The Principles of Protein

Folding Kinetics

THE LEVINTHAL PARADOX MOTIVATED THE
SEARCH FOR A PROTEIN FOLDING MECHANISM

In this chapter, we describe the rates and routes of protein folding
and unfolding. By routes, we mean the time-course of conformational
changes that occur as a protein folds. At what stage during the course
of the folding process does a protein acquire its secondary structures,
its hydrogen bonds, its hydrophobic core, and its tight side-chain
packing? Is there a general mechanism that explains commonalities of
folding and unfolding routes over different sequences and folds, and as
a function of external variables, such as temperature and denaturants?
How can a protein “find” its native structure spontaneously and quickly
from its unfolded state, sometimes within microseconds? What is the
speed limit of folding, and what is the physical basis for it?

Why is protein folding kinetics important? For one thing, folding kinet-
ics was central to the historical development of protein science. In
1968, Cyrus Levinthal posed a puzzle that is called the “Levinthal para-
dox” [1]. Proteins face a “needle-in-a-haystack” problem. The haystack
is the astronomically large conformational space that an unfolded pro-
tein must search in order to find the needle, its one native structure. If
you estimate that there are between z = 3 and 8 conformational states
for each peptide unit and if there are N = 100 amino acids in a protein,
then the number of conformations the protein must search (the size
of the haystack) is huge, z¥N ~ 1050-109. The Levinthal paradox is the
question of how a protein can fold to its native structure so quickly,
often in microseconds to seconds, in light of this huge search problem.

Levinthal’s paradox inspired the following idea: if we could learn the
pathways of folding, then perhaps we could infer a folding principle
or mechanism by which conformations are explored or ignored, as
so many different types of proteins reach their native structures so
quickly and directly. Perhaps knowledge of the folding intermediate
states (partially assembled structures that are formed on the way to the
native state) could give us clues about how each type of protein “knows”
which vast stretches of its conformational space not to search. Such
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knowledge could help us improve computer search methods for pre-
dicting native protein structures from their amino acid sequences. And
knowledge of folding kinetics could help us understand the dynam-
ics of other processes, including ligand binding, allosteric changes in
conformation, and mechanistic actions.

FOLDING RATE EXPERIMENTS ARE CAPTURED
BY MASS-ACTION MODELS

We begin with the most basic experiment in folding kinetics. You start
with a dilute solution of proteins that are unfolded because of the dena-
turing conditions of the solution. You switch the solution to folding
conditions by suddenly changing the denaturant concentration, pH, or
temperature. You then observe an optical property, such as circular
dichroism (CD) or fluorescence, y(t), as a function of time t. You mon-
itor the rate of the increasing population of native molecules in the
test tube. This type of experiment is often called in vitro refolding,
because it takes place in test tubes, not inside the cell, with proteins
that were initially unfolded. You can also run the experiment in reverse,
unfolding native proteins by jumping the protein solution from native
conditions to unfolded conditions. You run these experiments with
dilute protein solutions, to avoid protein aggregation.

Folding and unfolding processes are usually well described by one or
more exponential functions of time:

y(t) = Aje kit 4 A e ket (6.1)

(Figure 6.1). The rate coefficients k; and k, and the amplitudes A;
and A, can give you insights into the folding process under various
conditions.

In this chapter, we describe the insights you get from both macro-
scopic and microscopic models. In macroscopic modeling, your goal is
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Folding and unfolding often follow one- or two-exponential
decays. Kinetic relaxation of the amount of native or denatured protein as a function
of time after jumping the conditions by light absorbance for (A) lysozyme and (B)
cytochrome ¢, and by fluorescence for (C) ribonuclease A. A single exponential is a
straight line on these logarithmic plots. The plots show two-state folding and unfolding
kinetics for lysozyme; three-state folding and unfolding for cytochrome ¢; and a
combination of two-state folding and sequential unfolding for ribonuclease A. (A and B,
adapted from A lkai and C Tanford. Nature, 230:100-102, 1971. With permission from
Macmillan Publishers Ltd.; C, adapted from TY Tsong, RL Baldwin, and EL Elson. Proc.
Natl Acad Sci USA, 69:1809-1812, 1972. Copyright (1972) National Academy of
Sciences, USA.)
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to choose the mass-action model that best fits your data. A mass-action
model is a chosen set of kinetic states, such as D, I, and N, and a pos-
tulated kinetic scheme of arrows connecting those states (Figure 6.2).
Macroscopic modeling simply expresses your experimental results in
the shorthand language of these pathways. In contrast, microscopic
models aim to capture the underlying physics—how the molecular con-
formations and energies lead to folding rates and routes. Microscopic
models aim to give a structural and physical explanation for the time
evolution of folding events, and/or the effects of temperature, denat-
urants, pH, or amino acid sequence on the folding process. First, let’s
explore macroscopic modeling.

A typical small single-domain protein folds or unfolds in just a single-
exponential relaxation process, such as the one shown in Figure 6.1A
for lysozyme. Processes in nature that involve single-exponential
dynamics are said to follow two-state kinetics because the mass-action
model you need to explain them requires only two states, in this case
D (denatured) and N (native):

k.
D = N,

u

(6.2)

where k¢ and k, are the folding and unfolding rate coefficients,! respec-
tively. The time dependence of this process can be described by

AP) k(D1 + kulN],
o 63
A — kD1 - kN,

where [D] and [N] are the time-dependent concentrations of the dena-
tured and native states, respectively. If you choose normalized units
so that [D] +[N] =1, then [D] and [N] are time-dependent probabilities
or populations, pp(t) and py(t), with values ranging from 0 to 1.

There are different ways to solve Equation 6.3. The simplest is to sub-
stitute pp(t) =1 — pn(t) and solve for py(t). However, that strategy is
limited mostly to two-state kinetics. Because we want to explore a
broader range of models that apply to different types of dynamics, we
use a more general approach, called master equations. In this approach,
you express the probabilities of the states in a column vector

pp(D
P = .
® [pN(t)] 0:2)
and the rate coefficients in a rate matrix
_[=k ku
W= [ P% —ku]' (6.5)

lwe use the term rate coefficient rather than rate constant, which is common in the
field, because these quantities are not constants. They are usually strong functions
of temperature, among other things.
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Common mass-action
models of folding. (A) The
two-state model. (B) On-pathway
intermediate state. (C) Off-pathway
intermediate. (D) A sequential model
having multiple intermediates.
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Then, you can express the time evolution of the probabilities as a
matrix equation:

dP(t)
— WP(1). (6.6)

Appendix 6A gives the procedure for solving master equations. For the
earlier two-state case, the native population is

k
e —(kut+kp)t f _ o—(kutkp)t
pn(t) = pn(0)e “+ Kat ke (1 e ), (6.7)

and the denatured population is pp(t) =1 — pn(t). The fraction of
molecules that are folded converges to the equilibrium value

pn(oo) = kr + Ka .

at long times. Equation 6.7 says that if you jump the conditions at time
t =0, you will observe a single-exponential decay to equilibrium with a
rate coefficient

kobs =ky+ kf (6.9)

In one limit, you can start at time t =0 with all molecules unfolded,
pn(0) =0, and apply strong folding conditions, k,; — 0. Then the
native-state population will grow exponentially with time, with rate
coefficient ky:

pn(t) =1 — ekrt, (6.10)

In the opposite limit, you can start at time t =0 with all molecules
fully folded, pn(0) = 1, and apply strong denaturing conditions, ks — 0.
Then the native-state population will disappear exponentially:

pn(t) = e kut, 6.11)

Here is how you use Equation 6.7. You adjust the parameters k; and ky
to achieve the best fit of Equation 6.7 to your experimental data. If your
data are more complex than single-exponential dynamics, then you try
a different model, typically one that has intermediate states.

The two-state dynamics described earlier is often adequate for small
proteins. How should you interpret this exponential time dependence?
Does it mean that all the proteins in the test tube are synchronized,
with each molecule forming its first helix at the same time that every
other protein molecule forms its first helix, for example? Or does it
mean that each protein itself folds very quickly, not synchronized with
other protein molecules, and that the exponential decay is just reflect-
ing what fraction of the protein molecules are folded or unfolded at
a given time? It means the latter. The rate coefficients kf and ky, are
the probabilities per unit time that any particular protein molecule will
convert. The number of molecules that convert to N at any given time is
proportional to how many D molecules are still left unconverted in the
test tube at that time. The fewer D molecules there are in solution, the
fewer D — N conversions happen in unit time. This is a concentration
effect. This is the basis for the exponential time course in protein fold-
ing or unfolding. Box 6.1 shows how you can use this interpretation for
determining folding rates from computer simulations.
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Box 6.1 You Can Estimate a Protein’s Folding Rate from
Multiple Short Computer Simulations

Suppose you want to run a computer simulation of folding to deter-
mine the folding rate coefficient kf. (Such simulations are discussed
in Chapter 10.) You can run either a few long trajectories or many
short ones. You could start the simulation from some unfolded con-
formation, then run a long trajectory of the protein under folding
conditions. Your computer trajectory should be run for at least sev-
eral multiples of the time tr = 1/ky, the inverse of the folding rate
coefficient. Otherwise, you won’t have enough data to accurately
fit the baseline of your relaxation curves. For example, if the true
folding time were 1pus, you would need at least 5-10us of sim-
ulation time. But running long trajectories takes a long time on
computers.

