Folding and Aggregation

Are Cooperative Transitions

PROTEINS CAN UNDERGO SHARP TRANSITIONS IN
THEIR STRUCTURES OR PROPERTIES

Proteins can undergo cooperative changes. In a cooperative change,
a small perturbation leads to a large consequence. One example was
already described in Chapter 4: the binding of a ligand drives allostery
or large conformational changes in a protein. Here, we consider two
other examples. One is the folding process. In test tube experiments,
a protein can be driven from a denatured state to its native struc-
ture sometimes by a very small change in temperature or denaturant
concentration. Another example is protein aggregation, where a small
increase in a protein’s concentration, under the right conditions, can
drive individual proteins into large-scale multimolecular association in
the form of aggregates, precipitates, crystals, or amyloid fibrils.

What is cooperativity? Consider three different types of change: (1) A
gradual change, such as when the density of water changes only a little
bit when you heat it by a few degrees around room temperature. (2) A
cooperative change, as when the density of water undergoes a large and
sharp change at its boiling point, from liquid density to gas density.
Cooperative transitions are also called two-state or all-or-none. At its
boiling point, you will find clusters of water in one of two states: either
liquid or steam. (3) A large continuous “noncooperative” change, such
as near a critical point. When water is heated at its critical point, some
clusters of water are dense like a liquid, other clusters have low density
like steam, and still other clusters have densities that are intermediate
between those of water and steam. A noncooperative transition—also
called a higher-order transition in macroscopic systems—is not two-
state. How would you know if a transition has two-state cooperativity
or not? Next, we address this question in three steps, for different
types of transitions. What are the molecular structures of clusters of
molecules? What experiments can tell the difference? And how can you
recognize the distinction using energy landscapes of models?

What molecular structures define a cooperative transition? Consider
a series of beakers, each containing protein, in which there are
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Is protein folding
cooperative? You can tell by
checking for intermediates. (A) From
left to right, increasing denaturing
agent leads from native to denatured
proteins. In a two-state cooperative
transition, the middle beaker is a mix of
native plus denatured proteins. There
are no intermediate structures. (B) In a
noncooperative transition, the middle
beaker has structures that are
intermediate between native and
denatured. (C) The denaturation profile
(fraction of native protein versus x,
denaturant concentration in this case)
cannot distinguish between (A) and (B),
because it is an average over all the
molecules in each beaker.
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increasing concentrations of denaturant from one beaker to the next
(Figure 5.1). The first beaker has no denaturant, the second beaker
has a small amount of denaturant, and the third beaker has a lot
of denaturant. In the no-denaturant beaker, all the protein molecules
are folded into their native structures. In the high-denaturant beaker,
all the protein molecules are denatured. The middle beaker has an
intermediate denaturant concentration that is at the midpoint of the
denaturation transition. What is the state of protein folding in the
middle beaker? Figure 5.1A and B show two possibilities: (A) Half
of the protein molecules have fully native structures and half of the
proteins are fully denatured. Very few of the molecules have struc-
tures that are intermediate between native (N) and denatured (D). This
transition is cooperative or two-state. It is characterized by having
intermediate populations that are zero or small. (B) If, instead, at
the denaturation midpoint, you see a significant population of pro-
tein molecules having an intermediate structure between native and
denatured, then the transition is called noncooperative or multistate
because you would need to invoke more than just the two states (N and
D) to model it. You call the third state (and others) intermediate states.
The existence of intermediates—or not—defines the nature of the
transition.

What experiments would tell you if a transition is cooperative or
noncooperative? Just observing a sigmoidal shape in a denaturation
curve is not sufficient. A denaturation curve just tells you the aver-
age state of the system in each beaker (for example, the average
fraction of native contacts, without distinguishing whether any two
contacts occur within one chain or in two different chains). Figure 5.1C
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indicates that such an averaged denaturation curve may have the
same sigmoidal shape no matter whether the underlying transition
is cooperative or noncooperative. Rather, to learn the nature of the
transition, you need to measure the individual subpopulations them-
selves. To know whether your system is cooperative or not, you
need more than just the population-average state of the system at a
given value of denaturing agent x; you need to know the distribution
of populations. To prove whether or not your system is coopera-
tive requires some direct measurement of the distinct populations,
in this case N, D, and intermediates (I) in each of the beakers. Meth-
ods such as mass spectrometry can often distinguish among some
subpopulations.

The nature of a transition is evident from an energy landscape. To
describe landscapes, we first describe order parameters. For protein
folding, let’s define a variable &. An order parameter ¢ is simply a
progress coordinate that tells you the state of the system, in this case
from fully denatured to fully folded. & = 0 means that all the proteins
are fully denatured and &= 1 means that all the proteins are fully
folded. An example of an order parameter for folding is the chain’s
radius of gyration. A native state is compact (has small radius), and a
denatured state is expanded (large radius). So, the radius of gyration
distinguishes the two states of interest. Or your order parameter might
be an experimental quantity that distinguishes the native from dena-
tured populations. A commonly used order parameter is the fraction
of contacts in the chain that are native-like. A contact is a close inter-
action, typically closer than about 4.5A, between any pair of atoms
belonging to two residues.

Figure 5.2 shows the general relationship between the population p(§)
of molecules in state & and its corresponding free energy AG(&):

p(E) oc e ACEIRT, (5.1)

States (&) that have the largest populations have the most negative free
energies.

Figure 5.3 shows the shapes of two different energy landscapes: (A) a
cooperative, two-state transition and (B) a gradual change. The boiling
of water is a cooperative process. At exactly the midpoint of boil-
ing, half the water molecules are in low-density steam and half are
in high-density liquid water. This is manifested as two dominant pop-
ulations, or, equivalently, two minima in the free energy. Interestingly,
the folding of many small single-domain proteins is cooperative: at the
folding midpoint, the molecules in the beaker are either fully folded or
unfolded, and very few of the protein molecules are in some inter-
mediate state of folding; see Figure 5.3A. In contrast, Figure 5.3B
shows a conceptual alternative of what would be expected if protein
folding were a gradual change. This would have a single population,
and thus a single minimum in free energy. Here we explore physi-
cal models of cooperative and noncooperative and gradual changes
in proteins, starting from a simple, classical model, for helix—coil
transition.
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How can you tell if a
model transition is cooperative?
Its energy landscape has a
barrier. (A) A two-state transition has
multiple free-energy minima and a
barrier between those states. (B) For
comparison, a gradual change has a
free-energy minimum that shifts
continually from N, to midway to D, to
D, with changing external conditions.

helix
coil microstate

Some proteins
undergo a transition from coil to
helix. A coil state is a large ensemble
of disordered conformations (many
microstates). The helix is a relatively
unique conformation (single
microstate).

