Molecular dynamics simulations of membranes
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Figure 1. Diagram of computational methods for studying biophysical systems across a range of time- and
length-scales. Representative snapshots depict an all-atom lipid bilayer, peptides embedded in a coarse-grained
bilayer and proteins remodeling a continuum mechanics membrane model. Bilayers were simulated with the
CHARMM36 [15] and Martini [16] force fields and rendered with Visual Molecular Dynamics [17].

Bradley & Rhadakrishnan, Polymers 2013, 5(3), 890-936; https://doi.org/10.3390/polym5030890
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olecular dynamics simulations of membranes

Simulation details
Software: Gromacs

FF: MARTINI
Simulation time: 160 us
total

10 + 8 replicas

Lipid composition
headgroup: 67% PE, 33% PG
tails: 100% PO
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Molecular dynamics simulations of membranes
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Lipid configurations can vary in many ways
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Methods for analyzing lipid configurations & dynamics

Table 1. Descriptors of membrane structure and dynamics accessible in MOSAICS 1.0 and in other simulation analysis tools*

MOSAICS LiPyphilic  LoMePro APL*Voro LipidDyn Grid-MAT LOOS Membrainy IIQ/II_ILEJI\(/SIFN- MemSurfer

Bilayer shape Yes Yes -—-- ---- ---- ---- Yes ---- ---- Yes
Bilayer thickness Yes Yes Yes Yes Yes Yes Yes Yes
Lipid-chain order parameter* Yes Yes Yes ---- ---- ---- Yes ---- ---- ----
Area per lipid* Yes Yes Yes Yes --- Yes
Multicomponent lipid enrichment* Yes ---- o ---- Yes ---- ---- ---- ---- ----
Lipid density* Yes ---- e ---- Yes ---- Yes Yes Yes Yes
Mean lipid tilt*$ Yes - Yes e -
Mean instantaneous lipid tilt*$ Yes Yes e e —-- e
Leaflet interdigitation Yes - —-- -
Interleaflet contacts* Yes - -—-- -
Lipid-chain end-to-end length* Yes --- --- e e
Lipid-chain splay* Yes - - o -
Lipid-solvent contacts* Yes e e e e
Lipid-protein H-bond & salt-bridges Yes ---- o ---- ---- ---- ---- ---- ---- ----
Average lipid conformation* Yes ---- — ---- ---- ---- ---- ---- ---- ----
Lipid radius of gyration Yes - - e e
Lipid residence time Yes -—-- ---- - -—-- - --- - --- -
Multicomponent lipid mixing Yes ---- Yes ----
Lipid self-diffusion coefficients Yes Yes ---- ----
Lipid solvation-shell on/off rates Yes e ---- Yes ----
Lipid flipping Yes Yes -—-- -
Membrane protein tilt angle Yes ---- ---- ---- ----
Parallelization MPI ---- ---- Multi-core Multi-core  Multi-core ----
Supported trajectory file format GROMACS Multiple GROMACS GROMACS GROMACS GROMACS Multiple GROMACS Multiple Multiple
Programming language C++ Python C C++ Python Perl C++ Java TCL C++/Python

(*) In MOSAICS 1.0, most descriptors are provided as 2D spatial distributions across the membrane plane, which can be represented as heat maps filtered by
user-defined statistical-significance thresholds; selected observables (*) are also available as 3D distributions. Only self-diffusion coefficients and lipid-mixing
are provided as global average properties. Descriptors available in other software tools but not in MOSAICS 1.0 are not included in this table, for conciseness;
we refer the reader to the corresponding publications for further details. (%) Further details on these alternative definitions are provided below.

Bernhardt N, Faraldo-Gémez JD. MOSAICS: A software suite for analysis of membrane structure and dynamics in simulated trajectories. Biophys J. 2022 Nov 3:S0006-3495(22)00903-1. doi: 10.1016/
J-bpj.2022.11.005. Epub ahead of print. PMID: 36333911.



Lipid dynamics are slow
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Molecular dynamics simulations of membranes

Membrone structure
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Figure S. SA/lip obtained from simulation are compared with experiment for various FFs.
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Cell Boundaries - How Membranes and Their Proteins Work. Stephen White, Gunnar von Heijne, Donald M.
Engelman. CRC Press 2022.
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Cell membranes are greasy
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The problem of protein partitioning into membranes

Polypeptides are expected to be unstable in Davson & Danielli model
membranes due to unsatisfied charges in the Lipoid
backbone molecule
_ Protein
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Measurement of free energy of membrane partitioning

VOL. 27, NO. 14, 1988 5283

AG° = Ho,bilayer = HO,buffer

14
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water

FIGURE 1: Experimental apparatus used to measure partition coef-
ficients. The vesicle solution and corresponding aqueous solution are
each placed in a glass vial along with a magnetic stir bar. Water
surrounds the vials to facilitate equilibration with the external water
bath. Radiolabeled benzene is pipeted into the bottle and equilibrates
through the vapor phase. A TFE-lined cap prevents vapor leakage.
The bottles are placed on a magnetic stirrer, submerged in a water
bath, and incubated at fixed temperature.