Instead, if you have parallel computers, you could run many short
trajectories and collect statistics. V Pande showed this on a com-
puter resource called Folding@home. Equation 6.10 shows that for
short times (t <« tf), starting from the denatured state, you can
approximate the time-dependent population of the native state as

pa(D) =1 — ekt~ ket. (6.12)

Rearranging Equation 6.12 gives

ke = pNT(‘) (6.13)
1 (number of trajectories in which the protein folds)
T total number of trajectories ’

In this way, you can estimate k; from many short trajectories
instead of fewer long ones. You simply count the fraction of fold-
ing events you see. This strategy is useful because it is often easier
to obtain computer resources for many shorter runs than for fewer
long ones. And long trajectories do not necessarily provide adequate
sampling of conformational space.

Small globular proteins (shorter than about 100-150 amino acids) usu-
ally fold via two-state kinetics. It is remarkable that proteins fold with
such simple kinetics, given their heterogeneous and complex molecular
structures. We show in the following that any process having single-
exponential kinetics can be described as having a rate-limiting step, or
a transition state.

Any process having single-exponential dynamics, including two-state
protein folding or unfolding, can be described using a concept called
transition state or activation barrier. This concept rests on the funda-
mental relationship between any equilibrium constant K, such as for
folding, and its corresponding free-energy change AGy:

AGf:GN—GDz—RTan, (6]4)
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where RT is the gas constant multiplied by the absolute temperature,
and Gy and Gp are the free energies of the native and denatured states,
respectively. For two-state kinetics, you can express the equilibrium
constant as a ratio of rate coefficients:

Nl kr
~[Dleq k'

K (6.15)

The first equality is the definition of the equilibrium constant for a two-
state process, and the second comes from using equilibrium condition
d[N]/dt = d[D]/dt = 0 in Equation 6.3.

From substituting Equation 6.15 into Equation 6.14, it follows that

kf kyu
s —rrn(0) - [-arin( )]

=AG'f— AGE. (6.16)
Equation 6.16 simply relates rate coefficients to free-energy quantities,
just as Equation 6.14 expresses equilibria in terms of free energies.
(We have introduced an intrinsic rate constant ko into each term on the
right-hand side. Mathematically, kg is needed to ensure that each argu-
ment inside each logarithm is dimensionless. Physically, ko represents
the maximum speed that either forward or reverse processes can reach,
at infinite temperature.) Following immediately from Equation 6.16 is
the existence of a third state, represented by #, that is neither N nor D,
and that has free energy G*:

k
AGH = —ern(—f> Y e B o 6.17)
f Ko
and
AG,ﬁ:—-RTln(%) = Gt — Gy- (6.18)
0

The state } is called the transition state (TS) or activated state, and
G* is its free energy. Rearranging Equation 6.17 gives the folding rate
coefficient in terms of the barrier free energy:

AG}
kp(T) = koexp | ——=" | . (6.19)

The state # can be regarded as a bottleneck; it usually has a positive
free energy, AG; > 0, meaning that both the forward and backward
rates of the system are slower than the speed limit, that is, kg/ko < 1
and ku/ko < 1. So, G* represents a hilltop point on a reaction-coordinate
diagram (Figure 6.3). A reaction diagram is a plot of the free energies of
the various states along the way between the two end states. Reaction-
coordinate diagrams convey the information that the forward and
reverse rates can be expressed in terms of free energies, and that there
is a sum relationship between the free energies: AGy= AG; G e
Any process involving single-exponential kinetics is interpretable in
terms of transition-state barriers. The importance of Equation 6.19 is
in describing an experimentally observable quantity, the folding rate
coefficient, in terms of another quantity, the free-energy barrier, that
expresses underlying driving forces.
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free energy

reaction coordinate, &

Here’'s how the transition-state concept is used for proteins. First, it
implies a possible structural basis for rate bottlenecks. Is there a par-
ticularly “challenging” structure of the protein that causes it to be the
slow step in folding? However, protein folding is different than small-
molecule chemistry, where the transition-state concept is traditionally
applied. The making and breaking of covalent chemical bonds involves
large energies, usually tens of kilocalories per mole, whereas the mak-
ing and breaking of noncovalent bonds, as in protein folding, involves
much smaller energies, in the range of RT = 0.6 kcalmol~! at T = 300K.
So, transition states for protein conformations are thermal ensembles,
not single molecular structures.

Second, the transition-state equation, Equation 6.19, is also useful for
interpreting the effects of temperature on kinetics. If you observe that
Ink¢(T) is proportional to 1/T, it implies that ko and AG; are constants,
independent of temperature. In this case, called Arrhenius kinetics,
increasing the temperature increases the speed of a process. Arrhenius
kinetics is often observed for protein unfolding and for conforma-
tional changes of small protein pieces, such as helices and B-hairpins.
However, Arrhenius kinetics are sometimes not observed for protein
folding: for ultrafast-folders, heating doesn’t speed up folding. We give
examples later in this chapter.

What is the speed limit kg? The speed limit of gas-phase chemi-
cal reactions is kg = RT/h= 0.16 conversions per picosecond at room
temperature (h is Planck’s constant). But protein-folding kinetics is
not comparable to that of chemical-bond-forming reactions in the gas
phase. Folding entails a protein sloshing around in solvent. The short-
est time for protein folding has been estimated to be around 1 us, so
for protein folding, ko ~ 10%s~! [2]. This also happens to be approx-
imately the maximum speed that a 10- or 20-mer peptide can form a
helix in solution.

Large proteins tend to fold slowly, and with multi-exponential rates.
By definition, the two-state model will not fit a multi-exponential pro-
cess. To fit two exponentials, you must invoke at least three states,
typically native, denatured, and a kinetic intermediate state. There are
two main types of three-state models. In the model D =1= N, the
folding intermediate state I is called on-pathway because the symbol

A reaction-coordinate
diagram is a one-dimensional
representation of the relationship
between equilibrium and rate
quantities: AGy = AG? - AGE. This
diagram conveys this relationship on a
diagram showing a real or fictitious
reaction coordinate &, which represents
the progress of the reaction.
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Transition states have
small populations. Kinetic
intermediates have larger
populations. The plots show
populations of states versus time since
the initiation of folding. (A) The
transition state (TS) inD — TS — N is
only transient, never reaching a high
population, and not contributing an
observable kinetic phase. (B) The
intermediate state () inD — | - N has a
detectable population during the
folding process, leading to an
observable kinetic phase (see [4]).

Chapter 6 THE PRINCIPLES OF PROTEIN FOLDING KINETICS

appears in-line between D and N. On the other hand, if your data
may be better fit by the model, | = D = N, then the intermediate state
[ is called off-pathway, or is sometimes referred to as a misfolded
intermediate, because it is not directly in-line between D and N. You
choose between on-path and off-path models (and possibly other mod-
els) based on whichever model gives the best fit to the data. And, when
neither on-pathway or off-pathway models fits, then try a different
model. For example, the folding of ribonuclease A (see Figure 6.1C)
has been explained [3] by a sequential, four-state model, similar to the
one shown in Figure 6.2D.

The expression D — TS — N resembles the expression D — I — N. What
is the difference between a kinetic intermediate state [ and a transition
state TS? Intermediates are defined as states that become substan-
tially populated during a kinetic process, while transition states do
not. Think of the kinetic states D, N, or the intermediates, Iy, 1,...I,s, as
metaphorical “buckets” that can fill up and empty out. In this metaphor,
the folding process begins with a full bucket D and an empty bucket N.
Folding ends when the N bucket is full and D is empty. Now consider
a situation in which there is an intermediate bucket (labeled either I
or TS) interposed between D and N. Bucket D pours into this interven-
ing bucket, which has a hole in its bottom, so it empties into bucket
N. The difference between an intermediate and a transition state is the
size of the hole in the middle bucket. As the D bucket pours into an
intermediate I, the I bucket leaks out into the N bucket only slowly, so
the I bucket fills up significantly throughout the middle of the kinetic
process, before it drains out at later times. In contrast, think of TS as a
bucket that has a large hole in its bottom, so that it never fills up very
much (Figure 6.4A). Even if the D bucket is pouring into the TS bucket
rapidly, the TS bucket empties into the N bucket as fast as it is being
filled, so TS never becomes very full. In short, I states reach signifi-
cant populations and observable kinetic features, while TS states have
only small populations, so they are consistent with only two observable
kinetic states.