(A) cooperative, two-state
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PROTEINS AND PEPTIDES CAN UNDERGO A
COOPERATIVE HELIX-COIL TRANSITION

Before considering protein folding, let’s look at a simple type of large
change called the helix—coil transition. Some types of polymers have
two experimentally distinguishable states: a coil state, which is a large
ensemble of disordered conformations, and a helical state composed
essentially of a single conformation in which the chain spirals in a helix
shape (Figure 5.4). Changing the solvent conditions or the temperature
can cause such polymers to undergo a sharp transition between the coil
state and the helix. What drives this conformational change?

Let’s express the conformation of a polypeptide as a one-dimensional
binary string of characters: “c” for every unit (for example every
residue) that is in a coil conformation and “h” for every residue in a
helical configuration. For example, one particular conformation of a
16-mer chain can be expressed as

ccchhhhhhhccecccc. (5.2)

Now, our goal is to make a physical model of the helix—coil transi-
tion from which we can compute experimentally observable properties.
Often, it is easiest to measure properties that are averages over all
the molecules in a container. Our aim is to compute averages over
probability distributions. Different molecules will have n=1,2,3,...
helical units. We want to know the average helicity (n), where average
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is defined to be

N

(ny=">" np(n), (5.3)
n=0

for a chain having N total units. Now, in order to compute (n), we need
to know the probability distribution p(n). It is given by

P = ————, (5.4)

where w(n) is the statistical weight that accounts for the population of
chains that have n units in a helical conformation. A statistical weight
is a relative population; it does not have to be normalized to sum to
one, as probabilities must. Equation 5.4 shows how probabilities (nor-
malized quantities) are related to statistical weights. A crucial quantity
in the denominator of Equation 5.4 is the partition function Q,

N
Q=) w, (5.5)

n=0

which is the sum of statistical weights over all the possible states of
the system, where state nin this case refers to the set of conformations
having n helical turns. So, our objective in modeling is to find a way to
compute w(n), the statistical weight for state n of the system.

Now, consider the three levels of statistical weights: (1) We need the
statistical weight for each h or c residue in the chain. (2) We need the
statistical weight for each microstate of a whole chain, that is, for one
particular sequence of h and c units. (3) We need to sum the statis-
tical weights over whatever microstates compose the chain macrostate
of interest. Macrostates usually refer to some experimentally observ-
able state. For example, a denatured state is a macrostate collection of
microstates.

(1) Statistical weights for individual h or c units. To begin, we define
the statistical weight of each single coil unit, ¢, to be 1. We are free
to choose this one statistical weight arbitrarily because only ratios of
statistical weights matter for computing probabilities. Next, we assign
a statistical weight of s to each helical residue, h. You can think of
s as the equilibrium constant for converting a ¢ unit to an h unit. s
depends on the chemical nature of the unit and on the chemical and
thermal environment of the chain. The environmental conditions of
solvent and temperature sometimes cause an amino acid to prefer the
helical conformation. If s > 1, it means that you are considering a sit-
uation in which helix is more favorable than coil. Or, if the conditions
lead to s < 1, it means the residue favors the coil state. s=1 means
that h and c are equally populated. In reality, different amino acids will
have different values of s, but for our purposes here of capturing the
essential ideas in the simplest possible model, we take all amino acids
to have the same values of s.

(2) Statistical weights for whole chains of combined h and c units. To
construct Q, you can reason with the rules of probability, as described
in Box 5.1.



112

Chapter 5 FOLDING AND AGGREGATION ARE COOPERATIVE TRANSITIONS

Box 5.1 A Useful Aside about Probabilities and Averaging

Recall the two main rules of probability: (1) If states A and B are
mutually exclusive and if you want to compute the statistical weight
for seeing either state A Or B, then you add: w(A OR B) = w(A) + w(B).
(2) If states A and B are independent, and if you want to compute the
statistical weight for seeing both states A AND B, then you multiply:
w(A AND B) = w(A)w(B). We will add or multiply statistical weights
and probabilities accordingly.

Here is a math shortcut that is useful for computing averages. We
will have partition functions that take the form

Q=182 d, .. (5.6)

In such expressions, the term s” is the statistical weight of a helix
having n turns, and the corresponding probability is

n

S
= 5.7
p(n) Q (5.7)

Suppose you want to compute the average number of helical turns,
(n). Then combining Equations 5.6 and 5.7 with Equation 5.3 gives

S+2s2+3s34+...
1+s+5s24+834+...

(ny=Y"np(n =
n

_sda_dinQ
T Qds  dlns’

(5.8)

The second line of Equation 5.8 shows that this average can also be
obtained by taking a derivative of Q(s) (because sds"/ds = ns" and
because dInQ = (1/Q)dQ.

Now we apply this reasoning to perform calculations for different mod-
els. First, in order to see the nature of cooperativity, let’s start with a
model that, by definition, has no cooperativity.

A first model to try: independent units

Consider a model in which each c and h unit is independent of the oth-
ers. In that case, the partition function over all the microstates will be

Q=(1+9N, (5.9)

because each unit in a chain can be either c or h, and these are mutually
exclusive options for a unit. This accounts for the term (1 + s). Then,
you raise (1 + s) to the power N because there are N units in the chain,
and because you are seeking the statistical weight that unit 1 and unit
2 and unit 3 ... are each in a particular state. Substituting Equation 5.9
into Equation 5.8 for average fractional helicity gives

(ny s dQ sA+9N-1 s (5.10)
‘N NQds (Q+sN ~1+s '

Now, suppose you perform a series of experiments in which the solvent
or temperature are systematically changed. Each experiment corre-
sponds to a different value of s, the helical propensity. Equation 5.10
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for this independent-units model predicts that the average helicity
changes gradually as a function of s, not sigmoidally (Figure 5.5).

