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Recap from Mon.

* (1) IDRs are defined by lacking a fixed 3D structure

* (2) IDRs are depleted in hydrophobic residues and enriched in charged
residues

* (3) The lens of polymer physics offers a convenient reference frame to
think about IDRs through



Polymer scaling theory gives us tools to describe this
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Today:
Approaches for the biophysical characterization of
disordered proteins



Part | : NMR, SAXS and smFRET



Three key experimental methods for
characterizing IDRs

Nuclear Magnetic Resonance (Single molecule)
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Conceptual challenge

You can study folded proteins as static entities
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Conceptual challenge

You cannot (currently) study disordered proteins as static entities




1. Nuclear Magnetic Resonance (NMR) spectroscopy
for studying disordered proteins



NMR is a spectroscopic techniqgue based on magnetization
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NMR gives you local, residue-specific information

NMR



NMR gives you local, residue-specific information

* Treats each residue like a tiny bar magnet
(by looking at certain atomic nuclei)
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NMR gives you local, residue-specific information
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NMR gives you local, residue-specific information

° . o © 104
A . o
Folded protein =" : | o b .
¢ 0. - 107
0 6° L 108
. 2o’ : .is.’ 100
! L) "
[ . o 1
00 : ' : 30 7.° d o 112 Z
] o ¢ ¢ ‘s v LLE N ——
0,00 %0 -w‘?o f 14 ep
AT AR e’ A
° 0 "’ ° O
o 0o . 1" p
"t "35"0& : ¢ L1118 p «Q
] MRACT T (T ML PR S )
s & ¥o o 121 3
' " & Do i
° ‘q “ﬂ')' e 00 v, 123
oV el 124
v 0 ’ 125
° .‘. °°‘ r 126
4 2 ° 127
6t ° 125
® 441D 050 ° 129
o S e 00 ° - 130
13 12 1 1 9 8 7 6

Hy::i;ggen NMR



NMR gives you local, residue-specific information

1D NMR spectrum
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NMR gives you local, residue-specific information

Disordered protein
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NMR gives you local, residue-specific information

Disordered protein
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NMR gives us a way to see local residual structure in IDRs
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NMR gives us a way to see local residual structure in IDRs
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NMR gives us a way to see local residual structure in IDRs

Disordered protein
oge Difference compared to “random coil” chemical shifts
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NMR gives us a way to see residue-specific binding

NMR



NMR gives us a way to see residue-specific binding
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NMR also gives us a way to see local dynamics of IDRs
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NMR also gives us a way to see local dynamics of IDRs
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Benefits of NMR

* Provides residue specific information

* Incredibly versatile — can be used to track IDP binding, get local
information from NOEs or chemical shifts or global information using

pulsed-field gradient NMR
* Label free

* (Generally) interpretation of data is model free

NMR



Drawbacks of NMR

* Technically complicated — not something you can just ‘pick up’
* Instrumentation is expensive to buy and maintain
* Need high protein concentration (signal:noise is not good)

e Data can be hard to interpret

NMR



2. Small-angle X-ray scattering (SAXS)
for studying disordered proteins

SAXS



SAXS is a solution scattering technique

SAXS
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Intensity (log scale)
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SAXS measures global dimensions
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SAXS also provides information on polymer shape
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SAXS also provides information on polymer shape
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Benefits of SAXS

* Relatively easy to do (if you can get time on a beamline and protein
behaves)

e Label free

* Model free (for radius of gyration)

e Can compare directly with simulations

SAXS



Drawbacks of SAXS

* Need high protein concentration (SEC-coupled SAXS helps)
* Is a low-resolution technique — can be misleading...
* Not particularly versatile in terms of what you can learn

* Mostly need a synchrotron (although can be done on a home
source...)

SAXS



Synchrotrons are really expensive....
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3. Single-molecule Forster Resonance Energy Transfer
(smFRET) for studying disordered proteins

SmFRET



Single-molecule FRET measures residue-residue distances

Alston et al. Methods (2021) SMFRET



Single-molecule FRET measures residue-residue distances

Normalized
distribution
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Single-molecule spectroscopy involves a wide range of tools

- ns-FCS correlations FRET efficiency vs. lifetime
Fluorescence :
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Benefits of smFRET (or more broadly single
molecule spectroscopy)

* Operates at extremely low protein concentrations

e Can simultaneously obtain information on protein conformations and and
dynamics

e Can use both inter-molecular and intra-molecular smFRET to examine
conformational changes or binding

e Can examine interaction between arbitrary types of biomolecules as long
as labels can be attached

SmFRET



Drawbacks of smFRET (or more broadly single
molecule spectroscopy)