Our buckets are simply a metaphor for the eigenvectors of a master
equation; see Appendix 6A. Once you know the dynamics of a model,
you can compute its eigenvalues and eigenvectors. Think of one eigen-
value (a rate) and an eigenvector (a set of changes in the populations
of states reflecting the inflows and outflows of the different states)

(G (8)
D TS N D | N

—> — — e

N

—
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(A) (B)

relaxation time relaxation time

5 A gap in the eigenvalue spectrum implies apparent two-state
kmetlcs. The bars indicate the different relaxation times of multi-exponential
processes. Different processes have characteristic spacings. (A) When the eigenvalue
spectrum has a single slowest process that is well separated from other (faster)
processes, the slowest exponential will be the most prominent observable, since faster
processes will equilibrate over that timescale. (B) When the eigenvalues are not well
separated, the kinetics are more complicated and multi-exponential.

as describing one “generalized process” or metaphorical “generalized
bucket”. Solving a master equation gives a sum of such generalized
independent processes. Each process has its own timescale (eigen-
value). Each process is a sum of different amounts of flows to and
from the different states. Eigenvalues and eigenvectors are the quanti-
tative manifestation of the bucket idea. They express a given relaxation
process as a sum of contributions from different modes of relaxation.
Each reaction topology (that is, particular arrangement of states and
arrows) leads to some eigenvalue spectrum. Single-exponential kinet-
ics is observed when an eigenvalue spectrum has a gap between the
slowest rate and all others (Figure 6.5A). In multi-exponential kinetics,
there is no such gap between eigenvalues (see Figure 6.5B).

RATE MEASUREMENTS GIVE INSIGHTS INTO THE
PATHWAYS OF PROTEIN FOLDING

What are the folding routes? When do different structures form during
the folding process? Different experimental probes will report differ-
ent information. Suppose you have two probes, one that reports helix
formation and another that reports chain collapse. In principle, watch-
ing the time dependence of both probes during a folding experiment
of a protein could tell you the relative order of the collapse and helix-
formation events of that protein. But here’s the challenge. The small
proteins that are commonly studied are two-state folders; that is, they
fold with only a single kinetic phase. So, without other information, all
you can say about two-state folders is that “everything happens within
a single kinetic event.” If you want to create a more detailed narra-
tive about folding pathways, you need independent information or you
need to study multistate folders, where you can characterize the kinetic
intermediate states.

Figure 6.6 shows three hypothetical folding pathways. In one, fold-
ing happens as a single event. Another possibility is that two helices
form separately at about the same time, and then the two fully formed
helices dock together. A third option is that one helix forms first, pro-
viding a surface onto which the second helix can form. And, there are
many other options. The search for folding mechanisms has driven
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Figure 6.6 Different possible
folding routes. Different kinetic
routes from the denatured state
(disordered, on the left) to the native
state (helices, on the right). (A)
Two-state process: it happens all at
once. (B) First, helix 1 forms, which
serves as a template, assisting the
formation of helix 2. (C) Helix 1 forms
independently of helix 2, then they
come together.

&f
3>

important advances in experimental methods, some of which are
described in this chapter.

O™ S

B

One well-studied kinetic intermediate state involves proline isomeriza-
tion. Prolines can interconvert between two different isomeric states,
cis and trans peptide bonds. In the native structure, the proline inter-
conversion is slow. In the denatured protein, the proline will be in a
Boltzmann equilibrium between the two isomeric states. Upon folding,
each of the protein’s non-native prolines must convert to whatever is
that proline’s native-state isomer. So, folding has two kinetic phases.
In the slow phase, the protein starts with the wrong proline isomer.
That folding is slow because prolines are slow to isomerize. In the
fast phase, the protein begins in conformations that are already in the
correct isomeric state.

Another kinetic intermediate is found in the folding of the bovine
pancreatic trypsin inhibitor protein (BPTI), whose native structure
has three disulfide bonds among six Cys residues. Interestingly, the
disulfide bonds in BPTI do not form in a systematic increasingly
native-like series of events. Some wrong disulfide bonds form tran-
siently first, then they are undone, then the correct disulfides finally
form. These incorrect disulfides have been called on-pathway misfolded
states.

Other proteins, too, can pass through non-native states on their folding
routes. The folding kinetics of lysozyme shown in Figure 6.1A indi-
cates a single exponential, when probed by a single method. However,
by using multiple methods, it has been shown that the two domains
of hen lysozyme behave differently during folding. The x-domain folds
rapidly. Once the x-domain is formed, the 3-domain then folds. The
protein overshoots in the fast process, indicating that helix forma-
tion probably goes too far, and leads to non-native contacts, before
being rescued by the slower B-sheet formation step. The folding of
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hen lysozyme thus appears to involve multiple paths and consider-
able complexity [5]. B-lactoglobulin also folds with multiphase kinetics.
B-lactoglobulin is a B-barrel comprised of nine antiparallel p-strands,
one major «-helix, and four short helices. In folding, the molecule
first forms an «-helical structure transiently before adopting its native
B-barrel structure.

Mutational Studies Can Probe Folding Pathways

You can get insights into folding routes by studying mutated proteins.
A method called ®-value analysis [6] gives information about which
parts of the protein fold slowly and which fold more rapidly. In ®-
value analysis, you mutate a single amino acid at a time in the protein.
You measure both the folding rate coefficient ks, , of the wild-type
protein and the folding rate coefficient kg, m,, of the mutant. Equa-
tion 6.17 indicates that the change in the transition-state barrier free
energy resulting from the mutation will be given by

AAGE — —RTIn( Kfomut) (6.20)
kf, wt

To perform ®-value analysis, you must also measure the change in pro-
tein stability, AAGy, caused by the mutation, or equivalently the change
in equilibrium constant of the mutant, Kf ., relative to that of the
wild type, K¢, . The ® value for folding is defined as the ratio

_AAGE  Indky, mur/Kp, wo)
AAGf In(Kf, mut/Kf, wt) '

f 6.21)

® is a number that is usually between 0 and 1. Figure 6.7 shows how &
values are interpreted in terms of transition states.? Observing ®r=0
means that your mutation had no effect on the folding rate. Observing
@ =1 means that your mutation affected the folding free-energy bar-
rier as much as it affected the folding stability. So, mutational results

(A) (8)

®=0
> >
o o
el -
@ v
[ =4 c
@ v
[ [
[ [
= =
reaction coordinate, & reaction coordinate, &

Figure 6.7 A & value is often interpreted in terms of a structure of the transition state. (A) ® = 0 means that the
mutation site has a denatured-like structure when it is in its transition state. (B) ® = 1 means that the mutation site has a

139

native-like structure when it is in its transition state. The blue solid curve is for wild type, and the red dashed curve is for mutant.

2We have described here the folding ® value, ®f; you can also define a corresponding
unfolding ®y.
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A chevron plot shows
how denaturants affect folding
kinetics. The /eft straight line shows
that reducing the denaturant
concentration speeds up folding. The
right straight line shows that
increasing denaturant speeds up
unfolding. c¢m is the denaturation
midpoint. Extrapolation of the lines to
zero denaturant gives the folding and
unfolding rate coefficients kf and ky
in water. The results shown here are
for the acyl-CoA-binding protein.
(Adapted from KL Maxwell, D Wildes,
A Zarrine-Afsar, et al. Protein Sci,
14:602-616, 2005.)

are often interpreted as follows. If you see @ = 0 for your mutation, it
means that residue in the chain has not yet reached its folded structure
when the rest of the chain is passing through the transition state, while
@ =1 means that residue is native when the chain passes through its
folding transition state.

If you find nonzero ® > 0 at multiple sites, then the transition state is
called diffuse, meaning that many different amino acids in that protein
are involved in controlling the folding rate. If, instead, you find ® ~ 0
broadly throughout the protein, the transition state is called polarized,
meaning that just a few of the protein’s amino acids are controlling
the folding rate. For example, chymotrypsin inhibitor 2 has a diffuse
transition state, and ubiquitin has a polarized transition state.

Adding denaturants, such as guanidinium hydrochloride (GuHCI) or
urea, can slow down folding and speed up unfolding. The effects
of denaturants on folding rate coefficients are represented using a
chevron plot. A chevron plot shows the logarithm of the observed
relaxation rate on the vertical axis versus the denaturant concentra-
tion on the horizontal axis (Figure 6.8). The term chevron refers to
the plot’s V shape (or inverted-V shape if you plot the logarithm of
folding time instead). The left branch of the V describes the folding
rates you see when the system is jumped to low denaturant concentra-
tions, telling you about the folding process. The right branch of the V
describes jumping to high denaturant concentrations, telling you about
the unfolding process.