This independent-units model does not predict a sigmoidal shape
for (n)/N versus s and does not predict that this function (helicity
per unit) gets steeper with N, both of which are observed in exper-
iments. So, next we consider a model that better captures helix—coil
cooperativity.

A second model: two-state model

Now, let’s try a different model. In this model, the chain is either all
coil (cccc...c), or all helix (hhhh...h), and no other microstate is pop-
ulated. This model is maximally cooperative, having only two states.
If any one unit is in the h state, all units are in that state. Its partition
function is

Q=1+s". (5.11)

The reasoning here is that you have either all coil, with statistical
weight 1N or all helix, with weight sV, and these two chain states
are mutually exclusive. Substituting Equation 5.11 into the helicity
equation, Equation 5.8, gives

%:ﬁ. (5.12)

This model predicts that (n)/N versus s is a sigmoidal function and gets
steeper with increasing N (Figure 5.6). These features are qualitatively
correct, but quantitatively, this transition is too steep. In experiments,
such steepness is found only for chains having N > 1000.

So, now consider a third model, due originally to John Schellman, that
is intermediate between these two extremes. In the following sections,
we use the term “two-state” not just in the previous sense of zero
intermediate population, but also for situations where the intermediate
populations are relatively small. In the Schellman model, the formation
of a helix involves two aspects: initiation and propagation.

The Schellman model [1] defines a helix as a stretch of uninterrupted
h’s. To keep the math simple, suppose that there is, at most, one helical
segment (of any length n) in the chain. This single-helix approximation
is often valid for peptides in solution that are shorter than about 20
amino acids long. Again, the statistical weight of c is 1 and that of hiis s.
But we now introduce another parameter o. Whereas s is a propagation
parameter, for converting one c to one h, ¢ is a nucleation parameter,
the equilibrium constant for initiating a helix. That is, every “first” h
in a helix is assigned a statistical weight os. Every subsequent h in a
helix is assigned a weight s. Box 5.2 shows how you assign statistical
weights to the different chain configurations.
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independent, the average helicity
changes only gradually with
helical propensity s. In the
independent-units model, if s were
caused to vary by changing
temperature or solvent, the average
helicity (n)/N versus s would change
only gradually. And the slope of this
curve of helicity per monomer would
not depend on chain length N
(because monomers are independent).
But experiments show that transitions
become sharper as N gets larger.
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The two-state model
predicts a sharp increase in
helicity with s. But the predicted
dependence on N is much steeper
than seen in experiments.
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Box 5.2 Examples of Statistical Weights

Chain configuration Statistical weight
ceceeeececce 1
ccccchcecc oS
cccchheec 052
chhcchhec o2st
chhhhhhhh os8

You can compute the statistical weight w, of all the conformations hav-
ing a single helix containing n helical amino acids in a row, anywhere
in the chain, as

wp=(N—-n+1)os", (5.13)

relative to a chain that is configured with all its residues in the
coil state. The factor of (N — n+ 1) in Equation 5.13 counts the number
of possible starting locations where an n-mer stretch of helical units
(n > 0) can begin in the N-mer chain.

Now, to convert wy to a probability p(n), you divide by the sum over
all helix lengths, Q; (where the subscript 1 indicates a single helix, to
distinguish from helix-bundle models below):

=14 0Ns+o(N—1)s?>+o(N-2)s3 +...+osV, (5.14)

where the leading term, 1, is the statistical weight for the coil state. So,
the probability that a chain has n helical residues is

_ Wn _ (N—-n+ 1)os"
p(")—Q1 —a

and the probability of having an all-coil chain is p(0) = 1/Q;.

(5.15)

You can compute the average helicity as

(n) = Q*[Nos+2(N — 1)os? + 3(N — 2)os® +--- + NosM].  (5.16)

Here is how you use the Schellman helix-coil model. You are given the
maximum helix length N, the nucleation parameter o, and the propa-
gation parameter s. Now use Equation 5.14 to compute the partition
function Q;. Then use Equation 5.15 to compute any population p(n) of
interest to you, including the population of the fully helical molecule,
p(N). To compare with experiments, you want the average helicity (n)
from Equation 5.16. (Using standard statistical mechanical expressions,
you can also take a second derivative of Equation 5.16 to compute the
variance in helix length.)

For certain values of the parameters o and s, the Schellman model
predicts two-state cooperativity. Figure 5.7 shows the distributions of
helical lengths for three different values of s. In this example, the inter-
mediate states i are much less populated than either the all-coil state
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high temperature intermediate temperature low temperature

fraction of population
o
v

0'0012345678910 012345678910 012345678910

number of helical units

or the all-helical state, that is, p; > pj < py at the transition midpoint.
Two-state behavior occurs when nucleation is difficult (that is, when
o0 « 1), and when propagation is favored (that is, when s > 1). In this
case, the coil is favored by its large conformational entropy. The helix
is favored by its low energy, due to its multiple hydrogen-bonded units
along the chain. The states intermediate between full helix and full coil
are less favorable on both counts. In short, when nucleation is difficult,
you will find either coil molecules or long helices, but not short helices.
It is entropically costly to form the first helical turn, but it becomes
energetically favorable to do so if the chain forms a sufficiently large
number of helical turns.