Partitioning free energies of the peptide backbone

water less-polar phase
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H-bonded secondary structures in membranes
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But what about the cost of side-chain partitioning?
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Amino Acid side-chain transfer free energies
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The lipid bilayer is not an isotropic solvent

Region
(i)
(i)
Key:
1.4 - ey 7
Total
12 L Water —
E 10k Tails =
2
> 08F % /< -
[0}
e L \/ F
D .
0.4 \ .
0.2 -
0.0 | N W/ |
' -3 -2 -1 0 1 2 3
Distance from bilayer center (nm)
TiBS

Figure 1. Lipid bilayers contain large variations in density and polarity on a
nanometer scale. (i) Snapshot of a DOPC bilayer. (ii) Partial density profile of a pure
DOPC bilayer. The system is divided into four regions with different physicochemical
properties [7]. Region |, the center of the bilayer, is hydrophobic and significantly
disordered with properties similar to decane. In Region Il, the lipid tails are more
ordered and have a higher density, similar to a soft polymer. Region Ill contains a
diverse mixture of functional groups including the carbonyl and glycerol groups of
the lipid tails, most of the head group density and water. Region 1V is defined by
water that is perturbed by the lipid bilayer and can be quite deep.
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The biological translocon scale
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Figure 4.9 Using detergents to
unfold membrane Proteins, (A)
Denaturation curves for diacyl-
glycerol kinase, which has three
detectable states.

In this case, the
refolding is in the presence of the

non-denaturing detergent decyl p-D-
maltoside (DM). (B) Denaturation of
bacteriorhodopsin, which has two
states. CD spectra of the two states
(inset) show that the denatured state
retains most of the helical structure
of the native state. (C) A suggested
general scheme for folding a-helical
membrane proteins out of deter-
gents and urea. (A, From Lau FW,
Bowie JU [1997] Biochemistry 36:
5884-5892. With permission from
the American Chemical Society.

B, From Curnow P, Booth P) [2007]
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Water to lipid bilayer thermodynamics protein folding scale
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Depth dependency &
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Fig. 3. Energetics of side-chain partitioning varies by depth in the mem-
brane. The OmpLA host-guest system is shown similarly as in Fig. 1 with
the a-carbons of sequence positions 120, 164, 210, 212, 214, and 223 shown
as black spheres. The membrane depth of those five a-carbons versus the
AAG;VI, of leucine and arginine variants (compared to alanine variants) is
shown aligned with the OmpLA image. Normal distributions fit to the leucine
and arginine data are also shown. Error bars represent standard errors of the
mean from individual titration experiments.
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Figure 3. Arginine partitioning into lipid bilayers is non-additive. (a) Calculations show that arginine causes a water defect in the membrane. Adding a second arginine to an
existing defect causes almost no increase in free energy. Adapted with permission from [47]. (b) Experimental observation of non-additivity of arginine partitioning. This
panel summarizes five different experimental observations. Adapted with permission from [35].



Amino Acid side-chain transfer free energies
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Hydropathy analysis
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Empirical hydrophobicity scales

Figure 3.2 An early hydrophobic- amino acid composition of the inside and surface
ity scale for soluble proteins based _l
upon the fraction of each type of residue molar fraction free energy (kcal mol )
amino acid buried in the protein buried accessible f AG,
interior or accessible from the ,
aqueous environment. (From Janin ) Leu 1.7 4.8 2.4 0.5
[1979] Nature 277: 491-492. With Val 12.9 4.5 2.9 0.6
permission from Springer Nature.) lle 8.6 2.8 3.1 !
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Asp 2.9 7.7 0.4 o
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The two-stage membrane protein folding model
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Popot JL, Engelman DM. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031-7. doi: 10.1021/
b100469a001. PMID: 1694455.



The “two-stage” model is a bit more complex ...
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The “two-stage” model is a bit more complex ...
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Stage 1: Free energies of peptide partitioning

128

Figure 3.26 Thermodynamic sum-
mary of TM helix stability. The free
energy of insertion of a glycopho-
rin transmembrane helix can be
separated into two components:
side chain and helical-backbone
insertion free energies. The free
energies of insertion are computed
using the WW octanol scale (Figure
3.7). Although bulk octanol is not a
perfect stand-in for the bilayer, the
free energies for side chains and
backbone are so large that errors
in the difference free energies

are unlikely to affect the general
features of TM helix stability. As

in many biochemical reactions, net
free energies result from small dif-

ferences between large opposing
free energies. If the backbone of the

helix is unfolded, the energetic cost
of exposing non-H-bonded peptide
bonds is so immense that the only
TM structure possible is a helix. This
observation explains why helices
cannot be unfolded in calorimetric

measurements (Figure 4.8).