For proteins that fold with two-state kinetics, the logarithm of fold-
ing and unfolding rate cooefficients are linear functions of denaturant
concentration [d] (see Figure 6.8); that is,

In kp = In kY + mg[d),

(6.22)
In ky = In K + my[d).

mg <0 and my > 0, which are called kinetic m-values, are the slopes of
the two lines. Adding denaturant slows protein folding and speeds up
protein unfolding. The linear behavior of the logarithm of rate coeffi-
cients with denaturant concentration in a chevron plot resembles the
linearity of the logarithm of equilibrium constants (the m-values) for
protein stabilities (see Chapter 3). k‘f’ and kg are the folding and unfold-
ing rates, respectively, in the absence of denaturant. For proteins that
obey two-state folding/unfolding kinetics, you can relate the equilib-
rium unfolding free energy AG, = —AGy to the folding and unfolding
rate coefficients:

0
AGy=RTIn[ %) ern(k—g> + (my — mp)ld]. (6.23)
ke K

At the denaturation midpoint (that is, at ¢y in Figure 6.8), you have
kf = ku.

Why are chevron plots V-shaped? Recall from Equation 6.9 that the
observed relaxation rate coefficient is the sum of folding and unfolding
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rate coefficients: kyps = kf + ky. At low denaturant concentrations, the
protein is native and k, is small, so ks ~ k¢, and therefore the left
arm reports mostly on the folding process. At high denaturant con-
centrations, the protein is denatured and k; is small, so kqps ~ ky (see
Figure 6.8). Therefore, you get two straight lines when you plot the
logarithm of k,j,¢ versus denaturant concentration, giving a shape like
the letter V. Kinetic m -values for several small proteins are given in
Maxwell et al. [7].

A V-shaped plot indicates that a protein has two-state folding kinetics.
When folding is more complex than a single exponential, a chevron
plot is not V-shaped. Figure 6.9 shows rollover, where one arm of a
chevron plot is curved or forms a plateau, rather than a straight line.
Rollover indicates the presence of a folding intermediate or a kinetic
trap: further strengthening the folding conditions (moving to the left
on the x-axis of the chevron diagram) doesn’t speed up folding. Rollover
means that a stronger external driving force cannot overcome some
internal speed limit of the protein.

You can combine mutations with chevron plots. To do this, you first
measure the folding and unfolding rates of your protein in a series
of different denaturants, to make a chevron plot for your wild-type
protein. Then you make a mutation at a particular amino acid site in
the protein. Now, you make another chevron plot for the mutant. Plot
the two chevrons on the same figure. Figure 6.10 shows two limiting
cases: (A) In one case, the mutation changes the folding arm of the
chevron plot, but not the unfolding arm. This indicates the mutation
site contributes to folding-rate control. (B) In the other case, the muta-
tion changes the unfolding arm, but not the folding arm. This indicates
the mutation site is not rate-controlling for folding.

Here is a key implication from chevron studies on two-state proteins:
the main folding mechanism (the slowest step) is independent of the
starting state of the protein. The folding arm of a chevron plot is deter-
mined fully by the final state of the solution to which the protein is
jumped. The folding arm does not depend on the initial state of the
protein prior to the jump in conditions. You could have started the
folding process from highly denaturing conditions, where the protein
would have no partially folded structure. Or you could have started the
folding process from weakly denaturing conditions, where the protein
might have had considerable partial structure. It doesn’t matter. The
slowest relaxation time doesn’t change as a function of different initial
conditions.

(A) distal p-hairpin (B) strand 1
S5k S5k

0 1 2 3. -4 §5 6 0 1 2 3 4 5 6
[GuHCI] (M) [GuHCI] (M)

- 1 1
20 2 4 6 8

[GuHCI] (M)

.9 Adding salt speeds up
folding and slows down
unfolding. Chevron plots for the
folding of ribosomal protein S6, in the
absence (blue) and the presence (red)
of sodium sulfate. The rollover (red)
indicates that folding reaches
maximum speed at low denaturant
concentrations. The salt stabilizes the
native protein. (Adapted from DE
Otzen and M Oliveberg. Proc Natl
Acad Sci USA, 96:11746-11751,
1999. Copyright (1999) National
Academy of Sciences, USA.)

Some mutations
change folding rates; some
change unfolding rates. (A)
Mutations in the “distal” 3-hairpin of
the SRC kinase SH3 domain change
only the folding arm of the chevron
plot. (B) Mutations in the first -strand
change only the unfolding arm. Wild
type is shown by red and mutant by
blue. (Adapted from DS Riddle, VP
Grantcharova, JV Santiago, et al. Nat
Struct Biol, 11:1016-1024, 1999. With
permission from Macmillan Publishers
Ltd.)
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40088

re ! Cytochrome c folds in units of foldons. The foldon units are the pair of two terminal helices that form a
tertlary contact (blue); a central, so-called 60’s helix and loop (green); a two-stranded -sheet connected to the green regions
(yellow); and two loops (red and white). (Adapted from SW Englander, L Mayne, and MMG Krishna. Q Rev Biophys, 40:287-326,
2007. With permission of Cambridge University Press.)

3 3.2 3.4
1000/T (K1)

| 2 Evidence of
barnerless folding: folding rate
coefficients (red) are almost
independent of temperature (for
the engrailed homeodomain
protein). In contrast, unfolding rate
coefficients (brown) follow normal
Arrhenius behavior; see Equation
6.B.12. The observed rate coefficient
(blue) is the sum of folding and
unfolding rates. (Model fits from K
Ghosh, SB Ozkan, and KA Dill. J Am
Chem Soc, 129:11920-11927, 2007.
Copyright (2008) National Academy
of Sciences, USA.)

Proteins tend to fold in units of motifs or secondary structures, rather
than as individual amino acids. Structural folding units are called
foldons or partially unfolded forms. Foldons have been observed using
hydrogen exchange (HX). HX can measure either equilibrium fluctua-
tions, or properties of folding kinetics. In equilibrium HX, you have a
series of protein solutions with increasing amounts of denaturant. Each
amino acid has an amide proton. Prior to the experiment, you replace
those amide protons with deuterium atoms. In solution, the deuterium
atoms on the protein will exchange with the hydrogen atoms in the sur-
rounding solvent water, with an equilibrium constant that depends on
how exposed those amide groups are to the water. It is found that in
a series of increasing amounts of denaturant, whole secondary struc-
tures are often protonated at once. In kinetic HX, you transiently pulse
the conditions so as to capture the protonation state of the protein
during a particular time interval of folding. Both experiments show
that secondary structures can fold rapidly relative to other folding
events. Figure 6.11 shows the sequence of stabilities of the individual
structural elements in cytochrome c.

Some proteins fold so fast that they appear to have essentially no free-
energy barrier. Called ultrafast folders, they can fold on timescales of
tens of microseconds.

How could you determine if a process is barrierless? First, a barrier-
less process is fast. Second, the absence of a kinetic barrier means you
don’t have two distinguishable states, so you won’t get two-state (single
exponential) kinetics. Barrierless processes can have complex kinetics.
Third, in a chevron plot for a barrierless folder, you may observe that
the folding rate coefficient becomes independent of denaturant con-
centration at low denaturant. Lowering the denaturant concentration
beyond a certain point no longer speeds up folding, because the fold-
ing rate is already maximal (see Figure 6.9). And fourth, barrierless
processes won’t have Arrhenius kinetics. Equation 6.19 describes how
two-state folding, which entails a barrier, follows Arrhenius kinetics.
When folding has a barrier, higher temperatures lead to faster rates.
But when there is no barrier, it means that folding is already hap-
pening at the maximum possible rate, so increasing the temperature
will not speed it up further. Figure 6.12 shows the case of a protein
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for which temperature does not accelerate folding. In ultrafast fold-
ers, kp(T) is approximately constant with temperature. Interestingly,
however, the unfolding of ultrafast folders usually does obey Arrhe-
nius kinetics. These temperature dependencies are explained by the
Zwanzig-Szabo-Bagchi (ZSB) model (see Appendix 6B).

In the remainder of this chapter, we switch from experiments and
macroscopic models to microscopic modeling of how folding processes
are encoded in protein structures. The macroscopics aim to capture
experimental data in terms of kinetic macrostates, such as N, D, and
I, I, .... Macroscopic modeling is not intended to explain the physi-
cal basis of folding, or why one protein folds differently than another,
or how the different conditions of solvent or temperature speed up or
slow down folding, or to predict folding rates. For the latter questions,
we now turn to microscopic models of kinetics.