In the last section, we expressed the helix—coil equilibrium as a func-
tion of the two parameters o and s. However, often we will be interested
instead in how the helix—coil populations depend on experimentally
controllable variables such as temperature or denaturant concentra-
tion. The helix—coil equilibrium depends on temperature through s =
s(T) and o=o(T). You can express the temperature dependence of
the equilibrium coefficients ¢ and s in terms of their corresponding
enthalpy AH and entropy AS. Doing so gives useful insights into the
microscopic physical bases for o and s. s(T) can be expressed in terms
of a free energy AG(T) = —RTInK = AH — TAS for the formation of one
helical turn:

S(T) — e—AG/RT — e—AH/RT-!—AS/R’ (5] 7)

where AH (= e, where ey, < 0) is the enthalpy decrease upon form-
ing one helical contact relative to the coil conformation, by forming
a hydrogen bond. AS(T)=—RIn(z— 1) is the entropy decrease for
extending the helix by one more residue, assuming that each residue
has access to z local conformational (or isomeric) states (for example,
we could make a simple estimate of z= 3 for helical, -strand, and
coiled states). In other words, the entropy of a nonhelical amino acid
is S =RIn(z- 1), while that of a helical amino acid is S=RIn1 =0,
hence the change AS = —RIn(z — 1) accompanying the transition from
coil to helix, for each amino acid. R is the gas constant and T is the
absolute temperature. The enthalpy change for extending the helix by
one residue is favorable (negative) and the entropy change is unfavor-
able (negative). So, the temperature dependence of the propagation
parameter is given by

- & 5.18
S( )=ﬁ- (5.18)

Example of a
helix-coil transition that is
cooperative, having limited
populations of intermediate
states. Calculations using Equation
5.15 are for N=10, o= 10"%, and
various values of s. The chain is
all-coil under conditions of high
temperature (s = 0.02) and all-helix at
low temperature (s = 200). At a
middle temperature (s = 2.5) (for
which Equation 5.14 gives Q; = 3.64,
for example) all the intermediate
states are less populated than the coil
(i = 0) or helical (i = 10) states.
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ny/N

o

temperature

The Schellman
helix-coil model predicts a sharp
thermal transition. This calculation
is for a model of N = 10 helical
bonds, assuming z =5 possible
directions for each bond, an energy of
epp/R=—500K for each helical bond,
and two different values of o. The
average number of helical residues,
(n), is calculated from Equation 5.16.
The smaller the value of o, the
sharper the transition.

The helix—coil model
can model helix denaturation by
temperature or urea, for chain
lengths N = 50 (brown), N = 26
(blue), and N = 14 (red): (A) thermal
denaturation data; (B) urea
denaturation. For computational details,
see [2]. (A, adapted from JM Scholtz, H
Qian, EJ York, et al. Biopolymers,
31:1463-1470, 1991; B, adapted from
JM Scholtz, D Barrick, EJ York, et al. Proc
Natl Acad Sci U S A, 92:185-186, 1995.
Copyright (1995) National Academy of
Sciences, USA.)
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Similarly, nucleation can also be expressed in terms of an enthalpy enyc:

e—€nuc/RT

o(T) =

Equations 5.18 and 5.19 express o(T) and s(T) in terms of a model
of energy and entropy components. These local terms describe how
nucleation is entropically disfavored relative to propagation. The cost
of nucleation involves the entropy of fixing the conformation in order
to form a hydrogen bond between the C=0 group of amino acid i and
the N-H group of amino acid i+ 4. The first of these four residues can
be oriented in any direction; then the next three are fixed, hence the
factor (z — 1)3. In contrast, the cost of propagation involves the entropy
of fixing only one residue. Because of the simplicity of our model,
these factors are only approximate, but they capture the physics that
nucleation is entropically less favorable than propagation.

Figure 5.8 shows that (n) is a sigmoidal function of temperature T:
the helix melts out with increasing temperature. It also shows that the
transition becomes sharper as o becomes smaller (that is, when the
energetic cost of nucleation is very high).

Figure 5.9 shows that this simple helix-coil theory fits experimental
measurements of average helicity as a function of temperature or as a
function of denaturant (urea) concentration.

What values of o and s should you use? Different amino acids have dif-
ferent helical propensities, s. (The value of o, which ranges from 102
to 10~* in different models, is thought to be not very dependent on
amino acid type). Table 5.1 gives one compilation of experimental val-
ues. In general, it is found that alanine has a high propensity to form
a helix, while proline is a helix breaker, for example. Sometimes, to
explore matters of principle, you use a single value for o and a single
value for s for all amino acids, as we have done earlier. Other times, you
may prefer to account for the different s values of the different indi-
vidual amino acids within a peptide or to go beyond our single-helix
approximation. For advanced helix—coil modeling, see Appendix 5A.

PROTEIN FOLDING COOPERATIVITY ARISES FROM
SECONDARY AND TERTIARY INTERACTIONS

Now, how should we understand cooperativity in a more complex
process such as protein folding? Small proteins are found to fold
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with two-state cooperativity, that is, with negligible populations of
intermediates. Helix—coil theories alone are not sufficient to explain
protein-folding cooperativity. For one thing, p-sheet proteins fold
cooperatively too. For another thing, most helices in folded proteins
are short, yet helix—coil theory says that short peptides should not form
stable helices. What are we missing?

Protein collapse theories alone are also not sufficient to explain protein-
folding cooperativity. The hydrophobic residues in a protein cause
the protein to collapse into a compact structure in water, and this
collapse process is abrupt. However, lattice-model studies show that
polymer collapse leads to noncooperative transitions, not cooperative
ones. Figure 3.9 in Chapter 3 shows that the 6-mer HP model has a sig-
nificant population of intermediate structures at the midpoint of the
denaturation transition. This lack of cooperativity is not because 6-
mer chains are too short—longer chains, too, undergo noncooperative
collapse.

So, if we can’t explain the two-state nature of protein folding by either
helix—coil processes alone or collapse alone, what does explain it? Fold-
ing cooperativity appears to be due to a combination of secondary
and tertiary interactions [3]. When two helices are forming in pro-
tein folding, each helix forms with some cooperativity on its own,
but, in addition, the packing of the two helices next to each other
helps stabilize the two-helix pairing even more. A protein helix is
commonly amphipathic, meaning that it has a stripe of hydropho-
bic residues along one side. The hydrophobic stripes of adjacent
helices often face each other when those secondary structures pack
together.

