Biological functions of IDRs

Bio5469 (Washington University in St. Louis)

Sept 16 2022 Alex Holehouse alex.holehouse@wustl.edu

Folded domains Sequence

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

Structure & dynamics

Folded domains Sequence --> Folded state> Function

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

Intrinsically disordered regions

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

Intrinsically disordered regions Sequence

NECNQCKAPKPDGPGGGPGGSH MGGNYGDDRRGGRGGYDRGG

YRGROGDROGFROGROGDR GGFGPGKMDSRGEHRQDRRERPY NECNQCKAPKPDGPGGGPGGSHM GGNYGDDRRGGRGGYDRGGY

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

Intrinsically disordered regions

Sequence -> Ensemble

NECNQCKAPKPDGPGGGPGGSH MGGNYGDDRRGGRGGYDRGG YRGRGGDRGGFRGGRGGGDR GGFGPGKMDSRGEHRQDRRERPY NECNQCKAPKPDGPGGGPGGSHM GGNYGDDRRGGRGGYDRGGY

KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW KTGQPMINLPARCHAWARDSFTW YTDRETGKLKGEATVSFDDPPSA KAAIDWFDGKEFSGNPIKVSFAW

Intrinsically disordered regions

IDR amino acid chemistry

Martin & Holehouse Emerg. Top. Life. Sci. (2020)

Charge residues can dominate IDR dimensions

Das et al. COSB (2015)

Charge residues can dominate IDR dimensions

Mao et al. **PNAS** (2010)

Charge patterning can influence chain dimensions

Lab	el Sequence		к
sv1	EK	Ο.	0009
sv2	EEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKE	0.	0025
sv3	KEKKKEKKEEKKEEKEKEKEKEKEKEKEKEKEKEKEKEKE	0.	0139
sv4	KEKEKKEEKEKKEEEKKEKEKEKKKEEKKKEEKKEEKKEEKKEEKEEKK	0.	0140
sv5	KEKEEKEKKKEEEEKEKKKKEEKEKEKEKEEKKKKEEKEEKEK	0.	0245
sv6	EEEKKEKKEEKEEKKEKEEEEKKKEKEEEKKKEKEEEKKKEKE	0.	0273
sv7	EEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKK	0.	0450
sv8	KKKKEEEEKKKKKEEEEKKKKKEEEEKKKKKEEEEKKKKK	0.	0450
sv9	EEKKEEEKEKEKEEEEKKEKKEKKEKKEEKEKEKKKEKKKEKE	0.	0624
sv10	EKKKKKKEEKKKEEEEKKKEEKKKEKKEEKEKEKEKEKEEKEK	0.	0834
sv11	EKEKKKKKEEEKKEKEEEEKEEEKKKKKKEKEEEKEEKKEEKKKEEKK	Ο.	0841
sv12	EKKEEEEEKEKKEEEEKEKEKKEKEEKEKKEKKEEKEKKKEKKEEEKEK	0.	0864
sv13	KEKKKEKEKKKEEEKKKEEEKEKKKEEKKEKKEEEEEEE	0.	0951
sv14	EKKEKEEKEEEKKKKKKEEKEKKKKKKKKKKKKEEEEEE	0.	1311
sv15	KKEKKEKKEKKEKKEEEKEKEKKEKKKKEKEKKEEEEEE	0.	1354
sv16	EKEKEEKKKEEKKKKEKKEKEEKKEKEKEKEEEEEEEEE	0.	1458
sv17	EKEKKKKKKEKEKKKEKEKKEKKEKEEEKEEKEKEKKEEKKEEEE	0.	1643
sv18	KEEKKEEEEEEEKEEKKKKKEKKKEKKEEEKKKEEEKKKEEEE	0.	1677
sv19	EEEEEKKKKKEEEEEKKKKKEEEEEKKKKKEEEEEKKKKK	0.	1941
sv20	EEKEEEEEKEEKKEEKKEEKKEKKEKKEKKEKKKKKKKK	0.	2721
sv21	EEEEEEEEKEKKKKKEKEEKKKKKKKEKKEKKEKKEKKE	Ο.	2737
sv22	KEEEEKEEKEEKKKKKEKEEKEKKKKKKKKKKKKKKKKEKKEEEE	0.	3218
sv23	EEEEEKEEEEEEEEEEKEEKEKKKKKKKKKKKKKKKK	Ο.	3545
sv24	EEEEKEEEEEKEEEEEEEEEEKKKEEKKKKKKKKKKK	0.	4456
sv25	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	0.	5283
sv26	KEEEEEEKEEKEEEEEEEEEEEEEEKEEEKKKKKKKKKK	0.	6101
sv27	KKEKKKEKKEEEEEEEEEEEEEEEEEEEEEEKEEKKKKKK	0.	6729
sv28	EKKKKKKKKKKKKKKKKKKKKKKEEEEEEEEEEEEEEEE	0.	7666
sv29	KEEEEKEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKK	Ο.	8764
sv30	EEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKK	1.	.0000