HOW DO PROTEINS FOLD SO FAST? THEY FOLD ON
FUNNEL-SHAPED ENERCY LANDSCAPES

Let’s return to Levinthal’s question: how can proteins fold so quickly?
And how are small proteins able to do this, independently of their
amino acid sequence, independently of starting denaturing condi-
tions, and no matter what denatured conformation the chain begins
in? These questions are answered by recognizing the shape of a pro-
tein’s folding energy landscape. An energy landscape is a mathematical
function G(x;, x2, X3, ..., x;) of independent variables x;, x, x3,...,X.. A
protein’s independent variables x; are the chain conformational degrees
of freedom, a total of L=3n—-6 of them for a system of n atoms,
excluding the six external (three rigid-body translational and three
rigid-body rotational) degrees of freedom. These variables may be
described in terms of many geometric features, such as bond angles,
bond lengths, intermolecular distances, and locations and orientations
of water molecules, for example. For protein folding, the function G is
the free energy.3 G is a high-dimensional surface, because it depends
on these many degrees of freedom of the protein. What is the nature of
this function G? What is the shape of the surface of G as a function of
the variables x;?

Let’s consider some possibilities. It could be that a protein’s folding
energy landscape might have the shape of a golf course in a high-
dimensional space (Figure 6.13A). That is, G might be perfectly flat
everywhere except for a highly localized well, representing the native
structure, where the free energy must be lower than all the other states
(since the native state is stable) under native conditions. A golf-course
landscape would mean that all conformations of the chain have identi-
cal internal free energy, except for the native state, which has a lower
internal free energy.

However, statistical mechanical theories developed in the 1980s
showed that folding free energy landscapes are not shaped like golf
courses. They are shaped like funnels [8, 9, 10]; see Figure 6.13B and

3The y-axis on an “energy” landscape is more correctly a free energy, called the inter-
nal free energy. The internal free energy combines all the energies and entropies,
except for the chain conformational entropy. After all, each point on the landscape
represents a different chain conformation. The entropies that are included in the
internal free energy are those that involve the solvent degrees of freedom.
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(A)

N

Flgure 6.12 Energy landscapes help to visualize protein folding processes. (A) A “golf-course” energy landscape is flat
everywhere except for the minimum of the folded state. As in the Levinthal paradox, folding on such a landscape would take a
very long time, because the native structure can only be found by random diffusional searching of the entire large conformational
space. (B) Protein folding is more appropriately described by a funnel energy landscape, where every random conformational step
leading downhill in energy (y-axis) also leads to a reduction of the further conformational search, illustrating how protein folding
can be so fast. (C) A rugged energy landscape indicates the kinetic traps (local minima) that a typical protein encounters while

folding.

Chapter 3. Energy landscapes for folding are large and open at the top
and small and confined at the bottom. The funnel shape comes from the
statistical mechanical density of states of protein molecules. There are
many open chain conformations that, collectively, have a high entropy
and few compact native-like states of low free energy. It is easy to see
how this rationalizes Levinthal’s puzzle. The thermodynamic principle
of free-energy minimization means that you can think of the tendency
toward equilibrium metaphorically as a ball rolling down a hill. If you
roll a ball randomly on the golf landscape, it would take a long time
to find a hole on a metaphorical high-dimensional landscape, implying
that folding would be very slow. But if you roll a ball randomly on a
funnel, even a very high-dimensional one, the ball will roll downbhill,
finding its way to the bottom, no matter where it starts on the funnel.
This indicates both how folding can be so fast and also how the native
structure can be reached from any of the huge number of different
denatured microstates.

What fou Learn from Folding Funnels?

First, funnels explain how a solution of protein molecules, all starting
from different denatured microstates, can reach the same native struc-
ture, and rapidly. Most proteins, irrespective of amino acid sequence,
fold on funnel-shaped landscapes because they collapse from the many
unfolded states to the one or few native structures. Funnels also
explain kinetic heterogeneity, namely that different individual chain
conformations reach the native structure through different microscopic
folding trajectories, possibly at different rates (Figure 6.14). This fold-
ing heterogeneity is at the microstate level, not the macrostate level. To
learn about dynamic heterogeneity at this microscopic level, you would
need to observe more than just the average folding rate coefficient
k¢. You need to measure how much folding flows through differ-
ent possible microscopic routes. This is becoming possible through
single-molecule experiments, which can see individual trajectories of
individual molecules. In addition, simple models give a quantitative
answer to the Levinthal paradox, of how proteins fold so fast—in mil-
liseconds, rather than millions of years. Appendix 6B describes the ZSB
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Model, which shows how protein folding speeds can arise even from
quite shallow slopes of folding funnels. Typical protein folding speeds
are attained when individual native-like interactions are more favorable
than non-native interactions by only 1-2 kcal mol~!.

Another class of models, called Go models, which are named after their
originator N Go [11], have given useful insights about folding funnels
and the folding routes of individual proteins [12, 13]. In a Go model,
you assign energetically favorable interactions only to native contacts.
In that way, you can turn the true energy landscape into a smooth fun-
nel, to explore the most efficient routes to native states. Another major
model is the spin-glass model, which gives a simple approximate way
of describing the bumpiness features of folding energy landscapes (see
Appendix 6C).

Moreover, cartoons of folding funnels can convey useful insights. For
example, Figure 6.13A shows a golf-course landscape, illustrating the
early expectations of an infinitely slow random search; Figure 6.13B
shows a smooth funnel, indicating fast folding; Figure 6.13C shows a
bumpy funnel, indicating small kinetic traps of the type that can reduce
folding speeds.

There is experimental evidence for funneled-landscape folding. For
example, D Barrick et al. [14] have studied repeat proteins, molecules
that have multiple units of small foldable peptides. Each repeat unit
can fold individually, but their folding rates and equilibria also depend
on cooperative interactions among the units. The folding of these pro-
teins occurs through parallel processes because of the many equivalent
repeating modular subunits (Figure 6.15).

Figure 6.14 Microscopically, the
chain folds via many routes. This
figure shows a molecular dynamics
simulation of the folding of the Pin WW
domain. The thickness of the arrows
indicates the relative frequencies of the
different conformational transitions
seen in the simulation. (Adapted from
F Noe, C Schutte, E Vanden-Eijnden,

et al. Proc Natl Acad Sci USA,
106:19011-19016, 2009.)
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i : 5 A repeating-domain
protein lends itself to detailed
measurement, showing a
funnel-shaped folding landscape.
(A) The Notch ankyrin protein has
seven repeat units. Folding can be
measured in individual domains. (B)
The energy landscape of folding
states shown as a function of the
number of folded repeats and their
location. (Adapted from E Kloss, N
Courtemanche, and D Barrick. Arch
Biochem Biophys, 469:83-99, 2008.
With permission from Elsevier.)
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DIFFERENT PROTEINS CAN FOLD AT VERY
DIFFERENT RATES

Protein folding speeds depend not only on mutations, temperature,
and denaturants. Protein folding speed also depends on a protein’s
native structure. How does a protein’s sequence and structure encode
its folding rate and route? Which conformations are explored and which
are not? Is there a general folding mechanism? That is, is there a sin-
gle narrative for the sequence of structural events that happens that
applies across a broad spectrum of different types of proteins? Here,
we describe some observations that relate protein structures to folding
speeds.

Knowing a protein’s native structure can help you predict its folding
speed. Figure 6.16 shows how folding speed depends on features of
the native structure. Folding speeds vary over orders of magnitude.
Figure 6.16A shows that folding rates correlate with the absolute con-
tact order (ACO) of native structures, a measure of the “localness”
of a protein’s native contacts [15]. Proteins having more local con-
tacts and fewer nonlocal contacts in their native structures tend to be
faster folders. «-helical proteins tend to fold faster than B-proteins.
A similar correlation in Figure 6.16B shows that the more secondary
structures a protein has, the slower the protein folds, on average [16].
Why should adding secondary structures slow down the folding
process?

The elemental unit of folding kinetics is the foldon. Folding appears
to occur by motifs of individual secondary structures. Even though
individual secondary structures of a native protein are not sta-
ble by themselves, they are more stable than alternative structures
and can be further stabilized by assembling together into tertiary
structures.

The dominant folding paths form structures in the order local-first,
global-later. Upon jumping from unfolding to folding conditions, a
polymer molecule can only perform localized conformational sampling
within small sections of the chain on the earliest timescales—for exam-
ple, a turn of a helix or a B-strand pair. Forming nonlocal contacts
requires larger searches and longer times. On intermediate timescales,
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a local piece of chain can grow or zip into bigger local structures,
such as full helices or B-strand pairs. Over the slowest timescales,
secondary structure pieces have time to come together and assem-
ble into the protein’s tertiary structure. Local-first, global-later (also
called “Zipping & Assembly” [17]) can rapidly find the native structures
of proteins without searching whole conformational spaces [18]. For
example, experiments show that inserting polyglycine loops of increas-
ing lengths, which increases the conformational search, also slows the
folding process [19].