To illustrate how tertiary interactions between secondary structures
can contribute stability and cooperativity, let’'s focus on helix-bundle
proteins. In native helix-bundle proteins, multiple helices (usually
three or more) are aligned and packed against each other, side by side,
like a bundle of rods. As the helices form cooperatively, they also bun-
dle together, contributing even more stability. Helices help each other
to form. Here is a simple model that illustrates the idea.

First, let’s model a two-helix bundle assembly. Then, we will model
a three-helix bundle protein. The two-helix chain has N monomers.
Figure 5.10 shows the most important conformations for our two-helix
model. We divide the chain conformations into classes: (i) Coil state:
The whole chain is fully denatured, having no structure. (ii) Single-
helix state: The chain is Schellman-like: it can contain a single stretch
of helix anywhere and of any length (up to the maximum of N residues
long). To keep the math simple, let’s approximate each helical turn as
having four monomers (rather than 3.6 per turn in «x-helices). (iii) Two
adjacent helices are zipped up, but only partially. The chain has two
helices side by side. The two helices have exactly the same number
m=1,2,3,...,M of helical turns. We neglect unmatched helix lengths
or helices in wrong locations, because their populations will be much
smaller. Connecting the two helices is a loop of coil segments. (So, we
must have M < N/2.) The nonhelical remainder of each chain is coil.
(iv) Native state: Two adjacent helices are fully zipped up together,
m= M.

Helical propensities
of amino acids

Ala 1.54
Argt 1.10
Leu 0.92
Lyst 0.78
Glu® 0.63
Met 0.60
Gln 0.53
Glu~ 0.43
lle 0.42
Tyr 0.37-0.50
HisO0 0.36
Ser 0.36
Cys 0.33
Asn 0.29
Asp™ 0.29
Asp® 0.29
Trp 0.29-0.36
Phe 0.28
Val 0.22
Thr 0.13
Hist 0.06
Gly 0.05
Pro ~0.001

Data measured at 273K (from A
Chakrabartty, T Kortemme, and RL

Baldwin.
1994.)

Protein Sci,

3:843-852,
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Classifying the
two-helix-bundle conformations.
(A) Three states of the single
helix—coil state: No helix (that is,
random coil), partially zipped-up
helix, and fully zipped helix. (B) Two
states of the two-helix-bundle states:
partially formed helices having
m=1,2,3,... turns each, or native
fully formed two-helix bundle having
m = M turns of each helix.

(A) Q, (single helix-coil states) (B) Q, (two-helix states)

Now, we want to calculate the populations of the various protein con-
formations. Let’s construct the statistical weights for these states. First,
notice that we have already modeled all the states involving any single
helix or coil: the set of conformations on the left side of Figure 5.10.
The partition function for these states is just Q;, given by Equation 5.14
for a chain of length N.

Second, let’s count the two-helix-bundle states, shown on the right side
of Figure 5.10. For a given zipping state m of the two-helix bundle, the
statistical weight is

Wm = o2s8mym, (5.20)

Here, o2 accounts for nucleating both helices, s is the statistical
weight for the formation of each helical turn (giving a total of 8m = (4
monomers per turn of each helix) x (2 helices) xm turns in each helix).
And r (> 1) is an equilibrium constant that expresses how much extra
stabilization results from each one of the m direct contacts between
the adjacent helices. Helix-helix contacts are often hydrophobic and
packing interactions. Equation 5.20 is the counterpart of Equation 5.13
for the single-helical chain.

The contribution to the overall partition function from the two-helix
bundle conformers of various lengths m (the counterpart of Equation
5.14) is

M
Q= o2 Z g8mym
m=1
=o?(sBr4s16r2 4. 4 SBMPM), (5.21)

To compute the population of any of these states, put the statistical
weight of that particular state in the numerator, and the sum Q, =
Q1 + Q> in the denominator. For example, p2) = 0?s%r2/(Q; + Qy).
Then, you can compute averages, such as the average length of the
two-helix bundle, using the definition of average, (m) = Z%:O mp(m).

You can express r in terms of a free energy ey, of forming a helix-helix
contact interaction:

¥ = e~ cnn/RT (5.22)

When there are no helix-helix interactions, ey, = 0, resulting in r = 1.
When helix-helix interactions are stabilizing, ey, <0 and you have
r > 1; this is called positive cooperativity. In this model, protein
folding cooperativity can arise from both the helix—coil contribu-
tions (expressed in terms of o and s) and the helix-helix attractions,
expressed by r > 1.
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Here is how you use this two-helix-bundle model. You are given N (the
maximum number of hydrogen bonds that could be formed if the whole
chain were a helix); o and s (the helix—coil nucleation and propagation
parameters); r (the equilibrium constant for each favorable helix-helix
interaction); and M, the number of amino acids of the maximal-length
helix when the protein is in the two-helix-bundle state. (Or, you can
begin with ey, enuc, and epp.) Then, you compute the partition func-
tion Quyp, the populations of the states of interest in the model, and
averages and variances. Box 5.3 shows how you can generalize this to
handle three-helix-bundle proteins, using Q; and Q,, which you have

already calculated.

Box 5.3 Three-helix-bundle proteins

Using the same logic as before, you can model the folding of
a three-helix-bundle protein. Suppose the dominant three-helix-
bundle states are those in which each of the three helices has the
same number of turns, m. And suppose that the helices are perfectly
adjacent, so there are 3m pairwise helix-helix contacts: between
helices 1-2, 2-3, and 1-3. Again, take o as the nucleation constant for
each helix, s as the propagation equilibrium constant, and r as the
pairwise helix-helix equilibrium constant. Within this simple model,
the partition function for the three-helix-bundle states will be

M
Q3 — O.3 Z SlZmr3m’ (5_23)
m=1

where M(< N/3) is the maximum number of turns of each helix in the
native structure. To compute the population of any state of the three-
helix-bundle protein, put the statistical weight of the state you’re
interested in into the numerator, and put the sum Q; +3Q, + Q3
into the denominator. Figure 5.11 shows how this type of simplified
model captures the folding-unfolding cooperativity in a three-helix
bundle induced by temperature and urea.