Das et al. PNAS (2013)

Hydrophobic/aromatic residues are "sticky"

Hydrophobic/aromatic residues are "sticky"

Martin/Holehouse/Peran et al. *Science* (2020)

Hydrophobic/aromatic residues are "sticky"

Martin/Holehouse/Peran et al. *Science* (2020)

Molecular functions of IDRs

Molecular functions of IDRs

Holehouse & Kragelund Nat. Rev. Mol. Cell. Biol (2023)

IDRs can determine relative position and flexibility of folded domains

McCann et al. PNAS (2012)

IDRs can tune the effective concentration of inter-domain interactions

2. Entropic force generation

2. Entropic force generation

Keul et al. Nature 2018

2. Entropic force generation

Keul et al. Nature 2018

3. IDRs in molecular recognition

IDRs often bind via Short Linear Motifs (SLiM)s

Multiple SLIMs can be placed on a single IDR

IDRs can bind through coupled folding & binding

Rogers et al. JACS (2014)

In many cases both pathways are relevant

Specific molecular recognition via folded and fuzzy complexes

Staller et al. Cell Systems (2022)

IDRs can also form high-affinity dynamic complexes

Borgia et al. Nature (2018)

IDRs can also form high-affinity dynamic complexes

Fully disordered complexes can engage in high affinity interactions

Borgia et al. Nature (2018)

IDRs can also form high-affinity dynamic complexes

Borgia et al. Nature (2018)

4. IDRs as platforms for multivalent interactions

IDRs often connect folded domains but themselves can ALSO mediate binding

IDRs often connect folded domains but themselves can ALSO mediate binding

As a result – large IDR-containing proteins often function as molecular "hubs"

As a result – large IDR-containing proteins often function as molecular "hubs"

5. IDRs as drivers of higher-order cellular assemblies

Many condensates have liquid-like properties

Brangwynne et al. Science (2009) **Elbaum-Garfinkle et al.** PNAS (2015)

In many cases, IDRs are critical for the formation of these assemblies (although IDRs are <u>NOT</u> required)

READING:

Paper to read for discussion section:

Borgia, A., Borgia, M. B., Bugge, K., Kissling, V. M., Heidarsson, P. O., Fernandes, C. B., Sottini, A., Soranno, A., Buholzer, K. J., Nettels, D., Kragelund, B. B., Best, R. B., & Schuler, B. (2018). Extreme disorder in an ultrahigh-affinity protein complex. *Nature*, *555*(7694), 61–66.

Recommended reading for exam:

Holehouse & Kragelund (2023) The molecular basis for cellular function of intrinsically disordered regions. Nature Reviews Molecular Cell Biology (in press)

This review (up to line 674 [no condensate questions!]).

The answer to the questions on the exam will be out of the first 674 lines of this review.

Bonus reading if you want MORE DISORDER:

Martin, E. W., & Holehouse, A. S. (2020). Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. *Emerging Topics in Life Sciences*, 4(3), 307–329.