Figure 6.17 shows a proposed folding mechanism, called the Foldon
Assembly Model [16]. First, one foldon forms somewhere in the chain.
It forms rapidly but in low population. A second foldon then forms by
assembling onto the first one. This double-foldon assembly has an even
lower population than its predecessor, the single foldon. The process
continues, with additional secondary structures assembling onto the
growing framework, with diminishing populations (because each helix
added is a step uphill in free energy). The final step is the formation
of the native structure, which has high population (low free energy),
because of additional packing and stabilizing interactions when the
protein achieves its native state. Just prior to reaching the native
structure, the protein passes through its folding transition state. The
landscape is volcano shaped: uphill at first, then downhill at the very
end (Figure 6.18).

The Foldon Assembly Model is a general folding mechanism: (i) Sec-
ondary structures are not stable alone. (ii) Tertiary interactions help
stabilize them. (iii) Two-state proteins have a free-energy barrier
between D and N (hence, single-exponential kinetics). (iv) The slowest

@é&?@?%&%ﬁ%

147

igL 5 Folding rates depend
on structural features. (A) Folding
rates correlate with the absolute
contact order (ACO) of a protein’s
native structure. The ACO measures the
average “nonlocalness” of the protein’s
contacts. Proteins that are mostly
helical fold faster, and proteins that are
mostly B sheets fold slower.

ACO = (1/Cn) X ACjj, where Cy is the
total number of native contacts and
ACj=j—ilis the contact order
between residues i and j, the
separation between them along the
sequence. (B) Folding rates are slower
for proteins having more secondary
structures. Red shows «-helical
proteins, blue 3-proteins, and brown
ap-proteins. (From GC Rollins and KA
Dill. J. Am. Chem. Soc., 2014, 136 (32),
pp 11420-11427, 2014. Reprinted with
permission from American Chemical
Society.)

7 Foldon Assembly Model. Under native conditions, a secondary structure flickers on and off—mostly off. But

somet»mes when it’s on, another secondary structure flickers on too, adjacent to the first and stabilized by it. By accretion of
secondary structures, the later stages of folding are “less unstable” than the earlier stages, until a fully stable native structure

forms at the last step.
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The volcano-shaped
folding energy landscape shape
of the Foldon Assembly Model.
Folding is sequential: foldon 1 forms,
then foldon 2 adds to it, then foldon
3, etc. These steps are all uphill in
free energy, because each individual
secondary structure is unfavorable.
Only the final step to the full native
state is downhill in free energy.

free energy

number of structures folded

relaxation time should be independent of its starting denatured con-
formation (see the earlier section in this chapter on chevron plots).
The starting state of a protein only affects the fast processes. The
slow processes are independent of whether the chain starts from fully
denatured or from some other conformation having some residual ini-
tial structure. (v) Folding becomes slower with increasing numbers
of secondary structures (see Figure 6.16). This model gives a gen-
eral mechanism, applicable to two-state proteins, over many different
folds, and estimates the folding rates from known quantities such as
helix—coil and tertiary propensities.

SUMMARY

Measurements of protein folding and unfolding rates give insight into
the sequences of folding events and how proteins can fold so quickly,
despite the complexities and diversities of their sequences and native
structures. Folding rates can depend strongly on temperature, the
concentration of denaturants, and on the protein’s size, as found on
chevron plots, by ®-value analysis, hydrogen exchange, and other
experiments. Small proteins often fold through single-exponential
kinetics, while larger proteins often fold through multi-exponential
kinetics (involving kinetic intermediates). Master equations provide
a general way to capture this phenomenology. Microscopic modeling
explains the speed of protein folding in terms of funnel-shaped energy
landscapes. The ZSB Model, described in Appendix 6B, shows how a
relatively small energy bias (funneling) is sufficient to explain the high
speeds of protein folding. In the Foldon Assembly Model, foldons form
quickly, then assemble onto an increasingly native structure, for two-
state proteins. These simple models give insights into how a protein
folds relatively quickly and directly into its native structure.

APPENDIX 6A: MASTER EQUATIONS DESCRIBE
DYNAMICS

Master equations are used to describe the time evolution of systems
of populations. They treat a very general class of dynamics called
Markov processes, in which the state of the system at a given time
step is fully determined by the state at the previous time step. Master
equations resemble classical chemical kinetics, with the fundamental
difference that master equations model the probabilistic behaviors of
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microscopic states, rather than the deterministic behaviors of average
properties, such as concentrations. So, the general approach below can
be used to describe macroscopic kinetics, or microscopic stochastics,
depending on whether the rate coefficients are found simply by fitting
to experimental data (a macroscopic model) or whether they are gener-
ated by some underlying physical model of a protein’s substructures (a
microscopic model). Given a model of n different states (either macro-
scopic or microscopic), and given the set of arrows and states that
constitute the topology of the reaction scheme, you can express the
time-dependent populations of the states in terms of a vector

p1(D)
P(t) = : (6.A.1)
pn(t)
and a rate matrix
kir  ki2

ka1 k22 6A.2)

knl kn2 ... knn

where k;, represents the microscopic rate of transition from state 2 to
state 1, and the diagonal elements are given by the negative sum of all
nondiagonal terms in the same column, that is

ki=— Y k. (6.A.3)
Ji J#
As such, the ith diagonal element represents the rate of escape or

efflux from state i and all elements in the same row represent the
transition/influx into the state i.

The dynamics is described by the set of differential equations:

dP(t)
—— =WP(1), A4
it () (6.A.4)
known as the master equation. The solution to Equation 6.A.4 can be

expressed as
P(t) = eV'P(0), (6.A.5)

where P(0) is the initial population, P(t) at time t=0. How can you
evaluate exp(Wt) and solve Equation 6.A.5? You can do this by first
diagonalizing the matrix W. Diagonalizing a matrix means that you
transform W to a different matrix A, in which only the diagonal
elements are nonzero:

A 0 0 0
0 A»» O ... O

A= 0 0GRz o 0. (6.A.6)
0 0 0 .. An

The quantities A; are called the eigenvalues. Note that by definition
the rank of the transition matrix is n—1, and therefore its eigen-
value decomposition yields n—1 nonzero eigenvalues, and one zero
eigenvalue (for example, A\; = 0). The remaining eigenvalues are all neg-
ative, and their absolute values represent the frequency of different
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processes contributing to the overall dynamics. You can perform this
transformation by multiplying W by a matrix U:

A =U"lwu. (6.A.7)

Here U-! is the inverse of U; that is, it satisfies the equation UU"! =
U-1U = 1, where 1 is the identity matrix. We show next how to compute
the matrices A and U. Once you have those matrices, you can compute
the full dynamics from

P(t) = UeAtU~1P(0). (6.A.8)

Note that the product UeA!U-! represents the time-dependent condi-
tional probability, or transition probability matrix C(t), the ijth element
of which represents the probability of transition from state j to state i
at time t. This is a sum of exponentials.# You can see this by breaking
itinto its components:

pi(t) = Z Z Uike_Akt[U_l]kjpj(O) = ZA;ke_Akt, (6.A.9)
k J k

where A;, is the amplitude of the kth relaxation mode of state i and
Ak is the relaxation time of that mode. Note that one relaxation mode
has zero eigenvalue (for example, A; = 0), which, as t — oo, defines the
equilibrium probability of the individual states. That is, the equilib-
rium probability is found from Equation 6.A.9 upon substituting t = oo,
to obtain

pi(o0) = Y Un[U'11;p;(0). (6.A.10)
j

To apply Equation 6.A.8, you must first determine the diagonal matrix
A. Begin with Equation 6.A.7. Multiply it on the left by U to get
UA = WU. (6.A.11)

You can break the matrix U into its vector components:

e & X 0h O sy 0
u“ ulz =1fo . 0 ... B
k=77 "5 10 025 .. 10
Ut Un2 -l o 0 .. A,
=[ll1?\1 UpA2 U3A3 u,,)\,,] (6.A.12)

4Here is the derivation of Equation 6.A.8 from Equation 6.A.5: the symbolic notation
eVl can be expressed as the series

eV =14+ W+ W22 4.

You can express the right-hand side of this equation instead in terms of A by trans-
forming each term. Notice that I = UU~! and W = UAU~! and W" = UA"U! (for any
power r, since A is a diagonal matrix) so you can express this equation instead as

M =U(1+At+}a22 +. ) Ul =UeAtUL
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where
upj
Uuzj
ui — u3i
Unij
So Equation 6.A.11 becomes
uJ-)\j=Wuj (6A]3)

Equation 6.A.13 is called an eigenvalue equation. To solve it for the
values of A;, rearrange it into the form

(W=AjI)u; =0. (6.A.14)

You can solve this by computing the determinant

det (W —AjI) = 0, (6.A.15)
S0
ki1 — A k12 ki3 kin
k21 ka2 — A2 ka3 kan
det| k31 k32  k3z—A3 ... Kkan | —o. (6.A.16)
knl an kn3 v knn —An

Solving this equation gives the eigenvalues A;. Once you have the eigen-
values, solve for each u using Equation 6.A.14 (see the example in
Box 6.2). This gives the full dynamical description of a system having
a given rate matrix W. Box 6.2 gives a worked example for two-state
dynamics. For the more general case of a system consisting of an
ensemble of (n) microstates, there are standard computer packages
that use this approach to compute eigenvalues and to solve the full
dynamics.