1.0

=)
o

fraction native

o
)

|
60 100
temperature ("C)

N
o

The three-helix-bundle model illustrates denaturation by
temperature and urea. The thermal denaturation of alpha 3C protein is shown for
three concentrations of urea: 2.0 M (brown), 1.5 M (blue), and 1.0 M (red). (Data from
JW Bryson, JR Desjarlais, TM Handel, and WF Degrado. Protein Sci, 7:1404- 1414,
1998; figure from K Ghosh and KA Dill. J Am Chem Soc, 131:2306-2312, 2009.
Reprinted with permission from American Chemical Society.)

In summary, the negligible populations of intermediate states that are
observed in the folding of small proteins can be explained as the prod-
uct of two types of cooperativity: the individual helix—coil process is
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Proteins can adopt
various states—native, unfolded,
misfolded, aggregated, crystalline,
or fibrillar, for example.

cooperative, and helix-helix packing interactions are further stabiliz-
ing. The helix zipping factor s combines with the helix-helix interaction
factor r to cause the two-helix-bundle state to be more stable than any
partially zipped or partially packed states. Whenever r > 1, it means
that helix-helix interactions help stabilize the bundle states. Three-
helix bundles are more stable than two-helix bundles in this model
because of the factor of r3 in the three-helix bundles compared with
the factor of only r in the two-helix bundles.

This model is quite simplified. For one thing, we have only enumerated
here the “dominant states,” not all the possible conformations. Some
additional classes of conformations could be included, at the cost of
extra mathematical complexity. When we model the two-helix states,
we have considered only those in which the helices are packed per-
fectly together, because the r™ factor says that nonbundled pairs of
helices will be less populated. And we have left out the combinatoric
factor that would allow two-helix-bundle states to form in non-native
locations in the sequence, because those terms are small. The point of
simple models such as this is to capture general principles, not the fine
details.

PROTEINS CAN ASSEMBLE COOPERATIVELY INTO
AGGREGATES, FIBRILS, OR CRYSTALS

Now, let’s consider another cooperative process. Proteins can often
associate into multiprotein assemblies (Figure 5.12) as a sharp function
of protein concentration. Examples include the formation of protein
complexes or assemblies, or aggregation, precipitation, crystallization,
amyloidogenesis, or fibrillization. For instance, proteins can crystal-
lize into symmetrical repeating patterns of native molecules packed
next to each other. Crystallization is important because it enables
determination of protein structures by X-ray diffraction or scattering.
Multiprotein assembly also occurs in inclusion bodies: in biotechnology,
organisms are often engineered to overproduce a particular protein
of interest. Overproduction causes the protein to accumulate in high
concentration, often driving it to aggregate into structures called inclu-
sion bodies, which are large collections of either misfolded or native
proteins. Let’s look at some general properties of protein aggregation
before we consider a specific model for fibrillization.

native unfolded misfolded aggregation amyloid
nuclei fibrils

native-like
aggregates
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Protein aggregation processes are not yet well understood. Some are
irreversible, so they cannot be studied by equilibrium methods. How-
ever, a few guiding principles are known. First, charged proteins repel
each other. Proteins have the strongest tendency to associate, aggre-
gate or crystallize when they have no net charge, which occurs when
the pH of the solution is equal to the isoelectric point of the protein,
called the pI (Figure 5.13A) [4].

Second, adding salt favors the aggregation of proteins that have sub-
stantial net charge. If two protein molecules have a net charge of the
same sign, adding salt shields the charges, weakening the repulsion,
and promoting protein processes such as aggregation, fibrillization
and crystallization. For example, Figure 5.13B shows that lysozyme
solubility decreases as NaCl concentration is increased, meaning that
aggregation increases [5].

Third, protein molecules can stick to each other through hydropho-
bic interactions. Aggregation can occur among proteins that have
hydrophobic “sticky” patches, or when interior hydrophobic residues
are exposed. For example, heating proteins often unfolds them, at least
partially, favoring aggregated states.

Below, we focus on one simple model of just one type of aggregation,
namely, fibril formation, chosen because the model is quantitative,
agrees with available experiments, and gives a few basic insights.

Some types of proteins, when put into solution at high concentra-
tion, will form fibrillar aggregates. A fibril is like dry spaghetti in
a package: the many individual chain molecules are stretched out
fairly straight, lined up, and packed closely together. As a function
of the protein concentration, fibril formation results from a sharp
transition: at low concentrations, most of the proteins are free and
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A protein’s solubility depends on pH and salt concentration. (A) Solubility is minimal near the isoelectric
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pH. The red curve shows the solubility S of RNAse Sa (pl = 3.5); the blue curve shows the solubility of a mutant of RNAse Sa with
pl = 6.4; and the brown curve shows a mutant with pl = 10.2. Note that in the case of the wild-type protein, the minimum occurs

exactly at pl = pH, where it is slightly shifted in the two mutants, due to other effects (such as dipolar interactions) that perturb
the solubility. (B) Proteins are less soluble in high salt concentrations. Adding salt shields net charges on proteins, reducing the

repulsions between the proteins, and so reducing protein solubility and facilitating aggregation. This is called salting out. In other

cases typically not involving charged proteins, increasing salt can increase the solubility, called salting in. Data shown are for
lysozyme (A, from KL Shaw, GR Grimsley, Gl Yakovley, et al. Protein Sci, 10:1206-1215, 2001. B, from E Ruckenstein and IL

Shulgin. Adv Coll Interface Sci, 123-126:97-103, 2006. With permission from Elsevier.).
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Fibril formation can
be modeled as two steps:
nucleation and propagation. (A) In
nucleation, the first two chains come
together to start the fibril. (B) In
propagation, additional chains add to
the growing fiber.

independent and monomeric in solution. However, above a particular
concentration, the molecules assemble into aggregates. Fibril forma-
tion appears to be quite general; it is observed for many different
peptides and proteins. Fibrils and soluble oligomers are observed in
folding diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and
prion diseases. In some cases, a protein that has a normally stable
native structure can be perturbed to expose a hydrophobic surface,
leading the protein to stick to others, forming aggregates. In other
cases, peptides that do not have stable folded structures can aggre-
gate. For example, AR is a peptide of 40-42 amino acids that is
implicated in Alzheimer’s disease. a-synuclein has 140 amino acids,
with a highly charged and unstructured 44-residue C-terminus that is
implicated in Parkinson’s disease. And extended glutamine sequences
(for example, more than 40) at the N-terminal segment of the hunt-
ingtin protein can lead to aggregation into plaques in Huntington’s
disease.