CHAPTER 3: Interactions of Peptides with Lipid Bilayers
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Stage 1: Measurements of equilibrium peptide partitioning
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Stage 1: Peptide partitioning

(A) partitioning free energy from water to PC bilayer interface
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i @ indolicidin family algorithm accounts for the differ-
7 E A pentapeptide family 2 ing contributions of the peptide-
i terminating groups. Changes in
6L the charge state of the C-terminus
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Stage 2: Protein assembly inside the membrane

Stage 2

: interface
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Self-assembly of membrane proteins in membranes

The Torpedo electroplax membrane
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‘m XN

FIGURE 3 Vesicles with ribbons of paired receptors extending across their surfaces. The incubation conditions were 3 wk at
U S 17°C. Bar, 0.1 um. X 150,000. (inset) Bar, 0.1 am. X 270,000.
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Popot et al., 1987
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Figure 5. Regeneration of BR chromophore from fragments refolded either separately or simultaneously in the
absence of retinal. Purified fragments in SDS buffer were mixed with Halobacterium lipids (lipid to protein ratio 10:1,
w/w) in the absence of retinal and taurocholate and reconstituted by PDS precipitation as described in Materials and
Methods. Following dialysis, the vesicle suspensions were clarified by a brief sonication. (a) C-1 and C-2 in SDS buffer
were mixed prior to PDS precipitation and simultaneously refolded in the same vesicles (top panel). Absorption spectra
were recorded before (thin line) and after (thick line) addition of excess retinal (middle panel). Bottom: difference
spectrum. (b) C-1 and C-2 were reconstituted into separate vesicles (top panel). The vesicles were mixed (equimolar ratio
of the fragments) and absorption spectra recorded before (thin line) and after (thick line) addition of excess retinal
(middle panel). Bottom: difference spectrum. (¢) C-1 and C-2 were reconstituted into separate vesicles. The vesicles were
mixed (equimolar ratio of the fragments) and freeze-thawed (top panel) in the absence (thin line) or presence (thick line)
of excess retinal (middle panel). Absorption spectra were recorded after clarification by brief sonication. The identical
result was obtained if retinal was added after freeze-thawing. Bottom: difference spectrum.



In-membrane oligomeric assembly of membrane
transporters & ion channels (e.g., CLC)




Measuring membrane protein association equilibrium in
membranes by single molecule subunit capture
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Dimerization isotherms of CLC-ec1 in membranes
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Steric trapping for kinetically limited reactions

ALPHA HELICAL FOLDING FROM SDS

partly denatured

) transition state folded helical bundle
state in SDS

Steric-trapping studies folding in the native state




Single-molecule force microscopy methods
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membrane properties

Gramicidin dimerization is sensitive to
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What are the driving forces for membrane protein stability

A Hydrogen bonds C Protein entropy
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CLC dimers driven by burial of membrane defects
(mimicking the hydrophobic effect)
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What is the role of lipids in protein reactions?
Solvent or ligands?

annular lipids non-annular lipids bulk lipids
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- ESR reports lipid exchange between annular lipids as ~ 107 s-1
- Lipid exchange in bulk ~ 108 s-1

- Intrinsically different membrane environment around a protein

* Not necessarily binding

Frick M, Schmidt C. Mass spectrometry-A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids. 2019 Jul;221:145-157. doi: 10.1016/
j-chemphyslip.2019.04.001. Epub 2019 Apr 3. PMID: 30953608.



Lipids link to equilibrium by co-solvent effects

C16:0/C1s:1

D E. AAG ~ log(DL) — preferential solvation
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Chadda, Bernhardt, Kelley, Teixeira, Griffith, Gil-Ley, Ozturk, Hughes, Forsythe, Krishnamani, Faraldo-Goémez* & Robertson*, eLife 2021




Soluble vs. Membrane Protein Folding

Stage II

Popot JL, Engelman DM. Membrane protein
folding and oligomerization: the two-stage model.
Biochemistry. 1990 May 1;29(17):4031-7. doi:
10.1021/b100469a001. PMID: 1694455.




Alpha-helical membrane protein synthesis
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Beta-barrel folding

slow fast :
folding kinetics , » folding kinetics
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thickness impose a less densely packed bilayer near POTRA
kinetic barrier to \ B1 and P16 domains
spontaneous folding 2

AGompLA(w,1,DL)
= -32.5 kcal/mole

PE, PG and bilayer
thickness impose a

kinetic barrier to folding :
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