Box 6.2 Master Equations Describe Two-State Folding Dynamics

Let’s apply the master-equation approach to two-state kinetics for
the two states D and N. The master equation is

= _UAU P, (6.A.17)

where A is the diagonal matrix of the eigenvalues of the matrix W
and U is the matrix of its corresponding eigenvectors. Now, solve for
the full time dependence of the populations using A and U:

P(t) = UeAtU~1p(0), (6.A.18)

where eA! is a shorthand notation that describes a diagonal matrix
composed of the elements e*!, and A; is the ith eigenvalue of W
(i=1,2 in this case). For two-state dynamics, the rate matrix W is

—kf k
|l
W= [ i —ku] : (6.A.19)
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Now find the two eigenvalues A; and A, that satisfy the eigenvalue
equation

Wu; = Aju;, (6.A.20)

where u; is the ith eigenvector (i= 1,2 in the present case). You do
this by solving the characteristic equation

det(W —AI) =0, (6.A.21)

where I is the identity matrix of order 2. You can alternatively
express this equation in terms of the elements of the matrices:

(kf + N (ku+A) — kukf =0
= A4+ (kp+ kA =0. (6.A.22)

Solving Equation 6.A.22 gives two values, A; = 0 and A = —(kf + ky),
which can be put into a diagonal matrix of eigenvalues,

M o0l_[0 o
A-[O 7\2]_[0 —(kf+k.,>]' (6.A.23)

Now, let’s determine the eigenvectors. For the eigenvalue corre-
sponding to A; = 0, the eigenvector is u; = [u1; uZI]T. Application
of Equation 6.A.20 gives

—kf ku uu]_
[ ] [e]-o 620

Note that these two equations are not independent; that is, you are
free to choose one of the components of u;, and the second is then
defined by the relation kfu;; = kyuz;. So one possible solution is

) = [i“] . (6.A.25)
f
Similarly for A, = —(kf + ky), you'll find that the eigenvector is
W = [‘11] . (6.A.26)

In this case, the two components of u, are related by upy = —up;.
So, we are free to arbitrarily choose up; = —1. Now, assemble the
eigenvectors into a matrix:

U=[u u]= [’;; "11] . (6.A.27)

We also need the inverse of U, which is obtained by solving U~!
U = 1. The result is

L i
-1 __
Ui [_kf ku]' (6.A.28)

Finally, to obtain the time-dependent populations P(t), insert A
(Equation 6.A.23), U (Equation 6.A.27), and U~! (Equation 6.A.28) into
Equation 6.A.18, to get

1 1
PD(t)] [ku —1] [0 0 ] kutkr  kutky [PD(O)]
= —(ku+ke)t k k . (6A29)
[P”(” eI el e Il
Performing these matrix multiplications gives Pp(t) and Py(t). This is
Equation 6.7 in the main text.
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APPENDIX 6B: THE ZWANZIG-SZABO-BAGCHI
MODEL SHOWS HOW FUNNELS ACCELERATE
FOLDING

How does a funnel-shaped landscape explain fast folding? To explore
this, let’'s express a protein’s folding equilibrium and kinetics in
a highly simplified way. Represent a chain of L amino acids as a
one-dimensional string of symbols

nnndddnnnnnndddn. . .,

where each n indicates that a particular residue is in its folded native-
like conformation, and each d indicates that a particular residue is in an
unfolded non-native conformation. This resembles the way we treated
the helix-coil transition in Chapter 5.

Here, we describe the Zwanzig-Szabo-Bagchi (ZSB) model, which shows
how Levinthal’s paradox is resolved by energy funneling [20, 21]. Let
m=1,2,3,...L represent the number of “mistakes” d (that is, native
contacts not yet made) in the string. So, m = 0 represents the folded
native state; m =1 means the molecule has all n’s except for one d
somewhere in the string; and m = L means that the molecule has no cor-
rect (that is, folded native) pieces of structure. m represents a simple
one-dimensional “reaction coordinate” for folding.

Now, let’s model the energies of a funnel landscape. The larger the
number of mistakes in a given conformation, the higher is the energy
of that conformation. To keep the model simple, we first suppose that
the energy U(m) is a linear function of the number of mistakes, U(m) =
me, where e > 0 is the energy cost of each mistake. Figure 6.B.1 is the
energy landscape of the ZSB Model.

However, we need one more ingredient for the ZSB Model. To cap-
ture the two-state nature of folding equilibria, we also need an energy
gap. We assume that the native state is further stabilized by an energy
eo > 0. Figure 6.B.1 shows this linear energy funnel plus native well.

Before looking at the folding kinetics, let’'s consider the equilibrium
predictions of the ZSB Model. The equilibrium probability Py (eq) that a
chain has m mistakes is given by

B L! o
Pm(eq) = P m)!K Q7 (6.B.1)
where K is the Boltzmann factor,
K= (z-1)e Pe, (6.B.2)

K is an equilibrium constant per residue that gives the energetic disad-
vantage e and the entropic advantage z — 1 of converting each residue
from n to d. z is the total number of rotational isomers, so z—1 is the
number of isomers in wrong states, and B = (RT)"!. The combinatorial
factor in Equation 6.B.1 counts the number of ways you can arrange
m d’s and (L— m) n’s in a one-dimensional string. Q is the partition

U(m)

0F

%0 2 4 6 8
number of incorrectly
folded residues, m

Fig ZSB funnel energy
landscape. In the ZSB Model, the
energy increases linearly with m, the
number of non-native contacts
(“mistakes”). Each mistake costs an
energy €. The step from m=0
(native) to m =1 is steeper, with
slope ¢q. This defines the funnel
shape of this landscape, projected
onto a one-dimensional axis of m.
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i ) ' The ZSB Model
predicts two equilibrium states in
protein folding. (A) The plot of the
native population versus temperature
is sigmoidal, indicating cooperativity.
(B) There are two minima in the
energy versus the number of
mistakes, m, corresponding to the
native state (m = 0) and a denatured
state where approximately half of the
amino acids are unfolded or
misfolded.

(A) (B)
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function, the sum over the statistical weights of all the states:>

L

i

Q=ePeot Y (71&") =efeo + 1+KL-1. (6.B.3)
s m!(L — m)!

The binomial expression (1 + K)L would account for all the possible
states of the system if the native state were defined as the state of
zero energy. However, our model defines an additional stabilization for
the native state, to represent the high level of cooperativity observed in
two-state proteins. The term eP€o — 1 subtracts the term from the series
for m=1 and adds an additional term to give the corrected weight of
the extra-stabilized native state.

The equilibrium populations of the native (folded) state (m =0, here
called Py rather than Py) and the first excited state (m = 1) are
ePeo K

L
d P =—.
0 an 1(eq) Q

Py(eq) = (6.B.4)

Figure 6.B.2A shows that the native (folded) state population P (see
Equation 6.B.4) undergoes a sharp transition with temperature. Thus,
the ZSB Model predicts that folding involves a two-state equilibrium.
You can see this from the free energy G, = —RT In Py(eq) as a function
of the order parameter m. Figure 6.B.2B gives the free energy calcu-
lated by substituting Pn(eq) from Equation 6.B.1, and shows that the
model predicts two stable states, denatured and native, with a barrier
in between (that is, the definition of two-state equilibrium).

Now, let’s compute the folding and unfolding kinetics given by the ZSB
Model. Express the kinetics in terms of a master equation

dPy(t)
dt
where Py(t) is the native population as a function of time, P;(t) is the

population of the first-excited state, kg is the rate coefficient for the
folding transition to the native state from the first-excited state (1 —

= koPy (1) — k1 Pn(D), (6.B.5)

5The last equality in Equation 6.B.3 follows from the binomial relation (x+ y)L =
YE _o(L/[mi(L — m)]}xL=My™M where x=1 and y = K.
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N), and k; is the rate coefficient for the unfolding (N — 1). We want to
obtain the folding and unfolding rate coefficients k; and ky, so we want
to convert Equation 6.B.5 into the two-state form

dp

TrN = kePp(t) — kuPy(b). (6.B.6)
To solve this equation, we first express k; in terms of kj, a given
rate coefficient. The principle of detailed balance applied to Equa-
tion 6.B.5 asserts that at equilibrium we must have koP; (eq) = k; Py(eq).
Combining this with Equation 6.B.4 gives

Py(eq)

ki =kop (ew

= koLKe Peo, (6.B.7)

Second, express P;(t) in terms of Py(t). We assume that the system
is in rapid equilibrium among all unfolded denatured states (m=
1,2,3,...,L). So, we take the time-dependent population of state 1 to be
proportional to the time-dependent population of the set of denatured
states (D) (m > 0):

Py(t) LK/Q
Pp(ty  Qp/Q
= P(b) = E[1 — Pn(D)], (6.B.8)
Qp

where Qp = (1 + K)L — 1 is the partition function for the denatured state
(that is, the full partition function excluding the extra native term)
given by Equation 6.B.3. We have also used Pp(t) =1 — Py(t). Now,
substitute Equations 6.B.8 and 6.B.7 into Equation 6.B.5 to get

dp, 1
d_;‘ = koLK [@PD(O - e“‘€°Pn(t)]
- (kOQﬁK> Po(t) — (koLKe™P<0) Py(). (6.8.9)

Comparison with Equation 6.B.6 shows that kf = koLK/Qp and kj =
koLK e Peo. In Boxes 6.3 and 6.4, we compute the folding times on a
golf course and funnel landscape, respectively.