* Requires the addition of labels
* Interpretation often involves some kind of polymer model
* Global biases are inherently inferred

* Technically challenging

SmFRET



4. Molecular simulations for studying disordered proteins

Simulations



Molecular simulations allow us to explore the an IDP’s
energy landscape
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Molecular simulations involve two components
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Molecular simulations involve two components

e 1. A way to represent the molecule(s) of interest:
* How do we represent our protein in the computer?
 Sets of parameters that define the underlying physics of the system
* Known as a forcefield
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Molecular simulations involve two components

e 1. A way to represent the molecule(s) of interest:
* How do we represent our protein in the computer?
 Sets of parameters that define the underlying physics of the system
* Known as a forcefield

* 2. A way to update the configuration of the system:
* Biomolecules move
* Need some way to ‘sample’ energetically relevant states

Simulations



1. Forcefields describe the underlying physics
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Two main ways of updating the system
configurations

Simulations



Approach 1: Molecular dynamics
Molecular dynamics (MD) generates dynamical
trajectories evolving the system through time

Simulations



MD allows you to ...
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 Compute ensembles using only sequence as input
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* Assess binding of IDRs

Robustelli, JACS (2020)
Simulations




MD allows you to ...

 Compute ensembles using only sequence as input
* Measure how quickly IDRs re-arrange
* Assess binding of IDRs

* Much more...

Robustelli, JACS (2020)
Simulations




Approach 2: Monte Carlo
Monte Carlo (MC) simulations sample
configurational space without considering time

Simulations



Monte Carlo algorithm
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Monte Carlo algorithm

* 0. Calculate the current potential energy of the system
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Monte Carlo algorithm

* 0. Calculate the current potential energy of the system

* 1. Randomly pick a degree of freedom

Location Degree of freedom
Molecule Rigid body coordinate (position and orientation)
Backbone w angle (CA;4, Ciq, N;, CA;)

¢ angle (Ci.q, N;, CA;, C))
Q/J angle (N,, CAZ', Cz‘, Ni+1)

Proline (has seven non-redundant degrees of freedom to facilitate puckering)

Sidechain Depending on residue has > 0 x1, x2, X3, X4 angles

Simulations



Monte Carlo algorithm

* 0. Calculate the current potential energy of the system

* 1. Randomly pick a degree of freedom
e 2. Change the degree of freedom by a random amount

Simulations
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* 0. Calculate the current potential energy of the system

* 1. Randomly pick a degree of freedom

e 2. Change the degree of freedom by a random amount
* 3. Calculate the NEW energy of the system

* 4. Accept/reject the new configuration

Simulations



Monte Carlo algorithm

* 0. Calculate the current potential energy of the system

* 1. Randomly pick a degree of freedom

e 2. Change the degree of freedom by a random amount
* 3. Calculate the NEW energy of the system

* 4. Accept/reject the new configuration

* 5. Repeat steps 1-5 a billion times (writing the current configuration
to file at some interval)

Simulations



We usually use the Metropolis-Hastings acceptance
criterion to accept MC moves for simulations
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MC allows you to ...
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MC allows you to ...

 Compute ensembles using only sequence as input
* Assess binding of IDRs

* Much more...
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Benefits of using simulations for studying IDPs
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Benefits of using simulations for studying IDPs

 Relatively cheap
» Offers high-resolution predictive power

* Enables high-resolution interpretation of (most) experimental data
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Benefits of using simulations for studying IDPs
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Benefits of using simulations for studying IDPs

 Relatively cheap
» Offers high-resolution predictive power
* Enables high-resolution interpretation of (most) experimental data

* Have absolutely control and understanding of the underlying chemical
physics

Simulations



Drawbacks of using simulations for studying IDPs
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* Forcefields suffers from limitations and inaccuracies
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Drawbacks of using simulations for studying IDPs

* Forcefields suffers from limitations and inaccuracies

* Forcefields are (typically) a computationally tractable implementation of a
simplified version of our understanding of physical chemistry
* Three layers of inaccuracies

* Most "standard” forcefields get a lot wrong (some exceptions: AMOEBA/HIPPO being
beacons of rigor in an empirically parameterized world)

* Most modern forcefield were developed with folded proteins in mind

* For IDPs, especially, forcefields have historically been error-prone

Simulations



Drawbacks of using simulations for studying IDPs

Disordered Proteins
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Drawbacks of using simulations for studying IDPs

e Sampling is hard!

Simulations



Drawbacks of using simulations for studying IDPs

e Sampling is hard!

* This has historically been a major issue for MD
* For a 100-residue IDP, re-arrangement takes ~60-100 ns

 MC can sometimes circumvent this (but still issues)

Simulations



Next lecture (Friday)

Sequence-function relationships for IDRs



