 
IDRs may interact solely via chemical specificity, whereby specific sequence features lead to 1126 
favourable interactions between the IDR and a partner, such as a positively-charged IDR 1127 
binding to a negatively charged partner (right). The discriminatory power available for such a 1128 
simple sequence feature may be limited, and other properties such as number of charges or 1129 
charge density or properties yet to be discovered may  enable specific molecular recognition   1130 
 1131 
 1132 
 1133 
  1134 
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 1135 

 1136 
Figure 5: IDRs can undergo phase separation and contribute to biomolecular condensate 1137 
formation. (a) Biomolecular condensates are non-stoichiometric assemblies that concentrate 1138 
specific biomolecules while excluding others. In cells, many condensates can co-exist, as 1139 
shown here where nucleoli, nuclear speckles, and synthetic condensates generated using the 1140 
PopTag oligomerization domain coexist in the same U2OS cell nucleolus (b) Condensates 1141 
formed in vitro and in vivo through phase separation are often stabilized by IDRs, with a variety 1142 
of distinct chemical interactions tuning condensate formation, maintenance, and material state. 1143 
(c) IDRs that drive phase transitions can be described in terms of stickers and spacers, where 1144 
stickers reflect regions or residues that have an outsized role in driving attractive interactions, 1145 
while spacers are regions that connect stickers. (d) For IDRs that drive homotypic phase 1146 
separation where many copies of the same IDR interact   favourable multivalent intra-molecular 1147 
drive chain compaction, whereas favourable multivalent inter-molecular interactions drive 1148 
phase separation,. (e) If intra-condensate IDR concentrations are high, the high concentration 1149 
of sidechain chemistries presented by the many IDR molecules effectively provides a novel 1150 
solvent environment that can destabilize e.g., nucleic acid duplexes, but could also in principle 1151 
catalyze chemical reactions. (f) The presence of IDRs adjacent to folded domains can prevent 1152 
the formation of arrested condensates through IDRs acting as local molecular lubricants. If the 1153 
IDR engages in many weak interactions with the surface of the folded domain, those 1154 
interactions can impede strong intermolecular interactions between folded domains that would 1155 
otherwise lead to arrested assemblies. In this way IDRss can act to ensure the condensates are 1156 
dynamic and, upon a reduction in overall protein concentration, undergo disassembly. Here, 1157 
folded domains are represented with discrete “binding sites” that mediate interactions with 1158 
other folded domains. If folded domains lack IDRs, they readily assemble via folded domain-1159 
mediated interactions, but those condensates become trapped irreversibly on the timescale of 1160 
the schematic. In contrast, if folded domains possess IDRs, the IDRs lubricate folded domain 1161 
interactions, leading to dynamic and reversible condensate formation.   1162 
 1163 
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Movies:  1166 
 1167 
M1 Rendering of all-atom simulation of the hnRNPA1 IDR to illustrate the conformational 1168 
heterogeneity within an atomistic ensemble57. Conformations were generated through all-atom 1169 
Monte Carlo simulations, which show good agreement with experimental characterization. 1170 
 1171 

Related links 1172 
Metapredict disorder predictor: https://metapredict.net/  1173 
CAID prediction portal: https://caid.idpcentral.org/submit  1174 
Eukaryotic Linear Motif (ELM) resource: http://elm.eu.org/ 1175 
PLAAC webserver for identify prion-like domains: http://plaac.wi.mit.edu/ 1176 
CIDER webserver for calculating sequence properties: http://pappulab.wustl.edu/CIDER/  1177 
Link to bioinformatic analysis referred to in this paper: https://github.com/holehouse-1178 
lab/supportingdata/tree/master/2023/holehouse_and_kragelund_2023  1179 
 1180 
 1181 
Glossary  1182 
 1183 
radius of gyration – Also written as Rg. This parameter is a measure of global ensemble 1184 
dimensions and reports on the average distance between the center of mass of the IDR and the 1185 
individual atoms. 1186 
 1187 
end-to-end distance – Also written as Re This parameter is a measure of global ensemble 1188 
dimensions and reports on the average distance between the first and last residues in the IDR. 1189 
 1190 
hydrodynamic radius – Also written as Rh. This parameter is a measure of global ensemble 1191 
dimensions and reports on the radius associated with a sphere that would diffuse through the 1192 
solution at the same speed the IDR in question would, after correcting for solution viscosity.  1193 
 1194 
sequence features – Properties of an IDR amino acid sequence that are determined by the 1195 
composition and patterning of different amino acids. Sequence features can – by definition – 1196 
be determined directly from sequence. Several commonly-used sequence features can be 1197 
calculated using the CIDER webserver. 1198 
 1199 
π:π interactions – Interactions mediated by delocalized π electron clouds, seen in amino acids 1200 
with aromatic side chains. 1201 
 1202 
prion-like domains (PLD) – A class of protein domains defined by being of low complexity 1203 
(many similar amino acids) and possessing enrichment for polar amino acids (especially 1204 
glutamine, asparagine, glycine, and serine), often with additional aromatic residues. PLDs are 1205 
defined using the PLAAC webserver with default parameters. While PLDs have been found to 1206 
phase separate, their presence should not be taken as evidence that a protein will phase separate. 1207 
They are named after yeast prions, in which a PLD was originally defined. 1208 
 1209 
induced fit – A mode of binding in which the IDR is templated into a specific conformation 1210 
by a binding partner. Unlike conformational selection, the bound-state conformation of the IDR 1211 
is never/rarely visited in the unbound ensemble, and the act of binding “induces” this bound-1212 
state conformation. 1213 
 1214 
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conformational selection – A mode of binding in which the IDR binds a partner by adopting 1215 
a binding-competent conformation in the unbound ensemble, which then binds without further 1216 
conformational rearrangement. Unlike induced fit, the bound-state configuration of the IDR is 1217 
visited in the unbound ensemble, such that the binding partner “selects” a specific conformation 1218 
to bind. 1219 
 1220 
associative polymers – A class of polymer architecture in which specific regions or monomers 1221 
contribute associated (attractive) interactions. See foundational work by Cate & Whitten (1986) 1222 
and Semenov & Rubinstein (1998). 1223 
 1224 
molecular grammar – When used in the context of IDRs and biomolecular condensates, this 1225 
refers to the grammer of sequence features that dictate the driving forces for condensate 1226 
formation and the resulting material properties. 1227 
 1228 
forcefields – In molecular simulations, forcefields are the set of equations and parameters used 1229 
to describe the chemical physics of the molecular system of interest. All-atom forcefields used 1230 
for simulating disordered proteins include ABSINTH, amber03ws, a99SB-disp, 1231 
CHARMM36m, and DES-Amber 417,420–423. 1232 
 1233 
deep learning– Deep learning is a branch of machine learning concerned with models that 1234 
contain large numbers of parameters. It has received substantial attention due to its ability to 1235 
perform complex pattern recognition, especially for text and images. In the biological sciences, 1236 
deep learning has been applied to protein structure prediction, disorder prediction, and, more 1237 
recently, the prediction of ensemble properties. 1238 
 1239 
 1240 
 1241 
  1242 
  1243 
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