Figure 5.14 shows a simple model for the cooperativity of the
monomer-to-fibril equilibrium [6]. We are interested in computing the
concentration distribution of the different fibril sizes. Let [A;] repre-
sent the concentration of monomeric chains in solution (in units of the
number of fibrils per unit volume). [A;] is the concentration of fibrils
containing two protein chains, and [A;,] is the concentration of fibrils
containing m protein chains. Let’s express our independent variable as
x = [A;] to simplify using standard notation for binding polynomials
(see Chapter 4). We now express [A,,] in terms of the concentration x of
the isolated chains, as follows.

First, express the concentration of an m-mer fibril as the binding
equilibrium of adding one chain to an existing fibril (m — 1)-mer:

[Am]

K= A x

(5.24)

where K is the binding constant for adding one protein to a growing
fibril. Rearranging Equation 5.24 gives

[Am] = (K¥)[Am-1]. (5.25)

(A) nucleation

~ (N

[A] [A)]
(B) propagation C@
E 3 N : i
[Am—]] [Am]
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Equation 5.25 describes the fibril propagation step, for growing a fibril
from size m—1 to size m; see Figure 5.14B. That is, you multiply by
a factor of Kx for every chain that adds to the growing fibril. Now, in
the same spirit as in helix—coil theory, we also define a fibril nucleation
step. Let the nucleation equilibrium quantity & account for intiation
when the second protein adds onto the first to begin the formation of
the fibril:

[A2] = (KX)[A;16 = 5Kx2. (5.26)

Here, (Kx) is the propagation parameter and $ is the nucleation param-
eter (similar to s and ¢ in helix-coil theory). § « 1 means that initiating
fibril formation is difficult. The difference between our fibrillization
model and helix—coil theory is that fibril formation depends on protein
concentration, whereas helix—coil theory, which describes only the con-
formations of a single isolated molecule, does not. The cooperativity
we model here is a matter of binding equilibrium, not conformational
equilibrium.

In order to obtain the concentration [A,;] in terms of x, the concen-
tration of free monomeric protein, you multiply by (Kx)"! because
you have propagated by adding m — 1 chains, and you multiply by &
because you initiated the fibril to get to the dimer. So, you have

[Am] = 6x(Kx)™ 1, (5.27)

You can use Equation 5.27 to compute the relative concentrations of
all the species, if you know the value of x. But, before going further,
let’s switch to another common way of expressing the relative concen-
trations. Our quantities above, [Am], are numbers of m-mer fibrils per
unit volume. Now, we want to count protein molecules, not fibrils. We
want ¢, the numbers of protein molecules in m-mer fibrils per unit vol-
ume. To convert, use ¢, = (m proteins per fibril) x (concentration of
fibrils): cm = m[Am] = (6/K)m(Kx)™. c¢; is the concentration of free pro-
tein molecules, ¢, is the concentration of protein molecules in 2-mer
fibrils, and so on.

The total concentration of protein in solution is a sum over state
concentrations:

Ctot=C1 +Co+C3+...

= Cmonomer + Cibril

5 o0
=X+ > mEx)™. (5.28)

m=2

You can see that Equation 5.28 resembles the helix—coil partition func-
tion in Equation 5.14. Both are sums of statistical weights over all the
possible states accessible to the system. Both have a nucleation equi-
librium constant (o for helix—coil processes and & for monomer-fibril
assembly). Both have a propagation constant (s for helix-coil processes
and Kx for monomer—fibril assembly). Both monomer-fibril assembly
and helix-coil transitions are two-state transitions if nucleation is dif-
ficult. In both processes, intermediate states are not populated. For
helix—coil processes, if ¢ is small, then the chain will be a coil or a long
helix, but not a short helix. For monomer-fibril processes, if § is small
(nucleation is difficult), then most of the proteins will be either in the
form of monomers or in big fibrils, but not in small fibrils. A key factor
that governs the balance between monomers and fibrils is Kx: if either
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Amyloid fibril growth. (A) The length distribution of fibrils in amyloid. The bars show the experimental
distribution of lengths of the amyloid peptide a-synuclein, for 30 uM bulk concentration. (B) Amyloid fibrils grow longer sharply as
a function of peptide concentration. (C) The concentration of fibrils increases nonlinearly with the concentration of a-synuclein.
For computational details, see [6]. (A and B, data from ME van Raaij, ] van Gestel, IMJ Segers-Nolten, SW de Leeuw, and V
Subramaniam. Biophys J, 95:450-458, 2008; C, data from E Terzi, G H6lzemann, and ] Seelig. J Mol Biol, 252:633-642, 1995.)

K is large or the protein concentration x is large, the system will be
mostly fibrillar. Increasing the protein concentration in solution leads
to a transition from the monomeric to fibrillar state.

Here are three main conclusions from this model (details are given in
Appendix 5B): (1) For a given protein concentration, the distribution
[Am] of fibril lengths m is exponentially decreasing (Figure 5.15A). (2)
Adding more protein into the solution leads to a cooperative increase
in the average lengths of fibrils (see Figure 5.15B). (3) Adding more pro-
tein into the solution increases the concentration of fibrils, nonlinearly
(see Figure 5.15C).

Cooperativity is a common feature of biological mechanisms. For exam-
ple, viral capsids appear to assemble in all-or-none fashion from many
protein molecules at a time. Also, the forces and velocities of molecular
motors—which are proteins that move along protein tracks to perform
molecular transport or to create forces and flows—are enhanced when
multiple motor molecules work cooperatively together. And in chemo-
taxis—the process by which cells move toward food—receptor proteins
assemble cooperatively in the membrane to amplify the cell’s detection
of food signals. In addition, the assembly of protein machines from
their component proteins may be cooperative, but little is yet known.