Box 6.3 Folding on a Golf-Course Landscape Would Be
Very Slow

How fast would proteins fold if their energy landscapes were flat,
shaped like a golf course? Suppose you have a protein of L= 100
amino acids. Let’s take ky = 10~6s (see page 135) and z =4, which
are reasonable estimates. For a flat energy landscape, you have a
slope € =0 and K =z— 1 (see Equation 6.B.2). So, Qp =zl — 1 ~ zL.
Then, Equation 6.B.13 gives the folding time as

ZL

= kliz-1)
4100

= ~ = :B.
=i (6.8.10)

which is astronomically large. If proteins were to fold on golf-course
energy landscapes, it would take figuratively “forever.”
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Box 6.4 Folding on a Smooth Funnel Landscape Is Fast

Figure 6.B.3 shows that even small biases of energy toward
the native state can speed up folding enormously. Suppose the
energy advantage of forming a native contact is just e = 2 kcal mol—!
(3.34RT). For z=4 and L= 100, this gives K= (z— 1)e B¢ =0.106,
so Qp = (1 +K)E—1~2.4x10% Then

Qb 2.4 x 104 _3
= = ~2.3x10 - 6.B.11
*f= koLK ~ (105 5-1)(100)(0.106) > . ( )

1036 billion years -
1 million years -
1 year -
1si§

] ’,l.S C 1 & 1 J

0 1 2 3 4

€/RT

The time required for a protein to fold depends on its energy
bias, ¢/RT. This shows how a protein can fold rapidly, in fractions of a second,
because of the funnel shape of its energy landscape, even if the energy bias is
relatively small, e ~ 2RT. (Adapted from R Zwanzig, A Szabo, and B Bagchi. Proc
Natl Acad Sci USA, 89:20-22, 1992.)

Comparing this folding time of 2 ms with that in Box 6.3, you see that
funneling accelerates folding by more than 50 orders of magnitude,
given only a bias of —2 kcal mol~! when residues are in native-like
versus non-native-like conformations. Figure 6.B.3 shows that the
predicted folding speed has a strong dependence on the slope of the
energy landscape.

Recall from Figure 6.12 that the folding rates of ultrafast folders can-
not be increased by temperature; they are already folding at maximum
speed. However, the unfolding kinetics of ultrafast folders often fol-
lows Arrhenius kinetics (see Figure 6.12). The ZSB Model explains both
features. First, the temperature independence of kg(T) comes from a
balance of two quantities, K(T) and Qp(T), in Equation 6.B.11. Second,
it also explains the Arrhenius kinetics of unfolding. Substitute the defi-
nition of K(T) from Equation 6.B.2 into k, = koLK(T)e P<0 deduced from
Equation 6.B.9, and take the logarithm to get

€+ €p

“RT ° (6.B.12)

In ky(T) = constant —

which is the Arrhenius law (if ¢ and ¢y are constants, as we have
assumed), consistent with experiments (see Figure 6.12).
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Equation 6.B.9 with Equation 6.B.6 shows that the folding rate coeffi-
cient kg, or its inverse, the folding time 7, is

1 koLK
kf= — = ——, (6.B.13)
=~ @

as given in the main text. And the unfolding rate coefficient is

ky = koLKePB<o. (6.8.14)

The Foldon Assembly Model is a variant of the ZSB Model; for details,
see [16]. But, in short, here is how the Foldon Assembly Model differs
from the ZSB Model, Equation 6.B.9, for the specific example of a four-
helix-bundle protein. The native population is Py(t), and

Py [4koK3K3 4koK3 K3

From Equation 6.B.15, we get the rate coefficient for forming the native
structure as 4k0K§K§QD. The factor of 4 accounts for the combinatorics
that any one of the four helices can form first. kg is the intrinsic rate
coefficient for forming a helix. The factor K3 is the equilibrium coeffi-
cient for forming the three helices of the precursor to the native state,
as if they were independent. However, the helices are not indepen-
dent. Their interaction is treated by the factor of K3, which accounts
for the pairwise tertiary interactions among the helices (hence the sub-
script 3). Each helix is surrounded by three other helices, each of which
stabilizes the first by a factor K3 > 1.

APPENDIX 6C: PROTEIN FOLDING FUNNELS CAN
BE BUMPY: THE SPIN-GLASS MODEL

Spin-glass models, adapted from the physics of glassy materials to pro-
teins by PG Wolynes, JN Onuchic, Z Luthy-Schulten, EI Shakhnovich,
D Thirumalai, and others, capture essential aspects of the bumpi-
ness of protein folding funnels [22]. Consider a probability distribution
p(U) of the protein chain conformations as a function of their energy
U. U is the internal free energy, the sum of all the intermolecular
interactions, due to hydrogen bonding, charge and steric interactions,
and hydrophobic and solvation interactions, of a single given chain
conformation. We are interested in how the chain entropy S(U), repre-
senting how many chain conformations have that energy, depends on
U. Focus on the most highly populated denatured state, for which the
ensemble-average energy is (U). Assume that the distribution around
that most-probable denatured state is Gaussian (Figure 6.C.1):

pU) = % e~ (U-(U)?/28F, (6.C.1)
2716U

where 6%, is the variance of the energy fluctuations (so §y has units
of energy and is the standard deviation), representing the width of
the Gaussian distribution and characterizing the bumpiness of the
landscape for a given protein or foldamer.
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i The Gaussian
energy distribution of the
spin-glass model. The entropy S(U)
is a parabolic function of energy U.
This surface is characterized by two
slopes, which are inverses of the
glass temperature T4 (a measure of
bumpiness) and the denaturation
temperature Tf (a measure of protein
stability).

Substitute p(U) from Equation 6.C.1 into the Boltzmann distribution
expression S(U) = Sy + kln p(U), to get

kU - (U))?

S(U) = S
) 0+ 26%,

F (6.C.2)

where Sy is the entropy of the dominant denatured state. The central
idea of this model is that proteins have glass-like states. In a glass,
as the system moves to lower and lower energies, it reaches a kinetic
trap, that is, a lowest possible energy Uy, at which there is only a sin-
gle microstate, so the entropy of that state is zero: S(Up) = 0. This is
called the entropy catastrophe. The system cannot easily reach even
lower energies, to achieve the global minimum in energy, the crys-
talline state. Applied here to proteins, the idea is that a folding protein
can get caught in a kinetic trap, resembling a glassy state, which slows
its folding progress toward its native state. The native state has global
minimum energy Uy, but the kinetic trap energy is higher, Uy > Uy.
Our aim is to compute the temperature of the entropy catastrophe, Ty,
called the glass transition temperature.

To find the energy, U = Uy, of the entropy catastrophe trap, substitute
S(Up) = 0 into Equation 6.C.2 to get

i = su‘/%. 6.C.3)

(We have taken only the positive root because our interest is in the left
side of the S(U) curve, Ty > 0.) Now, thermodynamics gives a funda-
mental relationship [23] for computing the temperature if you know
the function S(U):

1 aS k(Uo — (U))
=22l B 6.C.4
Ty Uy, 8 ¢ )

where we have evaluated this function at the glass point U = Up. Finally,
for comparison, the folding temperature occurs where Ty~ AU/Sy,
where AU = (U) — Uy, so we can compute a dimensionless ratio

Tr AU [2k _ AU
In the last step, we have approximated the denatured state entropy as
So = kIn zN, where z is the number of rotamers per backbone bond and
N is the number of chain bonds, and we have left out constants of order
unity.
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The main points that emerge from such spin-glass models are that (1)
proteins can have glass-like kinetic traps that slow the progress of fold-
ing; (2) the bumpiness of an energy landscape can be approximated
as 5y, a standard deviation of a Gaussian function; (3) kT, defines an
energy scale for fluctuations, which is of order 5y/N; and (4) T;/Ty is
a useful dimensionless quantity for comparing polymer folding speeds

(T¢/ T4 is smaller for slower-folding molecules.)
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