SUMMARY

We have considered various cooperative processes in proteins. Some
peptides and proteins undergo a sharp helix—coil transition, from a
large ensemble of denatured conformations to a single helical con-
formation. The classical helix-coil model involves nucleation and
propagation. Nucleation is unfavorable, but propagation is slightly
favorable, so the chain forms either no helix or long helices. Protein
folding in general is also cooperative. Both the secondary and tertiary
structures can contribute to stability and cooperativity. In addition, we
explored how proteins at high concentrations can associate to form
fibrillar assemblies.

APPENDIX 5A: ADVANCED HELIX-COIL THEORIES

Various advanced helix—coil theories allow you to account for the
specific sequences of amino acids in the chain and allow you to treat
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multiple stretches of helix within a chain. Examples are the models of
Zimm and Bragg [7], Lifson and Roig [8], and Agadir [9]. Here is the
basic idea of the Zimm-Bragg model. Suppose you want to allow for
multiple helices in a chain of different s values for each monomer type.

First, define the generator matrix,

G=|:1 "S}. (5.A.1)
1 s

The partition function will be

Qv=[1 os]GN"! [ﬂ : (5.A.2)

1 os
(TryitforN:Z:sz[l os] |:1 0:|=1+cs+cs+csz,whichgives
s

Q=1 +20S+0S2.>
—_— =~ =~
cc ch+hc hh

Now, for a specific sequence, such as Ala-Trp-Gly, take the values of
s for each amino acid from Table 5.1, and choose a value of ¢. Then,
replace the generic matrix G3 with the product Gaj,GtrpGgly- Each such
matrix uses a fixed value of ¢ and the s that is appropriate for that
particular amino acid.

APPENDIX 5B: AMYLOID AGGREGCATION THEORY

Here are a few further details of the amyloid fibrillization model
described in the text. You can interpret fibrillization equilibria by look-
ing at which concentration terms are large and which are small in
Equation 5.28, for particular values of 8, K, and cot. Note that our inde-
pendent variable here for protein concentrations is ciot, not x. Ciot is the
independent variable because you control it; it is the total concentra-
tion of protein that you put into the solution. Once you fix the value of
Ctot, that determines the concentration of free monomer, x. This poses
a little computational obstacle: you need to express the protein con-
centration ¢, as a function of cit, rather than expressing ¢ (x) as a
function of x. You can do so by solving Equation 5.28 numerically. The
solution to this equation gives you the populations of all the fibrillar
species of different lengths, either as protein concentrations c or as
fibril concentrations [A]. From those values, you can compute average
quantities, such as described in the next section.

How many fibrils are long, and how many are short? What fraction
f(m) of all fibrils has m peptide molecules per fiber? The relative
populations of fibrils of different sizes are given by

[Aml] (Kx)™

= = -~ (Kx)"™1(1 - Kx), 5.B.1
f(m) S 1A] T, (Kx) (Kx)™ (1 = Kx) (5.B.1)

where we have used Equation 5.27. The approximation on the right-
hand side comes from using the summation relationship Y 5. _;, y™ =
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y(1 — y)~1, which is valid as long as y < 1. Equation 5.B.1 predicts that
more fibrils are short, and fewer fibrils are long. The fibril fraction f(m)
decreases geometrically with m for a fixed peptide concentration. This
prediction is compared with experiments in Figure 5.15A.

Here is an important subtle point. On the one hand, [A,;] diminishes
with m. On the other hand, the concentration ¢, = m[Ay,] first increases
at small m, reaches a peak, and then decreases at large m. So, fibrils
have a well-defined average length, which we compute below.

Adding peptide to the solution can cause a sharp jump in the average
size of fibrils. How does the average fibril length change with peptide
concentration? You can readily compute the average fibril length as

v _ LmmE&o™ _ kol
(m)_rglmf(m)_ S K = (Kx)(1 — Kx)71, (5.8.2)

where we have used Equation 5.B.1 and the additional summation
relationship 1+ 2y +3y?+...=(1 —y)~2. An important conclusion is
qualitatively expressed in Equation 5.B.2. As x increases to the point
that Kx — 1, Equation 5.B.2 predicts that the average fibril size becomes
infinite: (m) — oo. It indicates that fibrils undergo a sharp transition
in their average lengths. In dilute peptide solutions, fibrils are short.
Increasing the peptide concentration leads to a sharp increase in fibril
lengths. However, computing the average lengths and transition point
accurately requires some numerical computations, for reasons noted
previously. Figure 5.15B shows the results of the full calculation, and
compares the model with experimental data on «-synuclein [6]. It shows
how fibrils undergo a sharp length transition with increasing peptide
concentrations in solution.

Now, how does the fibril concentration depend on the amount of pro-
tein in solution? At high protein concentrations, each added peptide
chain goes into forming fibril. Recall from earlier that for 5 « 1, our
model gives two states for c¢,: monomers and long fibrils. So, we
can assume that Y 5._, ~ Y »_; because we are neglecting only a very
small population of short fibrils. This allows us to use the relationship
> 1 my™=y( —y)~2, which is valid for y < 1, where y = Kx in this
case. This gives a closed-form expression for the fibril concentration:

X4

Cfibril =
Now use Equations 5.28 and 5.B.3 to compute the fraction of protein,
fribril» that is in the form of fibrils:

Cribril __ 8Kx/(1 — Kx)? _ 5K (5.8.4)
Cot X+ 06Kx/(1 —Kx)2 (1 —Kx)2+6K o

fribril =

To interpret Equation 5.B.4, note that the quantity Kx ranges from 0 to
1. As ciot = 00, Kx — 1. In this limit of high peptide concentration, you
can see that (1) fgpri; — 1, meaning that any additional proteins added
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to solution will go into forming fibrils, and (2) x — (1/K) (because Kx —
1), meaning that the concentration of monomers reaches a saturation
concentration that you can compute from the propagation constant.
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